-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpRFfittingExtended_annotated.m
423 lines (330 loc) · 13.2 KB
/
pRFfittingExtended_annotated.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
%% An example of pRF model fitting
%
% this script explores using regularised linear model solutions
% (lasso/ridge) - as provided by matlab stats toolbox.
%
% Denis Schluppeck, University of Nottingham
%
% <https://twitter.com/schluppeck @schluppeck>
%
% 2019-06-05
%% Background
%
% The Dumolin & Wandell ("direct fitting") method for estimating
% population receptive fields relies on fitting a reduced, non-linear model
% to the data. There are various elaborations of the initial model (simple
% 2d gaussian, with one std parameter $[x_0, y_0, \sigma]$.
%
% A related method that doesn't make assumptions about pRF shape was
% presented in a paper from the Smirnakis group:
%
% http://smirnakislab.bwh.harvard.edu/wp-content/uploads/2017/01/Lee2013by_NeuroImage_2013-1.pdf
%
% The method relies on linear approach with some regularisation to deal
% with the fact that (# of parameters) >> (# of data points). There are
% lots of different options, including rigde regression / lasso / svm
% regression, etc.
%
%
%% Load in an example stimulus. Information about the stimulus is stored in
% this |struct|. The |im| field essentially contains a little video of the stimulus
% aperture (white, where there was a stimulus; black where not).
load('pRFStimImage_example.mat');
stimImage = pRFStimImage;
% make sure all data are "double"
stimImage.im = double(stimImage.im);
%TODO figure out how to load in multiple stim images for > 1 scan
%
% . think about how to combine that info / timing (start of each scan or
% grand total? etc)
% . help pRFGetStimImageFromStimfile
%% visualise
% and look at it unwrapped in time (as a |montage|). Make sure to permute
% x and y...
figure
montage(permute(stimImage.im, [2,1,3]), ...
'BorderSize', [2,2], ...
'BackgroundColor',[1,1,1]*0.5)
% for the long case, this might be quite long, consider using sliceview()
% to paging through data? Animated gif? (matlab version)
%% Example of a population receptive field (pRF)
% The following makes use of some functions in the |mgl| toolbox, so make sure
% this is on the path. What's on the x| and |y| |axes can be a bit confusing,
% but essentially this is a description of the area of visual space that we think
% a particular voxel cares about ? the *population receptive field. This is* interactive!
% vectors
x = stimImage.x(:,1,1);
y = squeeze(stimImage.y(1,:,1));
% mesh versions
mx = stimImage.x;
my = stimImage.y;
% consider: getting the best pRF from standard analysis... (requires
% knowing which voxel data came from - see below)
%% How would a pRF respond to the stimulus? (Dumoulin & Wandell, direct method)
%
% A loop for calculating the pRF response at each point in time can be
% avoided by the use of a bit of linear algebra. Only a bit trickier to grok
% than a loop? but quite a lot faster to calculate.
%
% Reshape the spatial dimension of the stimulus into one big long vector (ie.
% string all the pixels in the stimulus into one big long thing of length |nx*ny|),
% do the same for the |pRFhat| and use a simple dot produce (linear algebra) to
% calculate the response.
%
% $$\mathbf{R_t} = \mathbf{\text{stimulus}_{xy,t}^{T}}\cdot\mathbf{\text{pRF}_{xy}}$$
%% direct method (forward equation) for the pRF response w/o HRF
%
% R(t) = reshape(stimulus, nx*ny, nt)' * pRFhat
%
%% Thinking about haemodynamics
% next step: convolve this response with an HRF shape to get an estimate of
% an actual fMRI response that we'd expect to see. The function |calculate_prf_response()
% |is written in such a way that you provide an HRF as an additional input argument,
% it returns the HRF-convolved version.
% the time between image acquisitions:
TR = mean(diff(stimImage.t));
t_hrf = 0:TR:30;
hrf = fmribHRF(t_hrf);
% plot(t_hrf, hrf, 'b', 'linewidth',2)
% xlabel('Time (s)');
% ylabel('HRF impulse response')
% advanced: can you wrap the fitting w/ LEE method inside something that
% also optimized HRF params (Elliot's comment about stroke survivors..)
% idea: wrap code for a fixed HRF choice in something that can pass in
% different parameters/ choices for HRF
% other idea: once the code is running / stable.. think about using PARFOR
% loop. help PARFOR
%%
% With this shape of the haemodynamics (assumed for now, but could also be
% made part of the fitting), we can now calculate the expected fMRI response:
%%
% A closure (anonymous function) that calculates response based on a simple
% set of parameters... this is a function of only the pRF shape:
%
calculate_with_p = @(p) p(4).*calculate_prf_response(stimImage, ...
mgauss(p, mx, my), ...
'reshape', hrf);
%% What about actual data?
% To find out what the best parameter choices| theta =[x0, y0, sigma_x, sigma_y]
% |are, we need to optimize (minimize the error between a model prediction for
% a particular choice of |theta| and the data.
