forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathContext.h
372 lines (334 loc) · 12.2 KB
/
Context.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#pragma once
#include <ATen/core/ATenGeneral.h>
#include <ATen/Tensor.h>
#include <ATen/Utils.h>
#include <ATen/core/ATenGeneral.h>
#include <ATen/core/Generator.h>
#include <ATen/CPUGeneratorImpl.h>
#include <ATen/core/LegacyTypeDispatch.h>
#include <ATen/detail/CUDAHooksInterface.h>
#include <ATen/detail/HIPHooksInterface.h>
#include <c10/util/Exception.h>
#include <c10/core/impl/DeviceGuardImplInterface.h>
#include <c10/core/QEngine.h>
#include <memory>
#include <mutex>
#include <cstdint>
namespace at {
class Tensor;
class TORCH_API Context {
public:
Context();
const Generator& defaultGenerator(Device device) {
DeviceType device_type = device.type();
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
if (device_type == at::kCPU) {
return at::detail::getDefaultCPUGenerator();
} else if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks().getDefaultCUDAGenerator(device.index());
} else {
AT_ERROR(DeviceTypeName(device_type), " device type not enabled.");
}
}
Device getDeviceFromPtr(void* data, DeviceType device_type) {
initCUDAIfNeeded(device_type);
initHIPIfNeeded(device_type);
if (device_type == at::kCPU) {
return DeviceType::CPU;
} else if (device_type == at::kCUDA) {
return at::detail::getCUDAHooks().getDeviceFromPtr(data);
} else {
AT_ERROR(DeviceTypeName(device_type), " device type not enabled.");
}
}
static bool isPinnedPtr(void* data) {
return detail::getCUDAHooks().isPinnedPtr(data);
}
static bool hasOpenMP() ;
static bool hasMKL() ;
static bool hasLAPACK() ;
static bool hasMKLDNN() ;
static bool hasMAGMA() {
return detail::getCUDAHooks().hasMAGMA();
}
static bool hasCUDA() {
return detail::getCUDAHooks().hasCUDA();
}
static bool hasCUDART() {
return detail::getCUDAHooks().hasCUDART();
}
static long versionCUDART() {
return detail::getCUDAHooks().versionCUDART();
}
static bool hasHIP() {
return detail::getHIPHooks().hasHIP();
}
static bool hasXLA() {
return c10::impl::hasDeviceGuardImpl(at::DeviceType::XLA);
}
static bool hasMLC() {
return c10::impl::hasDeviceGuardImpl(at::DeviceType::MLC);
}
// defined in header so that getNonVariableType has ability to inline
// call_once check. getNonVariableType is called fairly frequently
THCState* lazyInitCUDA() {
std::call_once(thc_init,[&] {
thc_state = detail::getCUDAHooks().initCUDA();
});
return thc_state.get();
}
THHState* lazyInitHIP() {
std::call_once(thh_init,[&] {
thh_state = detail::getHIPHooks().initHIP();
});
return thh_state.get();
}
static const at::cuda::NVRTC& getNVRTC() {
return detail::getCUDAHooks().nvrtc();
}
THCState* getTHCState() {
// AT_ASSERT(thc_state);
return thc_state.get();
}
THHState* getTHHState() {
return thh_state.get();
}
static bool setFlushDenormal(bool on);
// NB: This method is *purely* whether or not a user requested
// that CuDNN was enabled, it doesn't actually say anything about
// whether or not CuDNN is actually usable. Use cudnn_is_acceptable
// to test this instead
bool userEnabledCuDNN() const;
void setUserEnabledCuDNN(bool e);
bool userEnabledMkldnn() const;
void setUserEnabledMkldnn(bool e);
bool benchmarkCuDNN() const;
void setBenchmarkCuDNN(bool);
bool deterministicCuDNN() const;
void setDeterministicCuDNN(bool);
// Note [Enabling Deterministic Operations]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Operations in PyTorch that normally act nondeterministically, but have an alternate
// deterministic implementation, should satisfy the following requirements:
//
// * Include this comment: "See Note [Enabling Deterministic Operations]"
//
// * Check the value of `at::globalContext().deterministicAlgorithms()` to toggle
// between nondeterministic and deterministic implementations.
