-
Notifications
You must be signed in to change notification settings - Fork 108
/
Corres_D.thy
673 lines (595 loc) · 27.7 KB
/
Corres_D.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: GPL-2.0-only
*)
(*
* Corres/Refinement for capDL
*
* Instantiates corres_underlying with capDL state translation and types.
*)
theory Corres_D
imports StateTranslationProofs_DR
begin
lemma truncate_state_unit[simp]: "truncate_state s = s" by simp
declare dxo_noop[simp]
lemma select_ext_select[simp]: "select_ext a S = (select S :: ('b, unit) s_monad)"
by (rule ext)
(auto simp: select_ext_def select_switch_unit_def assert_def get_def select_def
return_def bind_def fail_def image_def
split: if_split_asm)
lemma OR_choice_OR[simp]: "(OR_choice c (f :: ('a,unit) s_monad) g) = (f \<sqinter> g)"
apply (rule ext, rename_tac s)
apply (clarsimp simp: OR_choice_def alternative_def get_def select_def return_def bind_def
select_f_def mk_ef_def wrap_ext_unit_def wrap_ext_bool_unit_def image_def
split: if_split_asm)
apply (case_tac "f s")
apply (case_tac "g s")
by (intro conjI set_eqI; clarsimp?; blast)
lemma OR_choiceE_OR[simp]: "(OR_choiceE c (f :: ('a + 'b,unit) s_monad) g) = (f \<sqinter> g)"
apply (clarsimp simp: OR_choiceE_def bindE_def liftE_def)
apply (clarsimp simp: alternative_def get_def select_def return_def bind_def select_f_def
mk_ef_def wrap_ext_unit_def wrap_ext_bool_unit_def image_def
split: if_split_asm)
apply (rule ext, rename_tac s)
apply (case_tac "f s")
apply (case_tac "g s")
apply clarsimp
by (intro conjI set_eqI; clarsimp?; blast)
(* state relation as set, in (simp split_def) normal form *)
abbreviation
dcorres ::
"('a::type \<Rightarrow> 'b::type \<Rightarrow> bool)
\<Rightarrow> (cdl_state \<Rightarrow> bool)
\<Rightarrow> (det_state \<Rightarrow> bool)
\<Rightarrow> 'a::type k_monad
\<Rightarrow> (det_state
\<Rightarrow> ('b::type \<times> det_state) set \<times>
bool)
\<Rightarrow> bool"
where
"dcorres \<equiv> corres_underlying {ss'. transform (snd ss') = fst ss'} False False"
(* Some obvious corres lemmas *)
lemma corres_group_bind_rhs:
"corres_underlying sr nf nf' rvr P P' a (do y\<leftarrow>(do f; g od); h y od)
\<Longrightarrow> corres_underlying sr nf nf' rvr P P' a (do x \<leftarrow> f; y \<leftarrow> g; h y od)"
by (simp add: bind_assoc)
lemma corres_expand_bind_rhs:
"dcorres rvr P P' a (do z \<leftarrow> f; y \<leftarrow> g z; h y od)
\<Longrightarrow> dcorres rvr P P' a (do y\<leftarrow> do z\<leftarrow>f; g z od; h y od)"
by (simp add: bind_assoc)
lemma corres_bind_ignore_ret_rhs:
"corres_underlying sr nf nf' rvr P P' a (do f; g od)
\<Longrightarrow> corres_underlying sr nf nf' rvr P P' a (do y\<leftarrow> f;g od)"
by (simp add: bind_def)
lemma corres_free_fail:
"dcorres c P P' f fail"
by (fastforce simp: corres_underlying_def bind_def fail_def)
lemma corres_free_return:
"dcorres dc P P' (return a) (return b)"
by (clarsimp simp:return_def bind_def corres_underlying_def)
lemma corres_free_set_object:
"\<lbrakk> \<forall> s s'. s = transform s' \<and> P s \<and> P' s' \<longrightarrow>
s = transform ((\<lambda>s. s \<lparr>kheap := (kheap s)(ptr \<mapsto> obj)\<rparr>) s')\<rbrakk> \<Longrightarrow>
dcorres dc P P' (return a) (set_object ptr obj )"
by (clarsimp simp: corres_underlying_def put_def return_def modify_def bind_def get_def
set_object_def get_object_def in_monad)
(* Some dummy corres *)
lemma corres_dummy_return_l:
"dcorres c P P' (do x\<leftarrow>f;return x od) g \<Longrightarrow> dcorres c P P' f g"
