-
Notifications
You must be signed in to change notification settings - Fork 0
/
HandTrackingMin.py
40 lines (31 loc) · 1.31 KB
/
HandTrackingMin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import cv2
import mediapipe as mp
import time
cap = cv2.VideoCapture(0) # Read video from the webcam of the pc
mpHands = mp.solutions.hands
hands = mpHands.Hands()
mpDraw = mp.solutions.drawing_utils # Drawing utlities , we're taking it to draw landmarks
pTime = 0 # previous time
cTime = 0 # current time
while True:
success, img = cap.read()
imgRGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
results = hands.process(imgRGB)
# print(results.multi_hand_landmarks)
if results.multi_hand_landmarks:
for handLms in results.multi_hand_landmarks:
for id, lm in enumerate(handLms.landmark):
# print(id, lm)
h, w, c = img.shape
cx, cy = int(lm.x * w), int(lm.y * h) # cx--> center position of x; cy --> center position of y
print(id, cx, cy)
# if id == 0:
# cv2.circle(img, (cx, cy), 13, (255,0, 255), cv2.FILLED)
cv2.circle(img, (cx, cy), 13, (255, 0, 255), cv2.FILLED)
mpDraw.draw_landmarks(img, handLms, mpHands.HAND_CONNECTIONS)
cTime = time.time()
fps = 1 / (cTime - pTime) # fps = frame per second
pTime = cTime
cv2.putText(img, str(int(fps)), (10, 70), cv2.FONT_HERSHEY_PLAIN, 3, (255, 0, 255), 3)
cv2.imshow("Image", img)
cv2.waitKey(1)