-
Notifications
You must be signed in to change notification settings - Fork 95
/
performance_regression_test.py
964 lines (815 loc) · 45.3 KB
/
performance_regression_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
#!/usr/bin/env python
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
#
# See LICENSE for more details.
#
# Copyright (c) 2016 ScyllaDB
import os
import time
from enum import Enum
import yaml
from cassandra.query import SimpleStatement # pylint: disable=no-name-in-module
from upgrade_test import UpgradeTest
from sdcm.tester import ClusterTester, teardown_on_exception
from sdcm.sct_events import Severity
from sdcm.sct_events.filters import EventsSeverityChangerFilter
from sdcm.sct_events.loaders import CassandraStressEvent
from sdcm.sct_events.system import HWPerforanceEvent, InfoEvent
from sdcm.utils.decorators import log_run_info, latency_calculator_decorator, optional_stage
from sdcm.utils.csrangehistogram import CSHistogramTagTypes
from sdcm.utils.nemesis_utils.indexes import wait_for_view_to_be_built
KB = 1024
class PerformanceTestWorkload(Enum):
WRITE = "write"
READ = "read"
MIXED = "mixed"
class PerformanceTestType(Enum):
THROUGHPUT = "throughput"
LATENCY = "latency"
class PerformanceRegressionTest(ClusterTester): # pylint: disable=too-many-public-methods
"""
Test Scylla performance regression with cassandra-stress.
"""
str_pattern = '%8s%16s%10s%14s%16s%12s%12s%14s%16s%16s'
ops_threshold_prc = 200
start_ops = 10_000
throttle_step = 10_000
max_ops = 200_000
def __init__(self, *args):
# need to remove the email_data.json file, as in the builders, it will accumulate and it will send multiple
# emails for each test. When we move to use SCT Runners, it won't be necessary.
self._clean_email_data()
super().__init__(*args)
@teardown_on_exception
@log_run_info
def setUp(self):
if es_index := self.params.get("custom_es_index"):
self._test_index = es_index
super().setUp()
if self.params.get("run_db_node_benchmarks"):
self.log.info("Validate node benchmarks results")
compare_results = self.db_cluster.get_node_benchmarks_results() or {}
ready_nodes = []
for node, results in compare_results.items():
for item, result in results.items():
ready_nodes.append(result["is_within_margin"])
if not result["is_within_margin"]:
self.log.error("HW performance test on node %s has bad results for %s : %s", node, item, result)
if not all(ready_nodes):
err_msg = f"DB Cluster doesn't have equal hw performance result {compare_results}"
self.log.debug(err_msg)
if self.params.get("stop_on_hw_perf_failure"):
HWPerforanceEvent(message=err_msg, severity=Severity.CRITICAL).publish()
else:
HWPerforanceEvent(message=err_msg, severity=Severity.WARNING).publish()
else:
self.log.debug("DB cluster passed hardware performance test")
HWPerforanceEvent(message="DB cluster passed hardware performance test",
severity=Severity.NORMAL).publish()
# Helpers
def display_single_result(self, result):
self.log.info(self.str_pattern, result['op rate'],
result['partition rate'],
result['row rate'],
result['latency mean'],
result['latency median'],
result['latency 95th percentile'],
result['latency 99th percentile'],
result['latency 99.9th percentile'],
result['total partitions'],
result['total errors'])
def get_test_xml(self, result, test_name=''):
test_content = """
<test name="%s: (%s) Loader%s CPU%s Keyspace%s" executed="yes">
<description>"%s test, ami_id: %s, scylla version:
%s", hardware: %s</description>
<targets>
<target threaded="yes">target-ami_id-%s</target>
<target threaded="yes">target-version-%s</target>
</targets>
<platform name="AWS platform">
<hardware>%s</hardware>
</platform>
<result>
<success passed="yes" state="1"/>
<performance unit="kbs" mesure="%s" isRelevant="true" />
<metrics>
<op-rate unit="op/s" mesure="%s" isRelevant="true" />
<partition-rate unit="pk/s" mesure="%s" isRelevant="true" />
<row-rate unit="row/s" mesure="%s" isRelevant="true" />
<latency-mean unit="mean" mesure="%s" isRelevant="true" />
<latency-median unit="med" mesure="%s" isRelevant="true" />
<l-95th-pct unit=".95" mesure="%s" isRelevant="true" />
<l-99th-pct unit=".99" mesure="%s" isRelevant="true" />
<l-99.9th-pct unit=".999" mesure="%s" isRelevant="true" />
<total_partitions unit="total_partitions" mesure="%s" isRelevant="true" />