by (fastforce simp: corres_underlying_def bind_def return_def)
lemma corres_dummy_return_pl:
"dcorres c P P' (do return b; f od) g \<Longrightarrow> dcorres c P P' f g"
by (fastforce simp: corres_underlying_def bind_def return_def)
lemma corres_dummy_return_r:
"dcorres c P P' f (do x\<leftarrow>g;return x od) \<Longrightarrow> dcorres c P P' f g"
by (fastforce simp: corres_underlying_def bind_def return_def)
lemma corres_dummy_return_pr:
"dcorres c P P' f (do return b; g od) \<Longrightarrow> dcorres c P P' f g"
by (fastforce simp: corres_underlying_def bind_def return_def)
lemma corres_dummy_returnOk_r:
"dcorres c P P' f (g >>=E returnOk) \<Longrightarrow> dcorres c P P' f g"
by simp
lemma corres_dummy_returnOk_pl:
"dcorres c P P' (returnOk b >>=E (\<lambda>_. f)) g \<Longrightarrow> dcorres c P P' f g"
by (fastforce simp: corres_underlying_def bindE_def returnOk_def)
lemma corres_dummy_get_pr:
"dcorres c P P' f (do s\<leftarrow>get;g od)\<Longrightarrow> dcorres c P P' f g"
by (fastforce simp: corres_underlying_def bind_def get_def)
lemma corres_dummy_get_pl:
"dcorres c P P' (do s\<leftarrow>get;g od) f \<Longrightarrow> dcorres c P P' g f"
by (fastforce simp: corres_underlying_def bind_def get_def)
lemma dcorres_free_throw:
assumes "\<And>s. \<lbrace>(=) s\<rbrace> f \<lbrace>\<lambda>r. \<bottom>\<rbrace>, \<lbrace>\<lambda>e. (=) s\<rbrace>"
shows "dcorres (dc \<oplus> r) P P' Monads_D.throw f"
using assms
apply (simp add:corres_underlying_def throwError_def return_def)
apply (clarsimp simp:validE_def valid_def)
apply (drule_tac x = b in meta_spec)
apply (fastforce split: sum.splits)
done
lemma absorb_imp:"B \<and> A \<Longrightarrow> (a\<longrightarrow>A) \<and> B "
by simp
(* This lemma is convienent if you want keep the prefix while split *)
lemma corres_split_keep_pfx:
assumes x: "corres_underlying sr nf nf' r' P P' a c"
assumes y: "\<And>rv rv'. r' rv rv' \<Longrightarrow> corres_underlying sr nf nf' r (P and (Q rv)) (P' and (Q' rv')) (b rv) (d rv')"
assumes "\<lbrace>P\<rbrace> a \<lbrace>\<lambda>x. P and (Q x)\<rbrace>" "\<lbrace>P'\<rbrace> c \<lbrace>\<lambda>x. P' and (Q' x)\<rbrace>"
shows "corres_underlying sr nf nf' r P P' (a >>= (\<lambda>rv. b rv)) (c >>= (\<lambda>rv'. d rv'))"
using assms by (rule corres_underlying_split)
(* Following 2 lemmas allows you to get rid of the get function and move the prefix outside *)
lemma dcorres_absorb_pfx:
assumes "dcorres r (P) (P') (f) (f')"
shows "\<And> s s'. \<lbrakk>s = transform s'; P s; P' s'\<rbrakk> \<Longrightarrow> dcorres r ((=) s) ((=) s') f f' "
using assms
by (fastforce simp:corres_underlying_def)
lemma dcorres_expand_pfx:
assumes "\<And> s s'. \<lbrakk>s = transform s'; P s; P' s'\<rbrakk> \<Longrightarrow> dcorres r ((=) s) ((=) s') f f' "
shows "dcorres r P P' f f'"
using assms
by (fastforce simp:corres_underlying_def)
lemma dcorres_absorb_get_l:
assumes "!!s'. \<lbrakk> P (transform s'); P' s'\<rbrakk> \<Longrightarrow> dcorres rv ((=) (transform s')) ((=) s') (f (transform s')) g"
shows "dcorres rv P P' (do t\<leftarrow> get; f t od) g"
apply (rule corres_symb_exec_l [where Q="%x. P and ((=) x)"])
apply (rule dcorres_expand_pfx)
apply clarsimp
apply (rule assms)
apply (clarsimp simp: valid_def exs_valid_def get_def)+
done
lemma dcorres_expand_get_l:
assumes "dcorres rv P P' (do t\<leftarrow>get; f t od) g"
shows "\<lbrakk> P (transform s'); P' s'\<rbrakk> \<Longrightarrow>
dcorres rv ((=) (transform s')) ((=) s') (f (transform s')) g"
