From 9cd9913ccfd94a3467badd609eb1c88644627c40 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 10 Nov 2023 15:43:58 -0800 Subject: [PATCH 01/37] lint (sorry jason) --- orbitize/hipparcos.py | 356 +++++++++++++++++++++++------------------- 1 file changed, 193 insertions(+), 163 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 3b2fdd07..711aa7dc 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -10,16 +10,17 @@ from astropy.coordinates import get_body_barycentric_posvel from astroquery.vizier import Vizier + class HipparcosLogProb(object): """ - Class to compute the log probability of an orbit with respect to the - Hipparcos Intermediate Astrometric Data (IAD). If using a DVD file, - queries Vizier for all metadata relevant to the IAD, and reads in the IAD - themselves from a specified location. Follows Nielsen+ 2020 (studying the + Class to compute the log probability of an orbit with respect to the + Hipparcos Intermediate Astrometric Data (IAD). If using a DVD file, + queries Vizier for all metadata relevant to the IAD, and reads in the IAD + themselves from a specified location. Follows Nielsen+ 2020 (studying the orbit of beta Pic b). Fitting the Hipparcos IAD requires fitting for the following five parameters. - They are added to the vector of fitting parameters in system.py, but + They are added to the vector of fitting parameters in system.py, but are described here for completeness. See Nielsen+ 2020 for more detail. - alpha0: RA offset from the reported Hipparcos position at a particular @@ -30,24 +31,24 @@ class HipparcosLogProb(object): - pm_dec: Dec proper motion [mas/yr] - plx: parallax [mas] - .. Note:: - + .. Note:: + In orbitize, it is possible to perform a fit to just the Hipparcos IAD, but not to just the Gaia astrometric data. Args: path_to_iad_file (str): location of IAD file to be used in your fit. - See the Hipparcos tutorial for a walkthrough of how to + See the Hipparcos tutorial for a walkthrough of how to download these files. hip_num (str): Hipparcos ID of star. Available on Simbad. Should have zeros in the prefix if number is <100,000. (i.e. 27321 should be passed in as '027321'). num_secondary_bodies (int): number of companions in the system - alphadec0_epoch (float): epoch (in decimal year) that the fitting + alphadec0_epoch (float): epoch (in decimal year) that the fitting parameters alpha0 and delta0 are defined relative to (see above). renormalize_errors (bool): if True, normalize the scan errors to get - chisq_red = 1, following Nielsen+ 2020 (eq 10). In general, this - should be False, but it's helpful for testing. Check out + chisq_red = 1, following Nielsen+ 2020 (eq 10). In general, this + should be False, but it's helpful for testing. Check out `orbitize.hipparcos.nielsen_iad_refitting_test()` for an example using this renormalization. @@ -55,19 +56,22 @@ class HipparcosLogProb(object): """ def __init__( - self, path_to_iad_file, hip_num, num_secondary_bodies, - alphadec0_epoch=1991.25, renormalize_errors=False + self, + path_to_iad_file, + hip_num, + num_secondary_bodies, + alphadec0_epoch=1991.25, + renormalize_errors=False, ): - self.path_to_iad_file = path_to_iad_file self.renormalize_errors = renormalize_errors # infer if the IAD file is an older DVD file or a new file - with open(path_to_iad_file, 'r') as f: + with open(path_to_iad_file, "r") as f: first_char = f.readline()[0] # newer format files don't start with comments - if first_char == '#': + if first_char == "#": dvd_file = False else: dvd_file = True @@ -79,52 +83,63 @@ def __init__( # dvd files don't contain the Hipparcos astrometric solution, so # we need to look it up if dvd_file: - # load best-fit astrometric solution from Sep 08 van Leeuwen catalog # (https://cdsarc.unistra.fr/ftp/I/311/ReadMe) Vizier.ROW_LIMIT = -1 hip_cat = Vizier( - catalog='I/311/hip2', + catalog="I/311/hip2", columns=[ - 'RArad', 'e_RArad', 'DErad', 'e_DErad', 'Plx', 'e_Plx', 'pmRA', - 'e_pmRA', 'pmDE', 'e_pmDE', 'F2', 'Sn' - ] + "RArad", + "e_RArad", + "DErad", + "e_DErad", + "Plx", + "e_Plx", + "pmRA", + "e_pmRA", + "pmDE", + "e_pmDE", + "F2", + "Sn", + ], ).query_constraints(HIP=self.hip_num)[0] - self.plx0 = hip_cat['Plx'][0] # [mas] - self.pm_ra0 = hip_cat['pmRA'][0] # [mas/yr] - self.pm_dec0 = hip_cat['pmDE'][0] # [mas/yr] - self.alpha0 = hip_cat['RArad'][0] # [deg] - self.delta0 = hip_cat['DErad'][0] # [deg] - self.plx0_err = hip_cat['e_Plx'][0] # [mas] - self.pm_ra0_err = hip_cat['e_pmRA'][0] # [mas/yr] - self.pm_dec0_err = hip_cat['e_pmDE'][0] # [mas/yr] - self.alpha0_err = hip_cat['e_RArad'][0] # [mas] - self.delta0_err = hip_cat['e_DErad'][0] # [mas] - - solution_type = hip_cat['Sn'][0] - f2 = hip_cat['F2'][0] - - else: - - # read the Hipparcos best-fit solution from the IAD file - astrometric_solution = pd.read_csv(path_to_iad_file, skiprows=9, sep='\s+', nrows=1) - self.plx0 = astrometric_solution['Plx'].values[0] # [mas] - self.pm_ra0 = astrometric_solution['pm_RA'].values[0] # [mas/yr] - self.pm_dec0 = astrometric_solution['pm_DE'].values[0] # [mas/yr] - self.alpha0 = astrometric_solution['RAdeg'].values[0] # [deg] - self.delta0 = astrometric_solution['DEdeg'].values[0] # [deg] - self.plx0_err = astrometric_solution['e_Plx'].values[0] # [mas] - self.pm_ra0_err = astrometric_solution['e_pmRA'].values[0] # [mas/yr] - self.pm_dec0_err = astrometric_solution['e_pmDE'].values[0] # [mas/yr] - self.alpha0_err = astrometric_solution['e_RA'].values[0] # [mas] - self.delta0_err = astrometric_solution['e_DE'].values[0] # [mas] + self.plx0 = hip_cat["Plx"][0] # [mas] + self.pm_ra0 = hip_cat["pmRA"][0] # [mas/yr] + self.pm_dec0 = hip_cat["pmDE"][0] # [mas/yr] + self.alpha0 = hip_cat["RArad"][0] # [deg] + self.delta0 = hip_cat["DErad"][0] # [deg] + self.plx0_err = hip_cat["e_Plx"][0] # [mas] + self.pm_ra0_err = hip_cat["e_pmRA"][0] # [mas/yr] + self.pm_dec0_err = hip_cat["e_pmDE"][0] # [mas/yr] + self.alpha0_err = hip_cat["e_RArad"][0] # [mas] + self.delta0_err = hip_cat["e_DErad"][0] # [mas] - solution_details = pd.read_csv(path_to_iad_file, skiprows=5, sep='\s+', nrows=1) + solution_type = hip_cat["Sn"][0] + f2 = hip_cat["F2"][0] - solution_type = solution_details['isol_n'].values[0] - f2 = solution_details['F2'].values[0] + else: + # read the Hipparcos best-fit solution from the IAD file + astrometric_solution = pd.read_csv( + path_to_iad_file, skiprows=9, sep="\s+", nrows=1 + ) + self.plx0 = astrometric_solution["Plx"].values[0] # [mas] + self.pm_ra0 = astrometric_solution["pm_RA"].values[0] # [mas/yr] + self.pm_dec0 = astrometric_solution["pm_DE"].values[0] # [mas/yr] + self.alpha0 = astrometric_solution["RAdeg"].values[0] # [deg] + self.delta0 = astrometric_solution["DEdeg"].values[0] # [deg] + self.plx0_err = astrometric_solution["e_Plx"].values[0] # [mas] + self.pm_ra0_err = astrometric_solution["e_pmRA"].values[0] # [mas/yr] + self.pm_dec0_err = astrometric_solution["e_pmDE"].values[0] # [mas/yr] + self.alpha0_err = astrometric_solution["e_RA"].values[0] # [mas] + self.delta0_err = astrometric_solution["e_DE"].values[0] # [mas] + + solution_details = pd.read_csv( + path_to_iad_file, skiprows=5, sep="\s+", nrows=1 + ) + solution_type = solution_details["isol_n"].values[0] + f2 = solution_details["F2"].values[0] if solution_type != 5: raise ValueError( @@ -144,23 +159,23 @@ def __init__( n_lines = len(iad) times = iad[1] + 1991.25 - self.cos_phi = iad[3] # scan direction + self.cos_phi = iad[3] # scan direction self.sin_phi = iad[4] - self.R = iad[5] # abscissa residual [mas] - self.eps = iad[6] # error on abscissa residual [mas] + self.R = iad[5] # abscissa residual [mas] + self.eps = iad[6] # error on abscissa residual [mas] # reject negative errors (scans that were rejected by Hipparcos team) good_scans = np.where(self.eps > 0)[0] if n_lines - len(good_scans) > 0: - print('{} Hipparcos scans rejected.'.format(n_lines - len(good_scans))) + print("{} Hipparcos scans rejected.".format(n_lines - len(good_scans))) times = times[good_scans] self.cos_phi = self.cos_phi[good_scans] self.sin_phi = self.sin_phi[good_scans] self.R = self.R[good_scans] self.eps = self.eps[good_scans] - epochs = Time(times, format='decimalyear') + epochs = Time(times, format="decimalyear") self.epochs = epochs.decimalyear self.epochs_mjd = epochs.mjd @@ -168,41 +183,44 @@ def __init__( D = len(epochs) - 6 G = f2 - f = ( - G * np.sqrt(2 / (9 * D)) + - 1 - - (2 / (9 * D)) - )**(3/2) + f = (G * np.sqrt(2 / (9 * D)) + 1 - (2 / (9 * D))) ** (3 / 2) self.eps *= f # compute Earth XYZ position in barycentric coordinates - bary_pos, _ = get_body_barycentric_posvel('earth', epochs) - self.X = bary_pos.x.value # [au] - self.Y = bary_pos.y.value # [au] - self.Z = bary_pos.z.value # [au] + bary_pos, _ = get_body_barycentric_posvel("earth", epochs) + self.X = bary_pos.x.value # [au] + self.Y = bary_pos.y.value # [au] + self.Z = bary_pos.z.value # [au] # reconstruct ephemeris of star given van Leeuwen best-fit (Nielsen+ 2020 Eqs 1-2) [mas] changein_alpha_st = ( - self.plx0 * ( - self.X * np.sin(np.radians(self.alpha0)) - - self.Y * np.cos(np.radians(self.alpha0)) - ) + (self.epochs - 1991.25) * self.pm_ra0 + self.plx0 + * ( + self.X * np.sin(np.radians(self.alpha0)) + - self.Y * np.cos(np.radians(self.alpha0)) + ) + + (self.epochs - 1991.25) * self.pm_ra0 ) changein_delta = ( - self.plx0 * ( - self.X * np.cos(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) + - self.Y * np.sin(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - - self.Z * np.cos(np.radians(self.delta0)) - ) + (self.epochs - 1991.25) * self.pm_dec0 + self.plx0 + * ( + self.X + * np.cos(np.radians(self.alpha0)) + * np.sin(np.radians(self.delta0)) + + self.Y + * np.sin(np.radians(self.alpha0)) + * np.sin(np.radians(self.delta0)) + - self.Z * np.cos(np.radians(self.delta0)) + ) + + (self.epochs - 1991.25) * self.pm_dec0 ) # compute abcissa point (Nielsen+ Eq 3) self.alpha_abs_st = self.R * self.cos_phi + changein_alpha_st self.delta_abs = self.R * self.sin_phi + changein_delta - def _save(self, hf): """ Saves the current object to an hdf5 file @@ -211,50 +229,50 @@ def _save(self, hf): hf (h5py._hl.files.File): a currently open hdf5 file in which to save the object. """ - with open(self.path_to_iad_file, 'r') as f: - iad_data = np.array(f.readlines(), h5py.string_dtype(encoding='UTF-8')) - hf.create_dataset("IAD_datafile", data=iad_data, dtype=h5py.string_dtype(encoding='UTF-8')) + with open(self.path_to_iad_file, "r") as f: + iad_data = np.array(f.readlines(), h5py.string_dtype(encoding="UTF-8")) + hf.create_dataset( + "IAD_datafile", data=iad_data, dtype=h5py.string_dtype(encoding="UTF-8") + ) - hf.attrs['hip_num'] = self.hip_num - hf.attrs['alphadec0_epoch'] = self.alphadec0_epoch - hf.attrs['renormalize_errors'] = self.renormalize_errors + hf.attrs["hip_num"] = self.hip_num + hf.attrs["alphadec0_epoch"] = self.alphadec0_epoch + hf.attrs["renormalize_errors"] = self.renormalize_errors - def compute_lnlike( - self, raoff_model, deoff_model, samples, param_idx - ): + def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): """ - Computes the log likelihood of an orbit model with respect to the - Hipparcos IAD. This is added to the likelihoods calculated with - respect to other data types in ``sampler._logl()``. + Computes the log likelihood of an orbit model with respect to the + Hipparcos IAD. This is added to the likelihoods calculated with + respect to other data types in ``sampler._logl()``. Args: raoff_model (np.array of float): M-dimensional array of primary RA - offsets from the barycenter incurred from orbital motion of - companions (i.e. not from parallactic motion), where M is the + offsets from the barycenter incurred from orbital motion of + companions (i.e. not from parallactic motion), where M is the number of epochs of IAD scan data. deoff_model (np.array of float): M-dimensional array of primary RA - offsets from the barycenter incurred from orbital motion of - companions (i.e. not from parallactic motion), where M is the + offsets from the barycenter incurred from orbital motion of + companions (i.e. not from parallactic motion), where M is the number of epochs of IAD scan data. - samples (np.array of float): R-dimensional array of fitting - parameters, where R is the number of parameters being fit. Must - be in the same order documented in ``System``. + samples (np.array of float): R-dimensional array of fitting + parameters, where R is the number of parameters being fit. Must + be in the same order documented in ``System``. param_idx: a dictionary matching fitting parameter labels to their - indices in an array of fitting parameters (generally + indices in an array of fitting parameters (generally set to System.basis.param_idx). Returns: - np.array of float: array of length M, where M is the number of input - orbits, representing the log likelihood of each orbit with + np.array of float: array of length M, where M is the number of input + orbits, representing the log likelihood of each orbit with respect to the Hipparcos IAD. """ # variables for each of the astrometric fitting parameters - plx = samples[param_idx['plx']] - pm_ra = samples[param_idx['pm_ra']] - pm_dec = samples[param_idx['pm_dec']] - alpha_H0 = samples[param_idx['alpha0']] - delta_H0 = samples[param_idx['delta0']] + plx = samples[param_idx["plx"]] + pm_ra = samples[param_idx["pm_ra"]] + pm_dec = samples[param_idx["pm_dec"]] + alpha_H0 = samples[param_idx["alpha0"]] + delta_H0 = samples[param_idx["delta0"]] try: n_samples = len(pm_ra) @@ -266,17 +284,30 @@ def compute_lnlike( # add parallactic ellipse & proper motion to position (Nielsen+ 2020 Eq 8) for i in np.arange(n_epochs): - # this is the expected offset from the photocenter in alphadec0_epoch (typically 1991.25 for Hipparcos) - alpha_C_st = alpha_H0 + plx * ( - self.X[i] * np.sin(np.radians(self.alpha0)) - - self.Y[i] * np.cos(np.radians(self.alpha0)) - ) + (self.epochs[i] - self.alphadec0_epoch) * pm_ra - delta_C = delta_H0 + plx * ( - self.X[i] * np.cos(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) + - self.Y[i] * np.sin(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - - self.Z[i] * np.cos(np.radians(self.delta0)) - ) + (self.epochs[i] - self.alphadec0_epoch) * pm_dec + alpha_C_st = ( + alpha_H0 + + plx + * ( + self.X[i] * np.sin(np.radians(self.alpha0)) + - self.Y[i] * np.cos(np.radians(self.alpha0)) + ) + + (self.epochs[i] - self.alphadec0_epoch) * pm_ra + ) + delta_C = ( + delta_H0 + + plx + * ( + self.X[i] + * np.cos(np.radians(self.alpha0)) + * np.sin(np.radians(self.delta0)) + + self.Y[i] + * np.sin(np.radians(self.alpha0)) + * np.sin(np.radians(self.delta0)) + - self.Z[i] * np.cos(np.radians(self.delta0)) + ) + + (self.epochs[i] - self.alphadec0_epoch) * pm_dec + ) # add in pre-computed secondary perturbations alpha_C_st += raoff_model[i] @@ -284,31 +315,37 @@ def compute_lnlike( # calculate distance between line and expected measurement (Nielsen+ 2020 Eq 6) [mas] dist[i, :] = np.abs( - (self.alpha_abs_st[i] - alpha_C_st) * self.cos_phi[i] + - (self.delta_abs[i] - delta_C) * self.sin_phi[i] + (self.alpha_abs_st[i] - alpha_C_st) * self.cos_phi[i] + + (self.delta_abs[i] - delta_C) * self.sin_phi[i] ) # compute chi2 (Nielsen+ 2020 Eq 7) - chi2 = np.sum([(dist[:,i] / self.eps)**2 for i in np.arange(n_samples)], axis=1) + chi2 = np.sum( + [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], axis=1 + ) lnlike = -0.5 * chi2 return lnlike + def nielsen_iad_refitting_test( - iad_file, hip_num='027321', saveplot='bPic_IADrefit.png', - burn_steps=100, mcmc_steps=5000 + iad_file, + hip_num="027321", + saveplot="bPic_IADrefit.png", + burn_steps=100, + mcmc_steps=5000, ): """ Reproduce the IAD refitting test from Nielsen+ 2020 (end of Section 3.1). - The default MCMC parameters are what you'd want to run before using - the IAD for a new system. This fit uses 100 walkers. + The default MCMC parameters are what you'd want to run before using + the IAD for a new system. This fit uses 100 walkers. Args: iad_loc (str): path to the IAD file. hip_num (str): Hipparcos ID of star. Available on Simbad. Should have zeros in the prefix if number is <100,000. (i.e. 27321 should be passed in as '027321'). - saveplot (str): what to save the summary plot as. If None, don't make a + saveplot (str): what to save the summary plot as. If None, don't make a plot burn_steps (int): number of MCMC burn-in steps to run. mcmc_steps (int): number of MCMC production steps to run. @@ -317,11 +354,11 @@ def nielsen_iad_refitting_test( tuple: numpy.array of float: n_steps x 5 array of posterior samples - + orbitize.hipparcos.HipparcosLogProb: the object storing relevant metadata for the performed Hipparcos IAD fit """ - + num_secondary_bodies = 0 myHipLogProb = HipparcosLogProb( @@ -329,17 +366,14 @@ def nielsen_iad_refitting_test( ) n_epochs = len(myHipLogProb.epochs) - param_idx = {'plx':0, 'pm_ra':1, 'pm_dec':2, 'alpha0':3, 'delta0':4} + param_idx = {"plx": 0, "pm_ra": 1, "pm_dec": 2, "alpha0": 3, "delta0": 4} def log_prob(model_pars): ra_model = np.zeros(n_epochs) dec_model = np.zeros(n_epochs) - lnlike = myHipLogProb.compute_lnlike( - ra_model, dec_model, model_pars, - param_idx - ) + lnlike = myHipLogProb.compute_lnlike(ra_model, dec_model, model_pars, param_idx) return lnlike - + ndim, nwalkers = 5, 100 # initialize walkers @@ -347,76 +381,72 @@ def log_prob(model_pars): p0 = np.random.randn(nwalkers, ndim) # plx - p0[:,0] *= myHipLogProb.plx0_err - p0[:,0] += myHipLogProb.plx0 + p0[:, 0] *= myHipLogProb.plx0_err + p0[:, 0] += myHipLogProb.plx0 # PM - p0[:,1] *= myHipLogProb.pm_ra0 - p0[:,1] += myHipLogProb.pm_ra0_err - p0[:,2] *= myHipLogProb.pm_dec0 - p0[:,2] += myHipLogProb.pm_dec0_err + p0[:, 1] *= myHipLogProb.pm_ra0 + p0[:, 1] += myHipLogProb.pm_ra0_err + p0[:, 2] *= myHipLogProb.pm_dec0 + p0[:, 2] += myHipLogProb.pm_dec0_err # set up an MCMC sampler = emcee.EnsembleSampler(nwalkers, ndim, log_prob) - print('Starting burn-in!') + print("Starting burn-in!") state = sampler.run_mcmc(p0, burn_steps) sampler.reset() - print('Starting production chain!') + print("Starting production chain!") sampler.run_mcmc(state, mcmc_steps) - if saveplot is not None: - _, axes = plt.subplots(5, figsize=(5,12)) + _, axes = plt.subplots(5, figsize=(5, 12)) # plx xs = np.linspace( - myHipLogProb.plx0 - 3 * myHipLogProb.plx0_err, + myHipLogProb.plx0 - 3 * myHipLogProb.plx0_err, myHipLogProb.plx0 + 3 * myHipLogProb.plx0_err, - 1000 + 1000, ) - axes[0].hist(sampler.flatchain[:,0], bins=50, density=True, color='r') + axes[0].hist(sampler.flatchain[:, 0], bins=50, density=True, color="r") axes[0].plot( - xs, norm(myHipLogProb.plx0, myHipLogProb.plx0_err).pdf(xs), - color='k' + xs, norm(myHipLogProb.plx0, myHipLogProb.plx0_err).pdf(xs), color="k" ) - axes[0].set_xlabel('plx [mas]') + axes[0].set_xlabel("plx [mas]") # PM RA xs = np.linspace( - myHipLogProb.pm_ra0 - 3 * myHipLogProb.pm_ra0_err, + myHipLogProb.pm_ra0 - 3 * myHipLogProb.pm_ra0_err, myHipLogProb.pm_ra0 + 3 * myHipLogProb.pm_ra0_err, - 1000 + 1000, ) - axes[1].hist(sampler.flatchain[:,1], bins=50, density=True, color='r') + axes[1].hist(sampler.flatchain[:, 1], bins=50, density=True, color="r") axes[1].plot( - xs, norm(myHipLogProb.pm_ra0, myHipLogProb.pm_ra0_err).pdf(xs), - color='k' + xs, norm(myHipLogProb.pm_ra0, myHipLogProb.pm_ra0_err).pdf(xs), color="k" ) - axes[1].set_xlabel('PM RA [mas/yr]') + axes[1].set_xlabel("PM RA [mas/yr]") # PM Dec xs = np.linspace( - myHipLogProb.pm_dec0 - 3 * myHipLogProb.pm_dec0_err, + myHipLogProb.pm_dec0 - 3 * myHipLogProb.pm_dec0_err, myHipLogProb.pm_dec0 + 3 * myHipLogProb.pm_dec0_err, - 1000 + 1000, ) - axes[2].hist(sampler.flatchain[:,2], bins=50, density=True, color='r') + axes[2].hist(sampler.flatchain[:, 2], bins=50, density=True, color="r") axes[2].plot( - xs, norm(myHipLogProb.pm_dec0, myHipLogProb.pm_dec0_err).pdf(xs), - color='k' + xs, norm(myHipLogProb.pm_dec0, myHipLogProb.pm_dec0_err).pdf(xs), color="k" ) - axes[2].set_xlabel('PM Dec [mas/yr]') + axes[2].set_xlabel("PM Dec [mas/yr]") # RA offset - axes[3].hist(sampler.flatchain[:,3], bins=50, density=True, color='r') + axes[3].hist(sampler.flatchain[:, 3], bins=50, density=True, color="r") xs = np.linspace(-1, 1, 1000) - axes[3].plot(xs, norm(0, myHipLogProb.alpha0_err).pdf(xs), color='k') - axes[3].set_xlabel('RA Offset [mas]') + axes[3].plot(xs, norm(0, myHipLogProb.alpha0_err).pdf(xs), color="k") + axes[3].set_xlabel("RA Offset [mas]") # Dec offset - axes[4].hist(sampler.flatchain[:,4], bins=50, density=True, color='r') - axes[4].plot(xs, norm(0, myHipLogProb.delta0_err).pdf(xs), color='k') - axes[4].set_xlabel('Dec Offset [mas]') + axes[4].hist(sampler.flatchain[:, 4], bins=50, density=True, color="r") + axes[4].plot(xs, norm(0, myHipLogProb.delta0_err).pdf(xs), color="k") + axes[4].set_xlabel("Dec Offset [mas]") plt.tight_layout() plt.savefig(saveplot, dpi=250) From 66286a7a6b08adf4b126d03e7834c076dbb23e08 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 10 Nov 2023 15:45:08 -0800 Subject: [PATCH 02/37] add ability to fit type 1 hipparcos sols --- orbitize/hipparcos.py | 39 ++++++++++++++++++++++++++------------- 1 file changed, 26 insertions(+), 13 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 711aa7dc..dde9b0fd 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -115,7 +115,7 @@ def __init__( self.alpha0_err = hip_cat["e_RArad"][0] # [mas] self.delta0_err = hip_cat["e_DErad"][0] # [mas] - solution_type = hip_cat["Sn"][0] + self.solution_type = hip_cat["Sn"][0] f2 = hip_cat["F2"][0] else: @@ -133,21 +133,24 @@ def __init__( self.pm_dec0_err = astrometric_solution["e_pmDE"].values[0] # [mas/yr] self.alpha0_err = astrometric_solution["e_RA"].values[0] # [mas] self.delta0_err = astrometric_solution["e_DE"].values[0] # [mas] + self.var = astrometric_solution["var"].values[0] solution_details = pd.read_csv( path_to_iad_file, skiprows=5, sep="\s+", nrows=1 ) - solution_type = solution_details["isol_n"].values[0] + self.solution_type = solution_details["isol_n"].values[0] f2 = solution_details["F2"].values[0] - if solution_type != 5: + # sol types: 1 = "stochastic solution", which has a 5-param fit but + # there were significant residuals. 5 = standard 5-param fit. + if self.solution_type not in [1, 5]: raise ValueError( """ - Currently, we only handle stars with 5-parameter astrometric - solutions from Hipparcos. Let us know if you'd like us to add - functionality for stars with >5 parameter solutions. - """ + Currently, we only handle stars with solution types 1 and 5. Your star has type {}. Let us know if you want us to add another solution type! + """.format( + self.solution_type + ) ) # read in IAD @@ -179,6 +182,9 @@ def __init__( self.epochs = epochs.decimalyear self.epochs_mjd = epochs.mjd + # if the star has a type 1 (stochastic) solution, we need to undo the addition of a jitter term in quadrature + self.eps = np.sqrt(self.eps**2 - self.var) + if self.renormalize_errors: D = len(epochs) - 6 G = f2 @@ -321,9 +327,11 @@ def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): # compute chi2 (Nielsen+ 2020 Eq 7) chi2 = np.sum( - [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], axis=1 + [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], + axis=1, ) - lnlike = -0.5 * chi2 + + lnlike = -0.5 * chi2 - np.sum(np.log(self.eps * np.sqrt(2 * np.pi))) return lnlike @@ -374,10 +382,10 @@ def log_prob(model_pars): lnlike = myHipLogProb.compute_lnlike(ra_model, dec_model, model_pars, param_idx) return lnlike - ndim, nwalkers = 5, 100 + ndim, nwalkers = len(param_idx.keys()), 100 # initialize walkers - # (fitting only plx, mu_a, mu_d, alpha_H0, delta_H0) + # (fitting plx, mu_a, mu_d, alpha_H0, delta_H0) p0 = np.random.randn(nwalkers, ndim) # plx @@ -399,7 +407,7 @@ def log_prob(model_pars): sampler.run_mcmc(state, mcmc_steps) if saveplot is not None: - _, axes = plt.subplots(5, figsize=(5, 12)) + _, axes = plt.subplots(len(param_idx.keys()), figsize=(5, 12)) # plx xs = np.linspace( @@ -439,11 +447,16 @@ def log_prob(model_pars): # RA offset axes[3].hist(sampler.flatchain[:, 3], bins=50, density=True, color="r") - xs = np.linspace(-1, 1, 1000) + xs = np.linspace( + -3 * myHipLogProb.alpha0_err, 3 * myHipLogProb.alpha0_err, 1000 + ) axes[3].plot(xs, norm(0, myHipLogProb.alpha0_err).pdf(xs), color="k") axes[3].set_xlabel("RA Offset [mas]") # Dec offset + xs = np.linspace( + -3 * myHipLogProb.delta0_err, 3 * myHipLogProb.delta0_err, 1000 + ) axes[4].hist(sampler.flatchain[:, 4], bins=50, density=True, color="r") axes[4].plot(xs, norm(0, myHipLogProb.delta0_err).pdf(xs), color="k") axes[4].set_xlabel("Dec Offset [mas]") From b409eb067938790df41f2a920872b1cf4dbb0137 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 18:38:15 -0600 Subject: [PATCH 03/37] lint --- orbitize/basis.py | 971 ++++++++++++++++++++++++++++------------------ 1 file changed, 604 insertions(+), 367 deletions(-) diff --git a/orbitize/basis.py b/orbitize/basis.py index 4acdf681..ef3cf477 100644 --- a/orbitize/basis.py +++ b/orbitize/basis.py @@ -6,6 +6,7 @@ from orbitize import priors, kepler from scipy.optimize import fsolve + class Basis(abc.ABC): """ Abstract base class for different basis sets. All new basis objects should inherit from @@ -16,34 +17,40 @@ class Basis(abc.ABC): """ def __init__( - self, stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, - fit_secondary_mass, angle_upperlim=2*np.pi, hipparcos_IAD=None, - rv=False, rv_instruments=None + self, + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim=2 * np.pi, + hipparcos_IAD=None, + rv=False, + rv_instruments=None, ): - self.stellar_or_system_mass = stellar_or_system_mass - self.mass_err=mass_err - self.plx=plx - self.plx_err=plx_err - self.num_secondary_bodies=num_secondary_bodies - self.angle_upperlim=angle_upperlim - self.fit_secondary_mass=fit_secondary_mass + self.mass_err = mass_err + self.plx = plx + self.plx_err = plx_err + self.num_secondary_bodies = num_secondary_bodies + self.angle_upperlim = angle_upperlim + self.fit_secondary_mass = fit_secondary_mass self.hipparcos_IAD = hipparcos_IAD self.rv = rv self.rv_instruments = rv_instruments # Define dictionary of default priors to be updated as new basis sets are added self.default_priors = { - 'sma' : priors.LogUniformPrior(0.001, 1e4), - 'per' : priors.LogUniformPrior(1e-5, 1e6), - 'ecc' : priors.UniformPrior(0., 1.), - 'inc' : priors.SinPrior(), - 'aop' : priors.UniformPrior(0., 2.*np.pi), - 'pan' : priors.UniformPrior(0., angle_upperlim), - 'tau' : priors.UniformPrior(0., 1.), - 'K' : priors.LogUniformPrior(1e-4, 10) + "sma": priors.LogUniformPrior(0.001, 1e4), + "per": priors.LogUniformPrior(1e-5, 1e6), + "ecc": priors.UniformPrior(0.0, 1.0), + "inc": priors.SinPrior(), + "aop": priors.UniformPrior(0.0, 2.0 * np.pi), + "pan": priors.UniformPrior(0.0, angle_upperlim), + "tau": priors.UniformPrior(0.0, 1.0), + "K": priors.LogUniformPrior(1e-4, 10), } - @abc.abstractmethod def construct_priors(self): @@ -54,11 +61,11 @@ def to_standard_basis(self, param_arr, param_idx): pass def verify_params(self): - ''' - Displays warnings about the 'fit_secondary_mass' and 'rv' parameters for - all basis sets. Can be overriden by any basis class depending on the - necessary parameters that need to be checked. - ''' + """ + Displays warnings about the 'fit_secondary_mass' and 'rv' parameters for + all basis sets. Can be overriden by any basis class depending on the + necessary parameters that need to be checked. + """ if not self.fit_secondary_mass and self.rv: warnings.warn( """" @@ -69,88 +76,98 @@ def verify_params(self): ) def set_hip_iad_priors(self, priors_arr, labels_arr): - ''' - Adds the necessary priors relevant to the hipparcos data to 'priors_arr' + """ + Adds the necessary priors relevant to the hipparcos data to 'priors_arr' and updates 'labels_arr' with the priors' corresponding labels. Args: - priors_arr (list of orbitize.priors.Prior objects): holds the prior + priors_arr (list of orbitize.priors.Prior objects): holds the prior objects for each parameter to be fitted (updated here) - labels_arr (list of strings): holds the name of all the parameters + labels_arr (list of strings): holds the name of all the parameters to be fitted (updated here) - ''' + """ - priors_arr.append(priors.UniformPrior( - self.hipparcos_IAD.pm_ra0 - 10 * self.hipparcos_IAD.pm_ra0_err, - self.hipparcos_IAD.pm_ra0 + 10 * self.hipparcos_IAD.pm_ra0_err) + priors_arr.append( + priors.UniformPrior( + self.hipparcos_IAD.pm_ra0 - 10 * self.hipparcos_IAD.pm_ra0_err, + self.hipparcos_IAD.pm_ra0 + 10 * self.hipparcos_IAD.pm_ra0_err, + ) ) - labels_arr.append('pm_ra') + labels_arr.append("pm_ra") - priors_arr.append(priors.UniformPrior( - self.hipparcos_IAD.pm_dec0 - 10 * self.hipparcos_IAD.pm_dec0_err, - self.hipparcos_IAD.pm_dec0 + 10 * self.hipparcos_IAD.pm_dec0_err) + priors_arr.append( + priors.UniformPrior( + self.hipparcos_IAD.pm_dec0 - 10 * self.hipparcos_IAD.pm_dec0_err, + self.hipparcos_IAD.pm_dec0 + 10 * self.hipparcos_IAD.pm_dec0_err, + ) ) - labels_arr.append('pm_dec') + labels_arr.append("pm_dec") - priors_arr.append(priors.UniformPrior( - - 10 * self.hipparcos_IAD.alpha0_err, - 10 * self.hipparcos_IAD.alpha0_err) + priors_arr.append( + priors.UniformPrior( + -10 * self.hipparcos_IAD.alpha0_err, 10 * self.hipparcos_IAD.alpha0_err + ) ) - labels_arr.append('alpha0') + labels_arr.append("alpha0") - priors_arr.append(priors.UniformPrior( - - 10 * self.hipparcos_IAD.delta0_err, - 10 * self.hipparcos_IAD.delta0_err) + priors_arr.append( + priors.UniformPrior( + -10 * self.hipparcos_IAD.delta0_err, 10 * self.hipparcos_IAD.delta0_err + ) ) - labels_arr.append('delta0') + labels_arr.append("delta0") def set_rv_priors(self, priors_arr, labels_arr): - ''' - Adds the necessary priors if radial velocity data is supplied to - 'priors_arr' and updates 'labels_arr' with the priors' corresponding - labels. This function assumes that 'rv' data has been supplied and + """ + Adds the necessary priors if radial velocity data is supplied to + 'priors_arr' and updates 'labels_arr' with the priors' corresponding + labels. This function assumes that 'rv' data has been supplied and a secondary mass is being fitted for. Args: - priors_arr (list of orbitize.priors.Prior objects): holds the prior + priors_arr (list of orbitize.priors.Prior objects): holds the prior objects for each parameter to be fitted (updated here) - labels_arr (list of strings): holds the name of all the parameters + labels_arr (list of strings): holds the name of all the parameters to be fitted (updated here) - ''' + """ for instrument in self.rv_instruments: priors_arr.append(priors.UniformPrior(-5, 5)) # gamma prior in km/s - labels_arr.append('gamma_{}'.format(instrument)) + labels_arr.append("gamma_{}".format(instrument)) - priors_arr.append(priors.LogUniformPrior(1e-4, 0.05)) # jitter prior in km/s - labels_arr.append('sigma_{}'.format(instrument)) + priors_arr.append( + priors.LogUniformPrior(1e-4, 0.05) + ) # jitter prior in km/s + labels_arr.append("sigma_{}".format(instrument)) def set_default_mass_priors(self, priors_arr, labels_arr): - ''' + """ Adds the necessary priors for the stellar and/or companion masses. Args: - priors_arr (list of orbitize.priors.Prior objects): holds the prior + priors_arr (list of orbitize.priors.Prior objects): holds the prior objects for each parameter to be fitted (updated here) - labels_arr (list of strings): holds the name of all the parameters + labels_arr (list of strings): holds the name of all the parameters to be fitted (updated here) - ''' + """ if self.fit_secondary_mass: - for body in np.arange(self.num_secondary_bodies)+1: - priors_arr.append(priors.LogUniformPrior(1e-6, 2)) # in Solar masses - labels_arr.append('m{}'.format(body)) - labels_arr.append('m0') + for body in np.arange(self.num_secondary_bodies) + 1: + priors_arr.append(priors.LogUniformPrior(1e-6, 2)) # in Solar masses + labels_arr.append("m{}".format(body)) + labels_arr.append("m0") else: - labels_arr.append('mtot') + labels_arr.append("mtot") if self.mass_err > 0: - priors_arr.append(priors.GaussianPrior(self.stellar_or_system_mass, self.mass_err)) + priors_arr.append( + priors.GaussianPrior(self.stellar_or_system_mass, self.mass_err) + ) else: priors_arr.append(self.stellar_or_system_mass) class Standard(Basis): - ''' + """ Standard basis set based upon the 6 standard Keplarian elements: (sma, ecc, inc, aop, pan, tau). Args: @@ -168,16 +185,36 @@ class Standard(Basis): rv (bool): if True, then there is radial velocity data and assign radial velocity priors, if False, then there is no radial velocity data and radial velocity priors are not assigned (default: False) rv_instruments (np.array): array of unique rv instruments from the originally supplied data (default: None) - ''' - - def __init__(self, stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, fit_secondary_mass, - angle_upperlim=2*np.pi, hipparcos_IAD=None, rv=False, rv_instruments=None): + """ - super(Standard, self).__init__(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, - fit_secondary_mass, angle_upperlim, hipparcos_IAD, rv, rv_instruments) + def __init__( + self, + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim=2 * np.pi, + hipparcos_IAD=None, + rv=False, + rv_instruments=None, + ): + super(Standard, self).__init__( + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim, + hipparcos_IAD, + rv, + rv_instruments, + ) def construct_priors(self): - ''' + """ Generates the parameter label array and initializes the corresponding priors for each parameter that's to be sampled. For the standard basis, the parameters common to each companion are: sma, ecc, inc, aop, pan, tau. Parallax, hipparcos (optional), rv (optional), @@ -189,8 +226,8 @@ def construct_priors(self): list: list of strings (labels) that indicate the names of each parameter to sample list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label - ''' - base_labels = ['sma', 'ecc', 'inc', 'aop', 'pan', 'tau'] + """ + base_labels = ["sma", "ecc", "inc", "aop", "pan", "tau"] basis_priors = [] basis_labels = [] @@ -198,10 +235,10 @@ def construct_priors(self): for body in np.arange(self.num_secondary_bodies): for elem in base_labels: basis_priors.append(self.default_priors[elem]) - basis_labels.append(elem + str(body+1)) + basis_labels.append(elem + str(body + 1)) # Add parallax prior - basis_labels.append('plx') + basis_labels.append("plx") if self.plx_err > 0: basis_priors.append(priors.GaussianPrior(self.plx, self.plx_err)) else: @@ -225,21 +262,22 @@ def construct_priors(self): return basis_priors, basis_labels def to_standard_basis(self, param_arr): - ''' + """ For standard basis, no conversion needs to be made. Args: - param_arr (np.array of float): RxM array of fitting parameters in the standard basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the standard basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1d array. - Returns: + Returns: np.array of float: ``param_arr`` without any modification - ''' + """ return param_arr + class Period(Basis): - ''' + """ Modification of the standard basis, swapping our sma for period: (per, ecc, inc, aop, pan, tau). Args: @@ -257,16 +295,36 @@ class Period(Basis): rv (bool): if True, then there is radial velocity data and assign radial velocity priors, if False, then there is no radial velocity data and radial velocity priors are not assigned (default: False) rv_instruments (np.array): array of unique rv instruments from the originally supplied data (default: None) - ''' - - def __init__(self, stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, fit_secondary_mass, - angle_upperlim=2*np.pi, hipparcos_IAD=None, rv=False, rv_instruments=None): + """ - super(Period, self).__init__(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, - fit_secondary_mass, angle_upperlim, hipparcos_IAD, rv, rv_instruments) + def __init__( + self, + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim=2 * np.pi, + hipparcos_IAD=None, + rv=False, + rv_instruments=None, + ): + super(Period, self).__init__( + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim, + hipparcos_IAD, + rv, + rv_instruments, + ) def construct_priors(self): - ''' + """ Generates the parameter label array and initializes the corresponding priors for each parameter that's to be sampled. For the standard basis, the parameters common to each companion are: per, ecc, inc, aop, pan, tau. Parallax, hipparcos (optional), rv (optional), @@ -278,8 +336,8 @@ def construct_priors(self): list: list of strings (labels) that indicate the names of each parameter to sample list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label - ''' - base_labels = ['per', 'ecc', 'inc', 'aop', 'pan', 'tau'] + """ + base_labels = ["per", "ecc", "inc", "aop", "pan", "tau"] basis_priors = [] basis_labels = [] @@ -287,10 +345,10 @@ def construct_priors(self): for body in np.arange(self.num_secondary_bodies): for elem in base_labels: basis_priors.append(self.default_priors[elem]) - basis_labels.append(elem + str(body+1)) + basis_labels.append(elem + str(body + 1)) # Add parallax prior - basis_labels.append('plx') + basis_labels.append("plx") if self.plx_err > 0: basis_priors.append(priors.GaussianPrior(self.plx, self.plx_err)) else: @@ -312,76 +370,83 @@ def construct_priors(self): self.standard_basis_idx = dict(zip(basis_labels, np.arange(len(basis_labels)))) for body_num in np.arange(self.num_secondary_bodies) + 1: - self.standard_basis_idx['sma{}'.format(body_num)] = self.param_idx['per{}'.format(body_num)] + self.standard_basis_idx["sma{}".format(body_num)] = self.param_idx[ + "per{}".format(body_num) + ] return basis_priors, basis_labels def to_standard_basis(self, param_arr): - ''' + """ Convert parameter array from period basis to standard basis by swapping out the period parameter to semi-major axis for each companion. - + Args: - param_arr (np.array of float): RxM array of fitting parameters in the period basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the period basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1D array. Returns: np.array of float: modifies 'param_arr' to contain the semi-major axis for each companion in each orbit rather than period. Shape of 'param_arr' remains the same. - ''' - for body_num in np.arange(self.num_secondary_bodies)+1: - per = param_arr[self.param_idx['per{}'.format(body_num)]] + """ + for body_num in np.arange(self.num_secondary_bodies) + 1: + per = param_arr[self.param_idx["per{}".format(body_num)]] if self.fit_secondary_mass: # Assume two-body system - m_secondary = param_arr[self.param_idx['m{}'.format(body_num)]] - m0 = param_arr[self.param_idx['m0']] + m_secondary = param_arr[self.param_idx["m{}".format(body_num)]] + m0 = param_arr[self.param_idx["m0"]] mtot = m_secondary + m0 else: - mtot = param_arr[self.param_idx['mtot']] + mtot = param_arr[self.param_idx["mtot"]] # Compute semi-major axis using Kepler's Third Law and replace period - sma = np.cbrt((consts.G*(mtot*u.Msun)*((per*u.year)**2))/(4*np.pi**2)) + sma = np.cbrt( + (consts.G * (mtot * u.Msun) * ((per * u.year) ** 2)) / (4 * np.pi**2) + ) sma = sma.to(u.AU).value - param_arr[self.standard_basis_idx['per{}'.format(body_num)]] = sma + param_arr[self.standard_basis_idx["per{}".format(body_num)]] = sma return param_arr def to_period_basis(self, param_arr): - ''' + """ Convert parameter array from standard basis to period basis by swapping out the semi-major axis parameter to period for each companion. This function is used primarily for testing purposes. - + Args: - param_arr (np.array of float): RxM array of fitting parameters in the standard basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the standard basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1D array. Returns: np.array of float: modifies 'param_arr' to contain the period for each companion in each orbit rather than semi-major axis. Shape of 'param_arr' remains the same. - ''' - for body_num in np.arange(self.num_secondary_bodies)+1: - sma = param_arr[self.standard_basis_idx['sma{}'.format(body_num)]] + """ + for body_num in np.arange(self.num_secondary_bodies) + 1: + sma = param_arr[self.standard_basis_idx["sma{}".format(body_num)]] if self.fit_secondary_mass: # Assume two-body system - m_secondary = param_arr[self.standard_basis_idx['m{}'.format(body_num)]] - m0 = param_arr[self.standard_basis_idx['m0']] + m_secondary = param_arr[self.standard_basis_idx["m{}".format(body_num)]] + m0 = param_arr[self.standard_basis_idx["m0"]] mtot = m_secondary + m0 else: - mtot = param_arr[self.standard_basis_idx['mtot']] + mtot = param_arr[self.standard_basis_idx["mtot"]] - per = np.sqrt((4*(np.pi**2)*(sma*u.AU)**3) / (consts.G*(mtot*u.Msun))) + per = np.sqrt( + (4 * (np.pi**2) * (sma * u.AU) ** 3) / (consts.G * (mtot * u.Msun)) + ) per = per.to(u.year).value - param_arr[self.param_idx['per{}'.format(body_num)]] = per - + param_arr[self.param_idx["per{}".format(body_num)]] = per + return param_arr + class SemiAmp(Basis): - ''' + """ Modification of the standard basis, swapping our sma for period and additionally sampling in the stellar radial velocity semi-amplitude: (per, ecc, inc, aop, pan, tau, K). @@ -402,19 +467,39 @@ class SemiAmp(Basis): rv (bool): if True, then there is radial velocity data and assign radial velocity priors, if False, then there is no radial velocity data and radial velocity priors are not assigned (default: False) rv_instruments (np.array): array of unique rv instruments from the originally supplied data (default: None) - ''' - - def __init__(self, stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, fit_secondary_mass, - angle_upperlim=2*np.pi, hipparcos_IAD=None, rv=False, rv_instruments=None): + """ - super(SemiAmp, self).__init__(stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, - fit_secondary_mass, angle_upperlim, hipparcos_IAD, rv, rv_instruments) + def __init__( + self, + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim=2 * np.pi, + hipparcos_IAD=None, + rv=False, + rv_instruments=None, + ): + super(SemiAmp, self).__init__( + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim, + hipparcos_IAD, + rv, + rv_instruments, + ) def construct_priors(self): - ''' + """ Generates the parameter label array and initializes the corresponding priors for each parameter that's to be sampled. For the semi-amp basis, the parameters common to each - companion are: per, ecc, inc, aop, pan, tau, K (stellar rv semi-amplitude). Parallax, + companion are: per, ecc, inc, aop, pan, tau, K (stellar rv semi-amplitude). Parallax, hipparcos (optional), rv (optional), and mass priors are added at the end. The mass parameter will always be m0. @@ -423,10 +508,10 @@ def construct_priors(self): tuple: list: list of strings (labels) that indicate the names of each parameter to sample - + list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label - ''' - base_labels = ['per', 'ecc', 'inc', 'aop', 'pan', 'tau', 'K'] + """ + base_labels = ["per", "ecc", "inc", "aop", "pan", "tau", "K"] basis_priors = [] basis_labels = [] @@ -434,11 +519,10 @@ def construct_priors(self): for body in np.arange(self.num_secondary_bodies): for elem in base_labels: basis_priors.append(self.default_priors[elem]) - basis_labels.append(elem + str(body+1)) - + basis_labels.append(elem + str(body + 1)) # Add parallax prior - basis_labels.append('plx') + basis_labels.append("plx") if self.plx_err > 0: basis_priors.append(priors.GaussianPrior(self.plx, self.plx_err)) else: @@ -454,57 +538,63 @@ def construct_priors(self): # Add star mass prior (for now, regardless of whether 'fit_secondary_mass' is true) if self.mass_err > 0: - basis_priors.append(priors.GaussianPrior(self.stellar_or_system_mass, self.mass_err)) + basis_priors.append( + priors.GaussianPrior(self.stellar_or_system_mass, self.mass_err) + ) else: basis_priors.append(self.stellar_or_system_mass) - basis_labels.append('m0') + basis_labels.append("m0") # Define param label dictionary in current basis & standard basis self.param_idx = dict(zip(basis_labels, np.arange(len(basis_labels)))) self.standard_basis_idx = dict(zip(basis_labels, np.arange(len(basis_labels)))) for body_num in np.arange(self.num_secondary_bodies) + 1: - self.standard_basis_idx['sma{}'.format(body_num)] = self.param_idx['per{}'.format(body_num)] - self.standard_basis_idx['m{}'.format(body_num)] = self.param_idx['K{}'.format(body_num)] + self.standard_basis_idx["sma{}".format(body_num)] = self.param_idx[ + "per{}".format(body_num) + ] + self.standard_basis_idx["m{}".format(body_num)] = self.param_idx[ + "K{}".format(body_num) + ] return basis_priors, basis_labels def to_standard_basis(self, param_arr): - ''' + """ Convert parameter array from semi-amp basis to standard basis by swapping out the period parameter to semi-major axis for each companion and computing the masses of each companion. - + Args: - param_arr (np.array of float): RxM array of fitting parameters in the period basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the period basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1D array. Returns: np.array of float: modifies 'param_arr' to contain the semi-major axis for each companion in each orbit rather than period, removes stellar rv semi-amplitude parameters for each companion, and appends the companion masses to 'param_arr' - ''' - m0 = param_arr[self.param_idx['m0']] + """ + m0 = param_arr[self.param_idx["m0"]] # Compute each companion's mass and sma for body_num in np.arange(self.num_secondary_bodies) + 1: - period = param_arr[self.param_idx['per{}'.format(body_num)]] - ecc = param_arr[self.param_idx['ecc{}'.format(body_num)]] - inc = param_arr[self.param_idx['inc{}'.format(body_num)]] - semi_amp = param_arr[self.param_idx['K{}'.format(body_num)]] + period = param_arr[self.param_idx["per{}".format(body_num)]] + ecc = param_arr[self.param_idx["ecc{}".format(body_num)]] + inc = param_arr[self.param_idx["inc{}".format(body_num)]] + semi_amp = param_arr[self.param_idx["K{}".format(body_num)]] # Replace semi-amp with companion mass and period with sma companion_m = self.compute_companion_mass(period, ecc, inc, semi_amp, m0) - param_arr[self.standard_basis_idx['m{}'.format(body_num)]] = companion_m + param_arr[self.standard_basis_idx["m{}".format(body_num)]] = companion_m companion_sma = self.compute_companion_sma(period, m0, companion_m) - param_arr[self.standard_basis_idx['sma{}'.format(body_num)]] = companion_sma + param_arr[self.standard_basis_idx["sma{}".format(body_num)]] = companion_sma return param_arr def func(self, x, lhs, m0): - ''' + """ Define function for scipy.fsolve to use when computing companion mass. Args: @@ -515,11 +605,11 @@ def func(self, x, lhs, m0): Returns: float: the difference between the rhs and lhs of the rv semi-amplitude equation, 'x' is a good companion mass when this difference is very close to zero - ''' - return ((x / ((x + m0)**(2/3))) - lhs) + """ + return (x / ((x + m0) ** (2 / 3))) - lhs def compute_companion_mass(self, period, ecc, inc, semi_amp, m0): - ''' + """ Computes a single companion's mass given period, eccentricity, inclination, stellar rv semi-amplitude, and stellar mass. Uses scipy.fsolve to compute the masses numerically. @@ -532,17 +622,23 @@ def compute_companion_mass(self, period, ecc, inc, semi_amp, m0): Returns: np.array of float: the companion mass values for each orbit (can also just be a single float) - ''' + """ # Define LHS of equation kms = u.km / u.s - lhs = ((semi_amp*kms)*((1-ecc**2)**(1/2))*((period*u.yr)**(1/3))*(consts.G**(-1/3))*((4*np.pi**2)**(-1/6))) / (np.sin(inc)) - lhs = (lhs.to((u.solMass)**(1/3))).value + lhs = ( + (semi_amp * kms) + * ((1 - ecc**2) ** (1 / 2)) + * ((period * u.yr) ** (1 / 3)) + * (consts.G ** (-1 / 3)) + * ((4 * np.pi**2) ** (-1 / 6)) + ) / (np.sin(inc)) + lhs = (lhs.to((u.solMass) ** (1 / 3))).value m_n = [] # Solve for companion mass numerically, making initial guess at center of uniform prior distribution (Msol) - if (not hasattr(m0, '__len__')): + if not hasattr(m0, "__len__"): comp_mass = fsolve(self.func, x0=1e-3, args=(lhs, m0)) m_n.append(comp_mass[0]) else: @@ -557,7 +653,7 @@ def compute_companion_mass(self, period, ecc, inc, semi_amp, m0): return m_n def compute_companion_sma(self, period, m0, m_n): - ''' + """ Computes a single companion's semi-major axis using Kepler's Third Law for each orbit. Args: @@ -566,67 +662,80 @@ def compute_companion_sma(self, period, m0, m_n): m_n (np.array of float): the companion mass for each orbit (can be float) Returns: - np.array of float: the semi-major axis values for each orbit - ''' - sma = np.cbrt((consts.G*((m0+m_n)*u.Msun)*((period*u.yr)**2))/(4*np.pi**2)) + np.array of float: the semi-major axis values for each orbit + """ + sma = np.cbrt( + (consts.G * ((m0 + m_n) * u.Msun) * ((period * u.yr) ** 2)) + / (4 * np.pi**2) + ) sma = sma.to(u.AU).value return sma def to_semi_amp_basis(self, param_arr): - ''' + """ Convert parameter array from standard basis to semi-amp basis by swapping out the semi-major axis parameter to period for each companion and computing the stellar rv semi-amplitudes for each companion. - + Args: - param_arr (np.array of float): RxM array of fitting parameters in the period basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the period basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1D array. Returns: np.array of float: modifies 'param_arr' to contain the semi-major axis for each companion in each orbit rather than period, appends stellar rv semi-amplitude parameters, and removes companion masses - ''' + """ for body_num in np.arange(self.num_secondary_bodies) + 1: - # Grab necessary parameters for conversion - sma = param_arr[self.standard_basis_idx['sma{}'.format(body_num)]] - ecc = param_arr[self.standard_basis_idx['ecc{}'.format(body_num)]] - inc = param_arr[self.standard_basis_idx['inc{}'.format(body_num)]] - m_n = param_arr[self.standard_basis_idx['m{}'.format(body_num)]] - m0 = param_arr[self.standard_basis_idx['m0']] + sma = param_arr[self.standard_basis_idx["sma{}".format(body_num)]] + ecc = param_arr[self.standard_basis_idx["ecc{}".format(body_num)]] + inc = param_arr[self.standard_basis_idx["inc{}".format(body_num)]] + m_n = param_arr[self.standard_basis_idx["m{}".format(body_num)]] + m0 = param_arr[self.standard_basis_idx["m0"]] mtot = m_n + m0 # Get stellar semi-amplitude - K_n = (np.sqrt(consts.G / (1 - ecc**2)))*(m_n*u.Msun)*(np.sin(inc))*((mtot*u.Msun)**(-1/2))*((sma*u.AU)**(-1/2)) + K_n = ( + (np.sqrt(consts.G / (1 - ecc**2))) + * (m_n * u.Msun) + * (np.sin(inc)) + * ((mtot * u.Msun) ** (-1 / 2)) + * ((sma * u.AU) ** (-1 / 2)) + ) kms = u.km / u.s K_n = K_n.to(kms).value # Compute Period replace in array - per = np.sqrt((4*(np.pi**2)*(sma*u.AU)**3) / (consts.G*(mtot*u.Msun))) + per = np.sqrt( + (4 * (np.pi**2) * (sma * u.AU) ** 3) / (consts.G * (mtot * u.Msun)) + ) per = per.to(u.year).value - param_arr[self.param_idx['per{}'.format(body_num)]] = per + param_arr[self.param_idx["per{}".format(body_num)]] = per # Replace companion mass with semi-amplitude - param_arr[self.param_idx['K{}'.format(body_num)]] = K_n + param_arr[self.param_idx["K{}".format(body_num)]] = K_n return param_arr def verify_params(self): - ''' + """ Additionally warns that this basis will sample stellar mass rather than sample mass regardless of whether 'fit_secondary_mass' is True or not. - ''' + """ super(SemiAmp, self).verify_params() if not self.fit_secondary_mass: - warnings.warn("This basis will not sample total mass. It will sample stellar mass.") + warnings.warn( + "This basis will not sample total mass. It will sample stellar mass." + ) + class XYZ(Basis): - ''' + """ Defines an orbit using the companion's position and velocity components in XYZ space (x, y, z, xdot, ydot, zdot). The conversion algorithms used for this basis are defined in the following paper: http://www.dept.aoe.vt.edu/~lutze/AOE4134/9OrbitInSpace.pdf @@ -655,17 +764,35 @@ class XYZ(Basis): rv_instruments (np.array): array of unique rv instruments from the originally supplied data (default: None) Author: Rodrigo - ''' + """ + def __init__( - self, stellar_or_system_mass, mass_err, plx, plx_err, num_secondary_bodies, - fit_secondary_mass, data_table, best_epoch_idx, epochs, - angle_upperlim=2*np.pi, hipparcos_IAD=None, rv=False, - rv_instruments=None + self, + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + data_table, + best_epoch_idx, + epochs, + angle_upperlim=2 * np.pi, + hipparcos_IAD=None, + rv=False, + rv_instruments=None, ): - - super(XYZ, self).__init__(stellar_or_system_mass, mass_err, plx, plx_err, - num_secondary_bodies, fit_secondary_mass, angle_upperlim, - hipparcos_IAD, rv, rv_instruments + super(XYZ, self).__init__( + stellar_or_system_mass, + mass_err, + plx, + plx_err, + num_secondary_bodies, + fit_secondary_mass, + angle_upperlim, + hipparcos_IAD, + rv, + rv_instruments, ) self.data_table = data_table @@ -673,13 +800,13 @@ def __init__( self.epochs = epochs def construct_priors(self): - ''' + """ Generates the parameter label array and initializes the corresponding priors for each parameter that's to be sampled. For the xyz basis, the parameters common to each companion are: x, y, z, xdot, ydot, zdot. Parallax, hipparcos (optional), rv (optional), and mass priors are added at the end. - The xyz basis describes the position and velocity vectors with reference to the local coordinate + The xyz basis describes the position and velocity vectors with reference to the local coordinate system (the origin of the system is star). Returns: @@ -688,7 +815,7 @@ def construct_priors(self): list: list of strings (labels) that indicate the names of each parameter to sample list: list of orbitize.priors.Prior objects that indicate the prior distribution of each label - ''' + """ basis_priors = [] basis_labels = [] @@ -702,38 +829,52 @@ def construct_priors(self): # best_idx = curr_idx[0][min_uncert[0]] datapoints_to_take = 3 best_idx = self.best_epoch_idx[body] - best_epochs = self.epochs[best_idx:(best_idx+datapoints_to_take)] # 0 is best, the others are for fitting velocity + best_epochs = self.epochs[ + best_idx : (best_idx + datapoints_to_take) + ] # 0 is best, the others are for fitting velocity - # Get data near best epoch ASSUMING THE BEST IS NOT ONE OF THE LAST TWO EPOCHS OF A GIVEN BODY + # Get data near best epoch ASSUMING THE BEST IS NOT ONE OF THE LAST TWO EPOCHS OF A GIVEN BODY # also assuming this is in radec - best_ras = self.data_table['quant1'][best_idx:(best_idx+datapoints_to_take)].copy() - best_ras_err = self.data_table['quant1_err'][best_idx:(best_idx+datapoints_to_take)].copy() - best_decs = self.data_table['quant2'][best_idx:(best_idx+datapoints_to_take)].copy() - best_decs_err = self.data_table['quant2_err'][best_idx:(best_idx+datapoints_to_take)].copy() + best_ras = self.data_table["quant1"][ + best_idx : (best_idx + datapoints_to_take) + ].copy() + best_ras_err = self.data_table["quant1_err"][ + best_idx : (best_idx + datapoints_to_take) + ].copy() + best_decs = self.data_table["quant2"][ + best_idx : (best_idx + datapoints_to_take) + ].copy() + best_decs_err = self.data_table["quant2_err"][ + best_idx : (best_idx + datapoints_to_take) + ].copy() # Convert to AU for prior limits - best_xs = best_ras / self.plx - best_ys = best_decs / self.plx - best_xs_err = np.sqrt((best_ras_err / best_ras)**2 + (self.plx_err / self.plx)**2)*np.absolute(best_xs) - best_ys_err = np.sqrt((best_decs_err / best_decs)**2 + (self.plx_err / self.plx)**2)*np.absolute(best_ys) + best_xs = best_ras / self.plx + best_ys = best_decs / self.plx + best_xs_err = np.sqrt( + (best_ras_err / best_ras) ** 2 + (self.plx_err / self.plx) ** 2 + ) * np.absolute(best_xs) + best_ys_err = np.sqrt( + (best_decs_err / best_decs) ** 2 + (self.plx_err / self.plx) ** 2 + ) * np.absolute(best_ys) # Least-squares fit on velocity for prior limits A = np.vander(best_epochs, 2) - ATA_x = np.dot(A.T, A / (best_xs_err ** 2)[:, None]) + ATA_x = np.dot(A.T, A / (best_xs_err**2)[:, None]) cov_x = np.linalg.inv(ATA_x) - w_x = np.linalg.solve(ATA_x, np.dot(A.T, best_xs / best_xs_err ** 2)) + w_x = np.linalg.solve(ATA_x, np.dot(A.T, best_xs / best_xs_err**2)) - ATA_y = np.dot(A.T, A / (best_ys_err ** 2)[:, None]) + ATA_y = np.dot(A.T, A / (best_ys_err**2)[:, None]) cov_y = np.linalg.inv(ATA_y) - w_y = np.linalg.solve(ATA_y, np.dot(A.T, best_ys / best_ys_err ** 2)) + w_y = np.linalg.solve(ATA_y, np.dot(A.T, best_ys / best_ys_err**2)) x_vel = w_x[0] x_vel_err = np.sqrt(cov_x[0, 0]) y_vel = w_y[0] y_vel_err = np.sqrt(cov_y[0, 0]) - x_vel = (( x_vel* u.AU / u.day).to(u.km / u.s)).value + x_vel = ((x_vel * u.AU / u.day).to(u.km / u.s)).value x_vel_err = ((x_vel_err * u.AU / u.day).to(u.km / u.s)).value y_vel = ((y_vel * u.AU / u.day).to(u.km / u.s)).value y_vel_err = ((y_vel_err * u.AU / u.day).to(u.km / u.s)).value @@ -742,47 +883,77 @@ def construct_priors(self): mu = consts.G * self.stellar_or_system_mass * u.Msun mu_vel = 2 * mu / ((x_vel**2 + y_vel**2) * (u.km / u.s * u.km / u.s)) - z_bound = (np.sqrt(mu_vel**2 - (best_xs[0]**2 + best_ys[0]**2)*u.AU *u.AU)).to(u.AU) + z_bound = ( + np.sqrt(mu_vel**2 - (best_xs[0] ** 2 + best_ys[0] ** 2) * u.AU * u.AU) + ).to(u.AU) z_bound = z_bound.value - mu_pos = 2 * mu / np.sqrt((best_xs[0]**2 + best_ys[0]**2) * (u.AU *u.AU)) - z_vel_bound = (np.sqrt(mu_pos - (x_vel**2 + y_vel**2)*(u.km / u.s * u.km / u.s))).to(u.km / u.s) + mu_pos = ( + 2 * mu / np.sqrt((best_xs[0] ** 2 + best_ys[0] ** 2) * (u.AU * u.AU)) + ) + z_vel_bound = ( + np.sqrt(mu_pos - (x_vel**2 + y_vel**2) * (u.km / u.s * u.km / u.s)) + ).to(u.km / u.s) z_vel_bound = z_vel_bound.value # Add x-coordinate prior num_uncerts_x = 5 - basis_priors.append(priors.UniformPrior(best_xs[0] - num_uncerts_x*best_xs_err[0], best_xs[0] + num_uncerts_x*best_xs_err[0])) - basis_labels.append('x{}'.format(body+1)) - + basis_priors.append( + priors.UniformPrior( + best_xs[0] - num_uncerts_x * best_xs_err[0], + best_xs[0] + num_uncerts_x * best_xs_err[0], + ) + ) + basis_labels.append("x{}".format(body + 1)) + # Add y-coordinate prior num_uncerts_y = 5 - basis_priors.append(priors.UniformPrior(best_ys[0] - num_uncerts_y*best_ys_err[0], best_ys[0] + num_uncerts_y*best_ys_err[0])) - basis_labels.append('y{}'.format(body+1)) + basis_priors.append( + priors.UniformPrior( + best_ys[0] - num_uncerts_y * best_ys_err[0], + best_ys[0] + num_uncerts_y * best_ys_err[0], + ) + ) + basis_labels.append("y{}".format(body + 1)) # Add z-coordinate prior # self.sys_priors.append(priors.UniformPrior(-z_bound,z_bound)) # self.sys_priors.append(priors.LogUniformPrior(0.0001,z_bound)) - basis_priors.append(priors.GaussianPrior(0.,z_bound / 4, no_negatives=False)) - basis_labels.append('z{}'.format(body+1)) + basis_priors.append( + priors.GaussianPrior(0.0, z_bound / 4, no_negatives=False) + ) + basis_labels.append("z{}".format(body + 1)) # Add x-velocity prior num_uncerts_xvel = 5 - basis_priors.append(priors.UniformPrior(x_vel - num_uncerts_xvel*x_vel_err, x_vel + num_uncerts_xvel*x_vel_err)) - basis_labels.append('xdot{}'.format(body+1)) + basis_priors.append( + priors.UniformPrior( + x_vel - num_uncerts_xvel * x_vel_err, + x_vel + num_uncerts_xvel * x_vel_err, + ) + ) + basis_labels.append("xdot{}".format(body + 1)) # Add y-velocity prior num_uncerts_yvel = 5 - basis_priors.append(priors.UniformPrior(y_vel - num_uncerts_yvel*y_vel_err, y_vel + num_uncerts_yvel*y_vel_err)) - basis_labels.append('ydot{}'.format(body+1)) + basis_priors.append( + priors.UniformPrior( + y_vel - num_uncerts_yvel * y_vel_err, + y_vel + num_uncerts_yvel * y_vel_err, + ) + ) + basis_labels.append("ydot{}".format(body + 1)) # Add z-velocity prior # self.sys_priors.append(priors.UniformPrior(-z_vel_bound,z_vel_bound)) # self.sys_priors.append(priors.LogUniformPrior(0.0001,z_vel_bound)) - basis_priors.append(priors.GaussianPrior(0.,z_vel_bound / 4, no_negatives=False)) - basis_labels.append('zdot{}'.format(body+1)) + basis_priors.append( + priors.GaussianPrior(0.0, z_vel_bound / 4, no_negatives=False) + ) + basis_labels.append("zdot{}".format(body + 1)) # Add parallax prior - basis_labels.append('plx') + basis_labels.append("plx") if self.plx_err > 0: basis_priors.append(priors.GaussianPrior(self.plx, self.plx_err)) else: @@ -804,95 +975,121 @@ def construct_priors(self): self.standard_basis_idx = dict(zip(basis_labels, np.arange(len(basis_labels)))) for body_num in np.arange(self.num_secondary_bodies) + 1: - self.standard_basis_idx['sma{}'.format(body_num)] = self.param_idx['x{}'.format(body_num)] - self.standard_basis_idx['ecc{}'.format(body_num)] = self.param_idx['y{}'.format(body_num)] - self.standard_basis_idx['inc{}'.format(body_num)] = self.param_idx['z{}'.format(body_num)] - self.standard_basis_idx['aop{}'.format(body_num)] = self.param_idx['xdot{}'.format(body_num)] - self.standard_basis_idx['pan{}'.format(body_num)] = self.param_idx['ydot{}'.format(body_num)] - self.standard_basis_idx['tau{}'.format(body_num)] = self.param_idx['zdot{}'.format(body_num)] + self.standard_basis_idx["sma{}".format(body_num)] = self.param_idx[ + "x{}".format(body_num) + ] + self.standard_basis_idx["ecc{}".format(body_num)] = self.param_idx[ + "y{}".format(body_num) + ] + self.standard_basis_idx["inc{}".format(body_num)] = self.param_idx[ + "z{}".format(body_num) + ] + self.standard_basis_idx["aop{}".format(body_num)] = self.param_idx[ + "xdot{}".format(body_num) + ] + self.standard_basis_idx["pan{}".format(body_num)] = self.param_idx[ + "ydot{}".format(body_num) + ] + self.standard_basis_idx["tau{}".format(body_num)] = self.param_idx[ + "zdot{}".format(body_num) + ] return basis_priors, basis_labels def to_standard_basis(self, param_arr): - ''' + """ Makes a call to 'xyz_to_standard' to convert each companion's xyz parameters to the standard parameters an returns the updated array for conversion. Args: - param_arr (np.array of float): RxM array of fitting parameters in the period basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the period basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1D array. Return: np.array: Orbital elements in the standard basis for all companions. - ''' - for body_num in np.arange(self.num_secondary_bodies)+1: + """ + for body_num in np.arange(self.num_secondary_bodies) + 1: best_idx = self.best_epoch_idx[body_num - 1] constrained_epoch = self.epochs[best_idx] # Total mass is the sum of companion and stellar if self.fit_secondary_mass: - secondary_m = param_arr[self.param_idx['m{}'.format(body_num)]] - m0 = param_arr[self.param_idx['m0']] + secondary_m = param_arr[self.param_idx["m{}".format(body_num)]] + m0 = param_arr[self.param_idx["m0"]] mtot = m0 + secondary_m else: - mtot = param_arr[self.param_idx['mtot']] - - to_convert = np.array([ - param_arr[self.param_idx['x{}'.format(body_num)]], - param_arr[self.param_idx['y{}'.format(body_num)]], - param_arr[self.param_idx['z{}'.format(body_num)]], - param_arr[self.param_idx['xdot{}'.format(body_num)]], - param_arr[self.param_idx['ydot{}'.format(body_num)]], - param_arr[self.param_idx['zdot{}'.format(body_num)]], - param_arr[self.param_idx['plx']], - mtot - ]) + mtot = param_arr[self.param_idx["mtot"]] + + to_convert = np.array( + [ + param_arr[self.param_idx["x{}".format(body_num)]], + param_arr[self.param_idx["y{}".format(body_num)]], + param_arr[self.param_idx["z{}".format(body_num)]], + param_arr[self.param_idx["xdot{}".format(body_num)]], + param_arr[self.param_idx["ydot{}".format(body_num)]], + param_arr[self.param_idx["zdot{}".format(body_num)]], + param_arr[self.param_idx["plx"]], + mtot, + ] + ) standard_params = self.xyz_to_standard(constrained_epoch, to_convert) # Update param_arr to hold standard parameters - param_arr[self.standard_basis_idx['sma{}'.format(body_num)]] = standard_params[0] - param_arr[self.standard_basis_idx['ecc{}'.format(body_num)]] = standard_params[1] - param_arr[self.standard_basis_idx['inc{}'.format(body_num)]] = standard_params[2] - param_arr[self.standard_basis_idx['aop{}'.format(body_num)]] = standard_params[3] - param_arr[self.standard_basis_idx['pan{}'.format(body_num)]] = standard_params[4] - param_arr[self.standard_basis_idx['tau{}'.format(body_num)]] = standard_params[5] - param_arr[self.standard_basis_idx['plx']] = standard_params[6] - param_arr[self.standard_basis_idx['mtot']] = standard_params[7] + param_arr[ + self.standard_basis_idx["sma{}".format(body_num)] + ] = standard_params[0] + param_arr[ + self.standard_basis_idx["ecc{}".format(body_num)] + ] = standard_params[1] + param_arr[ + self.standard_basis_idx["inc{}".format(body_num)] + ] = standard_params[2] + param_arr[ + self.standard_basis_idx["aop{}".format(body_num)] + ] = standard_params[3] + param_arr[ + self.standard_basis_idx["pan{}".format(body_num)] + ] = standard_params[4] + param_arr[ + self.standard_basis_idx["tau{}".format(body_num)] + ] = standard_params[5] + param_arr[self.standard_basis_idx["plx"]] = standard_params[6] + param_arr[self.standard_basis_idx["mtot"]] = standard_params[7] return param_arr def xyz_to_standard(self, epoch, elems, tau_ref_epoch=58849): """ - Converts array of orbital elements in terms of position and velocity in + Converts array of orbital elements in terms of position and velocity in xyz to the standard basis. Args: - epoch (float): Date in MJD of observation to calculate time of + epoch (float): Date in MJD of observation to calculate time of periastron passage (tau). - elems (np.array of floats): Orbital elements in xyz basis - (x-coordinate [au], y-coordinate [au], z-coordinate [au], - velocity in x [km/s], velocity in y [km/s], velocity in z [km/s], - parallax [mas], total mass of the two-body orbit (M_* + M_planet) - [Solar masses]). If more than 1 set of parameters is passed, the - first dimension must be the number of orbital parameter sets, + elems (np.array of floats): Orbital elements in xyz basis + (x-coordinate [au], y-coordinate [au], z-coordinate [au], + velocity in x [km/s], velocity in y [km/s], velocity in z [km/s], + parallax [mas], total mass of the two-body orbit (M_* + M_planet) + [Solar masses]). If more than 1 set of parameters is passed, the + first dimension must be the number of orbital parameter sets, and the second the orbital elements. Return: - np.array: Orbital elements in the standard basis + np.array: Orbital elements in the standard basis (sma, ecc, inc, aop, pan, tau, plx, mtot) """ if elems.ndim == 1: elems = elems[:, np.newaxis] # Velocities and positions, with units - vel = elems[3:6, :] * u.km / u.s # velocities in km / s ? - pos = elems[0:3, :] * u.AU # positions in AU ? + vel = elems[3:6, :] * u.km / u.s # velocities in km / s ? + pos = elems[0:3, :] * u.AU # positions in AU ? vel_magnitude = np.linalg.norm(vel, axis=0) pos_magnitude = np.linalg.norm(pos, axis=0) # Mass - mtot = elems[7, :]*u.Msun - mu = consts.G * mtot # G in m3 kg-1 s-2, mtot in msun + mtot = elems[7, :] * u.Msun + mu = consts.G * mtot # G in m3 kg-1 s-2, mtot in msun # Angular momentum, making sure nodal vector is not exactly zero h = (np.cross(pos, vel, axis=0)).si @@ -901,61 +1098,67 @@ def xyz_to_standard(self, epoch, elems, tau_ref_epoch=58849): # h = (np.cross(pos, vel)).si h_magnitude = np.linalg.norm(h, axis=0) - sma = 1 / (2.0 / pos_magnitude - (vel_magnitude**2)/mu) + sma = 1 / (2.0 / pos_magnitude - (vel_magnitude**2) / mu) sma = sma.to(u.AU) ecc = (np.sqrt(1 - h_magnitude**2 / (sma * mu))).value e_vector = (np.cross(vel, h, axis=0) / mu - pos / pos_magnitude).si e_vec_magnitude = np.linalg.norm(e_vector, axis=0) - unit_k = np.array((0,0,1))[:, None] - cos_inc = (np.sum(h*unit_k, axis=0) / h_magnitude).value - inc = np.arccos(-cos_inc) # Take arccos of positive cos_inc? + unit_k = np.array((0, 0, 1))[:, None] + cos_inc = (np.sum(h * unit_k, axis=0) / h_magnitude).value + inc = np.arccos(-cos_inc) # Take arccos of positive cos_inc? - #Nodal vector + # Nodal vector n = np.cross(unit_k, h, axis=0) n_magnitude = np.linalg.norm(n, axis=0) # Position angle of the nodes, checking for the right quadrant # np.arccos yields angles in [0, pi] - unit_i = np.array((1,0,0))[:, None] - unit_j = np.array((0,1,0))[:, None] - cos_pan = (np.sum(n*unit_j, axis=0) / n_magnitude).value # take dot product with i? + unit_i = np.array((1, 0, 0))[:, None] + unit_j = np.array((0, 1, 0))[:, None] + cos_pan = ( + np.sum(n * unit_j, axis=0) / n_magnitude + ).value # take dot product with i? pan = np.arccos(cos_pan) - n_x = np.sum(n*unit_i, axis=0) - pan[n_x < 0.0] = 2*np.pi - pan[n_x < 0.0] + n_x = np.sum(n * unit_i, axis=0) + pan[n_x < 0.0] = 2 * np.pi - pan[n_x < 0.0] # Argument of periastron, checking for the right quadrant - cos_aop = (np.sum(n*e_vector, axis=0) / (n_magnitude * e_vec_magnitude)).value + cos_aop = (np.sum(n * e_vector, axis=0) / (n_magnitude * e_vec_magnitude)).value aop = np.arccos(cos_aop) - e_vector_z = np.sum(e_vector*unit_k, axis=0) - aop[e_vector_z < 0.0] = 2.0*np.pi - aop[e_vector_z < 0.0] + e_vector_z = np.sum(e_vector * unit_k, axis=0) + aop[e_vector_z < 0.0] = 2.0 * np.pi - aop[e_vector_z < 0.0] # True anomaly, checking for the right quadrant - cos_tanom = (np.sum(pos*e_vector, axis=0) / (pos_magnitude*e_vec_magnitude)).value + cos_tanom = ( + np.sum(pos * e_vector, axis=0) / (pos_magnitude * e_vec_magnitude) + ).value tanom = np.arccos(cos_tanom) # Check for places where tanom is nan, due to cos_tanom=1. (for some reason that was a problem) # tanom = np.where((0.9999 np.pi] = 2*np.pi - eanom[tanom > np.pi] + eanom[tanom > np.pi] = 2 * np.pi - eanom[tanom > np.pi] # Time of periastron passage, using Kepler's equation, in MJD: - time_tau = epoch - ((np.sqrt(sma**3 / mu)).to(u.day)).value * (eanom - ecc*np.sin(eanom)) + time_tau = epoch - ((np.sqrt(sma**3 / mu)).to(u.day)).value * ( + eanom - ecc * np.sin(eanom) + ) # Calculate period from Kepler's third law, in days: - period = np.sqrt(4*np.pi**2.0*(sma)**3/mu) + period = np.sqrt(4 * np.pi**2.0 * (sma) ** 3 / mu) period = period.to(u.day).value # Finally, tau tau = (time_tau - tau_ref_epoch) / period - tau = tau%1.0 + tau = tau % 1.0 mtot = mtot.value sma = sma.value @@ -964,56 +1167,60 @@ def xyz_to_standard(self, epoch, elems, tau_ref_epoch=58849): return np.squeeze(results) def to_xyz_basis(self, param_arr): - ''' + """ Makes a call to 'standard_to_xyz' to convert each companion's standard keplerian parameters to the xyz parameters an returns the updated array for conversion. Args: - param_arr (np.array of float): RxM array of fitting parameters in the period basis, - where R is the number of parameters being fit, and M is the number of orbits. If + param_arr (np.array of float): RxM array of fitting parameters in the period basis, + where R is the number of parameters being fit, and M is the number of orbits. If M=1 (for MCMC), this can be a 1D array. Return: np.array: Orbital elements in the xyz for all companions. - ''' - for body_num in np.arange(self.num_secondary_bodies)+1: + """ + for body_num in np.arange(self.num_secondary_bodies) + 1: best_idx = self.best_epoch_idx[body_num - 1] constrained_epoch = self.epochs[best_idx] # Get total mass if self.fit_secondary_mass: - secondary_m = param_arr[self.param_idx['m{}'.format(body_num)]] - m0 = param_arr[self.standard_basis_idx['m0']] + secondary_m = param_arr[self.param_idx["m{}".format(body_num)]] + m0 = param_arr[self.standard_basis_idx["m0"]] mtot = m0 + secondary_m else: - mtot = param_arr[self.param_idx['mtot']] + mtot = param_arr[self.param_idx["mtot"]] # Make conversion - to_convert = np.array([ - param_arr[self.standard_basis_idx['sma{}'.format(body_num)]], - param_arr[self.standard_basis_idx['ecc{}'.format(body_num)]], - param_arr[self.standard_basis_idx['inc{}'.format(body_num)]], - param_arr[self.standard_basis_idx['aop{}'.format(body_num)]], - param_arr[self.standard_basis_idx['pan{}'.format(body_num)]], - param_arr[self.standard_basis_idx['tau{}'.format(body_num)]], - param_arr[self.standard_basis_idx['plx']], - mtot - ]) + to_convert = np.array( + [ + param_arr[self.standard_basis_idx["sma{}".format(body_num)]], + param_arr[self.standard_basis_idx["ecc{}".format(body_num)]], + param_arr[self.standard_basis_idx["inc{}".format(body_num)]], + param_arr[self.standard_basis_idx["aop{}".format(body_num)]], + param_arr[self.standard_basis_idx["pan{}".format(body_num)]], + param_arr[self.standard_basis_idx["tau{}".format(body_num)]], + param_arr[self.standard_basis_idx["plx"]], + mtot, + ] + ) xyz_params = self.standard_to_xyz(constrained_epoch, to_convert) # Update param_arr to hold xyz parameters - param_arr[self.param_idx['x{}'.format(body_num)]] = xyz_params[0] - param_arr[self.param_idx['y{}'.format(body_num)]] = xyz_params[1] - param_arr[self.param_idx['z{}'.format(body_num)]] = xyz_params[2] - param_arr[self.param_idx['xdot{}'.format(body_num)]] = xyz_params[3] - param_arr[self.param_idx['ydot{}'.format(body_num)]] = xyz_params[4] - param_arr[self.param_idx['zdot{}'.format(body_num)]] = xyz_params[5] - param_arr[self.param_idx['plx']] = xyz_params[6] - param_arr[self.param_idx['mtot']] = xyz_params[7] + param_arr[self.param_idx["x{}".format(body_num)]] = xyz_params[0] + param_arr[self.param_idx["y{}".format(body_num)]] = xyz_params[1] + param_arr[self.param_idx["z{}".format(body_num)]] = xyz_params[2] + param_arr[self.param_idx["xdot{}".format(body_num)]] = xyz_params[3] + param_arr[self.param_idx["ydot{}".format(body_num)]] = xyz_params[4] + param_arr[self.param_idx["zdot{}".format(body_num)]] = xyz_params[5] + param_arr[self.param_idx["plx"]] = xyz_params[6] + param_arr[self.param_idx["mtot"]] = xyz_params[7] return param_arr - def standard_to_xyz(self, epoch, elems, tau_ref_epoch=58849, tolerance=1e-9, max_iter=100): + def standard_to_xyz( + self, epoch, elems, tau_ref_epoch=58849, tolerance=1e-9, max_iter=100 + ): """ Converts array of orbital elements from the regular base of Keplerian orbits to positions and velocities in xyz Uses code from orbitize.kepler @@ -1025,7 +1232,7 @@ def standard_to_xyz(self, epoch, elems, tau_ref_epoch=58849, tolerance=1e-9, max the number of orbital parameter sets, and the second the orbital elements. Return: - np.array: Orbital elements in xyz (x-coordinate [au], y-coordinate [au], z-coordinate [au], + np.array: Orbital elements in xyz (x-coordinate [au], y-coordinate [au], z-coordinate [au], velocity in x [km/s], velocity in y [km/s], velocity in z [km/s], parallax [mas], total mass of the two-body orbit (M_* + M_planet) [Solar masses]) """ @@ -1036,72 +1243,93 @@ def standard_to_xyz(self, epoch, elems, tau_ref_epoch=58849, tolerance=1e-9, max if elems.ndim == 1: elems = elems[:, np.newaxis] # Define variables - sma = elems[0,:] # AU - ecc = elems[1,:] # [0.0, 1.0] - inc = elems[2,:] # rad [0, pi] - aop = elems[3,:] # rad [0, 2 pi] - pan = elems[4,:] # rad [0, 2 pi] - tau = elems[5,:] # [0.0, 1.0] - mtot = elems[7,:] # Msun + sma = elems[0, :] # AU + ecc = elems[1, :] # [0.0, 1.0] + inc = elems[2, :] # rad [0, pi] + aop = elems[3, :] # rad [0, 2 pi] + pan = elems[4, :] # rad [0, 2 pi] + tau = elems[5, :] # [0.0, 1.0] + mtot = elems[7, :] # Msun # Just in case so nothing breaks ecc = np.where(ecc == 0.0, 1e-8, ecc) inc = np.where(inc == 0.0, 1e-8, inc) # Begin by calculating the eccentric anomaly - period = np.sqrt(4*np.pi**2.0*(sma*u.AU)**3/(consts.G*(mtot*u.Msun))) - period = period.to(u.day).value # Period in days - mean_motion = 2*np.pi/(period) + period = np.sqrt( + 4 * np.pi**2.0 * (sma * u.AU) ** 3 / (consts.G * (mtot * u.Msun)) + ) + period = period.to(u.day).value # Period in days + mean_motion = 2 * np.pi / (period) # Mean anomaly - manom = (mean_motion*(epoch - tau_ref_epoch) - 2*np.pi*tau) % (2.0*np.pi) + manom = (mean_motion * (epoch - tau_ref_epoch) - 2 * np.pi * tau) % ( + 2.0 * np.pi + ) # Eccentric anomaly - eanom = kepler._calc_ecc_anom(manom, ecc, tolerance=tolerance, max_iter=max_iter) + eanom = kepler._calc_ecc_anom( + manom, ecc, tolerance=tolerance, max_iter=max_iter + ) # if eanom.ndim == 1: # eanom = eanom[np.newaxis, :] # Magnitude of angular momentum: - h = np.sqrt(consts.G*(mtot*u.Msun)*(sma*u.AU)*(1 - ecc**2)) + h = np.sqrt(consts.G * (mtot * u.Msun) * (sma * u.AU) * (1 - ecc**2)) # Position vector in the perifocal system in AU - pos_peri_x = (sma*(np.cos(eanom) - ecc)) - pos_peri_y = (sma*np.sqrt(1 - ecc**2)*np.sin(eanom)) + pos_peri_x = sma * (np.cos(eanom) - ecc) + pos_peri_y = sma * np.sqrt(1 - ecc**2) * np.sin(eanom) pos_peri_z = np.zeros(len(pos_peri_x)) pos = np.stack((pos_peri_x, pos_peri_y, pos_peri_z)).T pos_magnitude = np.linalg.norm(pos, axis=1) # Velocity vector in the perifocal system in km/s - vel_peri_x = - ((np.sqrt(consts.G*(mtot*u.Msun)*(sma*u.AU))*np.sin(eanom) / (pos_magnitude*u.AU)).to(u.km / u.s)).value - vel_peri_y = ((h* np.cos(eanom) / (pos_magnitude*u.AU)).to(u.km / u.s)).value + vel_peri_x = -( + ( + np.sqrt(consts.G * (mtot * u.Msun) * (sma * u.AU)) + * np.sin(eanom) + / (pos_magnitude * u.AU) + ).to(u.km / u.s) + ).value + vel_peri_y = ((h * np.cos(eanom) / (pos_magnitude * u.AU)).to(u.km / u.s)).value vel_peri_z = np.zeros(len(vel_peri_x)) vel = np.stack((vel_peri_x, vel_peri_y, vel_peri_z)).T # Transformation matrix to inertial xyz system, component by component - pan = pan +np.pi / 2.0 - T_11 = np.cos(pan)*np.cos(aop) - np.sin(pan)*np.sin(aop)*np.cos(inc) - T_12 = - np.cos(pan)*np.sin(aop) - np.sin(pan)*np.cos(aop)*np.cos(inc) - T_13 = np.sin(pan)*np.sin(inc) + pan = pan + np.pi / 2.0 + T_11 = np.cos(pan) * np.cos(aop) - np.sin(pan) * np.sin(aop) * np.cos(inc) + T_12 = -np.cos(pan) * np.sin(aop) - np.sin(pan) * np.cos(aop) * np.cos(inc) + T_13 = np.sin(pan) * np.sin(inc) - T_21 = np.sin(pan)*np.cos(aop) + np.cos(pan)*np.sin(aop)*np.cos(inc) - T_22 = - np.sin(pan)*np.sin(aop) + np.cos(pan)*np.cos(aop)*np.cos(inc) - T_23 = - np.cos(pan)*np.sin(inc) + T_21 = np.sin(pan) * np.cos(aop) + np.cos(pan) * np.sin(aop) * np.cos(inc) + T_22 = -np.sin(pan) * np.sin(aop) + np.cos(pan) * np.cos(aop) * np.cos(inc) + T_23 = -np.cos(pan) * np.sin(inc) - T_31 = np.sin(aop)*np.sin(inc) - T_32 = np.cos(aop)*np.sin(inc) + T_31 = np.sin(aop) * np.sin(inc) + T_32 = np.cos(aop) * np.sin(inc) T_33 = np.cos(inc) - T = np.array([[T_11, T_12, T_13], - [T_21, T_22, T_23], - [T_31, T_32, T_33]]) + T = np.array([[T_11, T_12, T_13], [T_21, T_22, T_23], [T_31, T_32, T_33]]) pos_xyz = np.zeros((len(sma), 3)) vel_xyz = np.zeros((len(sma), 3)) for k in range(len(sma)): - pos_xyz[k,:] = np.matmul(T[:,:,k], pos[k]) - vel_xyz[k,:] = np.matmul(T[:,:,k], vel[k]) - - result = np.stack([-pos_xyz[:,0], pos_xyz[:,1], pos_xyz[:,2], -vel_xyz[:,0], vel_xyz[:,1], vel_xyz[:,2], elems[6, :], mtot]) + pos_xyz[k, :] = np.matmul(T[:, :, k], pos[k]) + vel_xyz[k, :] = np.matmul(T[:, :, k], vel[k]) + + result = np.stack( + [ + -pos_xyz[:, 0], + pos_xyz[:, 1], + pos_xyz[:, 2], + -vel_xyz[:, 0], + vel_xyz[:, 1], + vel_xyz[:, 2], + elems[6, :], + mtot, + ] + ) if len(sma) == 1: result = result.T @@ -1109,26 +1337,32 @@ def standard_to_xyz(self, epoch, elems, tau_ref_epoch=58849, tolerance=1e-9, max return np.squeeze(result) def verify_params(self): - ''' + """ For now, additionally throws exceptions if data is supplied in sep/pa or if the best epoch for each body is one of the last two (which would inevtably mess up how the priors are imposed). - ''' + """ super(XYZ, self).verify_params() # For now, raise error if data is in sep/pa - seppa_locs = np.where(self.data_table['quant_type'] == 'seppa') + seppa_locs = np.where(self.data_table["quant_type"] == "seppa") if np.size(seppa_locs) != 0: - raise Exception("For now, the XYZ basis requires data in RA and DEC offsets.") + raise Exception( + "For now, the XYZ basis requires data in RA and DEC offsets." + ) # For now, raise error if the best epoch for each body is one of the last two for i in range(self.num_secondary_bodies): body_num = i + 1 best_epoch_loc = self.best_epoch_idx[i] - body_indices = np.where(self.data_table['object'] == body_num)[0] + body_indices = np.where(self.data_table["object"] == body_num)[0] max_index = np.amax(body_indices) - if (max_index - best_epoch_loc < 2): - raise Exception("For now, the epoch with the lowest sepparation error should not be one of the last two entries for body{}".format(body_num)) + if max_index - best_epoch_loc < 2: + raise Exception( + "For now, the epoch with the lowest sepparation error should not be one of the last two entries for body{}".format( + body_num + ) + ) def tau_to_tp(tau, ref_epoch, period, after_date=None): @@ -1150,13 +1384,14 @@ def tau_to_tp(tau, ref_epoch, period, after_date=None): tp = tau * (period_days) + ref_epoch if after_date is not None: - num_periods = (after_date - tp)/period_days + num_periods = (after_date - tp) / period_days num_periods = np.ceil(num_periods).astype(int) - + tp += num_periods * period_days return tp + def tp_to_tau(tp, ref_epoch, period): """ Convert t_p to tau @@ -1169,11 +1404,12 @@ def tp_to_tau(tp, ref_epoch, period): Returns: float or np.array: corresponding taus """ - tau = (tp - ref_epoch)/(period * u.year.to(u.day)) + tau = (tp - ref_epoch) / (period * u.year.to(u.day)) tau %= 1 return tau + def switch_tau_epoch(old_tau, old_epoch, new_epoch, period): """ Convert tau to another tau that uses a different referench epoch @@ -1187,26 +1423,27 @@ def switch_tau_epoch(old_tau, old_epoch, new_epoch, period): Returns: float or np.array: new taus """ - + tp = tau_to_tp(old_tau, old_epoch, period) new_tau = tp_to_tau(tp, new_epoch, period) return new_tau + def tau_to_manom(date, sma, mtot, tau, tau_ref_epoch): """ Gets the mean anomlay. Wrapper for kepler.tau_to_manom, kept here for backwards compatibility. - + Args: date (float or np.array): MJD sma (float): semi major axis (AU) mtot (float): total mass (M_sun) tau (float): epoch of periastron, in units of the orbital period tau_ref_epoch (float): reference epoch for tau - + Returns: float or np.array: mean anomaly on that date [0, 2pi) """ - return kepler.tau_to_manom(date, sma, mtot, tau, tau_ref_epoch) \ No newline at end of file + return kepler.tau_to_manom(date, sma, mtot, tau, tau_ref_epoch) From 4f075073a7c5ff10a3822a380ccfbbde54ef05db Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:25:10 -0600 Subject: [PATCH 04/37] separate out model computation in hipparcos.py --- orbitize/hipparcos.py | 118 +++++++++++++++++++++++++++++------------- 1 file changed, 83 insertions(+), 35 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index dde9b0fd..63655306 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -245,11 +245,19 @@ def _save(self, hf): hf.attrs["alphadec0_epoch"] = self.alphadec0_epoch hf.attrs["renormalize_errors"] = self.renormalize_errors - def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): + def compute_model( + self, + raoff_model, + deoff_model, + plx, + pm_ra, + pm_dec, + alpha_H0, + delta_H0, + epochs=None, + ): """ - Computes the log likelihood of an orbit model with respect to the - Hipparcos IAD. This is added to the likelihoods calculated with - respect to other data types in ``sampler._logl()``. + Computes the predicted RA/Dec Args: raoff_model (np.array of float): M-dimensional array of primary RA @@ -263,44 +271,35 @@ def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): samples (np.array of float): R-dimensional array of fitting parameters, where R is the number of parameters being fit. Must be in the same order documented in ``System``. - param_idx: a dictionary matching fitting parameter labels to their - indices in an array of fitting parameters (generally - set to System.basis.param_idx). + TODO (fill in fitting params) + epochs_to_predict (np.array of float): if None, then uses Hipparcos epochs. If + given, then computes prediction at given epochs instead. Returns: - np.array of float: array of length M, where M is the number of input - orbits, representing the log likelihood of each orbit with - respect to the Hipparcos IAD. + 2-tuple of: + np.array of float: RA predictions + np.array of float: Dec predictions """ + if epochs_to_predict is None: + epochs_to_predict = self.epochs - # variables for each of the astrometric fitting parameters - plx = samples[param_idx["plx"]] - pm_ra = samples[param_idx["pm_ra"]] - pm_dec = samples[param_idx["pm_dec"]] - alpha_H0 = samples[param_idx["alpha0"]] - delta_H0 = samples[param_idx["delta0"]] - - try: - n_samples = len(pm_ra) - except TypeError: - n_samples = 1 - - n_epochs = len(self.epochs) - dist = np.empty((n_epochs, n_samples)) + n_epochs = len(epochs_to_predict) + alpha_C_st = np.zeros_like(raoff_model) + delta_C = np.zeros_like(raoff_model) # add parallactic ellipse & proper motion to position (Nielsen+ 2020 Eq 8) for i in np.arange(n_epochs): # this is the expected offset from the photocenter in alphadec0_epoch (typically 1991.25 for Hipparcos) - alpha_C_st = ( + alpha_C_st[i] = ( alpha_H0 + plx * ( self.X[i] * np.sin(np.radians(self.alpha0)) - self.Y[i] * np.cos(np.radians(self.alpha0)) ) - + (self.epochs[i] - self.alphadec0_epoch) * pm_ra + + (epochs_to_predict[i] - self.alphadec0_epoch) * pm_ra ) - delta_C = ( + delta_C[i] = ( delta_H0 + plx * ( @@ -312,18 +311,67 @@ def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): * np.sin(np.radians(self.delta0)) - self.Z[i] * np.cos(np.radians(self.delta0)) ) - + (self.epochs[i] - self.alphadec0_epoch) * pm_dec + + (epochs_to_predict[i] - self.alphadec0_epoch) * pm_dec ) # add in pre-computed secondary perturbations - alpha_C_st += raoff_model[i] - delta_C += deoff_model[i] + alpha_C_st[i] += raoff_model[i] + delta_C[i] += deoff_model[i] - # calculate distance between line and expected measurement (Nielsen+ 2020 Eq 6) [mas] - dist[i, :] = np.abs( - (self.alpha_abs_st[i] - alpha_C_st) * self.cos_phi[i] - + (self.delta_abs[i] - delta_C) * self.sin_phi[i] - ) + return alpha_C_st, delta_C + + def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): + """ + Computes the log likelihood of an orbit model with respect to the + Hipparcos IAD. This is added to the likelihoods calculated with + respect to other data types in ``sampler._logl()``. + + Args: + raoff_model (np.array of float): M-dimensional array of primary RA + offsets from the barycenter incurred from orbital motion of + companions (i.e. not from parallactic motion), where M is the + number of epochs of IAD scan data. + deoff_model (np.array of float): M-dimensional array of primary RA + offsets from the barycenter incurred from orbital motion of + companions (i.e. not from parallactic motion), where M is the + number of epochs of IAD scan data. + samples (np.array of float): R-dimensional array of fitting + parameters, where R is the number of parameters being fit. Must + be in the same order documented in ``System``. + param_idx: a dictionary matching fitting parameter labels to their + indices in an array of fitting parameters (generally + set to System.basis.param_idx). + + Returns: + np.array of float: array of length M, where M is the number of input + orbits, representing the log likelihood of each orbit with + respect to the Hipparcos IAD. + """ + + # variables for each of the astrometric fitting parameters + plx = samples[param_idx["plx"]] + pm_ra = samples[param_idx["pm_ra"]] + pm_dec = samples[param_idx["pm_dec"]] + alpha_H0 = samples[param_idx["alpha0"]] + delta_H0 = samples[param_idx["delta0"]] + + try: + n_samples = len(pm_ra) + except TypeError: + n_samples = 1 + + n_epochs = len(self.epochs) + dist = np.empty((n_epochs, n_samples)) + + alpha_C_st, delta_C = self.compute_model( + raoff_model, deoff_model, plx, pm_ra, pm_dec, alpha_H0, delta_H0 + ) + + # calculate distance between line and expected measurement (Nielsen+ 2020 Eq 6) [mas] + dist = np.abs( + (self.alpha_abs_st - alpha_C_st) * self.cos_phi + + (self.delta_abs - delta_C) * self.sin_phi + ) # compute chi2 (Nielsen+ 2020 Eq 7) chi2 = np.sum( From 79bf11287d58cbb5db27193dd795cbc03421fcba Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:25:15 -0600 Subject: [PATCH 05/37] lint --- orbitize/system.py | 638 +++++++++++++++++++++++----------------- tests/test_hipparcos.py | 168 +++++++---- 2 files changed, 472 insertions(+), 334 deletions(-) diff --git a/orbitize/system.py b/orbitize/system.py index 7c299b87..fc3d11b0 100644 --- a/orbitize/system.py +++ b/orbitize/system.py @@ -2,6 +2,7 @@ from orbitize import nbody, kepler, basis from astropy import table + class System(object): """ A class to store information about a system (data & priors) @@ -11,7 +12,7 @@ class System(object): Args: num_secondary_bodies (int): number of secondary bodies in the system. Should be at least 1. - data_table (astropy.table.Table): output from + data_table (astropy.table.Table): output from ``orbitize.read_input.read_file()`` stellar_or_system_mass (float): mass of the primary star (if fitting for dynamical masses of both components) or total system mass (if @@ -25,35 +26,45 @@ class System(object): tau_ref_epoch (float, optional): reference epoch for defining tau (MJD). Default is 58849 (Jan 1, 2020). fit_secondary_mass (bool, optional): if True, include the dynamical - mass of the orbiting body as a fitted parameter. If this is set to - False, ``stellar_or_system_mass`` is taken to be the total mass of the system. + mass of the orbiting body as a fitted parameter. If this is set to + False, ``stellar_or_system_mass`` is taken to be the total mass of the system. (default: False) - hipparcos_IAD (orbitize.hipparcos.HipparcosLogProb): an object + hipparcos_IAD (orbitize.hipparcos.HipparcosLogProb): an object containing information & precomputed values relevant to Hipparcos IAD fitting. See hipparcos.py for more details. - gaia (orbitize.gaia.GaiaLogProb): an object + gaia (orbitize.gaia.GaiaLogProb): an object containing information & precomputed values relevant to Gaia astrometrry fitting. See gaia.py for more details. - fitting_basis (str): the name of the class corresponding to the fitting + fitting_basis (str): the name of the class corresponding to the fitting basis to be used. See basis.py for a list of implemented fitting bases. use_rebound (bool): if True, use an n-body backend solver instead of a Keplerian solver. Priors are initialized as a list of orbitize.priors.Prior objects and stored - in the variable ``System.sys_priors``. You should initialize this class, - then overwrite priors you wish to customize. You can use the - ``System.param_idx`` attribute to figure out which indices correspond to - which fitting parameters. See the "changing priors" tutorial for more detail. + in the variable ``System.sys_priors``. You should initialize this class, + then overwrite priors you wish to customize. You can use the + ``System.param_idx`` attribute to figure out which indices correspond to + which fitting parameters. See the "changing priors" tutorial for more detail. Written: Sarah Blunt, Henry Ngo, Jason Wang, 2018 """ - def __init__(self, num_secondary_bodies, data_table, stellar_or_system_mass, - plx, mass_err=0, plx_err=0, restrict_angle_ranges=False, - tau_ref_epoch=58849, fit_secondary_mass=False, - hipparcos_IAD=None, gaia=None, fitting_basis='Standard', use_rebound=False, - ): - + def __init__( + self, + num_secondary_bodies, + data_table, + stellar_or_system_mass, + plx, + mass_err=0, + plx_err=0, + restrict_angle_ranges=False, + tau_ref_epoch=58849, + fit_secondary_mass=False, + hipparcos_IAD=None, + gaia=None, + fitting_basis="Standard", + use_rebound=False, + ): self.num_secondary_bodies = num_secondary_bodies self.data_table = data_table self.stellar_or_system_mass = stellar_or_system_mass @@ -84,40 +95,40 @@ def __init__(self, num_secondary_bodies, data_table, stellar_or_system_mass, # List of index arrays corresponding to each rv for each body self.rv = [] - self.fit_astrometry=True - radec_indices = np.where(self.data_table['quant_type'] == 'radec') - seppa_indices = np.where(self.data_table['quant_type'] == 'seppa') + self.fit_astrometry = True + radec_indices = np.where(self.data_table["quant_type"] == "radec") + seppa_indices = np.where(self.data_table["quant_type"] == "seppa") - if len(radec_indices[0])==0 and len(seppa_indices[0])==0: - self.fit_astrometry=False - rv_indices = np.where(self.data_table['quant_type'] == 'rv') + if len(radec_indices[0]) == 0 and len(seppa_indices[0]) == 0: + self.fit_astrometry = False + rv_indices = np.where(self.data_table["quant_type"] == "rv") # defining all indices to loop through the unique rv instruments to get different offsets and jitters - instrument_list = np.unique(self.data_table['instrument']) + instrument_list = np.unique(self.data_table["instrument"]) inst_indices_all = [] for inst in instrument_list: - inst_indices = np.where(self.data_table['instrument'] == inst) + inst_indices = np.where(self.data_table["instrument"] == inst) inst_indices_all.append(inst_indices) # defining indices for unique instruments in the data table - self.rv_instruments = np.unique(self.data_table['instrument'][rv_indices]) + self.rv_instruments = np.unique(self.data_table["instrument"][rv_indices]) self.rv_inst_indices = [] for inst in self.rv_instruments: - inst_indices = np.where(self.data_table['instrument'] == inst) + inst_indices = np.where(self.data_table["instrument"] == inst) self.rv_inst_indices.append(inst_indices) # astrometry instruments same for radec and seppa: self.astr_instruments = np.unique( - self.data_table['instrument'][np.where(self.data_table['quant_type'] != 'rv')]) + self.data_table["instrument"][ + np.where(self.data_table["quant_type"] != "rv") + ] + ) # save indicies for all of the ra/dec, sep/pa measurements for convenience self.all_radec = radec_indices self.all_seppa = seppa_indices - for body_num in np.arange(self.num_secondary_bodies+1): - - self.body_indices.append( - np.where(self.data_table['object'] == body_num) - ) + for body_num in np.arange(self.num_secondary_bodies + 1): + self.body_indices.append(np.where(self.data_table["object"] == body_num)) self.radec.append( np.intersect1d(self.body_indices[body_num], radec_indices) @@ -125,19 +136,15 @@ def __init__(self, num_secondary_bodies, data_table, stellar_or_system_mass, self.seppa.append( np.intersect1d(self.body_indices[body_num], seppa_indices) ) - self.rv.append( - np.intersect1d(self.body_indices[body_num], rv_indices) - ) + self.rv.append(np.intersect1d(self.body_indices[body_num], rv_indices)) # we should track the influence of the planet(s) on each other/the star if: - # we are not fitting massless planets and + # we are not fitting massless planets and # we have more than 1 companion OR we have stellar astrometry - self.track_planet_perturbs = ( - self.fit_secondary_mass and + self.track_planet_perturbs = self.fit_secondary_mass and ( ( - (len(self.radec[0]) + len(self.seppa[0] > 0) or - (self.num_secondary_bodies > 1) - ) + len(self.radec[0]) + len(self.seppa[0] > 0) + or (self.num_secondary_bodies > 1) ) ) @@ -147,7 +154,7 @@ def __init__(self, num_secondary_bodies, data_table, stellar_or_system_mass, if self.restrict_angle_ranges: angle_upperlim = np.pi else: - angle_upperlim = 2.