forked from lee-gwang/Dacon2021--Ego-Vision-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
192 lines (159 loc) · 7.58 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import sys
import random
import os
import numpy as np
import pandas as pd
from warmup_scheduler import GradualWarmupScheduler
from torch.optim.lr_scheduler import CosineAnnealingWarmRestarts, CosineAnnealingLR, ReduceLROnPlateau, MultiStepLR, OneCycleLR
import torch
def set_seeds(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False # for faster training, but not deterministic
def get_learning_rate(optimizer):
lr=[]
for param_group in optimizer.param_groups:
lr +=[ param_group['lr'] ]
assert(len(lr)==1) #we support only one param_group
lr = lr[0]
return lr
def merge_json():
train_path = './data/train'
test_path = './data/test'
hand_gesture = pd.read_csv('./data/hand_gesture_pose.csv')
sample_submission = pd.read_csv('./data/sample_submission.csv')
#
train_folders = sorted(glob(train_path + '/*'), key = lambda x : int(x.split('/')[-1]))
test_folders = sorted(glob(test_path + '/*'), key = lambda x : int(x.split('/')[-1]))
#
answers = []
for train_folder in train_folders[1:] :
json_path = glob(train_folder + '/*.json')[0]
js = json.load(open(json_path))
cat = js.get('action')[0]
cat_name = js.get('action')[1]
answers.append([train_folder.replace('./data',''),cat, cat_name])
df = pd.DataFrame(answers, columns = ['folder','pose_id', 'answer_name'])
df['folder'] = './data' + df['folder']
return df
def load_data():
# train file
try:
print('load dataset')
train_df = pd.read_csv('./data/train.csv')
test_df = pd.read_csv('./data/test.csv')
except:
train_img_path = []
test_img_path = []
for (path, dir, files) in os.walk("./data/train"):
for filename in files:
#ext = os.path.splitext(filename)[-1]
if ('ipynb' not in path)&('json' not in filename):
train_img_path.append("%s/%s" % (path, filename))
# test file
for (path, dir, files) in os.walk("./data/test"):
for filename in files:
#ext = os.path.splitext(filename)[-1]
if ('ipynb' not in path)&('json' not in filename):
test_img_path.append("%s/%s" % (path, filename))
# load all json
df = merge_json()
# train & test
train_df = pd.DataFrame()
test_df = pd.DataFrame()
train_df['path'] = train_img_path
test_df['path'] = test_img_path
train_df['folder'] = train_df['path'].apply(lambda x: x.split(x.split('/')[-1])[0][:-1])
test_df['folder'] = test_df['path'].apply(lambda x: x.split(x.split('/')[-1])[0][:-1])
# merge target
train_df = pd.merge(train_df, df[['folder', 'pose_id']], how='left', on='folder')
train_df = train_df.dropna(axis=0).reset_index(drop=True) # drop 0 folder
train_df['pose_id'] = train_df['pose_id'].astype(int)
# encoding label
le =LabelEncoder()
train_df['target'] = le.fit_transform(train_df['pose_id'])
# split fold
kf = KFold(n_splits=5, random_state=42, shuffle=True)
train_df['fold'] = -1
for n_fold, (_,v_idx) in enumerate(kf.split(train_df)):
train_df.loc[v_idx, 'fold'] = n_fold
# test_df
sub = pd.read_csv('./data/sample_submission.csv')
sub['folder'] = './data/test/'+sub['Image_Path'].apply(lambda x: x.split('test')[-1][1:])
test_df = pd.merge(test_df, sub, how='left', on='folder')
test_df = test_df.groupby('folder').first().reset_index()[['path','folder']]
train_df.to_csv('./data/train.csv', index=False)
test_df.to_csv('./data/test.csv', index=False)
print('Saved train&test csv file!')
return train_df, test_df
class Logger(object):
def __init__(self):
self.terminal = sys.stdout #stdout
self.file = None
def open(self, file, mode=None):
if mode is None: mode ='w'
self.file = open(file, mode)
def write(self, message, is_terminal=1, is_file=1 ):
if '\r' in message: is_file=0
if is_terminal == 1:
self.terminal.write(message)
self.terminal.flush()
#time.sleep(1)
if is_file == 1:
self.file.write(message)
self.file.flush()
def flush(self):
# this flush method is needed for python 3 compatibility.
# this handles the flush command by doing nothing.
# you might want to specify some extra behavior here.
pass
def print_args(args, logger=None):
for k, v in vars(args).items():
if logger is not None:
logger.write('{:<16} : {}\n'.format(k, v))
else:
print('{:<16} : {}'.format(k, v))
class GradualWarmupSchedulerV2(GradualWarmupScheduler):
def __init__(self, optimizer, multiplier, total_epoch, after_scheduler=None):
super(GradualWarmupSchedulerV2, self).__init__(optimizer, multiplier, total_epoch, after_scheduler)
def get_lr(self):
if self.last_epoch > self.total_epoch:
if self.after_scheduler:
if not self.finished:
self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
self.finished = True
return self.after_scheduler.get_lr()
return [base_lr * self.multiplier for base_lr in self.base_lrs]
if self.multiplier == 1.0:
return [base_lr * (float(self.last_epoch) / self.total_epoch) for base_lr in self.base_lrs]
else:
return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]
def get_scheduler(args, optimizer, trainloader):
if args.scheduler == 'ReduceLROnPlateau':
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=args.factor, patience=args.patience,
min_lr=1e-5, verbose=True, eps=args.eps)
elif args.scheduler == 'CosineAnnealingLR':
print('scheduler : Cosineannealinglr')
scheduler = CosineAnnealingLR(optimizer, T_max=args.T_max, eta_min=args.min_lr, last_epoch=-1)
elif args.scheduler == 'CosineAnnealingWarmRestarts':
scheduler = CosineAnnealingWarmRestarts(optimizer, T_0=args.T_0, T_mult=1, eta_min=args.min_lr, last_epoch=-1)
elif args.scheduler == 'MultiStepLR':
scheduler = MultiStepLR(optimizer, milestones=args.decay_epoch, gamma=args.factor, verbose=True)
elif args.scheduler == 'OneCycleLR':
scheduler = OneCycleLR(optimizer=optimizer, pct_start=0.1, div_factor=1e3,
max_lr=1e-3, epochs=args.epochs, steps_per_epoch=len(trainloader))
elif args.scheduler == 'warmupv2':
print('gradual warmupv2')
scheduler_cosine = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, args.cosine_epo)
scheduler_warmup = GradualWarmupSchedulerV2(optimizer, multiplier=args.warmup_factor,
total_epoch=args.warmup_epo, after_scheduler=scheduler_cosine)
scheduler = scheduler_warmup
else:
scheduler = None
print('scheduler is None')
return scheduler