//
// * Have an entry in the list of PyTorch operations that toggle between nondeterministic
// and deterministic implementations, in the docstring of `use_deterministic_algorithms()`
// in torch/__init__.py
//
// `example_func()` below shows an example of toggling between nondeterministic and
// deterministic implementations:
//
// void example_func() {
// // See Note [Enabling Deterministic Operations]
// if (at::globalContext().deterministicAlgorithms()) {
// example_func_deterministic();
// } else {
// example_func_nondeterministic();
// }
// }
bool deterministicAlgorithms() const;
void setDeterministicAlgorithms(bool);
// Note [Writing Nondeterministic Operations]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Operations in PyTorch that act nondeterministically and do not have an alternate
// deterministic implementation should satisfy the following requirements:
//
// * Include this comment: "See Note [Writing Nondeterministic Operations]"
//
// * Include a comment explaining why the operation is nondeterministic.
//
// * Throw an error when `Context::deterministicAlgorithms()` is true. Most
// of the time, this should be accomplished by calling
// `at::globalContext().alertNotDeterminstic()`. However, if the
// nondeterministic behavior is caused by the CuBLAS workspace
// configuration in CUDA >= 10.2,
// `at::globalContext().alertCuBLASConfigNotDeterministic()` should be
// called instead (in this case, a comment explaining why the operation is
// nondeterministic is not necessary). See below for details on these
// methods.
//
// * Have an entry in the list of nondeterministic PyTorch operations in the
// docstring of `use_deterministic_algorithms()` in torch/__init__.py
//
// * Have a test function in `test/test_torch.py` whose name begins with
// `test_nondeterministic_alert_`. Alternatively, if CuBLAS workspace
// configuration is the reason for nondeterminism, the operation should be
// included in the `test_cublas_config_nondeterministic_alert` test. Any new
// tests should ideally follow a pattern similar to the existing ones.
//
// `example_func()` below shows an example of the comments and error-throwing code
// for a nondeterministic operation:
//
// void example_func() {
// // See Note [Writing Nondeterministic Operations]
// // Nondeterministic because <reason>
// at::globalContext().alertNondeterministic("example_func");
// ...
// }
// Throws an error if `Context::deterministicAlgorithms()` is true
static void alertNotDeterministic(c10::string_view const& caller);
// Throws an error if `Context::deterministicAlgorithms()` is true, CUDA >= 10.2, and
// CUBLAS_WORKSPACE_CONFIG is not set to either ":16:8" or ":4096:8". For more details:
// https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
void alertCuBLASConfigNotDeterministic() const;
bool allowTF32CuDNN() const;
void setAllowTF32CuDNN(bool);
bool allowTF32CuBLAS() const;
void setAllowTF32CuBLAS(bool);
at::QEngine qEngine() const;
void setQEngine(at::QEngine e);
static const std::vector<at::QEngine>& supportedQEngines() ;
static bool isXNNPACKAvailable() ;
// This method is used to release the original weight after pre-packing.
// It should be called once before loading/running the model.
// NB: By default it is set to true for mobile builds.
