-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
288 lines (235 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2020 Imperial College London (Pingchuan Ma)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
""" TCN for lipreading"""
import os
import time
import random
import argparse
import matplotlib.pyplot as plt
import numpy as np
import torchvision.utils
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from lipreading.utils import get_save_folder
from lipreading.utils import load_json, save2npz
from lipreading.utils import load_model, CheckpointSaver
from lipreading.utils import get_logger, update_logger_batch
from lipreading.utils import showLR, calculateNorm2, AverageMeter
from lipreading.model import Lipreading
from lipreading.mixup import mixup_data, mixup_criterion
from lipreading.optim_utils import get_optimizer, CosineScheduler
from lipreading.dataloaders import get_data_loaders, get_preprocessing_pipelines
from datetime import datetime
import pytorch_model_summary as pms
from torchviz import make_dot
import hiddenlayer as hl
from torch.utils.tensorboard import SummaryWriter
import sys
writer = SummaryWriter("runs/lipreading")
def load_args(default_config=None):
parser = argparse.ArgumentParser(description='Pytorch Lipreading ')
# -- dataset config
parser.add_argument('--dataset', default='lrw', help='dataset selection')
parser.add_argument('--num-classes', type=int, default=500, help='Number of classes')
parser.add_argument('--modality', default='video', choices=['video', 'raw_audio'], help='choose the modality')
# -- directory
parser.add_argument('--data-dir', default=r'./datasets/visual_data', help='Loaded data directory')
parser.add_argument('--label-path', type=str, default='./labels/500WordsSortedList.txt', help='Path to txt file with labels')
parser.add_argument('--annonation-direc', default=None, help='Loaded data directory')
# -- model config
parser.add_argument('--backbone-type', type=str, default='resnet', choices=['resnet', 'shufflenet'], help='Architecture used for backbone')
parser.add_argument('--relu-type', type=str, default='relu', choices=['relu','prelu'], help='what relu to use' )
parser.add_argument('--width-mult', type=float, default=1.0, help='Width multiplier for mobilenets and shufflenets')
# -- TCN config
parser.add_argument('--tcn-kernel-size', type=int, nargs="+", help='Kernel to be used for the TCN module')
parser.add_argument('--tcn-num-layers', type=int, default=4, help='Number of layers on the TCN module')
parser.add_argument('--tcn-dropout', type=float, default=0.2, help='Dropout value for the TCN module')
parser.add_argument('--tcn-dwpw', default=False, action='store_true', help='If True, use the depthwise seperable convolution in TCN architecture')
parser.add_argument('--tcn-width-mult', type=int, default=1, help='TCN width multiplier')
# -- train
parser.add_argument('--training-mode', default='tcn', help='tcn')
# parser.add_argument('--batch-size', type=int, default=32, help='Mini-batch size')
parser.add_argument('--batch-size', type=int, default=32, help='Mini-batch size')
parser.add_argument('--optimizer',type=str, default='adamw', choices = ['adam','sgd','adamw'])
parser.add_argument('--lr', default=3e-4, type=float, help='initial learning rate')
parser.add_argument('--init-epoch', default=0, type=int, help='epoch to start at')
# parser.add_argument('--epochs', default=1, type=int, help='number of epochs')
parser.add_argument('--epochs', default=80, type=int, help='number of epochs')
parser.add_argument('--test', default=False, action='store_true', help='training mode')
# -- mixup
parser.add_argument('--alpha', default=0.4, type=float, help='interpolation strength (uniform=1., ERM=0.)')