<total_errors unit="total_errors" mesure="%s" isRelevant="true" />
</metrics>
</result>
</test>
""" % (test_name, result['loader_idx'],
result['loader_idx'],
result['cpu_idx'],
result['keyspace_idx'],
test_name,
self.params.get('ami_id_db_scylla'),
self.params.get('ami_id_db_scylla_desc'),
self.params.get('instance_type_db'),
self.params.get('ami_id_db_scylla'),
self.params.get('ami_id_db_scylla_desc'),
self.params.get('instance_type_db'),
result['op rate'],
result['op rate'],
result['partition rate'],
result['row rate'],
result['latency mean'],
result['latency median'],
result['latency 95th percentile'],
result['latency 99th percentile'],
result['latency 99.9th percentile'],
result['total partitions'],
result['total errors'])
return test_content
def display_results(self, results, test_name=''):
self.log.info(self.str_pattern, 'op-rate', 'partition-rate',
'row-rate', 'latency-mean',
'latency-median', 'l-94th-pct',
'l-99th-pct', 'l-99.9th-pct',
'total-partitions', 'total-err')
test_xml = ""
try:
for single_result in results:
self.display_single_result(single_result)
test_xml += self.get_test_xml(single_result, test_name=test_name)
with open(os.path.join(self.logdir, 'jenkins_perf_PerfPublisher.xml'), 'w', encoding="utf-8") as pref_file:
content = """<report name="%s report" categ="none">%s</report>""" % (test_name, test_xml)
pref_file.write(content)
except Exception as ex: # pylint: disable=broad-except # noqa: BLE001
self.log.debug('Failed to display results: {0}'.format(results))
self.log.debug('Exception: {0}'.format(ex))
def _workload(self, stress_cmd, stress_num, test_name, sub_type=None, keyspace_num=1, prefix='', debug_message='', # pylint: disable=too-many-arguments
save_stats=True):
if debug_message:
self.log.debug(debug_message)
if save_stats:
if not self.exists():
self.create_test_stats(sub_type=sub_type)
stress_queue = self.run_stress_thread(stress_cmd=stress_cmd, stress_num=stress_num, keyspace_num=keyspace_num,
prefix=prefix, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue, store_results=True)
if save_stats:
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name=test_name)
self.check_regression()
total_ops = self._get_total_ops()
self.log.debug('Total ops: {}'.format(total_ops))
return total_ops
return None
def _get_total_ops(self):
return self._stats['results']['stats_total']['op rate']
@staticmethod
def _clean_email_data():
email_data_path = 'email_data.json'
with open(email_data_path, 'w', encoding="utf-8"):
pass
def _stop_load_when_nemesis_threads_end(self):
for nemesis_thread in self.db_cluster.nemesis_threads:
nemesis_thread.join()
with EventsSeverityChangerFilter(new_severity=Severity.NORMAL, # killing stress creates Critical error
event_class=CassandraStressEvent,
extra_time_to_expiration=60):
self.loaders.kill_stress_thread()
@optional_stage('perf_preload_data')
def preload_data(self, compaction_strategy=None):
# if test require a pre-population of data
prepare_write_cmd = self.params.get('prepare_write_cmd')
if prepare_write_cmd:
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(sub_type='write-prepare', doc_id_with_timestamp=True)
stress_queue = []
params = {'prefix': 'preload-'}
# Check if the prepare_cmd is a list of commands
if isinstance(prepare_write_cmd, list):
if len(prepare_write_cmd) == 1:
prepare_write_cmd = prepare_write_cmd[0]
if isinstance(prepare_write_cmd, list):
# Check if it should be round_robin across loaders
if self.params.get('round_robin'):
self.log.debug('Populating data using round_robin')
params.update({'stress_num': 1, 'round_robin': True})
if compaction_strategy:
self.log.debug('Next compaction strategy will be used %s', compaction_strategy)
params['compaction_strategy'] = compaction_strategy
for stress_cmd in prepare_write_cmd:
params.update({'stress_cmd': stress_cmd})
# Run all stress commands
params.update(dict(stats_aggregate_cmds=False))
self.log.debug('RUNNING stress cmd: {}'.format(stress_cmd))
stress_queue.append(self.run_stress_thread(**params))
# One stress cmd command
else:
stress_queue.append(self.run_stress_thread(stress_cmd=prepare_write_cmd, stress_num=1,
prefix='preload-', stats_aggregate_cmds=False))
for stress in stress_queue:
self.get_stress_results(queue=stress, store_results=False)
self.update_test_details()
else:
self.log.warning("No prepare command defined in YAML!")
