forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_utils.cpp
254 lines (224 loc) · 8.38 KB
/
test_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#include <gtest/gtest.h>
#include <test/cpp/jit/test_utils.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/clear_undefinedness.h>
#include <torch/csrc/jit/runtime/custom_operator.h>
namespace torch {
namespace jit {
Stack createStack(std::vector<at::Tensor>&& list) {
return Stack(
std::make_move_iterator(list.begin()),
std::make_move_iterator(list.end()));
}
void assertAllClose(const tensor_list& a, const tensor_list& b) {
ASSERT_EQ(a.size(), b.size());
for (size_t i = 0; i < a.size(); ++i) {
ASSERT_TRUE(a[i].is_same_size(b[i]));
ASSERT_TRUE(a[i].allclose(b[i]));
}
}
std::vector<at::Tensor> run(
InterpreterState& interp,
const std::vector<at::Tensor>& inputs) {
std::vector<IValue> stack(inputs.begin(), inputs.end());
interp.run(stack);
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
}
static void unpackReturnTuple(Stack& stack) {
auto tuple = pop(stack).toTuple();
stack.insert(stack.end(), tuple->elements().begin(), tuple->elements().end());
}
std::pair<tensor_list, tensor_list> runGradient(
Gradient& grad_spec,
tensor_list& tensors_in,
tensor_list& tensor_grads_in) {
static const auto as_tensorlist = [](const Stack& stack) {
return fmap(stack, [](const IValue& i) { return i.toTensor(); });
};
ClearUndefinedness(grad_spec.df);
Code f_code{grad_spec.f, ""}, df_code{grad_spec.df, ""};
InterpreterState f_interpreter{f_code}, df_interpreter{df_code};
auto f_stack = fmap<IValue>(tensors_in);
f_interpreter.run(f_stack);
Stack df_stack;
df_stack.insert(
df_stack.end(), tensor_grads_in.begin(), tensor_grads_in.end());
for (auto offset : grad_spec.df_input_captured_inputs)
df_stack.push_back(tensors_in[offset]);
for (auto offset : grad_spec.df_input_captured_outputs)
df_stack.push_back(f_stack[offset]);
df_interpreter.run(df_stack);
unpackReturnTuple(df_stack);
// Outputs of f needs to be sliced
f_stack.erase(f_stack.begin() + grad_spec.f_real_outputs, f_stack.end());
return std::make_pair(as_tensorlist(f_stack), as_tensorlist(df_stack));
}
std::shared_ptr<Graph> build_lstm() {
const auto graph_string = R"IR(
graph(%0 : Tensor,
%1 : Tensor,
%2 : Tensor,
%3 : Tensor,
%4 : Tensor):
%5 : Tensor = aten::mm(%0, %3)
%6 : Tensor = aten::mm(%1, %4)
%7 : int = prim::Constant[value=1]()
%8 : Tensor = aten::add(%5, %6, %7)
%9 : Tensor, %10 : Tensor, %11 : Tensor, %12 : Tensor = prim::ConstantChunk[chunks=4, dim=1](%8)
%13 : Tensor = aten::sigmoid(%9)
%14 : Tensor = aten::sigmoid(%12)
%15 : Tensor = aten::tanh(%11)
%16 : Tensor = aten::sigmoid(%10)
%17 : Tensor = aten::mul(%16, %2)
%18 : Tensor = aten::mul(%13, %15)
%19 : int = prim::Constant[value=1]()
%20 : Tensor = aten::add(%17, %18, %19)
%21 : Tensor = aten::tanh(%20)
%22 : Tensor = aten::mul(%14, %21)
return (%22, %20))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph() {
// We use following two schemas for this graph:
// 1. slice.Tensor(Tensor(a) self, int dim=0, int? start=0,
// int? end=9223372036854775807, int step=1) -> Tensor(a)
// 2. slice.str(str string, int? start=0, int? end=9223372036854775807,
// int step=1) -> str
// %3 and %4 use slice.Tensor while %5 use slice.str.