%
% Let's load in a timseries (from scan #8, voxel |[10, 31, 18]| in the dataset
% from JG's excellent tutorial on his implementation: <http://gru.stanford.edu/doku.php/mrTools/tutorialsprf)
% http://gru.stanford.edu/doku.php/mrTools/tutorialsprf)>
%
load('tSeries_10_31_18.mat', 'tSeries')
% TODO: think about which NIFTI file to use here: Concatenation group...
% but need to make sure that the order of runs is consistent with the order
% of stim images, etc.. subfolder/Concatenation/TSeries . (use mrTools GUI
% to find out filename)... there is also a mrTools function called
% |groupInfo|...
% niftiread -- sometimes problems but probably ok
% help mlrImageReadNifti . -- use this one...
% indexing D(xcoord, ycoord, z/scoord,:) -- squeeze
% double check... do you need this insetad?
% indexing D(ycoord, xcoord, z/scoord,:) -- squeeze
%% Putting this together:
% Now, let's see how changes in the pRF parameter lead to differences in the
% functional imaging response ? more directly without the intermediate visualisations.
%% Actual fitting
% Dragging sliders by hand makes for a nice demonstration of how parameter choices
% chang the model output. The real aim of the analysis, however, is to find the
% optimal parameter choices pHat, that minimise some loss between the model and
% data. Least squares (the L2 norm) is a good and commonly used choice.
%
% There are many ways to do the parameter searching, optimisation. But an
% easy to understand & teach way is to use |lsqnonlin().| Adapting the example
% in the help for that function:
%% direct fit method
ydata = tSeries; % example ydata
p0 = [-3.0, -3.0, 1.0, 10000]; % starting vals
fitFunc = @(p) calculate_with_p(p) - ydata; % objective function (returns a vector of [signed] residuals)
lb = [-inf, -inf, 0, 1]; % lower bound of params (for lsqnonlin)
ub = +inf(1,4); % upper bound
pHat = lsqnonlin(fitFunc, p0, lb, ub); % do the minimisation
pHat'
%%
% Now feed those parameters back into our function to see what the best
% fitting model shape is:
%
tSeriesHat = calculate_with_p(pHat);
figure
subplot(3,1,[1 2])
p_ = plot(stimImage.t, tSeries, 'k-', stimImage.t, tSeriesHat, 'r-');
set(p_, 'LineWidth',2)
% the axis limits
axLimits = cell2mat(get(gca, {'xlim', 'ylim'}));
title(sprintf('Data and best fit w/ p=[%.2f, %.2f, %2.f, %.0f]',pHat))
% The residuals are simply the difference between model and data:
subplot(3,1,3)
plot(stimImage.t, tSeries - tSeriesHat, 'b', 'LineWidth',2);
% use the same axis limits
axis(axLimits)
title('Residuals (data-model)')
%% Estimated pRF
% calculate
pRFhat = mgauss(pHat, mx, my);
% display
figure
imagesc(x,y,permute(pRFhat, [2 1]))
hold('on')
line([0,0], get(gca,'ylim'),'color','w', 'linewidth',2);
line(get(gca,'xlim'),[0,0],'color','w', 'linewidth',2);
axis('image')
colormap(parula())
xlabel('Visual space (x)');
ylabel('Visual space (y)');
%% Lee et al method (lasso / ridge)
% given |hrf| and reshaped stimImage.im (# of pixels in stimspace by #
% timepoints)
%
% the setup that several of these methods share is that they pose the
% problem as a ill-constrained linear model
%
% eqs 2/3 in paper
% http://smirnakislab.bwh.harvard.edu/wp-content/uploads/2017/01/Lee2013by_NeuroImage_2013-1.pdf
%
%% the setup of the analysis, then, is
% Response = K matrix * weights
%
% R = K * b
%
% R is measured, K is defined above, desired: best **b**
[K, H] = estimate_prf_linear_transform(pRFStimImage,hrf);
%% figure that shows convolution matrix
figure
imagesc(H)
axis image
set(gca, 'xaxislocation','top')
%% figure - for lab meeting / talk - detail of conv matrix
figure
imagesc(H(1:10, 1:30))
axis image
set(gca, 'xaxislocation','top')
title('First 10 rows of H matrix')
%% illustration of convolution
%
% + reality check that convolution matrix produces the correct thing
T = zeros(168,1); % make a signal vector (0 to start off)
T([1,10, 12, 100]) = 1; % place some impulses at these locations.
exampleSignal = H * T; % convolution as matrix multiply
exampleSignalFaster = conv(T, hrf); % normally, use CONV!