using assms
by (simp add:get_def corres_underlying_def bind_def)
lemma dcorres_absorb_get_r:
assumes "!!s'. \<lbrakk>P (transform s'); P' s'\<rbrakk> \<Longrightarrow> dcorres rv ((=) (transform s')) ((=) s') f (g s')"
shows "dcorres rv P P' f (do t\<leftarrow> get; g t od)"
apply (rule corres_symb_exec_r [where Q'="%x. P' and ((=) x)"])
apply (rule dcorres_expand_pfx)
apply clarsimp
apply (rule assms)
apply (clarsimp simp: valid_def exs_valid_def get_def)+
done
lemma dcorres_expand_get_r:
assumes "dcorres rv P P' f (do t\<leftarrow> get; g t od)"
shows "!!s'. \<lbrakk>P (transform s'); P' s'\<rbrakk> \<Longrightarrow> dcorres rv ((=) (transform s')) ((=) s') f (g s')"
using assms
by (clarsimp simp:get_def corres_underlying_def bind_def)
lemma dcorres_absorb_gets_the:
assumes A: "\<And>s' obj'. \<lbrakk>P' s'; g' s' = Some obj'; P (transform s')\<rbrakk>
\<Longrightarrow> dcorres r ((=) (transform s')) ((=) s') (f) (f' obj')"
shows "dcorres r P P' (f) (do a\<leftarrow> gets_the (g'); f' a od)"
apply (simp add: gets_the_def gets_def bind_assoc)
apply (rule dcorres_absorb_get_r)
apply (clarsimp simp :assert_opt_def split:option.splits)
apply (clarsimp simp:corres_free_fail)
apply (rule dcorres_expand_pfx)
apply (clarsimp simp:assms)
done
lemma dcorres_get:
assumes A: "\<And>s s'. \<lbrakk>s = transform s';P s; P' s'\<rbrakk>
\<Longrightarrow> dcorres r ((=) s) ((=) s') (f s) (f' s')"
shows "dcorres r P P' (do s\<leftarrow>get;f s od) (do s'\<leftarrow> get; f' s' od)"
apply (rule dcorres_expand_pfx)
apply (rule_tac r'="\<lambda>r r'. s=r \<and> s'=r'" and Q="%x. (=) s" and Q'="%x. (=) s'" in corres_split_forwards')
apply (clarsimp simp: corres_underlying_def get_def)
apply wp+
apply (drule A)
apply clarsimp+
done
lemma dcorres_gets_the:
assumes A: "\<And>s s' obj obj'. \<lbrakk>s = transform s';P s; P' s'; g' s' = Some obj' ;g s = Some obj\<rbrakk>
\<Longrightarrow> dcorres r ((=) s) ((=) s') (f obj) (f' obj')"
assumes B: "\<And>s s'. \<lbrakk>s = transform s'; P s; P' s' ; g' s' \<noteq> None\<rbrakk> \<Longrightarrow> g s \<noteq> None"
shows "dcorres r P P' (do a\<leftarrow>gets_the (g);f a od) (do a\<leftarrow> gets_the (g'); f' a od)"
apply (simp add:gets_the_def)
apply (simp add: gets_def)
apply (subst bind_assoc)+
apply (rule corres_split_keep_pfx[where r'="\<lambda>s s'. s = transform s'\<and> P s \<and> P' s'"
and Q="\<lambda>x s. x = s" and Q'="\<lambda>x s. x = s "])
apply (clarsimp simp: corres_underlying_def get_def)
apply (simp add: assert_opt_def)
apply (rename_tac x)
apply (case_tac "g' x = None")
apply (clarsimp split:option.splits simp:corres_free_fail)
apply (subgoal_tac "\<exists>obj. g (transform x) \<noteq> None")
apply (clarsimp split:option.splits)
apply (rule_tac Q="(=) (transform x)" and Q'="(=) x" in corres_guard_imp)
apply (simp add: A)+
using B
apply (wp|clarsimp)+
done
lemma wpc_helper_dcorres:
"dcorres r Q Q' f f'
\<Longrightarrow> wpc_helper (P, P', P'') (Q, Q', Q'') (dcorres r P P' f f')"
apply (clarsimp simp: wpc_helper_def)
apply (erule corres_guard_imp)
apply simp
apply auto
done
wpc_setup "\<lambda>m. dcorres r P P' a m" wpc_helper_dcorres
wpc_setup "\<lambda>m. dcorres r P P' a (m >>= c)" wpc_helper_dcorres
(* Shorthand to say that a TCB is at the given location in the given state. *)
definition "cdl_tcb_at x \<equiv> \<lambda>s. \<exists>tcb . cdl_objects s x = Some (Tcb tcb)"
(*
* We can strengthen the LHS precondition by using the RHS
* precondition if the state relation preserves it.
*)
lemma dcorres_strengthen_lhs_guard:
"\<lbrakk> dcorres rr P P' g g'; \<And>s. P' s \<Longrightarrow> P (transform s) \<rbrakk> \<Longrightarrow> dcorres rr \<top> P' g g'"
by (rule stronger_corres_guard_imp [where Q=P and Q'=P']) auto
(* A call to "mapM" is idempotent if its input monad is idempotent. *)
lemma hoare_mapM_idempotent: "\<lbrakk> \<And> a R. \<lbrace> R \<rbrace> x a \<lbrace> \<lambda>_. R \<rbrace> \<rbrakk> \<Longrightarrow> \<lbrace> R \<rbrace> mapM x y \<lbrace> \<lambda>_. R \<rbrace>"
apply (induct_tac y)
apply (clarsimp simp: mapM_def sequence_def)
apply (clarsimp simp: mapM_def sequence_def)
apply atomize
apply (erule_tac x=a in allE)
apply (erule_tac x=R in allE)
apply (rule bind_wp)
apply wp
apply assumption
done
(* A call to "mapM" corresponds to "return foo" if the mapM is idempotent. *)
lemma dcorres_idempotent_mapM_rhs:
"\<lbrakk> \<And> a R. \<lbrace> R \<rbrace> x a \<lbrace> \<lambda>_. R \<rbrace> \<rbrakk> \<Longrightarrow>
dcorres dc P P' (return q) (mapM x y)"
apply (induct_tac y)
apply (clarsimp simp: mapM_def sequence_def)
apply (clarsimp simp: mapM_def sequence_def)
apply atomize
apply (erule_tac x=a in allE)
apply (rule corres_symb_exec_r [where Q'="\<lambda>_. P'"])
apply (clarsimp simp: corres_underlying_def bind_def return_def split_def)
apply (erule_tac x=P' in allE, assumption)
apply (erule_tac x="(=) s" in allE, assumption)
apply simp
done
(* rules used to get rid of the error branchs of decode proof *)
lemma dcorres_throw:
"dcorres (dc \<oplus> anyrel) \<top> \<top> (Monads_D.throw) (throwError anyerror)"
by (clarsimp simp:corres_underlying_def throwError_def return_def)
lemma dcorres_alternative_throw:
"dcorres (dc \<oplus> anyrel) \<top> \<top> (any \<sqinter> Monads_D.throw) (throwError anyerror)"
by (rule corres_alternate2[OF dcorres_throw])
lemma dcorres_returnOk:
"r a b \<Longrightarrow>
dcorres (dc \<oplus> r) \<top> \<top> (returnOk a) (returnOk b)"
by (clarsimp simp:corres_underlying_def return_def returnOk_def)
lemma split_return_throw_thingy:
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> g \<lbrace>\<lambda>rv s'. s' = s \<and> rvP rv\<rbrace>,\<lbrace>\<lambda>ft. (=) s\<rbrace>;
\<And>rv. rvP rv \<Longrightarrow> corres_underlying sr nf nf' (dc \<oplus> r) P P' (f \<sqinter> throwError e) (h rv);
nf' \<Longrightarrow> no_fail P' g \<rbrakk>
\<Longrightarrow> corres_underlying sr nf nf' (dc \<oplus> r) P P'
(f \<sqinter> throwError e) (g >>=E h)"
apply (simp add: bindE_def)
apply (rule corres_guard_imp)
apply (rule_tac Q'="\<lambda>rv. P' and (\<lambda>_. isRight rv \<longrightarrow> rvP (theRight rv))"
in corres_symb_exec_r[where P=P and P'=P'], simp_all)
apply (case_tac rv)
apply (simp add: lift_def)
apply (rule corres_alternate2, simp)
apply (rule corres_gen_asm2)
apply (simp add: lift_def isRight_def)
apply (clarsimp simp add: validE_def valid_def)
apply (erule meta_allE, drule(1) bspec)
apply (auto simp: isRight_def split: sum.split_asm)[1]
apply (simp add: validE_def)
apply (rule hoare_strengthen_post, assumption)
apply (simp split: sum.split_asm)
done
lemma case_sum_triv_return:
"case_sum throwError returnOk = return"
apply (intro ext)
apply (simp add: throwError_def returnOk_def return_def
