forked from melbinjp/Automated_videogen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
videogen.py
333 lines (271 loc) · 11.3 KB
/
videogen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import requests
import audioread
from PIL import Image
from transformers import pipeline, set_seed
from transformers import GPT2Tokenizer, AutoModelForCausalLM
import json
import urllib
import os
import pysrt
import whisper
from gtts import gTTS
from moviepy.editor import *
from moviepy.video.tools.subtitles import SubtitlesClip
from icrawler.builtin import GoogleImageCrawler
from moviepy.config import change_settings
from moviepy.video.fx.all import crop
import re
import os
import pysrt
from moviepy.editor import VideoFileClip
import whisper
import datetime
import torch
import re
import logging
import threading
import configparser
# Load configuration from a config file
config = configparser.ConfigParser()
config.read('config.ini')
# Getting configurations from config
max_filename_length = int(config['General']['max_filename_length'])
logs_dir = config['General']['logs_dir']
general_log = config['General']['general_log']
google_api_key = config['API']['google_custom_search_api_key']
search_engine_id = config['API']['search_engine_id']
# Get the search query from the user
query = input("Enter search query: ")
# Truncate the query to the maximum filename length
filename = query[:min(len(query), max_filename_length)]
# Replacing all non-alphanumeric characters with a hyphen using regular expression
filename = re.sub('[^0-9a-zA-Z.-]+', '-', filename)
#settingfilepaths
output_dir = "output"
image_dir = os.path.join(output_dir,filename)
audio_dir = os.path.join(output_dir,'audio')
video_dir = os.path.join(output_dir,'video')
subtitle_dir = os.path.join(output_dir,'subtitle')
# keeping the logs file seperate
llm_log = os.path.join(logs_dir,'results.txt')
#create directories function
def create_dir(dir_path):
os.makedirs(dir_path, exist_ok= True)
print(f'created {dir_path} directory')
create_dir(logs_dir)
# Initialize logging
logging.basicConfig(filename = os.path.join(logs_dir,general_log), level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# logging the filename
logging.info(f'Filename: {filename}')
def change_settings(settings):
try:
# Your existing settings change code...
print("Hardware acceleration is set to: ", settings["FFMPEG_HWACCEL"])
except Exception as e:
print("An error occurred when trying to use hardware acceleration: ", e)
print("Falling back to running FFmpeg without hardware acceleration.")
# Modify settings to not use hardware acceleration
settings["FFMPEG_HWACCEL"] = None
settings["FFMPEG_VIDEO_CODEC"] = "h264"
# Your existing settings change code...
print("Hardware acceleration is set to: ", settings["FFMPEG_HWACCEL"])
# Call the function with your settings
change_settings({
"FFMPEG_HWACCEL": "auto",
"FFMPEG_VIDEOPRESET": "fast",
"FFMPEG_VIDEO_CODEC": "h264"
})
# Step 1: Search for interesting topics
def search_topic(query, api_key, search_engine_id):
try:
url = f"https://www.googleapis.com/customsearch/v1?key={api_key}&cx={search_engine_id}&q={query}"
res = requests.get(url)
data = json.loads(res.text)
return data.get('items', [])
except Exception as e:
logging.error(f'Error in search_topic: {str(e)}')
return []
width, height = (1920, 1080)
# Step 2: Gather media
def gather_media(query):
try:
create_dir(image_dir)
google_Crawler = GoogleImageCrawler(storage ={'root_dir': image_dir})
print(filename)
google_Crawler.crawl(keyword=query, min_size=(width, height), max_size=None, max_num=200)
images = os.listdir(image_dir)
return [os.path.join(image_dir, image) for image in images]
except Exception as e:
logging.error(f'Error in gather_media: {str(e)}')
return []
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
device_id = device.index
# Define a function to generate text using the model
def generate_text(description):
prefix ="A well-crafted and beautifully written script for a video generation program, with a focus on balance and harmony."