*np.pi + angle_upperlim = 2.0 * np.pi # Check for rv data contains_rv = False @@ -159,30 +166,38 @@ def __init__(self, num_secondary_bodies, data_table, stellar_or_system_mass, basis_obj = getattr(basis, self.fitting_basis) # Obtain extra necessary data to assign priors for XYZ - if self.fitting_basis == 'XYZ': + if self.fitting_basis == "XYZ": # Get epochs with least uncertainty, as is done in sampler.py convert_warning_print = False for body_num in np.arange(self.num_secondary_bodies) + 1: if len(self.radec[body_num]) > 0: - # only print the warning once. + # only print the warning once. if not convert_warning_print: - print('Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_table.') + print( + "Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_table." + ) convert_warning_print = True self.convert_data_table_radec2seppa(body_num=body_num) - sep_err = self.data_table[np.where( - self.data_table['quant_type'] == 'seppa')]['quant1_err'].copy() - meas_object = self.data_table[np.where( - self.data_table['quant_type'] == 'seppa')]['object'].copy() + sep_err = self.data_table[ + np.where(self.data_table["quant_type"] == "seppa") + ]["quant1_err"].copy() + meas_object = self.data_table[ + np.where(self.data_table["quant_type"] == "seppa") + ]["object"].copy() - astr_inds = np.where(self.input_table['object'] > 0)[0] + astr_inds = np.where(self.input_table["object"] > 0)[0] astr_data = self.input_table[astr_inds] - epochs = astr_data['epoch'] + epochs = astr_data["epoch"] self.best_epochs = [] self.best_epoch_idx = [] - min_sep_indices = np.argsort(sep_err) # indices of sep err sorted from smallest to higheset - min_sep_indices_body = meas_object[min_sep_indices] # the corresponding body_num that these sorted measurements correspond to + min_sep_indices = np.argsort( + sep_err + ) # indices of sep err sorted from smallest to higheset + min_sep_indices_body = meas_object[ + min_sep_indices + ] # the corresponding body_num that these sorted measurements correspond to for i in range(self.num_secondary_bodies): body_num = i + 1 this_object_meas = np.where(min_sep_indices_body == body_num)[0] @@ -191,64 +206,76 @@ def __init__(self, num_secondary_bodies, data_table, stellar_or_system_mass, self.best_epochs.append(None) continue # get the smallest measurement belonging to this body - this_best_epoch_idx = min_sep_indices[this_object_meas][0] # already sorted by argsort + this_best_epoch_idx = min_sep_indices[this_object_meas][ + 0 + ] # already sorted by argsort self.best_epoch_idx.append(this_best_epoch_idx) this_best_epoch = epochs[this_best_epoch_idx] self.best_epochs.append(this_best_epoch) - self.extra_basis_kwargs = {'data_table':astr_data, 'best_epoch_idx':self.best_epoch_idx, 'epochs':epochs} + self.extra_basis_kwargs = { + "data_table": astr_data, + "best_epoch_idx": self.best_epoch_idx, + "epochs": epochs, + } self.basis = basis_obj( - self.stellar_or_system_mass, self.mass_err, self.plx, self.plx_err, self.num_secondary_bodies, - self.fit_secondary_mass, angle_upperlim=angle_upperlim, - hipparcos_IAD=self.hipparcos_IAD, rv=contains_rv, - rv_instruments=self.rv_instruments, **self.extra_basis_kwargs + self.stellar_or_system_mass, + self.mass_err, + self.plx, + self.plx_err, + self.num_secondary_bodies, + self.fit_secondary_mass, + angle_upperlim=angle_upperlim, + hipparcos_IAD=self.hipparcos_IAD, + rv=contains_rv, + rv_instruments=self.rv_instruments, + **self.extra_basis_kwargs ) self.basis.verify_params() self.sys_priors, self.labels = self.basis.construct_priors() self.secondary_mass_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('m') and - not i.endswith('0') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("m") and not i.endswith("0")) ] - + self.sma_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('sma') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("sma")) ] self.ecc_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('ecc') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("ecc")) ] self.inc_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('inc') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("inc")) ] self.aop_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('aop') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("aop")) ] self.pan_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('pan') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("pan")) ] self.tau_indx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('tau') - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("tau")) ] self.mpl_idx = [ - self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() if ( - i.startswith('m') and i[1:] not in ['tot', '0'] - ) + self.basis.standard_basis_idx[i] + for i in self.basis.standard_basis_idx.keys() + if (i.startswith("m") and i[1:] not in ["tot", "0"]) ] self.param_idx = self.basis.param_idx @@ -259,29 +286,27 @@ def save(self, hf): Args: hf (h5py._hl.files.File): a currently open hdf5 file in which - to save the object. + to save the object. """ - hf.attrs['num_secondary_bodies'] = self.num_secondary_bodies + hf.attrs["num_secondary_bodies"] = self.num_secondary_bodies - hf.create_dataset('data', data=self.input_table) + hf.create_dataset("data", data=self.input_table) - hf.attrs['restrict_angle_ranges'] = self.restrict_angle_ranges - hf.attrs['tau_ref_epoch'] = self.tau_ref_epoch - hf.attrs['stellar_or_system_mass'] = self.stellar_or_system_mass - hf.attrs['plx'] = self.plx - hf.attrs['mass_err'] = self.mass_err - hf.attrs['plx_err'] = self.plx_err - hf.attrs['fit_secondary_mass'] = self.fit_secondary_mass + hf.attrs["restrict_angle_ranges"] = self.restrict_angle_ranges + hf.attrs["tau_ref_epoch"] = self.tau_ref_epoch + hf.attrs["stellar_or_system_mass"] = self.stellar_or_system_mass + hf.attrs["plx"] = self.plx + hf.attrs["mass_err"] = self.mass_err + hf.attrs["plx_err"] = self.plx_err + hf.attrs["fit_secondary_mass"] = self.fit_secondary_mass if self.gaia is not None: self.gaia._save(hf) elif self.hipparcos_IAD is not None: self.hipparcos_IAD._save(hf) - hf.attrs['fitting_basis'] = self.fitting_basis - hf.attrs['use_rebound'] = self.use_rebound - - + hf.attrs["fitting_basis"] = self.fitting_basis + hf.attrs["use_rebound"] = self.use_rebound def compute_all_orbits(self, params_arr, epochs=None, comp_rebound=False): """ @@ -296,10 +321,10 @@ def compute_all_orbits(self, params_arr, epochs=None, comp_rebound=False): documented in ``System()`` above. If M=1, this can be a 1d array. epochs (np.array of float): epochs (in mjd) at which to compute orbit predictions. - comp_rebound (bool, optional): A secondary optional input for + comp_rebound (bool, optional): A secondary optional input for use of N-body solver Rebound; by default, this will be set - to false and a Kepler solver will be used instead. - + to false and a Kepler solver will be used instead. + Returns: tuple: @@ -308,14 +333,14 @@ def compute_all_orbits(self, params_arr, epochs=None, comp_rebound=False): decoff (np.array of float): N_epochs x N_bodies x N_orbits array of Dec offsets from barycenter at each epoch. - + vz (np.array of float): N_epochs x N_bodies x N_orbits array of radial velocities at each epoch. """ if epochs is None: - epochs = self.data_table['epoch'] + epochs = self.data_table["epoch"] n_epochs = len(epochs) @@ -324,10 +349,12 @@ def compute_all_orbits(self, params_arr, epochs=None, comp_rebound=False): else: n_orbits = params_arr.shape[1] - ra_kepler = np.zeros((n_epochs, self.num_secondary_bodies + 1, n_orbits)) # N_epochs x N_bodies x N_orbits + ra_kepler = np.zeros( + (n_epochs, self.num_secondary_bodies + 1, n_orbits) + ) # N_epochs x N_bodies x N_orbits dec_kepler = np.zeros((n_epochs, self.num_secondary_bodies + 1, n_orbits)) - ra_perturb = np.zeros((n_epochs, self.num_secondary_bodies + 1, n_orbits)) + ra_perturb = np.zeros((n_epochs, self.num_secondary_bodies + 1, n_orbits)) dec_perturb = np.zeros((n_epochs, self.num_secondary_bodies + 1, n_orbits)) vz = np.zeros((n_epochs, self.num_secondary_bodies + 1, n_orbits)) @@ -338,155 +365,201 @@ def compute_all_orbits(self, params_arr, epochs=None, comp_rebound=False): mtots = np.zeros((self.num_secondary_bodies + 1, n_orbits)) if comp_rebound or self.use_rebound: - sma = params_arr[self.sma_indx] ecc = params_arr[self.ecc_indx] inc = params_arr[self.inc_indx] argp = params_arr[self.aop_indx] lan = params_arr[self.pan_indx] tau = params_arr[self.tau_indx] - plx = params_arr[self.basis.standard_basis_idx['plx']] + plx = params_arr[self.basis.standard_basis_idx["plx"]] if self.fit_secondary_mass: m_pl = params_arr[self.mpl_idx] - m0 = params_arr[self.basis.param_idx['m0']] + m0 = params_arr[self.basis.param_idx["m0"]] mtot = m0 + sum(m_pl) else: m_pl = np.zeros(self.num_secondary_bodies) # if not fitting for secondary mass, then total mass must be stellar mass - mtot = params_arr[self.basis.param_idx['mtot']] - - raoff, deoff, vz = nbody.calc_orbit(epochs, sma, ecc, inc, argp, lan, tau, plx, mtot, tau_ref_epoch=self.tau_ref_epoch, m_pl=m_pl, output_star=True) + mtot = params_arr[self.basis.param_idx["mtot"]] + + raoff, deoff, vz = nbody.calc_orbit( + epochs, + sma, + ecc, + inc, + argp, + lan, + tau, + plx, + mtot, + tau_ref_epoch=self.tau_ref_epoch, + m_pl=m_pl, + output_star=True, + ) else: - for body_num in np.arange(self.num_secondary_bodies)+1: - - sma = params_arr[self.basis.standard_basis_idx['sma{}'.format(body_num)]] - ecc = params_arr[self.basis.standard_basis_idx['ecc{}'.format(body_num)]] - inc = params_arr[self.basis.standard_basis_idx['inc{}'.format(body_num)]] - argp = params_arr[self.basis.standard_basis_idx['aop{}'.format(body_num)]] - lan = params_arr[self.basis.standard_basis_idx['pan{}'.format(body_num)]] - tau = params_arr[self.basis.standard_basis_idx['tau{}'.format(body_num)]] - plx = params_arr[self.basis.standard_basis_idx['plx']] - - if self.fit_secondary_mass: - # mass of secondary bodies are in order from -1-num_bodies until -2 in order. - mass = params_arr[self.basis.standard_basis_idx['m{}'.format(body_num)]] - m0 = params_arr[self.basis.standard_basis_idx['m0']] - - # For what mtot to use to calculate central potential, we should use the mass enclosed in a sphere with r <= distance of planet. - # We need to select all planets with sma < this planet. - all_smas = params_arr[self.sma_indx] - within_orbit = np.where(all_smas <= sma) - outside_orbit = np.where(all_smas > sma) - all_pl_masses = params_arr[self.secondary_mass_indx] - inside_masses = all_pl_masses[within_orbit] - mtot = np.sum(inside_masses) + m0 + for body_num in np.arange(self.num_secondary_bodies) + 1: + sma = params_arr[ + self.basis.standard_basis_idx["sma{}".format(body_num)] + ] + ecc = params_arr[ + self.basis.standard_basis_idx["ecc{}".format(body_num)] + ] + inc = params_arr[ + self.basis.standard_basis_idx["inc{}".format(body_num)] + ] + argp = params_arr[ + self.basis.standard_basis_idx["aop{}".format(body_num)] + ] + lan = params_arr[ + self.basis.standard_basis_idx["pan{}".format(body_num)] + ] + tau = params_arr[ + self.basis.standard_basis_idx["tau{}".format(body_num)] + ] + plx = params_arr[self.basis.standard_basis_idx["plx"]] + + if self.fit_secondary_mass: + # mass of secondary bodies are in order from -1-num_bodies until -2 in order. + mass = params_arr[ + self.basis.standard_basis_idx["m{}".format(body_num)] + ] + m0 = params_arr[self.basis.standard_basis_idx["m0"]] + + # For what mtot to use to calculate central potential, we should use the mass enclosed in a sphere with r <= distance of planet. + # We need to select all planets with sma < this planet. + all_smas = params_arr[self.sma_indx] + within_orbit = np.where(all_smas <= sma) + outside_orbit = np.where(all_smas > sma) + all_pl_masses = params_arr[self.secondary_mass_indx] + inside_masses = all_pl_masses[within_orbit] + mtot = np.sum(inside_masses) + m0 + + else: + m_pl = np.zeros(self.num_secondary_bodies) + # if not fitting for secondary mass, then total mass must be stellar mass + mass = None + m0 = None + mtot = params_arr[self.basis.standard_basis_idx["mtot"]] - else: - m_pl = np.zeros(self.num_secondary_bodies) - # if not fitting for secondary mass, then total mass must be stellar mass - mass = None - m0 = None - mtot = params_arr[self.basis.standard_basis_idx['mtot']] - - if self.track_planet_perturbs: - masses[body_num] = mass - mtots[body_num] = mtot - - # solve Kepler's equation - raoff, decoff, vz_i = kepler.calc_orbit( - epochs, sma, ecc, inc, argp, lan, tau, plx, mtot, - mass_for_Kamp=m0, tau_ref_epoch=self.tau_ref_epoch - ) - - # raoff, decoff, vz are scalers if the length of epochs is 1 - if len(epochs) == 1: - raoff = np.array([raoff]) - decoff = np.array([decoff]) - vz_i = np.array([vz_i]) - - # add Keplerian ra/deoff for this body to storage arrays - ra_kepler[:, body_num, :] = np.reshape(raoff, (n_epochs, n_orbits)) - dec_kepler[:, body_num, :] = np.reshape(decoff, (n_epochs, n_orbits)) - vz[:, body_num, :] = np.reshape(vz_i, (n_epochs, n_orbits)) - - # vz_i is the ith companion radial velocity - if self.fit_secondary_mass: - vz0 = np.reshape(vz_i * -(mass / m0), (n_epochs, n_orbits)) # calculating stellar velocity due to ith companion - vz[:, 0, :] += vz0 # adding stellar velocity and gamma - - # if we are fitting for the mass of the planets, then they will perturb the star - # add the perturbation on the star due to this planet on the relative astrometry of the planet that was measured - # We are superimposing the Keplerian orbits, so we can add it linearly, scaled by the mass. - # Because we are in Jacobi coordinates, for companions, we only should model the effect of planets interior to it. - # (Jacobi coordinates mean that separation for a given companion is measured relative to the barycenter of all interior companions) if self.track_planet_perturbs: - for body_num in np.arange(self.num_secondary_bodies + 1): + masses[body_num] = mass + mtots[body_num] = mtot + + # solve Kepler's equation + raoff, decoff, vz_i = kepler.calc_orbit( + epochs, + sma, + ecc, + inc, + argp, + lan, + tau, + plx, + mtot, + mass_for_Kamp=m0, + tau_ref_epoch=self.tau_ref_epoch, + ) - if body_num > 0: - # for companions, only perturb companion orbits at larger SMAs than this one. - sma = params_arr[self.basis.standard_basis_idx['sma{}'.format(body_num)]] - all_smas = params_arr[self.sma_indx] - outside_orbit = np.where(all_smas > sma)[0] - which_perturb_bodies = outside_orbit + 1 + # raoff, decoff, vz are scalers if the length of epochs is 1 + if len(epochs) == 1: + raoff = np.array([raoff]) + decoff = np.array([decoff]) + vz_i = np.array([vz_i]) + + # add Keplerian ra/deoff for this body to storage arrays + ra_kepler[:, body_num, :] = np.reshape(raoff, (n_epochs, n_orbits)) + dec_kepler[:, body_num, :] = np.reshape(decoff, (n_epochs, n_orbits)) + vz[:, body_num, :] = np.reshape(vz_i, (n_epochs, n_orbits)) + + # vz_i is the ith companion radial velocity + if self.fit_secondary_mass: + vz0 = np.reshape( + vz_i * -(mass / m0), (n_epochs, n_orbits) + ) # calculating stellar velocity due to ith companion + vz[:, 0, :] += vz0 # adding stellar velocity and gamma + + # if we are fitting for the mass of the planets, then they will perturb the star + # add the perturbation on the star due to this planet on the relative astrometry of the planet that was measured + # We are superimposing the Keplerian orbits, so we can add it linearly, scaled by the mass. + # Because we are in Jacobi coordinates, for companions, we only should model the effect of planets interior to it. + # (Jacobi coordinates mean that separation for a given companion is measured relative to the barycenter of all interior companions) + if self.track_planet_perturbs: + for body_num in np.arange(self.num_secondary_bodies + 1): + if body_num > 0: + # for companions, only perturb companion orbits at larger SMAs than this one. + sma = params_arr[ + self.basis.standard_basis_idx["sma{}".format(body_num)] + ] + all_smas = params_arr[self.sma_indx] + outside_orbit = np.where(all_smas > sma)[0] + which_perturb_bodies = outside_orbit + 1 + + # the planet will also perturb the star + which_perturb_bodies = np.append([0], which_perturb_bodies) - # the planet will also perturb the star - which_perturb_bodies = np.append([0], which_perturb_bodies) + else: + # for the star, what we are measuring is its position relative to the system barycenter + # so we want to account for all of the bodies. + which_perturb_bodies = np.arange(self.num_secondary_bodies + 1) + + for other_body_num in which_perturb_bodies: + # skip itself since the the 2-body problem is measuring the planet-star separation already + if (body_num == other_body_num) | (body_num == 0): + continue + + ## NOTE: we are only handling astrometry right now (TODO: integrate RV into this) + # this computes the perturbation on the other body due to the current body + + # star is perturbed in opposite direction + if other_body_num == 0: + ra_perturb[:, other_body_num, :] -= ( + masses[body_num] / mtots[body_num] + ) * ra_kepler[:, body_num, :] + dec_perturb[:, other_body_num, :] -= ( + masses[body_num] / mtots[body_num] + ) * dec_kepler[:, body_num, :] else: - # for the star, what we are measuring is its position relative to the system barycenter - # so we want to account for all of the bodies. - which_perturb_bodies = np.arange(self.num_secondary_bodies+1) - - for other_body_num in which_perturb_bodies: - # skip itself since the the 2-body problem is measuring the planet-star separation already - if (body_num == other_body_num) | (body_num == 0): - continue - - ## NOTE: we are only handling astrometry right now (TODO: integrate RV into this) - # this computes the perturbation on the other body due to the current body - - # star is perturbed in opposite direction - if other_body_num == 0: - ra_perturb[:, other_body_num, :] -= (masses[body_num]/mtots[body_num]) * ra_kepler[:, body_num, :] - dec_perturb[:, other_body_num, :] -= (masses[body_num]/mtots[body_num]) * dec_kepler[:, body_num, :] - - else: - ra_perturb[:, other_body_num, :] += (masses[body_num]/mtots[body_num]) * ra_kepler[:, body_num, :] - dec_perturb[:, other_body_num, :] += (masses[body_num]/mtots[body_num]) * dec_kepler[:, body_num, :] - - raoff = ra_kepler + ra_perturb - deoff = dec_kepler + dec_perturb - - if self.fitting_basis == 'XYZ': + ra_perturb[:, other_body_num, :] += ( + masses[body_num] / mtots[body_num] + ) * ra_kepler[:, body_num, :] + dec_perturb[:, other_body_num, :] += ( + masses[body_num] / mtots[body_num] + ) * dec_kepler[:, body_num, :] + + raoff = ra_kepler + ra_perturb + deoff = dec_kepler + dec_perturb + + # TODO (@sblunt): add in parallactic ellipse here for abs astrometry + + if self.fitting_basis == "XYZ": # Find and filter out unbound orbits - bad_orbits = np.where(np.logical_or(ecc >= 1., ecc < 0.))