% but then chop to be same length!
exampleSignalFaster = exampleSignalFaster(1:numel(T));
figure
subplot(2,1,1)
stem(T,'r.')
axis([0 inf, 0, 1.2])
title('T - impulses [input]')
subplot(2,1,2)
plot(exampleSignal,'r-')
hold on
plot(exampleSignalFaster, 'k.' )
legend({'by matrix multiply', 'using CONV'})
title('H*T - convolution with HRF [output]')
%%
% make sure random seeds is is set; make reproducible
rng(42)
tic
Bpinv = pinv(K)*tSeries;
Blasso = fitrlinear(K, tSeries, 'Regularization', 'lasso' );
Bridge = fitrlinear(K, tSeries, 'Regularization', 'ridge' );
Brsvm = fitrsvm(K, tSeries);
toc
% regularisation choices... maybe look at different choices for the
% regularisation parameter... and compare results./
%% function for reshaping vector -> image
reshape_estimate = @(x) reshape(x, size(mx));
% now turn the 1d representations back into the shape of stimulus space
estimatedPRFpinv = reshape_estimate(Bpinv); % as per lee paper (which says this doesn't work. !)
estimatedPRFlasso = reshape_estimate(Blasso.Beta);
estimatedPRFridge = reshape_estimate(Bridge.Beta);
estimatedPRFsvm = reshape_estimate(Brsvm.Beta);
%% and now use to calculate model prediction by
% substituting back in to the model
lassoOut = calculate_prf_response(stimImage,...
estimatedPRFlasso, 'reshape', hrf);
ridgeOut = calculate_prf_response(stimImage,...
estimatedPRFridge, 'reshape', hrf);
svmOut = calculate_prf_response(stimImage,...
estimatedPRFsvm, 'reshape', hrf);
% https://stats.stackexchange.com/questions/48045/can-the-bias-introduced-by-lasso-change-the-sign-of-a-coefficient
% http://statweb.stanford.edu/~tibs/lasso/lasso.pdf
% check sign of correlation of OLS and LASSO
signForLasso = sign( corr(lassoOut, tSeriesHat) );
signForRidge = sign( corr(ridgeOut, tSeriesHat) );
signForSVM = sign( corr(svmOut, tSeriesHat) );
%% display
figure
subplot(4,1,1)
imagesc(x,y,permute(1.0 .* pRFhat, [2 1]))
formatPlot()
title('direct fit')
subplot(4,1,2)
imagesc(x,y,permute(signForLasso .* estimatedPRFlasso, [2,1]))
formatPlot()
title('lasso')
subplot(4,1,3)
imagesc(x,y,permute(signForRidge .* estimatedPRFridge, [2,1]))
formatPlot()
title('ridge regression')
subplot(4,1,4)
imagesc(x,y,permute(signForSVM .* estimatedPRFsvm, [2,1]))
formatPlot()
title('svm regression')
%% display model fits
figure
dataZ = zscore(tSeries);
directFitZ = zscore(tSeriesHat);
lassoZ = zscore(signForLasso .* lassoOut);
ridgeZ = zscore(signForRidge .* ridgeOut);
svmZ = zscore(signForSVM .* svmOut);
subplot(2,1,1)
p_ = plot(stimImage.t, dataZ, 'k-', ...
stimImage.t, directFitZ , 'r-');
set(p_, 'LineWidth',2)
title(sprintf('Data and best fit w/ p=[%.2f, %.2f, %2.f, %.0f]',pHat))
legend(p_, {'data', 'direct fit'})
% The residuals are simply the difference between model and data:
subplot(2,1,2)
p2_ = plot(stimImage.t, dataZ, 'k-', ...
stimImage.t, directFitZ , 'r-', ...
stimImage.t, lassoZ, 'm', ...
stimImage.t, ridgeZ, 'c', ...
stimImage.t, svmZ, 'b');
set(p2_, 'LineWidth',2);
legend(p2_, {'data', 'directFit', 'lasso', 'ridge', 'svm'})
%% cross-validation !
%
% @TODO... in order to pick good level of regularisation (and to avoid
% over-fitting), can use cross-validation approach. this is provided in
% |fitrlinear()| with different schemes for CV folds, etc.
%% Notes and references
% Tested with |MATLAB Version: 9.4.0.813654 (R2018a)| on macOS. If you find
% errors, typos, better ways of doing things, <https://github.com/schluppeck/prf-explainer/issues
% submit and issue on the github repo>.
%
%
%
% * Serge Dumoulin's homepage (original paper, software) ? <http://www.spinozacentre.nl/dumoulin/
% http://www.spinozacentre.nl/dumoulin/>
% * Brian Wandell's homepage ? <https://web.stanford.edu/group/vista/cgi-bin/wandell/
% https://web.stanford.edu/group/vista/cgi-bin/wandell/>
% * Justin Gardner's homepage ? <http://gru.stanford.edu/doku.php/shared/home
% http://gru.stanford.edu/doku.php/shared/home>
% * <http://gru.stanford.edu/doku.php/mrTools/tutorialsprf http://gru.stanford.edu/doku.php/mrTools/tutorialsprf>
% ? mrTools implementation (and tutorial for how to use)
%
%% helper function
function formatPlot()
% formatPlot - format plot and add v/h lines
hold('on')
line([0,0], get(gca,'ylim'),'color','w', 'linewidth',2);
line(get(gca,'xlim'),[0,0],'color','w', 'linewidth',2);
axis('image')
colormap(parula())
colorbar()
xlabel('Visual space (x)');
ylabel('Visual space (y)');
end