forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Math.h
1293 lines (1189 loc) · 47.7 KB
/
Math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
#include <cstdlib>
#include <cstdint>
#include <cmath>
#include <cfloat>
#include <limits>
#include <type_traits>
#include <c10/util/BFloat16.h>
#include <c10/util/Half.h>
#include <c10/util/MathConstants.h>
#include <c10/util/math_compat.h>
/* The next function is taken from https://github.com/antelopeusersgroup/antelope_contrib/blob/master/lib/location/libgenloc/erfinv.c.
Below is the copyright.
Output was modified to be inf or -inf when input is 1 or -1. */
/*
Copyright (c) 2014 Indiana University
All rights reserved.
Written by Prof. Gary L. Pavlis, Dept. of Geol. Sci.,
Indiana University, Bloomington, IN
This software is licensed under the New BSD license:
Redistribution and use in source and binary forms,
with or without modification, are permitted provided
that the following conditions are met:
Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
Redistributions in binary form must reproduce the
above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or
other materials provided with the distribution.
Neither the name of Indiana University nor
the names of its contributors may be used to endorse
or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
*/
#define CENTRAL_RANGE 0.7
template <typename T>
static inline typename std::enable_if<std::is_floating_point<T>::value, T>::type
calc_erfinv(T y) {
/* Function to calculate inverse error function. Rational approximation
is used to generate an initial approximation, which is then improved to
full accuracy by two steps of Newton's method. Code is a direct
translation of the erfinv m file in matlab version 2.0.
Author: Gary L. Pavlis, Indiana University
Date: February 1996
*/
T x, z, num, dem; /*working variables */
/* coefficients in rational expansion */
T a[4] = { T(0.886226899), T(-1.645349621), T(0.914624893), T(-0.140543331) };
T b[4] = { T(-2.118377725), T(1.442710462), T(-0.329097515), T(0.012229801) };
T c[4] = { T(-1.970840454), T(-1.624906493), T(3.429567803), T(1.641345311) };
T d[2] = { T(3.543889200), T(1.637067800) };
T y_abs = std::abs(y);
if(y_abs > 1.0) return std::numeric_limits<T>::quiet_NaN();
#ifdef _WIN32
// error C2039: '_copysign': is not a member of 'std'
if(y_abs == 1.0) return copysign(std::numeric_limits<T>::infinity(), y);
#else
if(y_abs == 1.0) return std::copysign(std::numeric_limits<T>::infinity(), y);
#endif
if(y_abs <= static_cast<T>(CENTRAL_RANGE)) {
z = y * y;
num = (((a[3]*z + a[2])*z + a[1])*z + a[0]);
dem = ((((b[3]*z + b[2])*z + b[1])*z +b[0]) * z + static_cast<T>(1.0));
x = y * num / dem;
}
else{
z = std::sqrt(-std::log((static_cast<T>(1.0)-y_abs)/static_cast<T>(2.0)));
num = ((c[3]*z + c[2])*z + c[1]) * z + c[0];
dem = (d[1]*z + d[0])*z + static_cast<T>(1.0);
#ifdef _WIN32
// error C2039: '_copysign': is not a member of 'std'
x = copysign(num, y) / dem;
#else
x = std::copysign(num, y) / dem;
#endif
}
/* Two steps of Newton-Raphson correction */
x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(c10::pi<double>)))*std::exp(-x*x));
x = x - (std::erf(x) - y) / ((static_cast<T>(2.0)/static_cast<T>(std::sqrt(c10::pi<double>)))*std::exp(-x*x));
return(x);
}
#undef CENTRAL_RANGE
/*
* Note [3-Clause BSD License for the Cephes Math Library]
* Code derived from implementations in the Cephes Math Library should mention its derivation and reference
* this note (ex. 'This function is derived from the implementation of X in the Cephes Math Library. See note
* [3-Clause BSD License for the Cephes Math Library]. The license is:
* Copyright (c) 2018, Steven Moshier
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL Steven Moshier BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This function is derived from the implementation of the zeta function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*/
static inline double zeta(double x, double q) {
static double MACHEP = 1.11022302462515654042E-16;
static double A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
int i = 0;
double a, b, k, s, t, w;
if (x == 1.0) {
return INFINITY;
}
if (x < 1.0) {
return std::numeric_limits<double>::quiet_NaN();
}
if (q <= 0.0) {
if (q == floor(q)) {
return INFINITY;
}
if (x != floor(x)) {
return std::numeric_limits<double>::quiet_NaN();
}
}
s = std::pow(q, -x);
a = q;
i = 0;
b = 0.0;
while ((i < 9) || (a <= 9.0)) {
i += 1;
a += 1.0;
b = std::pow(a, -x);
s += b;
if ((-MACHEP * s < b) && (b < MACHEP * s)) {
return s;
}
};
w = a;
s += b * w / (x - 1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for (int i = 0; i < 12; i++) {
a *= x + k;
b /= w;
t = a * b / A[i];
s = s + t;
t = std::abs(t / s);
if (t < MACHEP) {
return s;
}
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
return s;
}
static inline double polevl(double x, double *A, size_t len) {
double result = 0;
for (size_t i = 0; i <= len; i++) {
result = result * x + A[i];
}
return result;
}
static inline float polevlf(float x, float *A, size_t len) {
float result = 0;
for (size_t i = 0; i <= len; i++) {
result = result * x + A[i];
}
return result;
}
static inline double trigamma(double x) {
double sign = +1;
double result = 0;
if (x < 0.5) {
sign = -1;
const double sin_pi_x = sin(c10::pi<double> * x);
result -= (c10::pi<double> * c10::pi<double>) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const double ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (1./6 - ixx * (1./30 - ixx * (1./42)))) / x;
return sign * result;
}
static inline float trigamma(float x) {
float sign = +1;
float result = 0;
if (x < 0.5f) {
sign = -1;
const float sin_pi_x = sinf(c10::pi<float> * x);
result -= (c10::pi<float> * c10::pi<float>) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const float ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (1.f/6 - ixx * (1.f/30 - ixx * (1.f/42)))) / x;
return sign * result;
}
/*
* This function is derived from the implementation of the digamma function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*/
static inline double calc_digamma(double x) {
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
static double PSI_10 = 2.25175258906672110764;
if (x == 0) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is ±0, ±∞ is returned
return std::copysign(INFINITY, -x);
}
bool x_is_integer = x == trunc(x);
if (x < 0) {
if (x_is_integer) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is a negative integer, NaN is returned
return std::numeric_limits<double>::quiet_NaN();
}
// Extracts the fractional part of x as r, since tan(pi * r) is more numerically
// accurate than tan(pi * x). While these operations are mathematically equivalent
// since both x and r are in radians and tan() has a periodicity of pi, in practice
// the computation of pi * x is a source of error (when |x| > 1).
double q, r;
r = std::modf(x, &q);
return calc_digamma(1 - x) - c10::pi<double> / tan(c10::pi<double> * r);
}
// Push x to be >= 10
double result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10;
}
// Compute asymptotic digamma
static double A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
double y = 0;
if (x < 1.0e17) {
double z = 1.0 / (x * x);
y = z * polevl(z, A, 6);
}
return result + log(x) - (0.5 / x) - y;
}
/*
* This function is derived from the implementation of the digamma function in the Cephes Math Library.
* See note [3-Clause BSD License for the Cephes Math Library].
*/
static inline float calc_digamma(float x) {
// See [C++ Standard Reference: Gamma Function]
static float PSI_10 = 2.25175258906672110764f;
if (x == 0) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is ±0, ±∞ is returned
return std::copysign(INFINITY, -x);
}
bool x_is_integer = x == truncf(x);
if (x < 0) {
if (x_is_integer) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is a negative integer, NaN is returned
return std::numeric_limits<float>::quiet_NaN();
}
// Extracts the fractional part of x as r, since tan(pi * r) is more numerically
// accurate than tan(pi * x). While these operations are mathematically equivalent
// since both x and r are in radians and tan() has a periodicity of pi, in practice
// the computation of pi * x is a source of error (when |x| > 1).
double q, r;
r = std::modf(x, &q);
float pi_over_tan_pi_x = (float)(c10::pi<double> / tan(c10::pi<double> * r));
return calc_digamma(1 - x) - pi_over_tan_pi_x;
}
// Push x to be >= 10
float result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10;
}
// Compute asymptotic digamma
static float A[] = {
8.33333333333333333333E-2f,
-2.10927960927960927961E-2f,
7.57575757575757575758E-3f,
-4.16666666666666666667E-3f,
3.96825396825396825397E-3f,
-8.33333333333333333333E-3f,
8.33333333333333333333E-2f,
};
float y = 0;
if (x < 1.0e17f) {
float z = 1 / (x * x);
y = z * polevlf(z, A, 6);
}
return result + logf(x) - (0.5f / x) - y;
}
static inline double calc_polygamma(int64_t n, double x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0 : -1.0) * std::exp(lgamma(double(n) + 1.0)) *
zeta(double(n + 1), x);
}
static inline float calc_polygamma(int64_t n, float x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0f : -1.0f) * std::exp(lgamma(double(n) + 1.0)) *
zeta(double(n + 1), x);
}
// regularized lower incomplete gamma
// the regularized lower, upper incomplete gamma, as well as their
// helper functions follow SciPy's implementation
/* References
* [igam1] "The Digital Library of Mathematical Functions", dlmf.nist.gov
* [igam2] Maddock et. al., "Incomplete Gamma Functions",
* https://www.boost.org/doc/libs/1_61_0/libs/math/doc/html/math_toolkit/sf_gamma/igamma.html
*/
/*
* This implementation of the regularized incomplete gamma functions and
* their helper functions are derived from the implementation of SciPy's
* gammainc, Cephes's igam and igamc, and Boost's Lanczos approximations.
* See NOTICE for the licenses.
*/
template <typename scalar_t>
static scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
const scalar_t denom[], int64_t N) {
// evaluating rational function, i.e., the ratio of two polynomials
// the coefficients for numerator are given by `num` while coeffs for
// denumerator are given by `denom`
int64_t i, dir;
scalar_t y, num_ans, denom_ans;
scalar_t absx = std::fabs(x);
const scalar_t *p;
if (absx > 1) {
/* Evaluate as a polynomial in 1/x. */
dir = -1;
p = num + M;
y = 1 / x;
}
else {
dir = 1;
p = num;
y = x;
}
/* Evaluate the numerator */
num_ans = *p;
p += dir;
for (i = 1; i <= M; i++) {
num_ans = num_ans * y + *p;
p += dir;
}
/* Evaluate the denominator */
if (absx > 1) {
p = denom + N;
}
else {
p = denom;
}
denom_ans = *p;
p += dir;
for (i = 1; i <= N; i++) {
denom_ans = denom_ans * y + *p;
p += dir;
}
if (absx > 1) {
i = N - M;
return std::pow(x, i) * num_ans / denom_ans;
}
else {
return num_ans / denom_ans;
}
}
// SciPy's lanczos implementation is taken from Boost
/* (C) Copyright John Maddock 2006.
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. See
* https://www.boost.org/LICENSE_1_0.txt or see NOTICE.
*/
template <typename scalar_t>
static scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
static const scalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
449.9445569063168119446858607650988409623,
6955.999602515376140356310115515198987526,
75999.29304014542649875303443598909137092,
601859.6171681098786670226533699352302507,
3481712.15498064590882071018964774556468,
14605578.08768506808414169982791359218571,
43338889.32467613834773723740590533316085,
86363131.28813859145546927288977868422342,
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
32670.,
357423.,
2637558.,
13339535.,
45995730.,
105258076.,
150917976.,
120543840.,
39916800.,
0.
};
return ratevl(x, lanczos_sum_expg_scaled_num,
sizeof(lanczos_sum_expg_scaled_num) / sizeof(lanczos_sum_expg_scaled_num[0]) - 1,
lanczos_sum_expg_scaled_denom,
sizeof(lanczos_sum_expg_scaled_denom) / sizeof(lanczos_sum_expg_scaled_denom[0]) - 1);
}
template <typename scalar_t>
static scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
// compute x^a * exp(-a) / gamma(a)
// corrected from (15) and (16) in [igam2] by replacing exp(x - a) with
// exp(a - x).
scalar_t ax, fac, res, num, numfac;
static scalar_t MAXLOG = std::is_same<scalar_t,double>::value ?
7.09782712893383996843E2 : 88.72283905206835;
static scalar_t EXP1 = 2.718281828459045;
static scalar_t lanczos_g = 6.024680040776729583740234375;
if (std::fabs(a - x) > 0.4 * std::fabs(a)) {
ax = a * std::log(x) - x - std::lgamma(a);
if (ax < -MAXLOG) {
return 0.0;
}
return std::exp(ax);
}
fac = a + lanczos_g - 0.5;
res = std::sqrt(fac / EXP1) / lanczos_sum_expg_scaled(a);
if ((a < 200) && (x < 200)) {
res *= std::exp(a - x) * std::pow(x / fac, a);
}
else {
num = x - a - lanczos_g + 0.5;
numfac = num / fac;
res *= std::exp(a * (std::log1p(numfac) - numfac) + x * (0.5 - lanczos_g) / fac);
}
return res;
}
template <typename scalar_t>
static scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
// Compute igam using DLMF 8.11.4. [igam1]
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static int MAXITER = 2000;
int i;
scalar_t ans, ax, c, r;
ax = _igam_helper_fac(a, x);
if (ax == 0.0) {
return 0.0;
}
/* power series */
r = a;
c = 1.0;
ans = 1.0;
for (i = 0; i < MAXITER; i++) {
r += 1.0;
c *= x / r;
ans += c;
if (c <= MACHEP * ans) {
break;
}
}
return (ans * ax / a);
}
template <typename scalar_t>
static scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
// Compute igamc using DLMF 8.7.3 [igam1]. This is related to the series in
// _igam_helper_series but extra care is taken to avoid cancellation.
int n;
scalar_t fac = 1;
scalar_t sum = 0;
scalar_t term, logx;
static scalar_t MAXITER = 2000;
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
for (n = 1; n < MAXITER; n++) {
fac *= -x / n;
term = fac / (a + n);
sum += term;
if (std::fabs(term) <= MACHEP * std::fabs(sum)) {
break;
}
}
logx = std::log(x);
term = -std::expm1(a * logx - std::lgamma(1+a));
return term - std::exp(a * logx - std::lgamma(a)) * sum;
}
template <typename scalar_t>
static scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
static const scalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,
8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9,
1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10,
-2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11,
-5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13,
-1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16,
-1.9752288294349443e-15},
{-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3,
-9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7,
-1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6,
4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8,
1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9,
4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14,
7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13,
-2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14,
-4.13125571381061e-15},
{4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4,
2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5,
-1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6,
-6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10,
-1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9,
9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11,
1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12,
4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17,
8.8592218725911273e-15},
{6.4943415637860082e-4, 2.2947209362139918e-4, -4.6918949439525571e-4,
2.6772063206283885e-4, -7.5618016718839764e-5, -2.3965051138672967e-7,
1.1082654115347302e-5, -5.6749528269915966e-6, 1.4230900732435884e-6,
-2.7861080291528142e-11, -1.6958404091930277e-7, 8.0994649053880824e-8,
-1.9111168485973654e-8, 2.3928620439808118e-12, 2.0620131815488798e-9,
-9.4604966618551322e-10, 2.1541049775774908e-10, -1.388823336813903e-14,
-2.1894761681963939e-11, 9.7909989511716851e-12, -2.1782191880180962e-12,
6.2088195734079014e-17, 2.126978363279737e-13, -9.3446887915174333e-14,
2.0453671226782849e-14},
{-8.618882909167117e-4, 7.8403922172006663e-4, -2.9907248030319018e-4,
-1.4638452578843418e-6, 6.6414982154651222e-5, -3.9683650471794347e-5,
1.1375726970678419e-5, 2.5074972262375328e-10, -1.6954149536558306e-6,
8.9075075322053097e-7, -2.2929348340008049e-7, 2.956794137544049e-11,
2.8865829742708784e-8, -1.4189739437803219e-8, 3.4463580499464897e-9,
-2.3024517174528067e-13, -3.9409233028046405e-10, 1.8602338968504502e-10,
-4.356323005056618e-11, 1.2786001016296231e-15, 4.6792750266579195e-12,
-2.1492464706134829e-12, 4.9088156148096522e-13, -6.3385914848915603e-18,
-5.0453320690800944e-14},
{-3.3679855336635815e-4, -6.9728137583658578e-5, 2.7727532449593921e-4,
-1.9932570516188848e-4, 6.7977804779372078e-5, 1.419062920643967e-7,
-1.3594048189768693e-5, 8.0184702563342015e-6, -2.2914811765080952e-6,
-3.252473551298454e-10, 3.4652846491085265e-7, -1.8447187191171343e-7,
4.8240967037894181e-8, -1.7989466721743515e-14, -6.3061945000135234e-9,
3.1624176287745679e-9, -7.8409242536974293e-10, 5.1926791652540407e-15,
9.3589442423067836e-11, -4.5134262161632782e-11, 1.0799129993116827e-11,
-3.661886712685252e-17, -1.210902069055155e-12, 5.6807435849905643e-13,
-1.3249659916340829e-13},
{5.3130793646399222e-4, -5.9216643735369388e-4, 2.7087820967180448e-4,
7.9023532326603279e-7, -8.1539693675619688e-5, 5.6116827531062497e-5,
-1.8329116582843376e-5, -3.0796134506033048e-9, 3.4651553688036091e-6,
-2.0291327396058604e-6, 5.7887928631490037e-7, 2.338630673826657e-13,
-8.8286007463304835e-8, 4.7435958880408128e-8, -1.2545415020710382e-8,
8.6496488580102925e-14, 1.6846058979264063e-9, -8.5754928235775947e-10,
2.1598224929232125e-10, -7.6132305204761539e-16, -2.6639822008536144e-11,
1.3065700536611057e-11, -3.1799163902367977e-12, 4.7109761213674315e-18,
3.6902800842763467e-13},
{3.4436760689237767e-4, 5.1717909082605922e-5, -3.3493161081142236e-4,
2.812695154763237e-4, -1.0976582244684731e-4, -1.2741009095484485e-7,
2.7744451511563644e-5, -1.8263488805711333e-5, 5.7876949497350524e-6,
4.9387589339362704e-10, -1.0595367014026043e-6, 6.1667143761104075e-7,
-1.7562973359060462e-7, -1.2974473287015439e-12, 2.695423606288966e-8,
-1.4578352908731271e-8, 3.887645959386175e-9, -3.8810022510194121e-17,
-5.3279941738772867e-10, 2.7437977643314845e-10, -6.9957960920705679e-11,
2.5899863874868481e-17, 8.8566890996696381e-12, -4.403168815871311e-12,
1.0865561947091654e-12},
{-6.5262391859530942e-4, 8.3949872067208728e-4, -4.3829709854172101e-4,
-6.969091458420552e-7, 1.6644846642067548e-4, -1.2783517679769219e-4,
4.6299532636913043e-5, 4.5579098679227077e-9, -1.0595271125805195e-5,
6.7833429048651666e-6, -2.1075476666258804e-6, -1.7213731432817145e-11,
3.7735877416110979e-7, -2.1867506700122867e-7, 6.2202288040189269e-8,
6.5977038267330006e-16, -9.5903864974256858e-9, 5.2132144922808078e-9,
-1.3991589583935709e-9, 5.382058999060575e-16, 1.9484714275467745e-10,
-1.0127287556389682e-10, 2.6077347197254926e-11, -5.0904186999932993e-18,
-3.3721464474854592e-12},
{-5.9676129019274625e-4, -7.2048954160200106e-5, 6.7823088376673284e-4,
-6.4014752602627585e-4, 2.7750107634328704e-4, 1.8197008380465151e-7,
-8.4795071170685032e-5, 6.105192082501531e-5, -2.1073920183404862e-5,
-8.8585890141255994e-10, 4.5284535953805377e-6, -2.8427815022504408e-6,
8.7082341778646412e-7, 3.6886101871706965e-12, -1.5344695190702061e-7,
8.862466778790695e-8, -2.5184812301826817e-8, -1.0225912098215092e-14,
3.8969470758154777e-9, -2.1267304792235635e-9, 5.7370135528051385e-10,
-1.887749850169741e-19, -8.0931538694657866e-11, 4.2382723283449199e-11,
-1.1002224534207726e-11},
{1.3324454494800656e-3, -1.9144384985654775e-3, 1.1089369134596637e-3,
9.932404122642299e-7, -5.0874501293093199e-4, 4.2735056665392884e-4,
-1.6858853767910799e-4, -8.1301893922784998e-9, 4.5284402370562147e-5,
-3.127053674781734e-5, 1.044986828530338e-5, 4.8435226265680926e-11,
-2.1482565873456258e-6, 1.329369701097492e-6, -4.0295693092101029e-7,
-1.7567877666323291e-13, 7.0145043163668257e-8, -4.040787734999483e-8,
1.1474026743371963e-8, 3.9642746853563325e-18, -1.7804938269892714e-9,
9.7480262548731646e-10, -2.6405338676507616e-10, 5.794875163403742e-18,
3.7647749553543836e-11},
{1.579727660730835e-3, 1.6251626278391582e-4, -2.0633421035543276e-3,
2.1389686185689098e-3, -1.0108559391263003e-3, -3.9912705529919201e-7,
3.6235025084764691e-4, -2.8143901463712154e-4, 1.0449513336495887e-4,
2.1211418491830297e-9, -2.5779417251947842e-5, 1.7281818956040463e-5,
-5.6413773872904282e-6, -1.1024320105776174e-11, 1.1223224418895175e-6,
-6.8693396379526735e-7, 2.0653236975414887e-7, 4.6714772409838506e-14,
-3.5609886164949055e-8, 2.0470855345905963e-8, -5.8091738633283358e-9,
-1.332821287582869e-16, 9.0354604391335133e-10, -4.9598782517330834e-10,
1.3481607129399749e-10},
{-4.0725121195140166e-3, 6.4033628338080698e-3, -4.0410161081676618e-3,
-2.183732802866233e-6, 2.1740441801254639e-3, -1.9700440518418892e-3,
8.3595469747962458e-4, 1.9445447567109655e-8, -2.5779387120421696e-4,
1.9009987368139304e-4, -6.7696499937438965e-5, -1.4440629666426572e-10,
1.5712512518742269e-5, -1.0304008744776893e-5, 3.304517767401387e-6,
7.9829760242325709e-13, -6.4097794149313004e-7, 3.8894624761300056e-7,
-1.1618347644948869e-7, -2.816808630596451e-15, 1.9878012911297093e-8,
-1.1407719956357511e-8, 3.2355857064185555e-9, 4.1759468293455945e-20,
-5.0423112718105824e-10},
{-5.9475779383993003e-3, -5.4016476789260452e-4, 8.7910413550767898e-3,
-9.8576315587856125e-3, 5.0134695031021538e-3, 1.2807521786221875e-6,
-2.0626019342754683e-3, 1.7109128573523058e-3, -6.7695312714133799e-4,
-6.9011545676562133e-9, 1.8855128143995902e-4, -1.3395215663491969e-4,
4.6263183033528039e-5, 4.0034230613321351e-11, -1.0255652921494033e-5,
6.612086372797651e-6, -2.0913022027253008e-6, -2.0951775649603837e-13,
3.9756029041993247e-7, -2.3956211978815887e-7, 7.1182883382145864e-8,
8.925574873053455e-16, -1.2101547235064676e-8, 6.9350618248334386e-9,
-1.9661464453856102e-9},
{1.7402027787522711e-2, -2.9527880945699121e-2, 2.0045875571402799e-2,
7.0289515966903407e-6, -1.2375421071343148e-2, 1.1976293444235254e-2,
-5.4156038466518525e-3, -6.3290893396418616e-8, 1.8855118129005065e-3,
-1.473473274825001e-3, 5.5515810097708387e-4, 5.2406834412550662e-10,
-1.4357913535784836e-4, 9.9181293224943297e-5, -3.3460834749478311e-5,
-3.5755837291098993e-12, 7.1560851960630076e-6, -4.5516802628155526e-6,
1.4236576649271475e-6, 1.8803149082089664e-14, -2.6623403898929211e-7,
1.5950642189595716e-7, -4.7187514673841102e-8, -6.5107872958755177e-17,
7.9795091026746235e-9},
{3.0249124160905891e-2, 2.4817436002649977e-3, -4.9939134373457022e-2,
5.9915643009307869e-2, -3.2483207601623391e-2, -5.7212968652103441e-6,
1.5085251778569354e-2, -1.3261324005088445e-2, 5.5515262632426148e-3,
3.0263182257030016e-8, -1.7229548406756723e-3, 1.2893570099929637e-3,
-4.6845138348319876e-4, -1.830259937893045e-10, 1.1449739014822654e-4,
-7.7378565221244477e-5, 2.5625836246985201e-5, 1.0766165333192814e-12,
-5.3246809282422621e-6, 3.349634863064464e-6, -1.0381253128684018e-6,
-5.608909920621128e-15, 1.9150821930676591e-7, -1.1418365800203486e-7,
3.3654425209171788e-8},
{-9.9051020880159045e-2, 1.7954011706123486e-1, -1.2989606383463778e-1,
-3.1478872752284357e-5, 9.0510635276848131e-2, -9.2828824411184397e-2,
4.4412112839877808e-2, 2.7779236316835888e-7, -1.7229543805449697e-2,
1.4182925050891573e-2, -5.6214161633747336e-3, -2.39598509186381e-9,
1.6029634366079908e-3, -1.1606784674435773e-3, 4.1001337768153873e-4,
1.8365800754090661e-11, -9.5844256563655903e-5, 6.3643062337764708e-5,
-2.076250624489065e-5, -1.1806020912804483e-13, 4.2131808239120649e-6,
-2.6262241337012467e-6, 8.0770620494930662e-7, 6.0125912123632725e-16,
-1.4729737374018841e-7},
{-1.9994542198219728e-1, -1.5056113040026424e-2, 3.6470239469348489e-1,
-4.6435192311733545e-1, 2.6640934719197893e-1, 3.4038266027147191e-5,
-1.3784338709329624e-1, 1.276467178337056e-1, -5.6213828755200985e-2,
-1.753150885483011e-7, 1.9235592956768113e-2, -1.5088821281095315e-2,
5.7401854451350123e-3, 1.0622382710310225e-9, -1.5335082692563998e-3,
1.0819320643228214e-3, -3.7372510193945659e-4, -6.6170909729031985e-12,
8.4263617380909628e-5, -5.5150706827483479e-5, 1.7769536448348069e-5,
3.8827923210205533e-14, -3.53513697488768e-6, 2.1865832130045269e-6,
-6.6812849447625594e-7},
{7.2438608504029431e-1, -1.3918010932653375, 1.0654143352413968,
1.876173868950258e-4, -8.2705501176152696e-1, 8.9352433347828414e-1,
