Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EigenProClassifier: check_classifier_multioutput common test fails #41

Open
rth opened this issue Oct 26, 2019 · 0 comments
Open

EigenProClassifier: check_classifier_multioutput common test fails #41

rth opened this issue Oct 26, 2019 · 0 comments

Comments

@rth
Copy link
Contributor

rth commented Oct 26, 2019

EigenProClassifier fails in of the common tests from check_estimator with scikit-learn master,

____________________ test_all_estimators[EigenProClassifier()-check_classifier_multioutput] ____________________

estimator = EigenProClassifier(batch_size='auto', coef0=1, degree=3, gamma=0.02,
                   kernel='rbf', kernel_params=None, n_components=1000,
                   n_epoch=2, random_state=None, subsample_size='auto')
check = functools.partial(<function check_classifier_multioutput at 0x7f5070a540e0>, 'EigenProClassifier')

    @estimator_checks.parametrize_with_checks(ALL_ESTIMATORS)
    def test_all_estimators(estimator, check):
>       return check(estimator)

sklearn_extra/tests/test_common.py:19:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../scikit-learn/sklearn/utils/testing.py:326: in wrapper
    return fn(*args, **kwargs)
../scikit-learn/sklearn/utils/estimator_checks.py:1536: in check_classifier_multioutput
    estimator.fit(X, y)
sklearn_extra/kernel_methods/_eigenpro.py:641: in fit
    ensure_min_samples=3,
../scikit-learn/sklearn/utils/validation.py:743: in check_X_y
    y = column_or_1d(y, warn=True)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

y = array([[0, 1, 0],
       [1, 1, 1],
       [1, 1, 1],
       [1, 0, 1],
       [1, 1, 1],
       [0, 1, 1],
       [1,...[0, 1, 1],
       [1, 1, 1],
       [1, 1, 0],
       [0, 0, 0],
       [0, 1, 1],
       [0, 0, 1],
       [1, 1, 1]])
warn = True

    def column_or_1d(y, warn=False):
        """ Ravel column or 1d numpy array, else raises an error

        Parameters
        ----------
        y : array-like

        warn : boolean, default False
           To control display of warnings.

        Returns
        -------
        y : array

        """
        y = np.asarray(y)
        shape = np.shape(y)
        if len(shape) == 1:
            return np.ravel(y)
        if len(shape) == 2 and shape[1] == 1:
            if warn:
                warnings.warn("A column-vector y was passed when a 1d array was"
                              " expected. Please change the shape of y to "
                              "(n_samples, ), for example using ravel().",
                              DataConversionWarning, stacklevel=2)
            return np.ravel(y)

>       raise ValueError("bad input shape {0}".format(shape))
E       ValueError: bad input shape (42, 3)

../scikit-learn/sklearn/utils/validation.py:780: ValueError
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant