forked from Shakker-Labs/ComfyUI-IPAdapter-Flux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_processor.py
56 lines (44 loc) · 2.56 KB
/
attention_processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.normalization import RMSNorm
from einops import rearrange
class IPAFluxAttnProcessor2_0(nn.Module):
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, timestep_range=None):
super().__init__()
self.hidden_size = hidden_size # 3072
self.cross_attention_dim = cross_attention_dim # 4096
self.scale = scale
self.num_tokens = num_tokens
self.to_k_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.to_v_ip = nn.Linear(cross_attention_dim or hidden_size, hidden_size, bias=False)
self.norm_added_k = RMSNorm(128, eps=1e-5, elementwise_affine=False)
self.norm_added_v = RMSNorm(128, eps=1e-5, elementwise_affine=False)
self.timestep_range = timestep_range
def __call__(
self,
num_heads,
query,
image_emb: torch.FloatTensor,
t: torch.FloatTensor|torch.Tensor
) -> torch.FloatTensor|torch.Tensor|None:
# only apply IPA if timestep is within range
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
return None
# `ip-adapter` projections
ip_hidden_states = image_emb
ip_hidden_states_key_proj = self.to_k_ip(ip_hidden_states)
ip_hidden_states_value_proj = self.to_v_ip(ip_hidden_states)
ip_hidden_states_key_proj = rearrange(ip_hidden_states_key_proj, 'B L (H D) -> B H L D', H=num_heads)
ip_hidden_states_value_proj = rearrange(ip_hidden_states_value_proj, 'B L (H D) -> B H L D', H=num_heads)
ip_hidden_states_key_proj = self.norm_added_k(ip_hidden_states_key_proj)
ip_hidden_states_value_proj = self.norm_added_v(ip_hidden_states_value_proj)
ip_hidden_states = F.scaled_dot_product_attention(query.to(image_emb.device).to(image_emb.dtype),
ip_hidden_states_key_proj,
ip_hidden_states_value_proj,
dropout_p=0.0, is_causal=False)
ip_hidden_states = rearrange(ip_hidden_states, "B H L D -> B L (H D)", H=num_heads)
ip_hidden_states = ip_hidden_states.to(query.dtype).to(query.device)
return self.scale * ip_hidden_states