-4.4971003995291339e-1, -1.6107401567546652e-6, 1.9235590165271091e-1,
-1.6597702160042609e-1, 6.8882222681814333e-2, 1.3910091724608687e-8,
-2.146911561508663e-2, 1.6228980898865892e-2, -5.9796016172584256e-3,
-1.1287469112826745e-10, 1.5167451119784857e-3, -1.0478634293553899e-3,
3.5539072889126421e-4, 8.1704322111801517e-13, -7.7773013442452395e-5,
5.0291413897007722e-5, -1.6035083867000518e-5, 1.2469354315487605e-14,
3.1369106244517615e-6},
{1.6668949727276811, 1.165462765994632e-1, -3.3288393225018906,
4.4692325482864037, -2.6977693045875807, -2.600667859891061e-4,
1.5389017615694539, -1.4937962361134612, 6.8881964633233148e-1,
1.3077482004552385e-6, -2.5762963325596288e-1, 2.1097676102125449e-1,
-8.3714408359219882e-2, -7.7920428881354753e-9, 2.4267923064833599e-2,
-1.7813678334552311e-2, 6.3970330388900056e-3, 4.9430807090480523e-11,
-1.5554602758465635e-3, 1.0561196919903214e-3, -3.5277184460472902e-4,
9.3002334645022459e-14, 7.5285855026557172e-5, -4.8186515569156351e-5,
1.5227271505597605e-5},
{-6.6188298861372935, 1.3397985455142589e+1, -1.0789350606845146e+1,
-1.4352254537875018e-3, 9.2333694596189809, -1.0456552819547769e+1,
5.5105526029033471, 1.2024439690716742e-5, -2.5762961164755816,
2.3207442745387179, -1.0045728797216284, -1.0207833290021914e-7,
3.3975092171169466e-1, -2.6720517450757468e-1, 1.0235252851562706e-1,
8.4329730484871625e-10, -2.7998284958442595e-2, 2.0066274144976813e-2,
-7.0554368915086242e-3, 1.9402238183698188e-12, 1.6562888105449611e-3,
-1.1082898580743683e-3, 3.654545161310169e-4, -5.1290032026971794e-11,
-7.6340103696869031e-5},
{-1.7112706061976095e+1, -1.1208044642899116, 3.7131966511885444e+1,
-5.2298271025348962e+1, 3.3058589696624618e+1, 2.4791298976200222e-3,
-2.061089403411526e+1, 2.088672775145582e+1, -1.0045703956517752e+1,
-1.2238783449063012e-5, 4.0770134274221141, -3.473667358470195,
1.4329352617312006, 7.1359914411879712e-8, -4.4797257159115612e-1,
3.4112666080644461e-1, -1.2699786326594923e-1, -2.8953677269081528e-10,
3.3125776278259863e-2, -2.3274087021036101e-2, 8.0399993503648882e-3,
-1.177805216235265e-9, -1.8321624891071668e-3, 1.2108282933588665e-3,
-3.9479941246822517e-4},
{7.389033153567425e+1, -1.5680141270402273e+2, 1.322177542759164e+2,
1.3692876877324546e-2, -1.2366496885920151e+2, 1.4620689391062729e+2,
-8.0365587724865346e+1, -1.1259851148881298e-4, 4.0770132196179938e+1,
-3.8210340013273034e+1, 1.719522294277362e+1, 9.3519707955168356e-7,
-6.2716159907747034, 5.1168999071852637, -2.0319658112299095,
-4.9507215582761543e-9, 5.9626397294332597e-1, -4.4220765337238094e-1,
1.6079998700166273e-1, -2.4733786203223402e-8, -4.0307574759979762e-2,
2.7849050747097869e-2, -9.4751858992054221e-3, 6.419922235909132e-6,
2.1250180774699461e-3},
{2.1216837098382522e+2, 1.3107863022633868e+1, -4.9698285932871748e+2,
7.3121595266969204e+2, -4.8213821720890847e+2, -2.8817248692894889e-2,
3.2616720302947102e+2, -3.4389340280087117e+2, 1.7195193870816232e+2,
1.4038077378096158e-4, -7.52594195897599e+1, 6.651969984520934e+1,
-2.8447519748152462e+1, -7.613702615875391e-7, 9.5402237105304373,
-7.5175301113311376, 2.8943997568871961, -4.6612194999538201e-7,
-8.0615149598794088e-1, 5.8483006570631029e-1, -2.0845408972964956e-1,
1.4765818959305817e-4, 5.1000433863753019e-2, -3.3066252141883665e-2,
1.5109265210467774e-2},
{-9.8959643098322368e+2, 2.1925555360905233e+3, -1.9283586782723356e+3,
-1.5925738122215253e-1, 1.9569985945919857e+3, -2.4072514765081556e+3,
1.3756149959336496e+3, 1.2920735237496668e-3, -7.525941715948055e+2,
7.3171668742208716e+2, -3.4137023466220065e+2, -9.9857390260608043e-6,
1.3356313181291573e+2, -1.1276295161252794e+2, 4.6310396098204458e+1,