void setReleaseWeightsWhenPrepacking(bool e);
bool releaseWeightsWhenPrepacking() const;
void setDisplayVmapFallbackWarnings(bool enabled);
bool areVmapFallbackWarningsEnabled() const;
void setDefaultMobileCPUAllocator();
void unsetDefaultMobileCPUAllocator();
private:
void initCUDAIfNeeded(DeviceType p) {
if (p == DeviceType::CUDA) {
lazyInitCUDA();
}
}
void initHIPIfNeeded(DeviceType p) {
if (p == DeviceType::HIP) {
lazyInitHIP();
}
}
static bool checkCuBLASConfigDeterministic();
std::once_flag thc_init;
std::once_flag thh_init;
bool enabled_cudnn = true;
bool deterministic_cudnn = false;
bool _deterministic_algorithms = false;
bool benchmark_cudnn = false;
bool allow_tf32_cudnn = true;
bool allow_tf32_cublas = true;
bool enabled_mkldnn = true;
#ifdef C10_MOBILE
bool release_original_weights = true;
#else
bool release_original_weights = false;
#endif
bool display_vmap_fallback_warnings_ = false;
c10::optional<at::QEngine> quantized_engine = c10::nullopt;
std::unique_ptr<THCState, void(*)(THCState*)> thc_state;
std::unique_ptr<THHState, void(*)(THHState*)> thh_state;
Allocator* prev_allocator_ptr_{nullptr};
};
TORCH_API Context& globalContext();
static inline void init() {
globalContext();
}
TORCH_API Allocator* getCPUAllocator();
static inline DeprecatedTypeProperties& getDeprecatedTypeProperties(Backend p, ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
p, s);
}
static inline DeprecatedTypeProperties& CPU(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::CPU, s);
}
static inline DeprecatedTypeProperties& CUDA(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::CUDA, s);
}
static inline DeprecatedTypeProperties& HIP(ScalarType s) {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
Backend::HIP, s);
}
static inline bool hasCUDA() {
return globalContext().hasCUDA();
}
static inline bool hasHIP() {
return globalContext().hasHIP();
}
static inline bool hasXLA() {
return globalContext().hasXLA();
}
static inline bool hasMLC() {
return globalContext().hasMLC();
}
// Despite its name, this function returns the number of *CUDA* GPUs.
static inline size_t getNumGPUs() {
// WARNING: DO NOT ADD LOGIC TO HANDLE OTHER DEVICE TYPES TO THIS
// FUNCTION. If you are interested in interrogating the number of
// devices for a specific device type, add that function to the
// relevant library (e.g., similar to at::cuda::device_count())
if (hasCUDA() && hasHIP()) {
throw std::runtime_error(
"Enabling both CUDA and HIP in ATen is not supported, as HIP masquerades "
"to be CUDA (e.g., when you say CUDA, on a HIP build of ATen, this actually "
"means HIP. Rebuild PyTorch with one or the other disabled.");
} else if (hasCUDA()) {
return detail::getCUDAHooks().getNumGPUs();
} else if (hasHIP()) {
return detail::getHIPHooks().getNumGPUs();
} else {
return 0;
}
}
static inline bool hasOpenMP() {
return globalContext().hasOpenMP();
}
static inline bool hasMKL() {
return globalContext().hasMKL();
}
static inline bool hasLAPACK() {
return globalContext().hasLAPACK();
}
static inline bool hasMAGMA() {
return globalContext().hasMAGMA();
}
static inline bool hasMKLDNN() {
return globalContext().hasMKLDNN();
}
static inline void manual_seed(uint64_t seed) {
auto gen = globalContext().defaultGenerator(DeviceType::CPU);
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen.mutex());
gen.set_current_seed(seed);
}
// NB: Sometimes we build with CUDA, but we don't have any GPUs
// available. In that case, we must not seed CUDA; it will fail!
const auto num_gpus = detail::getCUDAHooks().getNumGPUs();
if (hasCUDA() && num_gpus > 0) {
for (int i = 0; i < num_gpus; i++) {
auto cuda_gen = globalContext().defaultGenerator(
Device(at::kCUDA, static_cast<c10::DeviceIndex>(i))
);
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(cuda_gen.mutex());
cuda_gen.set_current_seed(seed);
}
}
}
}
// When the global flag `allow_tf32` is set to true, cuBLAS handles are
// automatically configured to use math mode CUBLAS_TF32_TENSOR_OP_MATH.
// For some operators, such as addmv, TF32 offers no performance improvement
// but causes precision loss. To help this case, this class implements
// a RAII guard that can be used to quickly disable TF32 within its scope.
//
// Usage:
// NoTF32Guard disable_tf32;
struct TORCH_API NoTF32Guard {
NoTF32Guard();
~NoTF32Guard();
static bool should_disable_tf32();
private:
bool changed = false;
};
} // namespace at