if post_prepare_cql_cmds := self.params.get('post_prepare_cql_cmds'):
self.log.debug("Execute post prepare queries: %s", post_prepare_cql_cmds)
self._run_cql_commands(post_prepare_cql_cmds)
def _run_cql_commands(self, cmds, node=None):
node = node if node else self.db_cluster.nodes[0]
if not isinstance(cmds, list):
cmds = [cmds]
for cmd in cmds:
# pylint: disable=no-member
with self.db_cluster.cql_connection_patient(node) as session:
session.execute(cmd)
def run_read_workload(self, nemesis=False):
base_cmd_r = self.params.get('stress_cmd_r')
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(sub_type='read', doc_id_with_timestamp=True)
stress_queue = self.run_stress_thread(stress_cmd=base_cmd_r, stress_num=1, stats_aggregate_cmds=False)
if nemesis:
interval = self.params.get('nemesis_interval')
time.sleep(interval) # Sleeping one interval before starting the nemesis
self.db_cluster.add_nemesis(nemesis=self.get_nemesis_class(), tester_obj=self)
self.db_cluster.start_nemesis(interval=interval)
results = self.get_stress_results(queue=stress_queue)
self.build_histogram(PerformanceTestWorkload.READ, PerformanceTestType.LATENCY)
self.update_test_details()
self.display_results(results, test_name='test_latency' if not nemesis else 'test_latency_with_nemesis')
self.check_regression()
def run_write_workload(self, nemesis=False):
base_cmd_w = self.params.get('stress_cmd_w')
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(sub_type='write', doc_id_with_timestamp=True)
stress_queue = self.run_stress_thread(stress_cmd=base_cmd_w, stress_num=1, stats_aggregate_cmds=False)
if nemesis:
self.db_cluster.add_nemesis(nemesis=self.get_nemesis_class(), tester_obj=self)
self.db_cluster.start_nemesis(interval=self.params.get('nemesis_interval'))
results = self.get_stress_results(queue=stress_queue)
self.build_histogram(PerformanceTestWorkload.WRITE, PerformanceTestType.LATENCY)
self.update_test_details()
self.display_results(results, test_name='test_latency')
self.check_regression()
def run_mixed_workload(self, nemesis=False):
base_cmd_m = self.params.get('stress_cmd_m')
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(sub_type='mixed', doc_id_with_timestamp=True)
stress_queue = self.run_stress_thread(stress_cmd=base_cmd_m, stress_num=1, stats_aggregate_cmds=False)
if nemesis:
self.db_cluster.add_nemesis(nemesis=self.get_nemesis_class(), tester_obj=self)
self.db_cluster.start_nemesis(interval=self.params.get('nemesis_interval'))
results = self.get_stress_results(queue=stress_queue)
self.build_histogram(PerformanceTestWorkload.MIXED, PerformanceTestType.LATENCY)
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name='test_latency')
self.check_regression()
def run_workload(self, stress_cmd, nemesis=False, sub_type=None):
# create new document in ES with doc_id = test_id
# allow to correctly save results for future compare
self.stress_cmd = stress_cmd
test_index = f'latency-during-ops-{sub_type}'
self.create_test_stats(sub_type=sub_type, append_sub_test_to_name=False, test_index=test_index)
stress_queue = self.run_stress_thread(stress_cmd=stress_cmd, stress_num=1, stats_aggregate_cmds=False)
if nemesis:
interval = self.params.get('nemesis_interval')
time.sleep(interval * 60) # Sleeping one interval (in minutes) before starting the nemesis
self.db_cluster.add_nemesis(nemesis=self.get_nemesis_class(), tester_obj=self)
self.db_cluster.start_nemesis(interval=interval, cycles_count=1)
self._stop_load_when_nemesis_threads_end()
results = self.get_stress_results(queue=stress_queue)
self.update_test_details(scrap_metrics_step=60)
self.display_results(results, test_name='test_latency' if not nemesis else 'test_latency_with_nemesis')
check_latency = self.check_regression if not nemesis else self.check_latency_during_ops
check_latency()
def prepare_mv(self, on_populated=False):
with self.db_cluster.cql_connection_patient_exclusive(self.db_cluster.nodes[0]) as session:
ks_name = 'keyspace1'
base_table_name = 'standard1'
if not on_populated:
# Truncate base table before materialized view creation
self.log.debug('Truncate base table: {0}.{1}'.format(ks_name, base_table_name))
self.truncate_cf(ks_name, base_table_name, session)
# Create materialized view
view_name = base_table_name + '_mv'
self.log.debug('Create materialized view: {0}.{1}'.format(ks_name, view_name))
self.create_materialized_view(ks_name, base_table_name, view_name, ['"C0"'], ['key'], session,
mv_columns=['"C0"', 'key'])
# Wait for the materialized view is built
self._wait_for_view(self.db_cluster, session, ks_name, view_name)
def _write_with_mv(self, on_populated):
"""
Test steps:
1. Run a write workload