split: sum.split)
done
lemma lift_returnOk_bind_triv:
"g >>= (lift returnOk) = g"
by (simp add: lift_def case_sum_triv_return cong: bind_cong)
lemma corres_return_throw_thingy:
"\<lbrakk> \<And>s. \<lbrace>(=) s\<rbrace> g \<lbrace>\<lambda>rv s'. s' = s \<and> Q rv\<rbrace>,\<lbrace>\<lambda>ft. (=) s\<rbrace>;
nf' \<Longrightarrow> no_fail P' g; \<forall>rv. Q rv \<longrightarrow> r v rv \<rbrakk>
\<Longrightarrow> corres_underlying sr nf nf' (dc \<oplus> r) P P'
(returnOk v \<sqinter> throwError e) (g)"
apply (subst lift_returnOk_bind_triv[where g=g, symmetric])
apply (fold bindE_def, rule split_return_throw_thingy)
apply assumption
apply (rule corres_alternate1)
apply (clarsimp simp: returnOk_def)
apply simp
done
lemma dcorres_throw_wp:
assumes "\<forall>s. \<lbrace>(=) s\<rbrace>g\<lbrace>\<lambda>r. \<bottom>\<rbrace>,\<lbrace>\<lambda>e. (=) s\<rbrace>"
shows "dcorres (dc\<oplus>anyrel) \<top> P (Monads_D.throw) g"
using assms
apply (clarsimp simp:throwError_def corres_underlying_def return_def validE_def valid_def)
apply (drule spec)
apply (drule (1) bspec)
apply (clarsimp split:sum.split_asm)
done
(*
* We can consider correspondence of a function starting with
* a conditional "throw" in two parts: when the error occurs
* and when the error does not occur.
*)
lemma dcorres_whenE_throwError_abstract:
"\<lbrakk>cond \<Longrightarrow> dcorres rvrel M M' m (throwError e);
\<not> cond \<Longrightarrow> dcorres rvrel N N' m m'\<rbrakk> \<Longrightarrow>
dcorres rvrel (M and N) (M' and N') m (whenE cond (throwError e) >>=E (\<lambda>_. m'))"
apply (unfold whenE_def)
apply (case_tac cond)
apply (clarsimp)
apply (erule corres_guard_imp, simp+)
apply (erule corres_guard_imp, simp+)
done
lemma dcorres_whenE_throwError_abstract':
"\<lbrakk>cond \<Longrightarrow> dcorres rvrel G G' m (throwError e);
\<not> cond \<Longrightarrow> dcorres rvrel G G' m m'\<rbrakk> \<Longrightarrow>
dcorres rvrel G G' m (whenE cond (throwError e) >>=E (\<lambda>_. m'))"
apply (rule corres_guard_imp)
apply (rule dcorres_whenE_throwError_abstract, assumption, assumption)
apply simp
apply simp
done
lemma dcorres_symb_exec_r_catch:
"\<lbrakk>
\<And>rv. dcorres r P (Q1 rv) f (h rv);
\<And>rv'. dcorres r P (Q2 rv') f (i rv'<catch> h);
\<lbrace>P'\<rbrace> g \<lbrace>Q2\<rbrace>, \<lbrace>Q1\<rbrace>; \<And>s. \<lbrace>(=) s\<rbrace> g \<lbrace>\<lambda>r. (=) s\<rbrace>
\<rbrakk>
\<Longrightarrow> dcorres r P P' f (g >>=E i <catch> h)"
apply (subst catch_def)
apply (clarsimp simp:lift_def bindE_def bind_assoc)
apply (rule corres_symb_exec_r)
prefer 2
apply (clarsimp simp:lift_def validE_def bind_def)
apply (simp)
apply (case_tac x)
apply (simp add:throwError_def)+
apply (simp add:catch_def)+
done
lemma dcorres_symb_exec_r:
"\<lbrakk>\<And>rv. dcorres r P (Q' rv) h (g rv); \<lbrace>P'\<rbrace> f \<lbrace>\<lambda>r. Q' r\<rbrace>;
\<And>cs. \<lbrace>\<lambda>ps. transform ps = cs\<rbrace> f \<lbrace>\<lambda>r s. transform s = cs\<rbrace>\<rbrakk>
\<Longrightarrow> dcorres r P P' h (f>>=g)"
apply (rule corres_dummy_return_pl)
apply (rule corres_guard_imp)
apply (rule corres_split[where R="\<lambda>rv. P" and R'="\<lambda>rv. Q' rv" and r' = dc])
apply (clarsimp simp:valid_def corres_underlying_def return_def)
apply simp