# set_seed(seed)
seed = 1
model_name = "gpt2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
try:
generator = pipeline('text-generation',
max_new_tokens=1000,
model=model,
tokenizer=tokenizer,
prefix = prefix,
device=device_id,
temperature=1,
top_k=50,
top_p=1,
repetition_penalty=1.2,
length_penalty=0.5,
do_sample=True,
num_beams=4,
no_repeat_ngram_size=3,
num_return_sequences=1,
)
# Generate text
additional_sentences_ = (generator(description)[0]['generated_text'])
additional_sentences = additional_sentences_
# Delete the model to free GPU memory
del generator
del model
torch.cuda.empty_cache()
return additional_sentences
except Exception as e:
print(e)
logging.error(f'error in generator pipeline :{str(e)}')
prompt = description
# Open the file in append mode and write the log
with open(llm_log, "a") as f:
# Write the timestamp
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"Timestamp: {timestamp}\n")
# Write the seed value
f.write(f"Seed value: {seed}\n")
# Write the model parameters
f.write(f"Model parameters: {model.config}\n")
# Write the input prompt
f.write(f"Input prompt: {prompt}\n")
# Generate the text and write it to the log
f.write(f"Generated text:\n{additional_sentences}\n\n")
# Step 3: Create audio
def create_audio(description):
try:
create_dir(audio_dir)
# Use a pre-trained language model to generate additional sentences based on the initial description
additional_sentences = generate_text(description)
print(f"Generated audio for: {additional_sentences}")
# Concatenate the original description with the additional sentences
# text = " ".join([description] + [additional_sentences])
text = additional_sentences
# Generate audio file using gTTS
tts = gTTS(text=text, lang='en')
tts.save(os.path.join(audio_dir, filename + '.mp3'))
return additional_sentences
except Exception as e:
logging.error(f'Error in create_audio: {str(e)}')
return description
# Step 4: Create video
def create_video(images, audio_file):
try:
create_dir(video_dir)
with audioread.audio_open(audio_file) as f:
audio_duration = int(f.duration)
image_duration = 3
print('Total Duration: {} seconds'.format(audio_duration))
num_loops = int(audio_duration / image_duration)
print('number of loops:{}'.format(num_loops))
width, height = (1920, 1080)
clips = []
i = 0
while True:
print("in while")
for image in images:
try:
clip = ImageClip(image).resize(width=width, height=height).crop(x1=0, y1=0, x2=width, y2=height).set_duration(image_duration)
clips.append(clip)
i = i + 1
except Exception as e:
print(f"Error opening image: {image}. Error message: {str(e)}")
if i >= num_loops:
print("in if")
break
print("after while")
concat_clip = concatenate_videoclips(clips, method="compose")
audio = AudioFileClip(audio_file)
video = concat_clip.set_audio(audio)
video.write_videofile(os.path.join(video_dir, filename + '.mp4'), fps=24)
except Exception as e:
logging.error(f'Error in create_video: {str(e)}')
def generate_subtitle(audio_file):
try:
create_dir(subtitle_dir)
# Load the transcription model and transcribe the audio file
try:
model = whisper.load_model("base", device="cuda")
result = model.transcribe(audio_file)
except Exception as e:
print(e)
model = whisper.load_model("base", device="cpu")
result = model.transcribe(audio_file)
# Extract the transcribed text and segments from the result
text = result["text"]
segments = result["segments"]
# Generate subtitle files
subtitles = pysrt.SubRipFile()
for i, seg in enumerate(segments):
start_time = int(seg["start"] * 1000) # Convert start time to milliseconds
end_time = int(seg["end"] * 1000) # Convert end time to milliseconds
subtitle = pysrt.SubRipItem(index=i, start=pysrt.SubRipTime(milliseconds=start_time),
end=pysrt.SubRipTime(milliseconds=end_time), text=seg["text"])
subtitles.append(subtitle)
# Save the subtitle file
subtitles.save(os.path.join(subtitle_dir, filename + '.srt'))
except Exception as e:
logging.error(f'Error in generate_subtitle: {str(e)}')
def add_subtitles(video_file):
try:
create_dir(video_dir)
# Load the subtitles from the subtitle file
subs = pysrt.open(os.path.join(subtitle_dir, filename + ".srt"))
# Check if there are subtitles available
if subs:
# Add the subtitles to the video file
video = VideoFileClip(video_file)
generator = lambda text: TextClip(text, font='Arial-Bold',
fontsize=32,
color='white',
bg_color='aqua')
sub = SubtitlesClip(os.path.join(subtitle_dir, filename + ".srt"), generator)
video = CompositeVideoClip([video, sub.set_pos(('center', 'bottom'))])
video.write_videofile(os.path.join(video_dir, filename + 'with_subs.mp4'))
else:
print("No subtitles found")
except Exception as e:
logging.error(f'Error in add_subtitles: {str(e)}')
# Define main function
def main():
try:
# Step 1: Search for interesting topics
search_results = search_topic(query, google_api_key, search_engine_id)
if search_results:
title = search_results[0]['title']
description = search_results[0]['snippet']
print("\nDescription\n" + description + "\n")
url = search_results[0]['link']
# Step 2: Gather media
media_links = gather_media(query)
print(len(media_links))
# Step 3: Create audio
create_audio(description)
generate_subtitle(os.path.join(audio_dir, filename + '.mp3'))
# Step 4: Create video
create_video(media_links, os.path.join(audio_dir, filename + '.mp3'))
# Step 5: Add subtitles
add_subtitles(os.path.join(video_dir, filename + '.mp4'))
except Exception as e:
logging.error(f'Error in main: {str(e)}')
if __name__ == '__main__':
main()