diff --git a/src/pyhf/infer/mixins.py b/src/pyhf/infer/mixins.py new file mode 100644 index 0000000000..7c123ada7f --- /dev/null +++ b/src/pyhf/infer/mixins.py @@ -0,0 +1,108 @@ +""" +Mixins for Hypothesis Testing. +""" +from .. import get_backend +from .test_statistics import qmu +from .calculators import AsymptoticTestStatDistribution, EmpiricalDistribution + + +class Calculator(object): + def __init__( + self, data, pdf, init_pars=None, par_bounds=None, qtilde=False, ntoys=2000 + ): + self.data = data + self.pdf = pdf + self.init_pars = init_pars or pdf.config.suggested_init() + self.par_bounds = par_bounds or pdf.config.suggested_bounds() + self.qtilde = qtilde + self.distribution = None + + # TODO: better names??? + # for Asymptotics, it is self.sqrtqmuA_v + # for Toys, it is signal/bkg qtilde + self.something_signal = None + self.something_bkg = None + + # toys + self.ntoys = ntoys + + def distributions(self, poi_test): + if self.something_signal is None or self.something_bkg is None: + raise RuntimeError('need to call .teststatistic(poi_test) first') + + if self.distribution is None: + raise RuntimeError('need to call this from a mixin\'d class') + + s_plus_b = self.distribution(signal_qtilde) + b_only = self.distribution(bkg_qtilde) + return s_plus_b, b_only + + +class AsymptoticCalculator(Calculator): + def __init__(self, *args, **kwargs): + super(AsymptoticCalculator, self).__init__(*args, **kwargs) + self.distribution = AsymptoticTestStatDistribution + + def teststatistic(self, poi_test): + tensorlib, _ = get_backend() + qmu_v = qmu(poi_test, self.data, self.pdf, self.init_pars, self.par_bounds) + sqrtqmu_v = tensorlib.sqrt(qmu_v) + + asimov_mu = 0.0 + asimov_data = generate_asimov_data( + asimov_mu, self.data, self.pdf, self.init_pars, self.par_bounds + ) + qmuA_v = qmu(poi_test, asimov_data, self.pdf, self.init_pars, self.par_bounds) + self.something_signal = -tensorlib.sqrt(qmuA_v) + self.something_bkg = 0.0 + + if not self.qtilde: # qmu + teststat = sqrtqmu_v + self.something_signal + else: # qtilde + + def _true_case(): + teststat = sqrtqmu_v + self.something_signal + return teststat + + def _false_case(): + qmu = tensorlib.power(sqrtqmu_v, 2) + qmu_A = tensorlib.power(self.something_signal, 2) + teststat = (qmu_A - qmu) / (2 * self.something_signal) + return teststat + + teststat = tensorlib.conditional( + (sqrtqmu_v < self.something_signal), _true_case, _false_case + ) + return teststat + + +class ToyCalculator(Calculator): + def __init__(self, *args, **kwargs): + super(AsymptoticCalculator, self).__init__(*args, **kwargs) + self.distribution = EmpiricalDistribution + + def teststatistic(self, poi_test): + tensorlib, _ = get_backend() + sample_shape = (self.ntoys,) + + signal_pars = [*self.init_pars] + signal_pars[self.pdf.config.poi_index] = poi_test + signal_pdf = self.pdf.make_pdf(tensorlib.astensor(signal_pars)) + signal_sample = signal_pdf.sample(sample_shape) + + bkg_pars = [*self.init_pars] + bkg_pars[self.pdf.config.poi_index] = 0.0 + bkg_pdf = self.pdf.make_pdf(tensorlib.astensor(bkg_pars)) + bkg_sample = bkg_pdf.sample(sample_shape) + + self.qtilde_signal = tensorlib.astensor( + qmu(poi_test, sample, self.pdf, signal_pars, self.par_bounds) + for sample in signal_sample + ) + self.qtilde_bkg = tensorlib.astensor( + qmu(poi_test, sample, self.pdf, bkg_pars, self.par_bounds) + for sample in bkg_sample + ) + + qmu_v = qmu(poi_test, self.data, self.pdf, self.init_pars, self.par_bounds) + return qmu_v