-7.9237387133614756e-6, -1.4510726927018646e+1, 1.1111771248100563e+1,
-4.1690817945270892, 3.1008219800117808e-3, 1.1220095449981468,
-7.6052379926149916e-1, 3.6262236505085254e-1, 2.216867741940747e-1,
4.8683443692930507e-1}};
int k, n, sgn;
int maxpow = 0;
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
scalar_t lambda = x / a;
scalar_t sigma = (x - a) / a;
scalar_t eta, res, ck, ckterm, term, absterm;
scalar_t absoldterm = INFINITY;
scalar_t etapow[25] = {1};
scalar_t sum = 0;
scalar_t afac = 1;
if (igam) {
sgn = -1;
}
else {
sgn = 1;
}
if (lambda > 1) {
eta = std::sqrt(-2 * (std::log1p(sigma) - sigma));
}
else if (lambda < 1) {
eta = -std::sqrt(-2 * (std::log1p(sigma) - sigma));
}
else {
eta = 0;
}
res = 0.5 * std::erfc(sgn * eta * std::sqrt(a / 2));
for (k = 0; k < 25; k++) {
ck = d[k][0];
for (n = 1; n < 25; n++) {
if (n > maxpow) {
etapow[n] = eta * etapow[n-1];
maxpow += 1;
}
ckterm = d[k][n]*etapow[n];
ck += ckterm;
if (std::fabs(ckterm) < MACHEP * std::fabs(ck)) {
break;
}
}
term = ck * afac;
absterm = std::fabs(term);
if (absterm > absoldterm) {
break;
}
sum += term;
if (absterm < MACHEP * std::fabs(sum)) {
break;
}
absoldterm = absterm;
afac /= a;
}
res += sgn * std::exp(-0.5 * a * eta * eta) * sum / std::sqrt(2 * c10::pi<float> * a);
return res;
}
template <typename scalar_t>
static scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar_t x) {
// Compute igamc using DLMF 8.9.2. [igam1]
int i;
scalar_t ans, ax, c, yc, r, t, y, z;
scalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
int MAXITER = 2000;
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static scalar_t BIG = std::is_same<scalar_t,double>::value ?
4.503599627370496e15 : 16777216.;
static scalar_t BIGINV = std::is_same<scalar_t,double>::value ?
2.22044604925031308085e-16 : 5.9604644775390625E-8;
ax = _igam_helper_fac(a, x);
if (ax == 0.0) {
return 0.0;
}
/* continued fraction */
y = 1.0 - a;
z = x + y + 1.0;
c = 0.0;
pkm2 = 1.0;
qkm2 = x;
pkm1 = x + 1.0;
qkm1 = z * x;
ans = pkm1 / qkm1;
for (i = 0; i < MAXITER; i++) {
c += 1.0;
y += 1.0;
z += 2.0;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if (qk != 0) {
r = pk / qk;
t = std::fabs((ans - r) / r);
ans = r;
}
else {
t = 1.0;
}
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (std::fabs(pk) > BIG) {
pkm2 *= BIGINV;
pkm1 *= BIGINV;
qkm2 *= BIGINV;
qkm1 *= BIGINV;
}
if (t <= MACHEP) {
break;
}
}
return ans * ax;
}
template <typename scalar_t>
static inline scalar_t calc_igammac(scalar_t a, scalar_t x) {
/* the calculation of the regularized upper incomplete gamma function
* is done differently based on the values of a and x:
* - if x and/or a is at the boundary of defined region, then assign the
* result at the boundary
* - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
* Large Parameter (see DLMF 8.12.4 [igam1])
* - if x > 1.1 and x < a, using the substraction from the regularized lower
* incomplete gamma
* - otherwise, calculate the series from [igam2] eq (5)
*/
scalar_t absxma_a;
static scalar_t SMALL = 20.0;
static scalar_t LARGE = 200.0;
static scalar_t SMALLRATIO = 0.3;
static scalar_t LARGERATIO = 4.5;
// note that in SciPy, a and x are non-negative, with exclusive 0s (i.e.,
// at most 1 of them can be 0), where igammac(0, x) = 0.0 iff x > 0.
if ((x < 0) || (a < 0)) {
// out of defined-region of the function
return std::numeric_limits<scalar_t>::quiet_NaN();
}
else if (a == 0) {
if (x > 0) {
return 0.0;
}
else {
return std::numeric_limits<scalar_t>::quiet_NaN();
}
}
else if (x == 0) {
return 1.0;
}
else if (std::isinf(a)) {
if (std::isinf(x)) {
return std::numeric_limits<scalar_t>::quiet_NaN();