2. Create materialized view
3. Run a write workload
"""
test_name = 'test_write_with_mv_{}populated'.format('' if on_populated else 'not_')
base_cmd_w = self.params.get('stress_cmd_w')
# Run a write workload without MV
ops_without_mv = self._workload(stress_cmd=base_cmd_w, stress_num=2, sub_type='write_without_mv',
test_name=test_name, keyspace_num=1,
debug_message='First write cassandra-stress command: {}'.format(base_cmd_w))
# Create MV
self.prepare_mv(on_populated=on_populated)
# Start cassandra-stress writes again now with MV
ops_with_mv = self._workload(stress_cmd=base_cmd_w, stress_num=2, sub_type='write_with_mv',
test_name=test_name, keyspace_num=1,
debug_message='Second write cassandra-stress command: {}'.format(base_cmd_w))
self.assert_mv_performance(ops_without_mv, ops_with_mv,
'Throughput of run with materialized view is more than {} times lower then '
'throughput of run without materialized view'.format(self.ops_threshold_prc/100))
def _read_with_mv(self, on_populated):
"""
Test steps:
1. Run a write workload as a preparation
2. Run a read workload
3. Create MV
4. Run a read workload again
"""
test_name = 'test_read_with_mv_{}populated'.format('' if on_populated else 'not_')
base_cmd_p = self.params.get('prepare_write_cmd')
base_cmd_w = self.params.get('stress_cmd_w')
base_cmd_r = self.params.get('stress_cmd_r')
self.create_test_stats()
# prepare schema and data before read
self._workload(stress_cmd=base_cmd_p, stress_num=2, test_name=test_name, prefix='preload-', keyspace_num=1,
debug_message='Prepare the test, run cassandra-stress command: {}'.format(base_cmd_p),
save_stats=False)
# run a read workload
ops_without_mv = self._workload(stress_cmd=base_cmd_r, stress_num=2, sub_type='read_without_mv',
test_name=test_name, keyspace_num=1,
debug_message='First read cassandra-stress command: {}'.format(base_cmd_r))
self.prepare_mv(on_populated=on_populated)
# If the MV was created on the empty base table, populate it before reads
if not on_populated:
self._workload(stress_cmd=base_cmd_w, stress_num=2, test_name=test_name, prefix='preload-', keyspace_num=1,
debug_message='Prepare test before second cassandra-stress command: {}'.format(base_cmd_w),
save_stats=False)
# run a read workload
ops_with_mv = self._workload(stress_cmd=base_cmd_r, stress_num=2, sub_type='read_with_mv',
test_name=test_name, keyspace_num=1,
debug_message='Second read cassandra-stress command: {}'.format(base_cmd_r))
self.assert_mv_performance(ops_without_mv, ops_with_mv,
'Throughput of run with materialized view is more than {} times lower then '
'throughput of run without materialized view'.format(self.ops_threshold_prc/100))
def _mixed_with_mv(self, on_populated):
"""
Test steps:
1. Run a write workload as a preparation
2. Run a mixed workload
"""
test_name = 'test_mixed_with_mv_{}populated'.format('' if on_populated else 'not_')
base_cmd_p = self.params.get('prepare_write_cmd')
base_cmd_m = self.params.get('stress_cmd_m')
self.create_test_stats()
# run a write workload as a preparation
self._workload(stress_cmd=base_cmd_p, stress_num=2, test_name=test_name, keyspace_num=1, prefix='preload-',
debug_message='Prepare the test, run cassandra-stress command: {}'.format(base_cmd_p),
save_stats=False)
# run a mixed workload without MV
ops_without_mv = self._workload(stress_cmd=base_cmd_m, stress_num=2, sub_type='mixed_without_mv',
test_name=test_name, keyspace_num=1,
debug_message='First mixed cassandra-stress command: {}'.format(base_cmd_m))
self.prepare_mv(on_populated=on_populated)
# run a mixed workload with MV
ops_with_mv = self._workload(stress_cmd=base_cmd_p, stress_num=2, sub_type='mixed_with_mv',
test_name=test_name, keyspace_num=1,
debug_message='Second start of mixed cassandra-stress command: {}'.format(
base_cmd_p))
self.assert_mv_performance(ops_without_mv, ops_with_mv,
'Throughput of stress run with materialized view is more than {} times lower then '
'throughput of stress run without materialized view'.format(
self.ops_threshold_prc / 100))
def assert_mv_performance(self, ops_without_mv, ops_with_mv, failure_message):
self.log.debug('Performance results. Ops without MV: {0}; Ops with MV: {1}'.format(ops_without_mv, ops_with_mv))
self.assertLessEqual(ops_without_mv, (ops_with_mv * self.ops_threshold_prc) / 100, failure_message)
def _scylla_bench_prepare_table(self):
node = self.db_cluster.nodes[0]
with self.db_cluster.cql_connection_patient(node) as session:
session.execute("""
CREATE KEYSPACE scylla_bench WITH replication = {'class': 'NetworkTopologyStrategy', 'replication_factor': 3}
AND durable_writes = true;
""")
session.execute("""
