We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
EigenProClassifier fails in of the common tests from check_estimator with scikit-learn master,
EigenProClassifier
check_estimator
____________________ test_all_estimators[EigenProClassifier()-check_classifier_multioutput] ____________________ estimator = EigenProClassifier(batch_size='auto', coef0=1, degree=3, gamma=0.02, kernel='rbf', kernel_params=None, n_components=1000, n_epoch=2, random_state=None, subsample_size='auto') check = functools.partial(<function check_classifier_multioutput at 0x7f5070a540e0>, 'EigenProClassifier') @estimator_checks.parametrize_with_checks(ALL_ESTIMATORS) def test_all_estimators(estimator, check): > return check(estimator) sklearn_extra/tests/test_common.py:19: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ../scikit-learn/sklearn/utils/testing.py:326: in wrapper return fn(*args, **kwargs) ../scikit-learn/sklearn/utils/estimator_checks.py:1536: in check_classifier_multioutput estimator.fit(X, y) sklearn_extra/kernel_methods/_eigenpro.py:641: in fit ensure_min_samples=3, ../scikit-learn/sklearn/utils/validation.py:743: in check_X_y y = column_or_1d(y, warn=True) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ y = array([[0, 1, 0], [1, 1, 1], [1, 1, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1], [1,...[0, 1, 1], [1, 1, 1], [1, 1, 0], [0, 0, 0], [0, 1, 1], [0, 0, 1], [1, 1, 1]]) warn = True def column_or_1d(y, warn=False): """ Ravel column or 1d numpy array, else raises an error Parameters ---------- y : array-like warn : boolean, default False To control display of warnings. Returns ------- y : array """ y = np.asarray(y) shape = np.shape(y) if len(shape) == 1: return np.ravel(y) if len(shape) == 2 and shape[1] == 1: if warn: warnings.warn("A column-vector y was passed when a 1d array was" " expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) return np.ravel(y) > raise ValueError("bad input shape {0}".format(shape)) E ValueError: bad input shape (42, 3) ../scikit-learn/sklearn/utils/validation.py:780: ValueError
The text was updated successfully, but these errors were encountered:
No branches or pull requests
EigenProClassifier
fails in of the common tests fromcheck_estimator
with scikit-learn master,The text was updated successfully, but these errors were encountered: