forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathParallelNative.h
92 lines (83 loc) · 2.3 KB
/
ParallelNative.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#pragma once
#include <algorithm>
#include <cstddef>
#include <exception>
#define INTRA_OP_PARALLEL
namespace at {
namespace internal {
inline std::tuple<size_t, size_t> calc_num_tasks_and_chunk_size(
int64_t begin, int64_t end, int64_t grain_size) {
if ((end - begin) < grain_size) {
return std::make_tuple(1, std::max((int64_t)0, end - begin));
}
// Choose number of tasks based on grain size and number of threads.
size_t chunk_size = divup((end - begin), get_num_threads());
// Make sure each task is at least grain_size size.
chunk_size = std::max((size_t)grain_size, chunk_size);
size_t num_tasks = divup((end - begin), chunk_size);
return std::make_tuple(num_tasks, chunk_size);
}
TORCH_API void _parallel_run(
const int64_t begin,
const int64_t end,
const int64_t grain_size,
const std::function<void(int64_t, int64_t, size_t)>& f);
} // namespace internal
template <class F>
inline void parallel_for(
const int64_t begin,
const int64_t end,
const int64_t grain_size,
const F& f) {
TORCH_CHECK(grain_size >= 0);
if (begin >= end) {
return;
}
if ((end - begin) < grain_size || in_parallel_region()) {
f(begin, end);
return;
}
internal::_parallel_run(
begin,
end,
grain_size,
[f](int64_t start, int64_t end, size_t /* unused */) {
f(start, end);
}
);
}
template <class scalar_t, class F, class SF>
inline scalar_t parallel_reduce(
const int64_t begin,
const int64_t end,
const int64_t grain_size,
const scalar_t ident,
const F& f,
const SF& sf) {
TORCH_CHECK(grain_size >= 0);
if (begin >= end) {
return ident;
}
if ((end - begin) < grain_size || in_parallel_region()) {
return f(begin, end, ident);
}
size_t num_tasks, chunk_size;
std::tie(num_tasks, chunk_size) =
internal::calc_num_tasks_and_chunk_size(begin, end, grain_size);
std::vector<scalar_t> results(num_tasks);
scalar_t* results_data = results.data();
internal::_parallel_run(
begin,
end,
grain_size,
[f, ident, results_data](int64_t start, int64_t end, size_t task_id) {
results_data[task_id] = f(start, end, ident);
}
);
scalar_t result = ident;
for (auto partial_result : results) {
result = sf(result, partial_result);
}
return result;
}
} // namespace at