CREATE TABLE scylla_bench.test (
pk bigint,
ck bigint,
v blob,
PRIMARY KEY (pk, ck)
) WITH CLUSTERING ORDER BY (ck ASC)
AND compaction = {'class': 'TimeWindowCompactionStrategy', 'compaction_window_size': '60',
'compaction_window_unit': 'MINUTES'}
AND bloom_filter_fp_chance = 0.01
AND caching = {'keys': 'ALL', 'rows_per_partition': 'ALL'}
AND comment = ''
AND compression = {}
AND crc_check_chance = 1.0
AND dclocal_read_repair_chance = 0.1
AND default_time_to_live = 86400
AND gc_grace_seconds = 0
AND max_index_interval = 2048
AND memtable_flush_period_in_ms = 0
AND min_index_interval = 128
AND read_repair_chance = 0.0
AND speculative_retry = 'NONE';
""")
# Base Tests
def test_write(self):
"""
Test steps:
1. Run a write workload
"""
# run a write workload
base_cmd_w = self.params.get('stress_cmd_w')
stress_multiplier = self.params.get('stress_multiplier')
if stress_multiplier_w := self.params.get("stress_multiplier_w"):
stress_multiplier = stress_multiplier_w
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(doc_id_with_timestamp=True)
self.run_fstrim_on_all_db_nodes()
# run a workload
stress_queue = self.run_stress_thread(
stress_cmd=base_cmd_w, stress_num=stress_multiplier, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue)
self.build_histogram(PerformanceTestWorkload.WRITE, PerformanceTestType.THROUGHPUT)
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name='test_write')
self.check_regression()
def test_read(self):
"""
Test steps:
1. Run a write workload as a preparation
2. Run a read workload
"""
base_cmd_r = self.params.get('stress_cmd_r')
stress_multiplier = self.params.get('stress_multiplier')
if stress_multiplier_r := self.params.get("stress_multiplier_r"):
stress_multiplier = stress_multiplier_r
self.run_fstrim_on_all_db_nodes()
# run a write workload
self.preload_data()
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(doc_id_with_timestamp=True)
# wait compactions will be finished
self.wait_no_compactions_running(n=240, sleep_time=180)
self.run_fstrim_on_all_db_nodes()
# run a read workload
stress_queue = self.run_stress_thread(
stress_cmd=base_cmd_r, stress_num=stress_multiplier, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue)
self.build_histogram(PerformanceTestWorkload.READ, PerformanceTestType.THROUGHPUT)
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name='test_read')
self.check_regression()
def test_mixed(self):
"""
Test steps:
1. Run a write workload as a preparation
2. Run a mixed workload
"""
base_cmd_m = self.params.get('stress_cmd_m')
stress_multiplier = self.params.get('stress_multiplier')
if stress_multiplier_m := self.params.get("stress_multiplier_m"):
stress_multiplier = stress_multiplier_m
self.run_fstrim_on_all_db_nodes()
# run a write workload as a preparation
self.preload_data()
# run a mixed workload
# create new document in ES with doc_id = test_id + timestamp
# allow to correctly save results for future compare
self.create_test_stats(doc_id_with_timestamp=True)
# wait compactions will be finished
self.wait_no_compactions_running(n=240, sleep_time=180)
self.run_fstrim_on_all_db_nodes()
stress_queue = self.run_stress_thread(
stress_cmd=base_cmd_m, stress_num=stress_multiplier, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue)
self.build_histogram(PerformanceTestWorkload.MIXED, PerformanceTestType.THROUGHPUT)
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name='test_mixed')
self.check_regression()
def test_latency(self):
"""
Test steps:
1. Prepare cluster with data (reach steady_stet of compactions and ~x10 capacity than RAM.
with round_robin and list of stress_cmd - the data will load several times faster.
2. Run WRITE workload with gauss population.
"""
self.run_fstrim_on_all_db_nodes()
self.preload_data()
self.wait_no_compactions_running()
self.run_fstrim_on_all_db_nodes()
self.run_read_workload()
self.wait_no_compactions_running()
self.run_fstrim_on_all_db_nodes()
self.run_write_workload()
self.wait_no_compactions_running()
self.run_fstrim_on_all_db_nodes()
self.run_mixed_workload()
def test_latency_read_with_nemesis(self):
self.run_fstrim_on_all_db_nodes()
self.preload_data()
self.wait_no_compactions_running(n=160)
self.run_fstrim_on_all_db_nodes()
self.run_workload(stress_cmd=self.params.get('stress_cmd_r'), nemesis=True, sub_type='read')
def test_latency_write_with_nemesis(self):
self.run_fstrim_on_all_db_nodes()
self.preload_data()
self.wait_no_compactions_running(n=160)
self.run_fstrim_on_all_db_nodes()
self.run_workload(stress_cmd=self.params.get('stress_cmd_w'), nemesis=True, sub_type='write')
def test_latency_mixed_with_nemesis(self):
self.run_fstrim_on_all_db_nodes()
