forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_ir.cpp
165 lines (151 loc) · 4.68 KB
/
test_ir.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
#include <gtest/gtest.h>
#include "test/cpp/jit/test_utils.h"
#include "torch/csrc/jit/ir/irparser.h"
namespace torch {
namespace jit {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(IRTest, Attributes) {
Graph g;
auto one = attr::alpha;
auto two = attr::device;
auto three = attr::end;
auto four = attr::perm;
Node* n = g.create(Symbol::fromQualString("foo::bar"));
Node& attr = *n;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
attr.f_(one, 3.4)->i_(two, 5)->s_(three, "what");
ASSERT_EQ(attr.f(one), 3.4);
ASSERT_EQ(attr.s(three), "what");
ASSERT_EQ(attr.i(two), 5);
attr.s_(one, "no");
ASSERT_EQ(attr.s(one), "no");
ASSERT_TRUE(attr.hasAttribute(three));
ASSERT_TRUE(!attr.hasAttribute(four));
attr.ss_(two, {"hi", "now"});
ASSERT_EQ(attr.ss(two).at(1), "now");
Node* n2 = g.create(Symbol::fromQualString("foo::baz"));
Node& attr2 = *n2;
attr2.copyAttributes(attr);
ASSERT_EQ(attr2.s(one), "no");
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
attr2.f_(one, 5);
ASSERT_EQ(attr.s(one), "no");
ASSERT_EQ(attr2.f(one), 5);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(IRTest, Blocks) {
auto g = std::make_shared<Graph>();
const auto graph_string = R"IR(
graph(%a : Tensor,
%b : Tensor,
%c : Tensor):
%2 : int = prim::Constant[value=1]()
%3 : Tensor = aten::add(%a, %b, %2)
%5 : Tensor = prim::If(%c)
block0():
%6 : int = prim::Constant[value=1]()
%7 : Tensor = aten::add(%3, %3, %6)
-> (%7)
block1():
%8 : int = prim::Constant[value=1]()
%9 : Tensor = aten::add(%b, %3, %8)
%10 : int = prim::Constant[value=1]()
%11 : Tensor = aten::add(%9, %3, %10)
-> (%11)
%12 : int = prim::Constant[value=1]()
%13 : Tensor = aten::add(%5, %3, %12)
return (%13))IR";
torch::jit::parseIR(graph_string, g.get());
g->lint();
testing::FileCheck()
.check("add")
->check("prim::If")
->check("block0")
->check("aten::add")
->check("block1")
->check_count("aten::add", 3)
->run(*g);
// Removes block0 of the conditional
for (auto* node : g->block()->nodes()) {
if (node->kind() == prim::If) {
node->eraseBlock(0);
break;
}
}
testing::FileCheck()
.check("add")
->check("prim::If")
->check("block0")
->check_not("block")
->run(*g);
g->lint();
// test recursive copy of blocks works
auto g2 = g->copy();
testing::FileCheck()
.check("add")
->check("prim::If")
->check("block0")
->check_not("block")
->run(*g2);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(IRTest, CommonAncestor) {
std::string input_str = R"(
graph(%x : Tensor,
%a.1 : bool,
%b.1 : bool,
%c.1 : bool):
%4 : int = prim::If(%a.1)
block0():
%5 : int = prim::If(%b.1)
block0():
%6 : int = prim::Constant[value=2]()
-> (%6)
block1():
%7 : int = prim::Constant[value=3]()
-> (%7)
-> (%5)
block1():
%8 : int = prim::If(%c.1)
block0():
%9 : int = prim::Constant[value=4]()
-> (%9)
block1():
%10 : int = prim::Constant[value=5]()
-> (%10)
-> (%8)
return (%4)
)";
torch::jit::Graph g;
std::unordered_map<std::string, torch::jit::Value*> name_to_value;
torch::jit::parseIR(input_str, &g, name_to_value);
std::vector<std::string> value_names{"6", "7", "9", "10"};
std::unordered_set<std::string> value_names_set(
value_names.begin(), value_names.end());
/* clang-format off */
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
int ref_blocks_from_graph[4][4] = {
/* (6, 6), (6, 7), (6, 9), (6, 10) */
{ 2, 1, 0, 0 },
/* (7, 6), (7, 7), (7, 9), (7, 10) */
{ 1, 2, 0, 0 },
/* (9, 6), (9, 7), (9, 9), (9, 10) */
{ 0, 0, 2, 1, },
/* (10, 6),(10, 7),(10, 9),(10, 10) */
{ 0, 0, 1, 2 }
};
/* clang-format on */
for (size_t i = 0; i < value_names.size(); ++i) {
Value* i_val = name_to_value[value_names[i]];
for (size_t j = 0; j < value_names.size(); ++j) {
Value* j_val = name_to_value[value_names[j]];
Block* common_ancestor =
i_val->node()->findCommonAncestorBlockWith(j_val->node());
int blocks_from_graph_block =
common_ancestor->param_node()->blocksFromGraphBlock();
ASSERT_EQ(blocks_from_graph_block, ref_blocks_from_graph[i][j]);
}
}
}
} // namespace jit
} // namespace torch