# -- test
parser.add_argument('--model-path', type=str, default="./models/lrw_resnet18_mstcn.pth.tar", help='Pretrained model pathname')
parser.add_argument('--allow-size-mismatch', default=False, action='store_true',
help='If True, allows to init from model with mismatching weight tensors. Useful to init from model with diff. number of classes')
# -- feature extractor
parser.add_argument('--extract-feats', default=False, action='store_true', help='Feature extractor')
parser.add_argument('--mouth-patch-path', type=str, default=None, help='Path to the mouth ROIs, assuming the file is saved as numpy.array')
parser.add_argument('--mouth-embedding-out-path', type=str, default=None, help='Save mouth embeddings to a specificed path')
# -- json pathname
parser.add_argument('--config-path', type=str, default="./configs/lrw_resnet18_mstcn.json", help='Model configuration with json format')
# -- other vars
parser.add_argument('--interval', default=50, type=int, help='display interval')
parser.add_argument('--workers', default=8, type=int, help='number of data loading workers')
# paths
parser.add_argument('--logging-dir', type=str, default='./train_logs', help = 'path to the directory in which to save the log file')
args = parser.parse_args()
return args
args = load_args()
torch.manual_seed(1)
np.random.seed(1)
random.seed(1)
torch.backends.cudnn.benchmark = True
def extract_feats(model):
"""
:rtype: FloatTensor
"""
model.eval()
preprocessing_func = get_preprocessing_pipelines()['test']
data = preprocessing_func(np.load(args.mouth_patch_path)['data']) # data: TxHxW
return model(torch.FloatTensor(data)[None, None, :, :, :].cuda(), lengths=[data.shape[0]])
def evaluate(model, dset_loader, criterion):
model.eval()
running_loss = 0.
running_corrects = 0.
with torch.no_grad():
for batch_idx, (input, lengths, labels) in enumerate(tqdm(dset_loader)):
logits = model(input.unsqueeze(1).cuda(), lengths=lengths)
_, preds = torch.max(F.softmax(logits, dim=1).data, dim=1)
running_corrects += preds.eq(labels.cuda().view_as(preds)).sum().item()
loss = criterion(logits, labels.cuda())
running_loss += loss.item() * input.size(0)
print('{} in total\tCR: {}'.format( len(dset_loader.dataset), running_corrects/len(dset_loader.dataset)))
return running_corrects/len(dset_loader.dataset), running_loss/len(dset_loader.dataset)
def train(model, dset_loader, criterion, epoch, optimizer, logger):
data_time = AverageMeter()
batch_time = AverageMeter()
lr = showLR(optimizer)
logger.info('-' * 10)
logger.info('Epoch {}/{}'.format(epoch, args.epochs - 1))
logger.info('Current learning rate: {}'.format(lr))
model.train()
running_loss = 0.
running_corrects = 0.
running_all = 0.
end = time.time()
for batch_idx, (input, lengths, labels) in enumerate(dset_loader):
# measure data loading time
data_time.update(time.time() - end)
# --
input, labels_a, labels_b, lam = mixup_data(input, labels, args.alpha)
labels_a, labels_b = labels_a.cuda(), labels_b.cuda()
optimizer.zero_grad()
logits = model(input.unsqueeze(1).cuda(), lengths=lengths)
loss_func = mixup_criterion(labels_a, labels_b, lam)
loss = loss_func(criterion, logits)
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# -- compute running performance
_, predicted = torch.max(F.softmax(logits, dim=1).data, dim=1)
running_loss += loss.item()*input.size(0)
running_corrects += lam * predicted.eq(labels_a.view_as(predicted)).sum().item() + (1 - lam) * predicted.eq(labels_b.view_as(predicted)).sum().item()
running_all += input.size(0)
# -- log intermediate results
if batch_idx % args.interval == 0 or (batch_idx == len(dset_loader)-1):
update_logger_batch( args, logger, dset_loader, batch_idx, running_loss, running_corrects, running_all, batch_time, data_time )
return model
def get_model_from_json():
assert args.config_path.endswith('.json') and os.path.isfile(args.config_path), \