self.preload_data()
self.wait_no_compactions_running(n=160)
self.run_fstrim_on_all_db_nodes()
self.run_workload(stress_cmd=self.params.get('stress_cmd_m'), nemesis=True, sub_type='mixed')
# MV Tests
def test_mv_write(self):
"""
Test steps:
1. Run WRITE workload on base table without materialized view
2. Run WRITE workload with materialized view when view is on partition key is the same host as partition key
3. Drop MV
4. Run WRITE workload with materialized view when view is on clustering key is the same host as partition key
5. Drop MV
"""
def run_workload(stress_cmd, user_profile):
self.log.debug('Run stress test with user profile {}'.format(user_profile))
assert os.path.exists(user_profile), 'File not found: {}'.format(user_profile)
self.log.debug('Stress cmd: {}'.format(stress_cmd))
stress_queue = self.run_stress_thread(stress_cmd=stress_cmd, stress_num=1, profile=user_profile,
stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue)
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name=test_name)
self.check_regression()
self.log.debug('Finish stress test with user profile {}'.format(user_profile))
def get_mv_name(user_profile):
# Get materialized view name from user profile
with open(user_profile, encoding="utf-8") as fobj:
user_profile_yaml = yaml.safe_load(fobj)
mv_name = ''
for k in user_profile_yaml:
if isinstance(k, tuple) and k[0] == 'extra_definitions':
mv_name = k[1][0].split(' AS')[0].split(' ')[-1]
break
if not mv_name:
assert False, 'Failed to recognoze materialized view name from {0}: {1}'.format(
user_profile, user_profile_yaml)
return mv_name
def drop_mv(mv_name):
# drop MV
self.log.debug('Start dropping materialized view {}'.format(mv_name))
query = 'drop materialized view {}'.format(mv_name)
try:
with self.db_cluster.cql_connection_patient_exclusive(self.db_cluster.nodes[0], connect_timeout=300) as session:
self.log.debug('Run query: {}'.format(query))
session.execute(SimpleStatement(query), timeout=300)
session.execute(query)
except Exception as ex:
self.log.debug('Failed to drop materialized view using query {0}. Error: {1}'.format(query, str(ex)))
raise
self.log.debug('Finish dropping materialized view {}'.format(mv_name))
test_name = 'test_mv_write'
duration = self.params.get('test_duration')
self.log.debug('Start materialized views performance test. Test duration {} minutes'.format(duration))
self.create_test_stats()
cmd_no_mv = self.params.get('stress_cmd_no_mv')
cmd_no_mv_profile = self.params.get('stress_cmd_no_mv_profile')
# Run WRITE workload without materialized view
run_workload(cmd_no_mv, cmd_no_mv_profile)
# Run WRITE workload with materialized view
mv_commands = self.params.get("stress_cmd_mv")
# mv_commands structure (created in correctly parses yaml):
# [
# [('cmd', <cassandra-stress command line>), ('profile', <profile file name with path>)],
# [('cmd', <cassandra-stress command line>), ('profile', <profile file name with path>)]
# ]
for cmd in mv_commands:
cmd_mv, cmd_mv_profile = cmd[0][1], cmd[1][1]
run_workload(cmd_mv, cmd_mv_profile)
drop_mv(get_mv_name(cmd_mv_profile))
time.sleep(60)
def test_mv_write_populated(self):
self._write_with_mv(on_populated=True)
def test_mv_write_not_populated(self):
self._write_with_mv(on_populated=False)
def test_mv_read_populated(self):
self._read_with_mv(on_populated=True)
def test_mv_read_not_populated(self):
self._read_with_mv(on_populated=False)
def test_mv_mixed_populated(self):
self._mixed_with_mv(on_populated=True)
def test_mv_mixed_not_populated(self):
self._mixed_with_mv(on_populated=False)
# Counter Tests
def test_uniform_counter_update_bench(self): # pylint: disable=invalid-name
"""
Test steps:
1. Run workload: -workload uniform -mode counter_update -duration 30m
"""
base_cmd_r = ("scylla-bench -workload uniform -mode counter_update -duration 30m "
"-partition-count 50000000 -clustering-row-count 1 -connection-count "
"32 -concurrency 512 -replication-factor 3")
self.create_test_stats()
stress_queue = self.run_stress_thread_bench(stress_cmd=base_cmd_r, stats_aggregate_cmds=False)
results = self.get_stress_results_bench(queue=stress_queue)
self.update_test_details(scylla_conf=True)
self.display_results(results, test_name='test_read_bench')
self.check_regression()
# Large Partition Tests
def test_timeseries_bench(self):
"""
Timeseries write/read workload
"""
cmd_w = ("scylla-bench -workload=timeseries -mode=write -replication-factor=3 "
"-partition-count=5000 -clustering-row-count=1000000 -clustering-row-size=200 "
"-concurrency=48 -max-rate=150000 -rows-per-request=5000")
self.create_test_stats(sub_type='write')
self._scylla_bench_prepare_table()