apply wp
apply simp+
done
lemma dcorres_symb_exec_r_strong:
"\<lbrakk>\<And>rv. dcorres r P (Q' rv) h (g rv); \<lbrace>P'\<rbrace> f \<lbrace>\<lambda>r. Q' r\<rbrace>;
\<And>cs. \<lbrace>\<lambda>ps. P' ps \<and> transform ps = cs\<rbrace> f \<lbrace>\<lambda>r s. transform s = cs\<rbrace>\<rbrakk>
\<Longrightarrow> dcorres r P P' h (f>>=g)"
apply (rule corres_dummy_return_pl)
apply (rule corres_guard_imp)
apply (rule corres_split[where R="\<lambda>rv. P" and P'=P' and R'="\<lambda>rv. Q' rv" and r' = dc])
defer
apply (unfold K_bind_def)
apply (assumption)
apply wp
apply simp+
apply (clarsimp simp:valid_def corres_underlying_def return_def)
done
lemma dcorres_symb_exec_r_catch':
"\<lbrakk>
\<And>rv. dcorres r P (Q1 rv) f (h rv);
\<And>rv'. dcorres r P (Q2 rv') f (i rv'<catch> h);
\<lbrace>P'\<rbrace> g \<lbrace>Q2\<rbrace>, \<lbrace>Q1\<rbrace>; \<And>cs. \<lbrace>\<lambda>s. transform s = cs\<rbrace> g \<lbrace>\<lambda>r s. transform s = cs\<rbrace>
\<rbrakk>
\<Longrightarrow> dcorres r P P' f (g >>=E i <catch> h)"
apply (subst catch_def)
apply (clarsimp simp:lift_def bindE_def bind_assoc)
apply (subst dcorres_symb_exec_r)
prefer 2
apply (clarsimp simp:lift_def validE_def bind_def)
apply (simp)
apply (case_tac rv)
apply (simp add:throwError_def)+
apply (simp add:catch_def)
apply simp+
done
lemma dcorres_to_wp:
"dcorres dc \<top> Q (return x) g \<Longrightarrow> \<lbrace>\<lambda>s. Q s \<and> transform s = cs\<rbrace>g\<lbrace>\<lambda>r s. transform s = cs\<rbrace>"
by (fastforce simp:corres_underlying_def valid_def return_def)
lemma wp_to_dcorres:
"(\<And>cs. \<lbrace>\<lambda>s. Q s \<and> transform s = cs\<rbrace> g \<lbrace>\<lambda>r s. transform s = cs\<rbrace>) \<Longrightarrow> dcorres dc (\<lambda>_. True) Q (return x) g"
by (clarsimp simp:corres_underlying_def valid_def return_def)
lemma dcorres_symb_exec_rE:
"\<lbrakk>\<And>rv. dcorres r P (Q' rv) h (g rv); \<lbrace>P'\<rbrace> f \<lbrace>Q'\<rbrace>; \<And>cs. \<lbrace>\<lambda>ps. transform ps = cs\<rbrace> f \<lbrace>\<lambda>r s. transform s = cs\<rbrace>\<rbrakk>
\<Longrightarrow> dcorres r P P' h (liftE f >>=E g)"
apply (simp add: liftE_def lift_def bindE_def)
apply (erule (1) dcorres_symb_exec_r)
apply assumption
done
lemma throw_handle:
"(Monads_D.throw <handle2> (\<lambda>_. m)) = m"
by (simp add: handleE'_def throwError_def)
lemma corres_handle2:
"corres_underlying R False nf' (dc \<oplus> r) P P' m m' \<Longrightarrow>
corres_underlying R False nf' (dc \<oplus> r) P P' (m <handle2> (\<lambda>x. Monads_D.throw)) m'"
apply (clarsimp simp: corres_underlying_def)
apply (rule conjI)
prefer 2
apply fastforce
apply clarsimp
apply (drule (1) bspec, clarsimp)
apply (drule (1) bspec, clarsimp)
apply (clarsimp simp: handleE'_def)
apply (simp add: bind_def)
apply (rule bexI)
prefer 2
apply assumption
apply (simp add: return_def throwError_def split: sum.splits)
apply fastforce
done
lemma corres_handle2':
"corres_underlying R False nf' (dc \<oplus> r) P P' m m' \<Longrightarrow>
corres_underlying R False nf' (dc \<oplus> r) P P' m (m' <handle2> (throwError \<circ> e))"
apply (clarsimp simp: corres_underlying_def)
apply (rule conjI)
prefer 2
apply (clarsimp simp: handleE'_def bind_def)
apply (drule (1) bspec, clarsimp)