[0] - if (bad_orbits.size != 0): - raoff[:,:, bad_orbits] = np.inf - deoff[:,:, bad_orbits] = np.inf - vz[:,:, bad_orbits] = np.inf + bad_orbits = np.where(np.logical_or(ecc >= 1.0, ecc < 0.0))[0] + if bad_orbits.size != 0: + raoff[:, :, bad_orbits] = np.inf + deoff[:, :, bad_orbits] = np.inf + vz[:, :, bad_orbits] = np.inf + return raoff, deoff, vz + else: return raoff, deoff, vz - else: - return raoff, deoff, vz else: return raoff, deoff, vz - def compute_model(self, params_arr, use_rebound=False): """ - Compute model predictions for an array of fitting parameters. + Compute model predictions for an array of fitting parameters. Calls the above compute_all_orbits() function, adds jitter/gamma to RV measurements, and propagates these predictions to a model array that - can be subtracted from a data array to compute chi2. - + can be subtracted from a data array to compute chi2. + Args: params_arr (np.array of float): RxM array of fitting parameters, where R is the number of parameters being fit, and M is the number of orbits we need model predictions for. Must be in the same order documented in ``System()`` above. If M=1, this can be a 1d array. - use_rebound (bool, optional): A secondary optional input for + use_rebound (bool, optional): A secondary optional input for use of N-body solver Rebound; by default, this will be set to false and a Kepler solver will be used instead. @@ -499,10 +572,12 @@ def compute_model(self, params_arr, use_rebound=False): """ to_convert = np.copy(params_arr) - standard_params_arr = self.basis.to_standard_basis(to_convert) + standard_params_arr = self.basis.to_standard_basis(to_convert) if use_rebound: - raoff, decoff, vz = self.compute_all_orbits(standard_params_arr, comp_rebound=True) + raoff, decoff, vz = self.compute_all_orbits( + standard_params_arr, comp_rebound=True + ) else: raoff, decoff, vz = self.compute_all_orbits(standard_params_arr) @@ -516,29 +591,33 @@ def compute_model(self, params_arr, use_rebound=False): jitter = np.zeros((n_epochs, 2, n_orbits)) gamma = np.zeros((n_epochs, 2, n_orbits)) - if len(self.rv[0]) > 0 and self.fit_secondary_mass: - + if len(self.rv[0]) > 0 and self.fit_secondary_mass: # looping through instruments to get the gammas & jitters for rv_idx in range(len(self.rv_instruments)): - - jitter[self.rv_inst_indices[rv_idx], 0] = standard_params_arr[ # [km/s] - self.basis.standard_basis_idx['sigma_{}'.format(self.rv_instruments[rv_idx])] + jitter[self.rv_inst_indices[rv_idx], 0] = standard_params_arr[ # [km/s] + self.basis.standard_basis_idx[ + "sigma_{}".format(self.rv_instruments[rv_idx]) + ] ] jitter[self.rv_inst_indices[rv_idx], 1] = np.nan - gamma[self.rv_inst_indices[rv_idx], 0] = standard_params_arr[ - self.basis.standard_basis_idx['gamma_{}'.format(self.rv_instruments[rv_idx])] - ] + self.basis.standard_basis_idx[ + "gamma_{}".format(self.rv_instruments[rv_idx]) + ] + ] gamma[self.rv_inst_indices[rv_idx], 1] = np.nan for body_num in np.arange(self.num_secondary_bodies + 1): - # for the model points that correspond to this planet's orbit, add the model prediction # RA/Dec - if len(self.radec[body_num]) > 0: # (prevent empty array dimension errors) - model[self.radec[body_num], 0] = raoff[self.radec[body_num], body_num, :] # N_epochs x N_bodies x N_orbits - model[self.radec[body_num], 1] = decoff[self.radec[body_num], body_num, :] + if len(self.radec[body_num]) > 0: # (prevent empty array dimension errors) + model[self.radec[body_num], 0] = raoff[ + self.radec[body_num], body_num, : + ] # N_epochs x N_bodies x N_orbits + model[self.radec[body_num], 1] = decoff[ + self.radec[body_num], body_num, : + ] # Sep/PA if len(self.seppa[body_num]) > 0: @@ -570,34 +649,39 @@ def convert_data_table_radec2seppa(self, body_num=1): Args: body_num (int): which object to convert (1 = first planet) """ - for i in self.radec[body_num]: # Loop through rows where input provided in radec + for i in self.radec[ + body_num + ]: # Loop through rows where input provided in radec # Get ra/dec values - ra = self.data_table['quant1'][i] - ra_err = self.data_table['quant1_err'][i] - dec = self.data_table['quant2'][i] - dec_err = self.data_table['quant2_err'][i] - radec_corr = self.data_table['quant12_corr'][i] + ra = self.data_table["quant1"][i] + ra_err = self.data_table["quant1_err"][i] + dec = self.data_table["quant2"][i] + dec_err = self.data_table["quant2_err"][i] + radec_corr = self.data_table["quant12_corr"][i] # Convert to sep/PA sep, pa = radec2seppa(ra, dec) - if np.isnan(radec_corr): + if np.isnan(radec_corr): # E-Z - sep_err = 0.5*(ra_err+dec_err) - pa_err = np.degrees(sep_err/sep) + sep_err = 0.5 * (ra_err + dec_err) + pa_err = np.degrees(sep_err / sep) seppa_corr = np.nan else: - sep_err, pa_err, seppa_corr = transform_errors(ra, dec, ra_err, dec_err, radec_corr, radec2seppa) + sep_err, pa_err, seppa_corr = transform_errors( + ra, dec, ra_err, dec_err, radec_corr, radec2seppa + ) # Update data_table - self.data_table['quant1'][i] = sep - self.data_table['quant1_err'][i] = sep_err - self.data_table['quant2'][i] = pa - self.data_table['quant2_err'][i] = pa_err - self.data_table['quant12_corr'][i] = seppa_corr - self.data_table['quant_type'][i] = 'seppa' + self.data_table["quant1"][i] = sep + self.data_table["quant1_err"][i] = sep_err + self.data_table["quant2"][i] = pa + self.data_table["quant2_err"][i] = pa_err + self.data_table["quant12_corr"][i] = seppa_corr + self.data_table["quant_type"][i] = "seppa" # Update self.radec and self.seppa arrays self.radec[body_num] = np.delete( - self.radec[body_num], np.where(self.radec[body_num] == i)[0]) + self.radec[body_num], np.where(self.radec[body_num] == i)[0] + ) self.seppa[body_num] = np.append(self.seppa[body_num], i) @@ -621,13 +705,14 @@ def radec2seppa(ra, dec, mod180=False): """ sep = np.sqrt((ra**2) + (dec**2)) - pa = np.degrees(np.arctan2(ra, dec)) % 360. + pa = np.degrees(np.arctan2(ra, dec)) % 360.0 if mod180: pa[pa < 180] += 360 return sep, pa + def seppa2radec(sep, pa): """ Convenience function to convert sep/pa to ra/dec @@ -647,39 +732,44 @@ def seppa2radec(sep, pa): def transform_errors(x1, x2, x1_err, x2_err, x12_corr, transform_func, nsamps=100000): """ - Transform errors and covariances from one basis to another using a Monte Carlo - apporach - - Args: - x1 (float): planet location in first coordinate (e.g., RA, sep) before - transformation - x2 (float): planet location in the second coordinate (e.g., Dec, PA) - before transformation) - x1_err (float): error in x1 - x2_err (float): error in x2 - x12_corr (float): correlation between x1 and x2 - transform_func (function): function that transforms between (x1, x2) - and (x1p, x2p) (the transformed coordinates). The function signature - should look like: `x1p, x2p = transform_func(x1, x2)` - nsamps (int): number of samples to draw more the Monte Carlo approach. - More is slower but more accurate. - Returns: - tuple (x1p_err, x2p_err, x12p_corr): the errors and correlations for - x1p,x2p (the transformed coordinates) + Transform errors and covariances from one basis to another using a Monte Carlo + apporach + + Args: + x1 (float): planet location in first coordinate (e.g., RA, sep) before + transformation + x2 (float): planet location in the second coordinate (e.g., Dec, PA) + before transformation) + x1_err (float): error in x1 + x2_err (float): error in x2 + x12_corr (float): correlation between x1 and x2 + transform_func (function): function that transforms between (x1, x2) + and (x1p, x2p) (the transformed coordinates). The function signature + should look like: `x1p, x2p = transform_func(x1, x2)` + nsamps (int): number of samples to draw more the Monte Carlo approach. + More is slower but more accurate. + Returns: + tuple (x1p_err, x2p_err, x12p_corr): the errors and correlations for + x1p,x2p (the transformed coordinates) """ if np.isnan(x12_corr): - x12_corr = 0. + x12_corr = 0.0 # construct covariance matrix from the terms provided - cov = np.array([[x1_err**2, x1_err*x2_err*x12_corr], [x1_err*x2_err*x12_corr, x2_err**2]]) + cov = np.array( + [ + [x1_err**2, x1_err * x2_err * x12_corr], + [x1_err * x2_err * x12_corr, x2_err**2], + ] + ) samps = np.random.multivariate_normal([x1, x2], cov, size=nsamps) - x1p, x2p = transform_func(samps[:,0], samps[:, 1]) + x1p, x2p = transform_func(samps[:, 0], samps[:, 1]) x1p_err = np.std(x1p) x2p_err = np.std(x2p) - x12_corr = np.corrcoef([x1p, x2p])[0,1] + x12_corr = np.corrcoef([x1p, x2p])[0, 1] return x1p_err, x2p_err, x12_corr diff --git a/tests/test_hipparcos.py b/tests/test_hipparcos.py index a3c3b2c4..f54c6cef 100644 --- a/tests/test_hipparcos.py +++ b/tests/test_hipparcos.py @@ -7,71 +7,100 @@ from orbitize.gaia import GaiaLogProb from orbitize.hipparcos import HipparcosLogProb, nielsen_iad_refitting_test + def test_hipparcos_api(): """ - Check that error is caught for a star with solution type != 5 param, - and that doing an RV + Hipparcos IAD fit produces the expected list of + Check that error is caught for a star with solution type != 5 param, + and that doing an RV + Hipparcos IAD fit produces the expected list of Prior objects. """ # check sol type != 5 error message - hip_num = '000025' + hip_num = "000025" num_secondary_bodies = 1 - path_to_iad_file = '{}H{}.d'.format(DATADIR, hip_num) + path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) try: _ = HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies) - assert False, 'Test failed.' - except ValueError: + assert False, "Test failed." + except ValueError: pass # check that RV + Hip gives correct prior array labels - hip_num = '027321' # beta Pic + hip_num = "027321" # beta Pic num_secondary_bodies = 1 - path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num) + path_to_iad_file = "{}HIP{}.d".format(DATADIR, hip_num) myHip = HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies) - input_file = os.path.join(DATADIR, 'HD4747.csv') + input_file = os.path.join(DATADIR, "HD4747.csv") data_table_with_rvs = read_input.read_file(input_file) mySys = system.System( - 1, data_table_with_rvs, 1.22, 56.95, mass_err=0.08, plx_err=0.26, - hipparcos_IAD=myHip, fit_secondary_mass=True + 1, + data_table_with_rvs, + 1.22, + 56.95, + mass_err=0.08, + plx_err=0.26, + hipparcos_IAD=myHip, + fit_secondary_mass=True, ) # test that `fit_secondary_mass` and `track_planet_perturbs` keywords are set appropriately assert mySys.fit_secondary_mass assert mySys.track_planet_perturbs - assert len(mySys.sys_priors) == 15 # 7 orbital params + 2 mass params + - # 4 Hip nuisance params + - # 2 RV nuisance params + assert len(mySys.sys_priors) == 15 # 7 orbital params + 2 mass params + + # 4 Hip nuisance params + + # 2 RV nuisance params assert mySys.labels == [ - 'sma1', 'ecc1', 'inc1', 'aop1', 'pan1', 'tau1', 'plx', 'pm_ra', 'pm_dec', - 'alpha0', 'delta0', 'gamma_defrv', 'sigma_defrv', 'm1', 'm0' - ] - - # test that `fit_secondary_mass` and `track_planet_perturbs` keywords are + "sma1", + "ecc1", + "inc1", + "aop1", + "pan1", + "tau1", + "plx", + "pm_ra", + "pm_dec", + "alpha0", + "delta0", + "gamma_defrv", + "sigma_defrv", + "m1", + "m0", + ] + + # test that `fit_secondary_mass` and `track_planet_perturbs` keywords are # set appropriately for non-Hipparcos system noHip_system = system.System( - num_secondary_bodies, data_table_with_rvs, 1.0, 1.0, hipparcos_IAD=None, - fit_secondary_mass=False, mass_err=0.01, plx_err=0.01 + num_secondary_bodies, + data_table_with_rvs, + 1.0, + 1.0, + hipparcos_IAD=None, + fit_secondary_mass=False, + mass_err=0.01, + plx_err=0.01, ) assert not noHip_system.fit_secondary_mass assert not noHip_system.track_planet_perturbs # check that negative residuals are rejected properly - hip_num = '000026' # contains one negative residual + hip_num = "000026" # contains one negative residual num_secondary_bodies = 1 - path_to_iad_file = '{}H{}.d'.format(DATADIR, hip_num) + path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) raw_iad_data = np.transpose(np.loadtxt(path_to_iad_file)) - rejected_scansHip = HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies) + rejected_scansHip = HipparcosLogProb( + path_to_iad_file, hip_num, num_secondary_bodies + ) assert len(rejected_scansHip.cos_phi) == len(raw_iad_data[0]) - 1 + def test_dvd_vs_2021catalog(): """ Test code's ability to parse both a DVD data file and a 2021 @@ -79,23 +108,21 @@ def test_dvd_vs_2021catalog(): same best-fit astrometric solution and the same IAD. """ - hip_num = '027321' + hip_num = "027321" num_secondary_bodies = 1 - iad_file_2021 = '{}H{}.d'.format(DATADIR, hip_num) - iad_file_dvd = '{}HIP{}.d'.format(DATADIR, hip_num) + iad_file_2021 = "{}H{}.d".format(DATADIR, hip_num) + iad_file_dvd = "{}HIP{}.d".format(DATADIR, hip_num) # first, test reading of 2021 catalog - new_iadHipLogProb = HipparcosLogProb( - iad_file_2021, hip_num, num_secondary_bodies - ) + new_iadHipLogProb = HipparcosLogProb(iad_file_2021, hip_num, num_secondary_bodies) # next, test reading of a DVD file - old_iadHipLogProb = HipparcosLogProb( - iad_file_dvd, hip_num, num_secondary_bodies - ) + old_iadHipLogProb = HipparcosLogProb(iad_file_dvd, hip_num, num_secondary_bodies) # test that these give the same data file for beta Pic (which has no rejected scans) - assert np.abs(new_iadHipLogProb.plx0 - old_iadHipLogProb.plx0) < 1e-3 # (plx precise to 0.01) + assert ( + np.abs(new_iadHipLogProb.plx0 - old_iadHipLogProb.plx0) < 1e-3 + ) # (plx precise to 0.01) assert np.abs(new_iadHipLogProb.plx0_err - old_iadHipLogProb.plx0_err) < 1e-3 assert np.abs(new_iadHipLogProb.pm_ra0 - old_iadHipLogProb.pm_ra0) < 1e-3 assert np.abs(new_iadHipLogProb.pm_ra0_err - old_iadHipLogProb.pm_ra0_err) < 1e-3 @@ -107,20 +134,26 @@ def test_dvd_vs_2021catalog(): assert np.abs(new_iadHipLogProb.delta0_err - old_iadHipLogProb.delta0_err) < 1e-3 # this also asserts that they're the same length, i.e. no rejected scans - assert np.all(np.isclose(new_iadHipLogProb.cos_phi, old_iadHipLogProb.cos_phi, atol=1e-2)) - assert np.all(np.isclose(new_iadHipLogProb.sin_phi, old_iadHipLogProb.sin_phi, atol=1e-2)) - assert np.all(np.isclose(new_iadHipLogProb.epochs, old_iadHipLogProb.epochs, atol=1e-2)) + assert np.all( + np.isclose(new_iadHipLogProb.cos_phi, old_iadHipLogProb.cos_phi, atol=1e-2) + ) + assert np.all( + np.isclose(new_iadHipLogProb.sin_phi, old_iadHipLogProb.sin_phi, atol=1e-2) + ) + assert np.all( + np.isclose(new_iadHipLogProb.epochs, old_iadHipLogProb.epochs, atol=1e-2) + ) + def test_iad_refitting(): """ Check that refitting the IAD gives posteriors that approximately match - the official Hipparcos values. Only run the MCMC for a few steps because - this is a unit test. + the official Hipparcos values. Only run the MCMC for a few steps because + this is a unit test. """ post, myHipLogProb = nielsen_iad_refitting_test( - '{}/HIP027321.d'.format(DATADIR), burn_steps=10, mcmc_steps=200, - saveplot=None + "{}/HIP027321.d".format(DATADIR), burn_steps=10, mcmc_steps=200, saveplot=None ) # check that we get reasonable values for the posteriors of the refit IAD @@ -128,29 +161,37 @@ def test_iad_refitting(): assert np.isclose(0, np.median(post[:, -1]), atol=0.1) assert np.isclose(myHipLogProb.plx0, np.median(post[:, 0]), atol=0.1) + def test_save_load_dvd(): """ Set up a Hip IAD + Gaia fit using a DVD file, save the results, and load them. """ - hip_num = '027321' # beta Pic + hip_num = "027321" # beta Pic num_secondary_bodies = 1 - path_to_iad_file = '{}HIP{}.d'.format(DATADIR, hip_num) + path_to_iad_file = "{}HIP{}.d".format(DATADIR, hip_num) myHip = HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies) - myGaia = GaiaLogProb(4792774797545800832, myHip, dr='edr3') + myGaia = GaiaLogProb(4792774797545800832, myHip, dr="edr3") - input_file = os.path.join(DATADIR, 'HD4747.csv') + input_file = os.path.join(DATADIR, "HD4747.csv") data_table_with_rvs = read_input.read_file(input_file) mySys = system.System( - 