forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_constant_pooling.cpp
118 lines (111 loc) · 3.39 KB
/
test_constant_pooling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include <gtest/gtest.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/constant_propagation.h>
#include <torch/csrc/jit/testing/file_check.h>
#include <sstream>
#include <string>
namespace torch {
namespace jit {
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(ConstantPoolingTest, Int) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%8 : int = prim::Constant[value=1]()
%10 : int = prim::Constant[value=1]()
return (%8, %10)
)IR",
&*graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count("prim::Constant", 1, /*exactly*/ true)
->run(*graph);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(ConstantPoolingTest, PoolingAcrossBlocks) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph(%cond : Tensor):
%a : str = prim::Constant[value="bcd"]()
%3 : bool = aten::Bool(%cond)
%b : str = prim::If(%3)
block0():
%b.1 : str = prim::Constant[value="abc"]()
-> (%b.1)
block1():
%b.2 : str = prim::Constant[value="abc"]()
-> (%b.2)
%7 : (str, str) = prim::TupleConstruct(%a, %b)
return (%7)
)IR",
&*graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count("prim::Constant[value=\"abc\"]", 1, /*exactly*/ true)
->check_count("prim::Constant[value=\"bcd\"]", 1, /*exactly*/ true)
->run(*graph);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(ConstantPoolingTest, PoolingDifferentDevices) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%2 : int = prim::Constant[value=2]()
%1 : int = prim::Constant[value=1]()
%5 : int? = prim::Constant()
%7 : Device? = prim::Constant()
%15: bool = prim::Constant[value=0]()
%10 : int = prim::Constant[value=6]()
%3 : int[] = prim::ListConstruct(%1, %2)
%x : Tensor = aten::tensor(%3, %5, %7, %15)
%y : Tensor = aten::tensor(%3, %10, %7, %15)
%9 : int[] = prim::ListConstruct(%1, %2)
%z : Tensor = aten::tensor(%9, %10, %7, %15)
prim::Print(%x, %y, %z)
return (%1)
)IR",
&*graph);
// three tensors created - two different devices among the three
// don't have good support for parsing tensor constants
ConstantPropagation(graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count(
"Float(2, strides=[1], requires_grad=0, device=cpu) = prim::Constant",
1,
/*exactly*/ true)
->check_count(
"Long(2, strides=[1], requires_grad=0, device=cpu) = prim::Constant",
1,
/*exactly*/ true)
->run(*graph);
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
TEST(ConstantPoolingTest, DictConstantPooling) {
auto graph = std::make_shared<Graph>();
parseIR(
R"IR(
graph():
%0 : int = prim::Constant[value=1]() # test/elias.py:6:9
%1 : int = prim::Constant[value=2]() # test/elias.py:6:12
%a.1 : Dict(int, int) = prim::DictConstruct(%0, %1)
%b.1 : Dict(int, int) = prim::DictConstruct(%1, %1)
return (%a.1, %b.1)
)IR",
&*graph);
ConstantPropagation(graph);
ConstantPooling(graph);
testing::FileCheck()
.check_count(
"Dict(int, int) = prim::Constant",
2,
/*exactly*/ true)
->run(*graph);
}
} // namespace jit
} // namespace torch