apply (drule (1) bspec, clarsimp)
apply (clarsimp simp: return_def throwError_def split: sum.splits)
apply clarsimp
apply (drule (1) bspec, clarsimp)
apply (clarsimp simp: handleE'_def bind_def)
apply (drule (1) bspec, clarsimp)
apply (fastforce simp: return_def throwError_def split: sum.splits)
done
lemma corres_alternative_throw_splitE:
assumes a: "corres_underlying R False z (dc \<oplus> r') P P' (f \<sqinter> Monads_D.throw) f'"
assumes b: "\<And>x x'. r' x x' \<Longrightarrow> corres_underlying R False z (dc \<oplus> r) (Q x) (Q' x') (g x \<sqinter> Monads_D.throw) (g' x')"
assumes f: "\<lbrace>P\<rbrace> f \<lbrace>Q\<rbrace>, \<lbrace>\<lambda>_. \<top>\<rbrace>"
assumes f': "\<lbrace>P'\<rbrace> f' \<lbrace>Q'\<rbrace>, \<lbrace>\<lambda>_. \<top>\<rbrace>"
assumes f'_eq: "\<And>s. \<lbrace>(=) s\<rbrace> f' \<lbrace>\<lambda>_. (=) s\<rbrace>"
assumes g'_eq: "\<And>s x. \<lbrace>\<lambda>s'. s' = s \<and> Q' x s'\<rbrace> g' x \<lbrace>\<lambda>_. \<top>\<rbrace>, \<lbrace>\<lambda>_. (=) s\<rbrace>"
shows "corres_underlying R False z (dc \<oplus> r) P P' ((f >>=E g) \<sqinter> Monads_D.throw) (f' >>=E g')"
apply (clarsimp simp: bindE_def corres_underlying_def)
apply (rule conjI)
prefer 2
apply (frule (2) corres_underlyingD [OF a])
apply simp
apply (clarsimp simp: bind_def split_def lift_def)
apply (clarsimp simp: throwError_def return_def split: sum.splits)
apply (drule (1) bspec, clarsimp simp: alternative_def)
apply (drule b)
apply (thin_tac "(a,b) \<in> R")
apply (drule (1) corres_underlyingD)
apply (drule use_valid, rule f[unfolded validE_def])
apply assumption
apply simp
apply (drule use_valid, rule f'[unfolded validE_def])
apply assumption
apply simp
apply simp
apply simp
apply (clarsimp simp: in_bind)
apply (frule (3) corres_underlyingD2 [OF a])
apply simp
apply (clarsimp simp: in_alternative in_throwError)
apply (erule disjE)
prefer 2
apply (clarsimp simp: lift_def in_throwError)
apply (clarsimp simp: alternative_def throwError_def return_def)
apply (simp add: lift_def split: sum.splits)
apply (clarsimp simp: in_throwError)
apply (rule_tac x="(Inl x',bb)" in bexI)
apply simp
apply (clarsimp simp: alternative_def bind_def)
apply (rule bexI)
prefer 2
apply assumption
apply (simp add: lift_def throwError_def return_def)
apply clarsimp
apply (drule b)
apply (drule_tac s'=s'' in corres_underlyingD2, assumption)
apply (drule use_valid, rule f[unfolded validE_def])
apply assumption
apply simp
apply (drule use_valid, rule f'[unfolded validE_def])
apply assumption
apply simp
apply assumption
apply simp
apply (clarsimp simp: in_alternative in_throwError)
apply (erule disjE)
apply (rule bexI, fastforce)
apply (clarsimp simp: alternative_def)
apply (simp add: bind_def)
apply (rule bexI)
prefer 2
apply assumption
apply (clarsimp simp: lift_def)
apply clarsimp
apply (frule use_valid, rule f'_eq, rule refl)
apply clarsimp
apply (drule use_valid, rule g'_eq[unfolded validE_def])
apply (rule conjI, rule refl)
apply (drule use_valid, rule f'[unfolded validE_def], assumption)
apply simp
apply (simp add: alternative_def throwError_def return_def)
done
lemma corres_throw_skip_r:
assumes c: "corres_underlying R False z (dc \<oplus> r) P P' (f \<sqinter> Monads_D.throw) g'"