// Since we can see %3 and %4 have the same last argument that is never used
// (same as default value of schema), we know we can ignore that last arg. For
// %5, we see that last three args are same as schema default, hence
// unnecessary.
const auto graph_string = R"IR(
graph(%0 : Tensor):
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
%20 : int = prim::Constant[value=0]()
%21 : int = prim::Constant[value=9223372036854775807]()
%22 : str = prim::Constant[value="value"]()
%3 : Tensor = aten::slice(%0, %1, %20, %2, %1)
%4 : Tensor = aten::slice(%0, %2, %20, %21, %1)
%5 : str = aten::slice(%22, %20, %21, %1)
return (%3, %4, %5))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph_nested() {
// this is pretty much same test as build_mobile_export_analysis_graph(),
// but some aten::slice operators are hidden under block statement to check
// if we are correctly recursing all the nodes in graph.
const auto graph_string = R"IR(
graph(%0 : Tensor):
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
%20 : int = prim::Constant[value=0]()
%21 : int = prim::Constant[value=9223372036854775807]()
%22 : str = prim::Constant[value="value"]()
%3 : Tensor = aten::slice(%0, %1, %20, %2, %1)
%23 : bool = aten::Bool(%3)
%c : Tensor = prim::If(%23)
block0():
%4 : Tensor = aten::slice(%0, %2, %20, %21, %1)
%5 : str = aten::slice(%22, %20, %21, %1)
%c.1 : Tensor = aten::slice(%0, %1, %20, %2, %1)
-> (%c.1)
block1():
-> (%3)
return (%3, %3))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph_with_vararg() {
const auto graph_string = R"IR(
graph(%0 : Tensor):
%1 : int = prim::Constant[value=1]()
%2 : int = prim::Constant[value=2]()
%3 : int = prim::Constant[value=3]()
%4 : int[] = prim::tolist(%1, %2)
%5 : int[] = prim::tolist(%1, %2, %3)
return (%4, %5))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
std::shared_ptr<Graph> build_mobile_export_analysis_graph_non_const() {
const auto graph_string = R"IR(
graph(%input.1 : Tensor):
%7 : int = prim::Constant[value=1]() # <string>:3:58
%9 : int = prim::Constant[value=0]() # <string>:3:66
%8 : int[] = prim::ListConstruct(%7, %7)
%10 : int[] = prim::ListConstruct(%9, %9)
%11 : int[] = prim::ListConstruct(%7, %7)
%12 : Tensor = aten::conv2d(%input.1, %input.1, %input.1, %8, %10, %11, %7)
return (%12))IR";
auto g = std::make_shared<Graph>();
torch::jit::parseIR(graph_string, g.get());
g->lint();
return g;
}
at::Tensor t_use(at::Tensor x) {
return x;
}
at::Tensor t_def(at::Tensor x) {
return x.t();
}
bool checkRtol(const at::Tensor& diff, const std::vector<at::Tensor> inputs) {
double maxValue = 0.0;
for (auto& tensor : inputs) {
maxValue = fmax(tensor.abs().max().item<float>(), maxValue);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
return diff.abs().max().item<float>() < 2e-6 * maxValue;
}
bool almostEqual(const at::Tensor& a, const at::Tensor& b) {
return checkRtol(a - b, {a, b});
}
bool exactlyEqual(const at::Tensor& a, const at::Tensor& b) {
return (a - b).abs().max().item<float>() == 0.f;
}
std::pair<at::Tensor, at::Tensor> lstm(
at::Tensor input,
at::Tensor hx,
at::Tensor cx,
at::Tensor w_ih,
at::Tensor w_hh) {
auto gates = input.mm(t_use(w_ih)) + hx.mm(t_use(w_hh));
auto chunked_gates = gates.chunk(4, 1);
auto ingate = chunked_gates[0];
auto forgetgate = chunked_gates[1];
auto cellgate = chunked_gates[2];
auto outgate = chunked_gates[3];
ingate = ingate.sigmoid();
outgate = outgate.sigmoid();
cellgate = cellgate.tanh();
forgetgate = forgetgate.sigmoid();
auto cy = (forgetgate * cx) + (ingate * cellgate);
auto hy = outgate * cy.tanh();
return {hy, cy};
}
inline c10::AliasAnalysisKind aliasAnalysisFromSchema() {
return c10::AliasAnalysisKind::FROM_SCHEMA;
}
namespace {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
RegisterOperators reg({
// This operator is intended to be used in JIT analysis and transformation
// pass unit tests in which Values with type Tensor are often required. It
// should not be used in situations in which the graph is actually executed
// because it always produces empty Tensors.
Operator(
"prim::MakeTestTensor() -> Tensor",
[](Stack* stack) { push(stack, at::Tensor()); },
aliasAnalysisFromSchema()),
});
} // namespace
} // namespace jit
} // namespace torch