self.run_stress_thread_bench(stress_cmd=cmd_w, stats_aggregate_cmds=False)
start_timestamp = int(time.time())
self.db_cluster.wait_total_space_used_per_node(700 * KB * KB * KB, 'scylla_bench.test') # 700GB
cmd_r = ("scylla-bench -workload=timeseries -mode=read -partition-count=5000 -concurrency=1 "
"-replication-factor=3 -write-rate=30 -clustering-row-count=1000000 -clustering-row-size=200 "
"-rows-per-request=1000000 -no-lower-bound -start-timestamp=%s -duration=60m" % start_timestamp)
self.create_test_stats(sub_type='read')
stress_queue = self.run_stress_thread_bench(stress_cmd=cmd_r, stats_aggregate_cmds=False)
results = self.get_stress_results_bench(queue=stress_queue)
self.update_test_details()
self.display_results(results, test_name='test_timeseries_read_bench')
self.check_regression()
self.kill_stress_thread()
def build_histogram(self, workload: PerformanceTestWorkload, test_type: PerformanceTestType):
if not self.params["use_hdr_cs_histogram"]:
return
start_time = self.get_test_start_time() or self.start_time
end_time = time.time()
if test_type == PerformanceTestType.THROUGHPUT:
tag_type = CSHistogramTagTypes.THROUGHPUT
else:
tag_type = CSHistogramTagTypes.LATENCY
histogram_total_data = self.get_cs_range_histogram(stress_operation=workload.value,
start_time=start_time,
end_time=end_time,
tag_type=tag_type)
self.update_hdrhistograms(histogram_name="test_histogram",
histogram_data=histogram_total_data)
histogram_data_by_interval = self.get_cs_range_histogram_by_interval(stress_operation=workload.value,
start_time=start_time,
end_time=end_time,
tag_type=tag_type)
self.update_hdrhistograms(histogram_name='test_histogram_by_interval',
histogram_data=histogram_data_by_interval)
class PerformanceRegressionUpgradeTest(PerformanceRegressionTest, UpgradeTest): # pylint: disable=too-many-ancestors
def get_email_data(self): # pylint: disable=no-self-use
return PerformanceRegressionTest.get_email_data(self)
@latency_calculator_decorator(legend="Upgrade Node")
def upgrade_node(self, node): # pylint: disable=arguments-differ
InfoEvent(message='Upgrade Node %s begin' % node.name).publish()
self._upgrade_node(node)
InfoEvent(message='Upgrade Node %s ended' % node.name).publish()
def _stop_stress_when_finished(self): # pylint: disable=no-self-use
with EventsSeverityChangerFilter(new_severity=Severity.NORMAL, # killing stress creates Critical error
event_class=CassandraStressEvent,
extra_time_to_expiration=60):
self.loaders.kill_stress_thread()
@optional_stage('perf_steady_state_calc')
@latency_calculator_decorator
def steady_state_latency(self): # pylint: disable=no-self-use
sleep_time = self.db_cluster.params.get('nemesis_interval') * 60
InfoEvent(message='Starting Steady State calculation for %ss' % sleep_time).publish()
time.sleep(sleep_time)
InfoEvent(message='Ended Steady State calculation. Took %ss' % sleep_time).publish()
@latency_calculator_decorator
def post_upgrades_steady_state(self):
sleep_time = self.db_cluster.params.get('nemesis_interval') * 60
InfoEvent(message='Starting Post-Upgrade Steady State calculation for %ss' % sleep_time).publish()
time.sleep(sleep_time)
InfoEvent(message='Ended Post-Upgrade Steady State calculation. Took %ss' % sleep_time).publish()
def run_workload_and_upgrade(self, stress_cmd, sub_type=None):
# next 3 lines, is a workaround to have it working inside `latency_calculator_decorator`
self.cluster = self.db_cluster # pylint: disable=attribute-defined-outside-init
self.tester = self # pylint: disable=attribute-defined-outside-init
self.monitoring_set = self.monitors # pylint: disable=attribute-defined-outside-init
if sub_type is None:
sub_type = 'read' if ' read ' in stress_cmd else 'write' if ' write ' in stress_cmd else 'mixed'
test_index = f'latency-during-upgrade-{sub_type}'
self.create_test_stats(sub_type=sub_type, append_sub_test_to_name=False, test_index=test_index)
stress_queue = self.run_stress_thread(stress_cmd=stress_cmd, stress_num=1, stats_aggregate_cmds=False)
time.sleep(60) # postpone measure steady state latency to skip c-s start period when latency is high
self.steady_state_latency()
versions_list = []
def _get_version_and_build_id_from_node(node):
version = node.remoter.run('scylla --version')
build_id = node.remoter.run('scylla --build-id')
return version.stdout.strip(), build_id.stdout.strip()
for node in self.db_cluster.nodes:
base_version, base_build_id = _get_version_and_build_id_from_node(node)
self.upgrade_node(node)
target_version, target_build_id = _get_version_and_build_id_from_node(node)
versions_list.append({'base_version': base_version,
'base_build_id': base_build_id,