assumes eq: "\<And>s. \<lbrace>(=) s\<rbrace> f' \<lbrace>\<lambda>_. (=) s\<rbrace>"
assumes nf: "z \<longrightarrow> no_fail P' f'"
shows "corres_underlying R nf z (dc \<oplus> r) P P' (f \<sqinter> Monads_D.throw) (f' >>=E (\<lambda>_. g'))"
using c
apply (clarsimp simp: corres_underlying_def alternative_def bindE_def)
apply (drule (1) bspec)
apply (rule conjI)
apply (clarsimp simp: in_bind)
apply (frule use_valid, rule eq, rule refl)
apply clarsimp
apply (clarsimp simp: lift_def in_throwError split: sum.splits)
apply (simp add: throwError_def return_def)
apply (drule (1) bspec, clarsimp)
apply clarsimp
apply (clarsimp simp: bind_def)
apply (erule disjE)
prefer 2
apply (insert nf)[1]
apply (clarsimp simp: no_fail_def)
apply (clarsimp simp: lift_def throwError_def return_def split: sum.splits)
apply (frule use_valid, rule eq, rule refl)
apply clarsimp
done
lemma dcorres_rhs_noop_below:
"\<lbrakk> dcorres anyrel Q Q' (return ()) m; dcorres anyrel P P' f g;
\<lbrace> P \<rbrace> f \<lbrace> \<lambda>_. Q \<rbrace>; \<lbrace> P' \<rbrace> g \<lbrace> \<lambda>_. Q' \<rbrace> \<rbrakk>
\<Longrightarrow> dcorres anyrel P P' (f :: unit k_monad) (g >>= (\<lambda>_. m))"
apply (rule corres_add_noop_lhs2)
apply (rule corres_split_forwards')
apply (assumption | clarsimp)+
done
lemma dcorres_rhs_noop_above: "\<lbrakk> dcorres anyrel P P' (return ()) m; dcorres anyrel' Q Q' f g;
\<lbrace> P \<rbrace> return () \<lbrace> \<lambda>_. Q \<rbrace>; \<lbrace> P' \<rbrace> m \<lbrace> \<lambda>_. Q' \<rbrace> \<rbrakk>
\<Longrightarrow> dcorres anyrel' P P' f (m >>= (\<lambda>_. g))"
apply (rule corres_add_noop_lhs)
apply (rule corres_split_forwards')
apply (assumption | clarsimp)+
done
lemmas dcorres_rhs_noop_below_True = dcorres_rhs_noop_below[OF _ _ hoare_TrueI hoare_TrueI]
lemmas dcorres_rhs_noop_above_True = dcorres_rhs_noop_above[OF _ _ hoare_TrueI hoare_TrueI]
\<comment> \<open>FIXME: remove\<close>
declare hoare_TrueI[simp]
lemma dcorres_dc_rhs_noop_below_gen:
"\<lbrakk> \<forall>rv'. dcorres dc (Q ()) (Q' rv') (return ()) (m rv');
dcorres dc P P' f g;
\<lbrace> P \<rbrace> f \<lbrace> Q \<rbrace>; \<lbrace> P' \<rbrace> g \<lbrace> Q' \<rbrace> \<rbrakk>
\<Longrightarrow> dcorres dc P P' f (g >>= m)"
apply (rule corres_add_noop_lhs2)
apply (rule corres_split_forwards')
apply (assumption | clarsimp)+
done
lemma dcorres_dc_rhs_noop_below_2: "\<lbrakk> \<forall>rv'. dcorres dc (Q ()) (Q' rv') (return ()) m;
dcorres dc P P' f (g >>= h);
\<lbrace> P \<rbrace> f \<lbrace> Q \<rbrace>;
\<lbrace> P' \<rbrace> g \<lbrace> R'\<rbrace>;
(\<And>y. \<lbrace> R' y \<rbrace> h y \<lbrace> Q' \<rbrace>)
\<rbrakk>
\<Longrightarrow> dcorres dc P P' f (do x \<leftarrow> g;
_ \<leftarrow> h x;
m
od)"
apply (simp add: bind_assoc[symmetric])
apply (rule dcorres_dc_rhs_noop_below_gen)
apply (wp | simp | assumption)+
done
lemmas dcorres_dc_rhs_noop_below_2_True = dcorres_dc_rhs_noop_below_2[OF _ _ hoare_TrueI hoare_TrueI hoare_TrueI]
lemma dcorres_assert_opt_assume:
assumes "\<And>x. m = Some x \<Longrightarrow> dcorres R P P' a (c x)"
shows "dcorres R P P' a (assert_opt m >>= c)"
using assms
by (auto simp: bind_def assert_opt_def assert_def fail_def return_def
corres_underlying_def split: option.splits)
end