"'.json' config path does not exist. Path input: {}".format(args.config_path)
args_loaded = load_json( args.config_path)
args.backbone_type = args_loaded['backbone_type']
args.width_mult = args_loaded['width_mult']
args.relu_type = args_loaded['relu_type']
tcn_options = { 'num_layers': args_loaded['tcn_num_layers'],
'kernel_size': args_loaded['tcn_kernel_size'],
'dropout': args_loaded['tcn_dropout'],
'dwpw': args_loaded['tcn_dwpw'],
'width_mult': args_loaded['tcn_width_mult'],
}
model = Lipreading( modality=args.modality,
num_classes=args.num_classes,
tcn_options=tcn_options,
backbone_type=args.backbone_type,
relu_type=args.relu_type,
width_mult=args.width_mult,
extract_feats=args.extract_feats).cuda()
calculateNorm2(model)
return model
def main():
# -- logging
save_path = get_save_folder( args)
print("Model and log being saved in: {}".format(save_path))
logger = get_logger(args, save_path)
ckpt_saver = CheckpointSaver(save_path)
# -- get model
model = get_model_from_json()
# -- get dataset iterators
dset_loaders = get_data_loaders(args)
print(dset_loaders['train'])
print(type(dset_loaders['train']))
# -- get loss function
criterion = nn.CrossEntropyLoss()
# -- get optimizer
optimizer = get_optimizer(args, optim_policies=model.parameters())
# -- get learning rate scheduler
scheduler = CosineScheduler(args.lr, args.epochs)
if args.model_path:
assert args.model_path.endswith('.tar') and os.path.isfile(args.model_path), \
"'.tar' model path does not exist. Path input: {}".format(args.model_path)
# resume from checkpoint
if args.init_epoch > 0:
model, optimizer, epoch_idx, ckpt_dict = load_model(args.model_path, model, optimizer)
args.init_epoch = epoch_idx
ckpt_saver.set_best_from_ckpt(ckpt_dict)
logger.info('Model and states have been successfully loaded from {}'.format( args.model_path ))
# init from trained model
else:
model = load_model(args.model_path, model, allow_size_mismatch=args.allow_size_mismatch)
logger.info('Model has been successfully loaded from {}'.format( args.model_path ))
# feature extraction
if args.mouth_patch_path:
save2npz( args.mouth_embedding_out_path, data = extract_feats(model).cpu().detach().numpy())
return
# if test-time, performance on test partition and exit. Otherwise, performance on validation and continue (sanity check for reload)
if args.test:
acc_avg_test, loss_avg_test = evaluate(model, dset_loaders['test'], criterion)
logger.info('Test-time performance on partition {}: Loss: {:.4f}\tAcc:{:.4f}'.format( 'test', loss_avg_test, acc_avg_test))
return
# -- fix learning rate after loading the ckeckpoint (latency)
if args.model_path and args.init_epoch > 0:
scheduler.adjust_lr(optimizer, args.init_epoch-1)
epoch = args.init_epoch
while epoch < args.epochs:
now = datetime.now().strftime("%H:%M:%S")
print(f'Model train start time: {now}')
model = train(model, dset_loaders['train'], criterion, epoch, optimizer, logger)
now = datetime.now().strftime("%H:%M:%S")
print(f'Model train end time: {now}')
acc_avg_val, loss_avg_val = evaluate(model, dset_loaders['val'], criterion)
logger.info('{} Epoch:\t{:2}\tLoss val: {:.4f}\tAcc val:{:.4f}, LR: {}'.format('val', epoch, loss_avg_val, acc_avg_val, showLR(optimizer)))
# -- save checkpoint
save_dict = {
'epoch_idx': epoch + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict()
}
ckpt_saver.save(save_dict, acc_avg_val)
scheduler.adjust_lr(optimizer, epoch)
epoch += 1
# print(model)
# pms.summary(model,)
# -- evaluate best-performing epoch on test partition
best_fp = os.path.join(ckpt_saver.save_dir, ckpt_saver.best_fn)
_ = load_model(best_fp, model)
acc_avg_test, loss_avg_test = evaluate(model, dset_loaders['test'], criterion)
logger.info('Test time performance of best epoch: {} (loss: {})'.format(acc_avg_test, loss_avg_test))
if __name__ == '__main__':
main()