'target_version': target_version,
'target_build_id': target_build_id,
'node_name': node.name
})
time.sleep(120) # sleeping 2 min to give time for cache to re-heat
self.post_upgrades_steady_state()
# TODO: check if all `base_version` and all `target_version` are the same
self.update({'base_target_versions': versions_list})
self._stop_stress_when_finished()
results = self.get_stress_results(queue=stress_queue)
self.update_test_details(scrap_metrics_step=60)
self.display_results(results, test_name='test_latency_with_upgrade')
self.update_test_details(scrap_metrics_step=60)
self.display_results(results, test_name='test_latency_during_upgrade')
self.check_latency_during_ops()
def _prepare_latency_with_upgrade(self):
self.run_fstrim_on_all_db_nodes()
self.preload_data()
self.wait_no_compactions_running()
self.run_fstrim_on_all_db_nodes()
def test_latency_read_with_upgrade(self):
self._prepare_latency_with_upgrade()
self.run_workload_and_upgrade(stress_cmd=self.params.get('stress_cmd_r'))
def test_latency_write_with_upgrade(self):
self._prepare_latency_with_upgrade()
self.run_workload_and_upgrade(stress_cmd=self.params.get('stress_cmd_w'))
def test_latency_mixed_with_upgrade(self):
self._prepare_latency_with_upgrade()
self.run_workload_and_upgrade(stress_cmd=self.params.get('stress_cmd_m'))
class PerformanceRegressionMaterializedViewLatencyTest(PerformanceRegressionTest):
"""
the idea is to reproduce the hardest scenario for MV
based on internal doc "Consistency problems in materialized views"
modifying a column that is a regular column in the base table,
but in the materialized view is one of the primary key columns.
Other types of materialized view updates are easier to handle,
once we figure out how to do the hardest case correctly, all of the other cases will be solved as well.
currently this problem is not solved.
The test is just reproducer of this problem and should not be used in regular runs
test steps:
1 - 3 node cluster with 2 tables
2 - do special prepare CMD for table 1, and use table 2 as for latency PERF TEST (prepare_write_cmd)
3 - start read workload for table 2 - measure latency for table 2 (10min) (stress_cmd_r)
4 - do a special rewrite workload for table 1 to measure latency for table 2 (while changing for table 1 applying )(stress_cmd_no_mv)
5 - create MV, and wait for MV to sync - measure latency for table 2 (while MV is syncing )
6- do special rewrite workload for table 1 again - measure latency for table 2 (while changing for table 1 applying ) (stress_cmd_mv)
"""
def test_read_mv_latency(self):
self.run_fstrim_on_all_db_nodes()
self.preload_data() # prepare_write_cmd
self.wait_no_compactions_running()
self.run_fstrim_on_all_db_nodes()
self.create_test_stats(sub_type="read", append_sub_test_to_name=False, test_index="mv-overloading-latency-read")
self.run_stress_thread(stress_cmd=self.params.get('stress_cmd_r'), stress_num=1,
stats_aggregate_cmds=False)
self.steady_state_read_workload_latency() # stress_cmd_r
self.do_rewrite_workload() # stress_cmd_no_mv + #stress_cmd_r
self.wait_mv_sync() # stress_cmd_r
self.do_rewrite_workload_with_mv() # stress_cmd_mv + #stress_cmd_r
self.loaders.kill_stress_thread()
self.check_latency_during_ops()
@latency_calculator_decorator
def steady_state_read_workload_latency(self):
InfoEvent(message='start_read_workload_latency begin').publish()
time.sleep(15*60)
InfoEvent(message='start_read_workload_latency ended').publish()
@latency_calculator_decorator
def do_rewrite_workload(self):
base_cmd = self.params.get('stress_cmd_no_mv')
stress_queue = self.run_stress_thread(stress_cmd=base_cmd, stress_num=1, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue, store_results=False)
self.display_results(results, test_name='do_rewrite_workload')
@latency_calculator_decorator
def wait_mv_sync(self):
node1 = self.db_cluster.nodes[0]
node1.run_cqlsh(
"CREATE TABLE IF NOT EXISTS scylla_bench.test (pk bigint,ck bigint,v blob,PRIMARY KEY(pk, ck)) WITH compression = { }")
node1.run_cqlsh("CREATE MATERIALIZED VIEW IF NOT EXISTS scylla_bench.view_test AS SELECT * FROM scylla_bench.test where v IS NOT NULL AND ck IS NOT NULL AND pk IS NOT NULL PRIMARY KEY (v, pk, ck)")
wait_for_view_to_be_built(node1, 'scylla_bench', 'view_test', timeout=1000)
@latency_calculator_decorator
def do_rewrite_workload_with_mv(self):
base_cmd = self.params.get('stress_cmd_mv')
stress_queue = self.run_stress_thread(stress_cmd=base_cmd, stress_num=1, stats_aggregate_cmds=False)
results = self.get_stress_results(queue=stress_queue, store_results=False)
self.display_results(results, test_name='do_rewrite_workload_with_mv')