1, data_table_with_rvs, 1.22, 56.95, mass_err=0.08, plx_err=0.26, - hipparcos_IAD=myHip, fit_secondary_mass=True, gaia=myGaia + 1, + data_table_with_rvs, + 1.22, + 56.95, + mass_err=0.08, + plx_err=0.26, + hipparcos_IAD=myHip, + fit_secondary_mass=True, + gaia=myGaia, ) n_walkers = 50 mySamp = sampler.MCMC(mySys, num_walkers=n_walkers) mySamp.run_sampler(n_walkers, burn_steps=0) - filename = 'tmp1.hdf5' + filename = "tmp1.hdf5" mySamp.results.save_results(filename) myResults = results.Results() @@ -158,29 +199,37 @@ def test_save_load_dvd(): # os.system('rm tmp.hdf5') + def test_save_load_2021(): """ Set up a Hip IAD + Gaia fit using a 2021 file, save the results, and load them. """ - hip_num = '027321' # beta Pic + hip_num = "027321" # beta Pic num_secondary_bodies = 1 - path_to_iad_file = '{}H{}.d'.format(DATADIR, hip_num) + path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) myHip = HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies) - myGaia = GaiaLogProb(4792774797545800832, myHip, dr='edr3') + myGaia = GaiaLogProb(4792774797545800832, myHip, dr="edr3") - input_file = os.path.join(DATADIR, 'HD4747.csv') + input_file = os.path.join(DATADIR, "HD4747.csv") data_table_with_rvs = read_input.read_file(input_file) mySys = system.System( - 1, data_table_with_rvs, 1.22, 56.95, mass_err=0.08, plx_err=0.26, - hipparcos_IAD=myHip, fit_secondary_mass=True, gaia=myGaia + 1, + data_table_with_rvs, + 1.22, + 56.95, + mass_err=0.08, + plx_err=0.26, + hipparcos_IAD=myHip, + fit_secondary_mass=True, + gaia=myGaia, ) n_walkers = 50 mySamp = sampler.MCMC(mySys, num_walkers=n_walkers) mySamp.run_sampler(n_walkers, burn_steps=0) - filename = 'tmp2.hdf5' + filename = "tmp2.hdf5" mySamp.results.save_results(filename) myResults = results.Results() @@ -189,10 +238,9 @@ def test_save_load_2021(): # os.system('rm tmp.hdf5') -if __name__ == '__main__': - test_save_load_dvd() - test_save_load_2021() +if __name__ == "__main__": + # test_save_load_dvd() + # test_save_load_2021() # test_hipparcos_api() - # test_iad_refitting() + test_iad_refitting() # test_dvd_vs_2021catalog() - From 48c8cdb0d6051d9df49916c9e10c635cd4aa0023 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:36:53 -0600 Subject: [PATCH 06/37] lint --- tests/end-to-end-tests/betaPic_hipIAD.py | 58 +++++++++++++----------- 1 file changed, 31 insertions(+), 27 deletions(-) diff --git a/tests/end-to-end-tests/betaPic_hipIAD.py b/tests/end-to-end-tests/betaPic_hipIAD.py index 3e9d7a9d..38b1c771 100644 --- a/tests/end-to-end-tests/betaPic_hipIAD.py +++ b/tests/end-to-end-tests/betaPic_hipIAD.py @@ -24,12 +24,12 @@ Begin keywords << """ -fit_IAD = True +fit_IAD = True if fit_IAD: - savedir = '/data/user/{}/betaPic/hipIAD'.format(os.getlogin()) + savedir = "/data/user/{}/betaPic/hipIAD".format(os.getlogin()) else: - savedir = '/data/user/{}/betaPic/noIAD'.format(os.getlogin()) + savedir = "/data/user/{}/betaPic/noIAD".format(os.getlogin()) """ >> End keywords """ @@ -37,50 +37,54 @@ if not os.path.exists(savedir): os.mkdir(savedir) -input_file = os.path.join(orbitize.DATADIR, 'betaPic.csv') +input_file = os.path.join(orbitize.DATADIR, "betaPic.csv") plx = 51.5 num_secondary_bodies = 1 data_table = read_input.read_file(input_file) if fit_IAD: - hipparcos_number='027321' + hipparcos_number = "027321" gaia_edr3_number = 4792774797545800832 gaia_dr2_number = 4792774797545105664 - fit_secondary_mass=True - hipparcos_filename=os.path.join(orbitize.DATADIR, 'HIP027321.d') + fit_secondary_mass = True + hipparcos_filename = os.path.join(orbitize.DATADIR, "HIP027321.d") betaPic_Hip = HipparcosLogProb( hipparcos_filename, hipparcos_number, num_secondary_bodies ) - betaPic_gaia = GaiaLogProb( - gaia_dr2_number, betaPic_Hip, dr='dr2' - ) + betaPic_gaia = GaiaLogProb(gaia_dr2_number, betaPic_Hip, dr="dr2") # betaPic_gaia = GaiaLogProb( # gaia_edr3_number, betaPic_Hip, dr='edr3' # ) else: - fit_secondary_mass=False + fit_secondary_mass = False betaPic_Hip = None betaPic_gaia = None betaPic_system = system.System( - num_secondary_bodies, data_table, 1.75, plx, hipparcos_IAD=betaPic_Hip, - gaia=betaPic_gaia, fit_secondary_mass=fit_secondary_mass, mass_err=0.01, - plx_err=0.01 + num_secondary_bodies, + data_table, + 1.75, + plx, + hipparcos_IAD=betaPic_Hip, + gaia=betaPic_gaia, + fit_secondary_mass=fit_secondary_mass, + mass_err=0.01, + plx_err=0.01, ) m0_or_mtot_prior = priors.UniformPrior(1.5, 2.0) # set uniform parallax prior -plx_index = betaPic_system.param_idx['plx'] +plx_index = betaPic_system.param_idx["plx"] betaPic_system.sys_priors[plx_index] = priors.UniformPrior(plx - 1.0, plx + 1.0) # set prior on Omega, since we know that know direction of orbital motion from RV -pan_index = betaPic_system.param_idx['pan1'] +pan_index = betaPic_system.param_idx["pan1"] betaPic_system.sys_priors[pan_index] = priors.UniformPrior(0, np.pi) # set uniform prior on m1 as Nielsen+ 2020 do -m1_index = betaPic_system.param_idx['m1'] +m1_index = betaPic_system.param_idx["m1"] betaPic_system.sys_priors[m1_index] = priors.UniformPrior(0, 0.1) if fit_IAD: @@ -88,7 +92,7 @@ assert betaPic_system.track_planet_perturbs # set uniform m0 prior - m0_index = betaPic_system.param_idx['m0'] + m0_index = betaPic_system.param_idx["m0"] betaPic_system.sys_priors[m0_index] = m0_or_mtot_prior else: @@ -96,32 +100,32 @@ assert not betaPic_system.track_planet_perturbs # set uniform mtot prior - mtot_index = betaPic_system.param_idx['mtot'] + mtot_index = betaPic_system.param_idx["mtot"] betaPic_system.sys_priors[mtot_index] = m0_or_mtot_prior # run MCMC num_threads = 100 num_temps = 20 num_walkers = 1000 -num_steps = 1000000 # n_walkers x n_steps_per_walker +num_steps = 1000000 # n_walkers x n_steps_per_walker burn_steps = 1000 thin = 100 betaPic_sampler = sampler.MCMC( - betaPic_system, num_threads=num_threads, num_temps=num_temps, - num_walkers=num_walkers + betaPic_system, + num_threads=num_threads, + num_temps=num_temps, + num_walkers=num_walkers, ) betaPic_sampler.run_sampler(num_steps, burn_steps=burn_steps, thin=thin) # save chains -betaPic_sampler.results.save_results( - '{}/betaPic_IAD{}.hdf5'.format(savedir, fit_IAD) -) +betaPic_sampler.results.save_results("{}/betaPic_IAD{}.hdf5".format(savedir, fit_IAD)) # make corner plot fig = betaPic_sampler.results.plot_corner() -plt.savefig('{}/corner_IAD{}.png'.format(savedir, fit_IAD), dpi=250) +plt.savefig("{}/corner_IAD{}.png".format(savedir, fit_IAD), dpi=250) # make orbit plot fig = betaPic_sampler.results.plot_orbits() -plt.savefig('{}/orbit_IAD{}.png'.format(savedir, fit_IAD), dpi=250) \ No newline at end of file +plt.savefig("{}/orbit_IAD{}.png".format(savedir, fit_IAD), dpi=250) From b51f416321786f449e5f851d21b7c59c0bb27526 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:37:34 -0600 Subject: [PATCH 07/37] fix bug introduced with type 1 sols --- orbitize/hipparcos.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 63655306..26dbdbf2 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -133,13 +133,15 @@ def __init__( self.pm_dec0_err = astrometric_solution["e_pmDE"].values[0] # [mas/yr] self.alpha0_err = astrometric_solution["e_RA"].values[0] # [mas] self.delta0_err = astrometric_solution["e_DE"].values[0] # [mas] - self.var = astrometric_solution["var"].values[0] + self.solution_type = solution_details["isol_n"].values[0] + + if self.solution_type == 1: + self.var = astrometric_solution["var"].values[0] solution_details = pd.read_csv( path_to_iad_file, skiprows=5, sep="\s+", nrows=1 ) - self.solution_type = solution_details["isol_n"].values[0] f2 = solution_details["F2"].values[0] # sol types: 1 = "stochastic solution", which has a 5-param fit but @@ -183,7 +185,8 @@ def __init__( self.epochs_mjd = epochs.mjd # if the star has a type 1 (stochastic) solution, we need to undo the addition of a jitter term in quadrature - self.eps = np.sqrt(self.eps**2 - self.var) + if self.solution_type == 1: + self.eps = np.sqrt(self.eps**2 - self.var) if self.renormalize_errors: D = len(epochs) - 6 @@ -254,7 +257,7 @@ def compute_model( pm_dec, alpha_H0, delta_H0, - epochs=None, + epochs_to_predict=None, ): """ Computes the predicted RA/Dec @@ -371,7 +374,7 @@ def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): dist = np.abs( (self.alpha_abs_st - alpha_C_st) * self.cos_phi + (self.delta_abs - delta_C) * self.sin_phi - ) + ).reshape((n_samples, n_epochs)) # compute chi2 (Nielsen+ 2020 Eq 7) chi2 = np.sum( From a34a834a5cc649af9b269df47587d3884c260b62 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:40:09 -0600 Subject: [PATCH 08/37] another api type 1 bug fixed --- orbitize/hipparcos.py | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 26dbdbf2..cf6160a9 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -133,15 +133,16 @@ def __init__( self.pm_dec0_err = astrometric_solution["e_pmDE"].values[0] # [mas/yr] self.alpha0_err = astrometric_solution["e_RA"].values[0] # [mas] self.delta0_err = astrometric_solution["e_DE"].values[0] # [mas] - self.solution_type = solution_details["isol_n"].values[0] - - if self.solution_type == 1: - self.var = astrometric_solution["var"].values[0] solution_details = pd.read_csv( path_to_iad_file, skiprows=5, sep="\s+", nrows=1 ) + self.solution_type = solution_details["isol_n"].values[0] + + if self.solution_type == 1: + self.var = astrometric_solution["var"].values[0] + f2 = solution_details["F2"].values[0] # sol types: 1 = "stochastic solution", which has a 5-param fit but From 73e18cb28b8daa23455de3510f19c1e718ca27f7 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:42:40 -0600 Subject: [PATCH 09/37] lint --- docs/tutorials/Hipparcos_IAD.ipynb | 298703 +++++++++++++++++++++++++- 1 file changed, 298654 insertions(+), 49 deletions(-) diff --git a/docs/tutorials/Hipparcos_IAD.ipynb b/docs/tutorials/Hipparcos_IAD.ipynb index e5dd8db7..b48e4de1 100644 --- a/docs/tutorials/Hipparcos_IAD.ipynb +++ b/docs/tutorials/Hipparcos_IAD.ipynb @@ -49,31 +49,28 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Go get a coffee. This will take a few mins! :)\n", - "Starting burn-in!\n", - "Starting production chain!\n", - "Done! This fit took 3.1 mins on my machine.\n" + "Go get a coffee. This will take a few mins! :)\n" ] }, { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWkAAANYCAYAAAAGwhxvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzde5xN9f7H8dfHZUqlOFEhmqIL5T6U0nGJkpJO6Cgq6riGhEIuuUaEIkQoUpxKKlL8FIWjMuROB7lNcogwGLeZ7++P71aTZthj1t7ftff+PB+P/WjsWbPWe1Z7PvOd7/5exBiDUkopf8rhOoBSSqnMaZFWSikf0yKtlFI+pkVaKaV8TIu0Ukr5WC5XFy5QoICJj493dXmllHJm+fLlvxpjCgZzrLMiHR8fT2JioqvLK6WUMyKyPdhjtbtDKaV8TIu0Ukr5mBZppZTyMS3SSinlY1qklVLKx5yN7lDKKZGMn9cFx5TPaEtaKaV8TIu0Ukr5mBZppZTyMS3SSinlY1qklVLKx7RIK6WUj2mRVkopH9Nx0iq6ZTYeWqkIoS1ppZTyMS3SSinlY1qklVLKx7RPWqn0dE0P5TPaklZKKR/TlrSKSQeBJcBKIAk4BMQBBYGbgCrAjYCODVGuaZFWMeMk8CEwGfg/IC3w/OXAZcAJ4H+B4wDigSZAK6BoOIMqlY52d6iolwpMAm4AHgU2AF2BL4Fk4FdgC7ATOAr8CLwBlAReAq4FWrRowa5du8KeXSkt0iqqrQbuAJ7CdmXMArZii29N4JIzjs+FLeatgDnAT8DTwOTJkylRogSvvfYaaWlpKBUuWqRVVDLGMHz4cCpiC+1U4DvgfrL2oo8HXgN+/PFHatasSceOHalRowZJSUmeZ1YqI1qkVdRJTk6mQYMGdO7cmXrY7o0mZO9NwGuvvZZZs2bx1ltv8cMPP1CxYkUWL17sTWClzkLfOFTRITC+eTdQF9vNMQx4Fo9GaIggQDPgVqB+cjI1atRg4sSJPP74415cQakMaUtaRY3NwO3YN/5mAZ0IzRC6ksD3QLVq1XjiiScYNWpUCK6ilOVZkRaRC0XkexFZJSLrRKSvV+dW6nciGT5+AqpjR2ssAO4NcYx8wOzZs3nwwQfp0KEDgwYNCvEVVazysiV9HKhpjCkLlAPqiMhtHp5fqQztxI7USAG+AiqH6boXXnghH3zwAU2aNOGFF17QFrUKCc/6pI0xBjgc+GfuwEMXPFAhtQe4CziALdClw3z9XLly8fbbb3PkyBE6dOjAZZddpn3UylOe9kmLSE4RWYn92fk/Y8x3Xp5fqfRSgPrYad2fAxUc5ciVKxfTp0+nVq1aPPnkk8ybN89REhWNPC3SxphUY0w54Gqgsojckv7zItJSRBJFJHHv3r1eXlrFmDSgOfAtdgx0FRch0vWJX3DhhcycP5+bU1N5+OGH2bhxo4tEKgqFZHSHMeYAsBCoc8bz440xCcaYhIIFC4bi0ipG9AH+DbwMPOQ2yu8uAT4FLrjgAu6//3727dvnOpKKAl6O7igoIvkCH+cBagHanFCe+xjoDzwJPOc4y5muAT7++GOSkpL45z//SWpqqutIKsJ52ZIuBCwQkdXAMmyf9GwPz68UW7ATShKAMfhzKdEqVaowZswYvvzyS/r21ZGoKnu8HN2xGijv1fmUOtOxY8dohG1ZfABc4DjP2Tz55JMsWrSIAQMGcMcdd3DPPfe4jqQilM44VBHjmWee4QdgCnbhI78bPXo0t9xyC02aNGHnzp2u46gIpWt3qIgwY8YMxo8fT1fsSna+FlhH5CLsJgMVgceLFePL1FRy5NB2kcoafcUo3/vll19o1aoVCQkJ9HcdJotuwC51uhAYPny42zAqImmRVr5mjOHJJ5/k6NGjTJ06ldyuA52H5sCDQI8ePVi9erXrOCrCaJFW/iXC2Bw5+OKLLxiaksKNN93kOtF5EWA8kD9/fpo0acKxY8dcR1IRRIu08q0fgS7APUBbx1myqyAwadIk1q5dS8+ePV3HURFEi7TypdTUVJoDebCbyPpxPHRW1a1bl1atWjFixAi++06XtVHB0SKtfGnMmDEsBV4FCrsO46EhQ4ZQuHBhnnzySY4fP+46jooAWqSV72zfvp3u3btzD9DUdRiPXXrppYwbN47169czcOBA13FUBNAirXzFGEOrVq0AGEd0dHP8LrBiXt377qMpMKh/f1ZLVH2HKgS0SCtfmTp1KnPnzmXQoEFc4zpMCL0K/A27SNSpU6ccp1F+pkVauRdoYe4RoePjj3M70LZDB9epQupy4HVgOfDqq686TqP8TIu08o2O2P3XJgA5HWcJh4ZAPaDPc8+xI6MNdpVCi7TyiS+BaUB3oKTjLOEiwCjsRqDPOM6i/EuLtHLuBNAOuA7o6jhLuF0D9MZuZDDLcRblT1qklXPDsVv4jMJOXok1nYCbgfbAEcdZlP9okVZO7dixg/7YBYjqug7jSG5gLLAdIm6VPxV6WqSVUx07dsRgh6TFsjuxq+UNA9Y5zqL8RRf9V+FzxoiFz4GZwCCI6jHRwRoCfAK0Br5GW1DK0teBcuIYtg/2JmyfrIICwFBgMTDZcRblH1qklRMvY3f+Hg3EOc7iJ82A24Hngf3797sNo3xBi7QKuy3YLo7GQE3HWfwmB/ZNxN+AF154wXEa5QdapFVYGaADtvU8zHEWvyqDvUfjx4/n+++/dx1HOaZFWoXVJ8AcoC/RtU601/oAhQoVok2bNqSmprqOoxzyrEiLSFERWSAiG0RknYjoTFf1J0ew059LY980VJm7FBgxYgQrVqzgjTfecB1HOeRlS/oU0NkYUxK4DXhaREp5eH4V4QYCO4Ax6NjPYDRq1IhatWrRo0cPdu/e7TqOcsSzIm2M+cUYsyLwcTKwASji1flVZNu4cSOvAE8AVV2HiRAiwujRo0lJSeG5555zHUc5EpI+aRGJB8oD353xfEsRSRSRxL1794bi0sqHjDG0a9eOi7ETNlSQRLjhxht5/sQJpk6dyte6fGlM8rxIi8glwAygozHmUPrPGWPGG2MSjDEJBQsW9PrSyqf+/e9/8+WXXzIQuMJ1mAj0AnAt0BY4ceKE4zQq3Dwt0iKSG1ug3zXGfOTluVVkOnToEJ06daJixYq0ch0mQuUBRgLr0V1cYpGXozsEmAhsMMYM9+q8KrL16dOH3bt3M2bMmJjYbSVU7gfqA3379mXHjh2u46gw8rIlfQfwGFBTRFYGHrG6+qQC1qxZw8iRI2nRogWVK1d2HSfivYbt3+/YsaPrKCqMvBzdsdgYI8aYMsaYcoHHHK/OryKICGkitClThnypqbw0frzu2eeBa4DevXszc+ZM5szRH61YoTMOVUhMAZZgF1K63HGWaNKpUyduuukm2rdvT0pKius4Kgy0SCvP/YZdxa0KdiF75Z24uDjGjBnDTz/9xODBg13HUWGgRVp5rgewDzuzUF9g3qtRowaPPvoogwcPZtOmTa7jqBDTnyHlqcTERN7A7v5dznWYKPbKK69w4YUX0r59e4wxruOoENIirTyTmppK27ZtuRLo5zpMlCtUqBADBgxg7ty5zJgxw3UcFUK6zo3yzLhx41i2bBlTgctch4lW6UbJtAEmAR0bNeKeQ4fImzevs1gqdLQlrTzx888/061bN+666y4edR0mRuTC7uLyM3aSi4pOWqSVJ9q3b8/Jkyd544030BHR4XMb0AI7XXzNmjWu46gQ0CKtsm3mzJnMnDmTPn36UKJECddxYs4gIF++fLRt21bfRIxCWqRVthw8eJB27dpRtmxZOnXq5DpOTLocGDJkCIsXL2bKlCmu4yiPaZFW2fLCCy/wyy+/8Oabb5I7d27XcWJWs2bNqFKlCl26dOHXX391HUd5SIu0Om//+c9/GDt2LB06dKBSpUqu48S0HDlyMG7cOA4ePEiHDh1cx1Ee0iKtzsvx48dp0aIFRYsWZcCAAa7jKKB06dL07NmTadOm8fHHH7uOozyiRVqdl759+7J+/XrG7tjBJXnz2vG7px/Kme7du1OuXDlat27N/v37XcdRHtAirbLsu+++4+WXX+ZJQBcM95fcuXPz1ltvsW/fPl13OkpokVZZkpKSQrNmzShSpAi6/Y4/lStXjhdeeIF33nmH2bNnu46jskmnhass6dWrFxs3bmTevHlcdvfdruOo087oZuoBzARatWrF2rVryZ8/v5NYKvu0Ja2CtmTJEoYPH06rVq2oXbu26zjqLOKAt4D//e9/tG/f3nUclQ1apFVQDh8+TLNmzbjmmmsYOnSo6zgqCBWx2229++67vPfee67jqPMkrqaRJiQkmMTERCfXVlnXXITJwAKgmuswKminTp6kWrVqrF27llWrVhEfH+86kgJEZLkxJiGYY7Ulrc5p+vTpvI3t59QCHVly5crF1KlTMcbw+OOPk5qa6jqSyiIt0uqstm3bRqtWragCvOg6jMo6Ea697jpGJyezaNEiXs6VS8eyRxgt0ipTp06d4tFH7erQ76FDgSJZU+Cf2F+0Sx1nUVnjWZEWkUkiskdE1np1TuVW3759Wbp0KePGjSPedRiVLQK8ARQDHgZdhCmCeNmSfhuo4+H5lEOfffYZAwYMoHnz5jRu3Nh1HOWBfMAHwF6gSZMm2j8dITwr0saYbwBdLCAKbNmyhaZNm1K+fHlGjx7tOo7yUAVgJDBv3jwGDhzoOo4KQlj7pEWkpYgkikji3r17w3lpFaSjR4/SoEEDRIQZM2aQJ08e15GUx1oAjz32GH369GHevHmu46hzCGuRNsaMN8YkGGMSChYsGM5LqyAYY2jdujWrV6/m3Xff5dprr3UdSYWAAGPHjqVUqVI0btyYzZs3u46kzkJHd6jfjRgxgnfeeYc+xnBv3bq6/GgUu/jii/nkk08QEerVq8eBAwdcR1KZ0CKtAPjkk0/o0qULDYGersOosChevDgzZsxg8+bNNG7cmFOnTrmOpDLg5RC8adghmDeKSJKIPOXVuVVorVixgkcffZSEhAQmo7+5Y0n16tUZM2YMc+fOpXPnzq7jqAx4Nj/BGPOIV+dS4ZOUlES9evUoUKAAn376KRcVKuQ6kgqHdF1YLYB1wGsjR3LttdfqZgE+o5PIYti+ffu45557SE5OZvHixVx11VWuIylHhgE7gWeffZaCBQvSpEkT15FUgP5lG6OSk5O599572bJlC59++illypRxHUk5lBN4F9v90axZMz7//HPXkVSAFukYdOzYMR689FJWLFvGB8ePU71GDR3FobgQ+wZy6dKladiwIf/5z39cR1Jod0fMOX78OA8//DBfAe8A9VwHUr5y6WWX8TlwJ3DPHXfwBXCHozXnlaUt6RiSkpLCgw8+yKxZsxiLXRlNqTNdid3coTBwD7Bo0SK3gWKcFukYceTIEerVq8fcuXOZMGECrV0HUr5WBFuorwbuvfdevv76a8eJYpcW6RhwehTHggULmDx5Mk89pUPY1bkVxhbqokWLUqdOHWbOnOk6UkzSIh3ltm7dyh133MGyZcuYPn06jz32mOtIKoIUwnZ3lC1bloYNGzJ27FjXkWKOFukolpiYyG233caePXuYP38+jRo1ch1JRaACBQvy1XffUTctjbZt29JdhFQdCRQ2WqSj1JQpU7jzzju5aM8e/vPbb9z597/rgknqvF0EzARaAYOBB0AXZQoTLdJR5sSJE7Rr144nnniCKlWq8B1wk+tQKirkAsYGHvOAypUrs379erehYoAW6SiyZcsWqlWrxujRo+nSpQvz5s3jCtehVFQRoDX2DcVDhw6RkJDA+PHjMTqWOmS0SEcBYwwTJkygbNmybNiwgffff5+hQ4eSK5fOVVKhURW7emLVqlVp1aoVDz30kG5uGyJapCPcjh07qF+/Pi1atKBy5cqsWbNG3yBUYVG4cGG++OILhg0bxpw5c7j55puZNm2atqo9pkU6Qp08eZJhw4ZRqlQp5s+fzzBg/oIFFC1WTN8gVGGTI0cOOnXqxLJly7jmmmt49NFHuffee9m6davraFFDi3SEMcYwZ84cKlSoQJcuXahevTrr16+nE/o/U4VZusZAmbJlWbpsGSOBJUuWUKpUKbp3764jQDygP9cR5Ntvv6VGjRrcd999pKSk8NFHHzFr1izi4+NdR1OKnEB7YMOGDTRs2JCXX36Z4sWLM2LECI4dO+Y6XuQyxjh5VKxY0ahzS0tLM/PmzTN33XWXAcyVV15pRo8ebU6cOPHnA0Ef+vDHI2DFihWmdu3a5vTrdtCgQebAgQNh/gnyJyDRmOBqZVAHheKhRfrskpOTzcSJE0358uUNYAoVKmSGDBlikpOT3f8Q6kMfWXgsAHMPGMDkzZvXdOzY0axbt871j5hTWqQjVFpamvn2229Ny5YtTd68eQ1gSpYsaSZMmGCOHTv2x4E++MHThz6y+lixYoVp3LixyZ07twFM1apVzdtvv20OHjzo7ofOES3SESQ1NdUsXrzYdOzY0RQrVswAJk+ePOaJJ54wixYtMmlpaX/9Ih/8wOlDH1l+BPzvf/8zQ4YMMSVKlDCAiYuLM/Xq1TOTJ082+/fvD+NPnztZKdJijw+/hIQEk5iY6OTarv3000/Mnz+f+fPn89VXX7Fv3z7i4uK4++67adiwIfXr1ydfvnw6hE5FNQMsBT589lk+/PBDdu7cSY4cOahUqRK1a9emVq1aVKlShbi4ONdRPSciy40xCUEdq0U6tPbt28fy5ctZtmwZy5Yt4/vvv+eXX34BoEiRItSqVYt77rmH++67j0svvfTPX6xFWsWINOB7YA4wH/g+Z05SU1OJi4ujfPny3HrrrVSuXJmEhASKFy8e8bNpnRVpEakDvIYdjTPBGDM4s2OjpUgbY9i/fz87d+5k586dbNq0iY0bN/7+2Lt37+/H3ghUAm4DagE3YNdCUEr92UFgIbAE+A5IBI4GPhcXF8cNN9xAyZIlKVWqFCVKlKBYsWIUK1aMIkWKkDt3bkepg+ekSItITuC/QG0gCVgGPGKMyXCZrEgu0m+//TZTpkwhKSmJpKQkUlJS/vT5AgUKcNNNN/3+KF++PBUrVuSyfPkcJVYqsp0CNgArAv9dH/jvT9hW+GkiQuHChSlatCiFCxfmgw8+IEcO/00HyUqR9vJvhsrAZmPMT4EQ04H62PsZVZKTkzl27Bjly5en3qZNFAWKYveDKw4U+PVXWLzYPpRS2ZYLKB14pHcM2AFsD/x3hzHs+Plndv78M7uBHDlzZnxCR92858PLIl0E2Jnu30nArekPEJGWQMvAPw+LyI8eXv+0AkBYluNaunRpOC5zPsJ2D3ws1u9BrH//AAUks3vg/v2ea4I90MsindF3/adfV8aY8cB4D6/51xAiicH+GRGt9B7oPYj17x+i5x542VmThP2r/7SrgV0enl8ppWKOl0V6GXC9iFwrInFAY+BTD8+vlFIxx7PuDmPMKRFpB8zFDsGbZIxZ59X5syCk3SkRQu+B3oNY//4hSu6Bs8ksSimlzs1/AwiVUkr9Tou0Ukr5WEQVaRHZJiJrRGSliCQGnmskIutEJE1EMh1uIyJ1RORHEdksIt3Cl9pb53sPRKSoiCwQkQ2BY58Jb3JvZOc1EDg2p4j8ICKzw5PYe9n8OcgnIh+KyMbAa6FK+JJ7J5v34NnAcWtFZJqIXBi+5Och2OXy/PAAtgEFzniuJHZZjIVAQiZflxPYAlwHxAGrgFKuv58w34NCQIXAx3mxU/gj7h6c7/ef7thOwHvAbNffi4t7AEwG/hX4OA7I5/r7Cec9wE662wrkCfz7faCZ6+/nbI/IXkoKMMZsADtn/yyiesp6MPfAGPML8Evg42QR2YB9wUb8PQjyNYCIXA3cBwzEFuuoEcw9EJFLgb8DzQJfcwI4EYZ4YRHs6wA7qi2PiJwELsLn8zkiqrsDO4NxnogsD0wxD1ZGU9aLeJosfM73HvxOROKB8tgFxiJNdr7/V4Hn+fOaPJHofO/BdcBe4K1Al88EEbk4NBFD7rzugTHmZ+AV7FIfvwAHjTHzQpTRE5FWpO8wxlQA7gWeFpG/B/l155yyHkHO9x4AICKXADOAjsaYQ6EIGGLn9f2LyP3AHmPM8pCmC4/zfQ3kAioAY40x5YEjQKS+P3O+r4P82L+irwUKAxeLSNPQxcy+iCrSxphdgf/uAWZiuzGCETVT1rNxDxCR3NgC/a4x5qPQJAytbHz/dwAPiMg2YDpQU0SmhiRkiGXz5yDJGHP6L6gPsUU74mTjHtQCthpj9hpjTgIfAbeHJqU3IqZIi8jFIpL39MfA3cDaIL88KqasZ+ceiO2omwhsMMYMD13K0MnO92+M6W6MudoYE4/9//+VMcbXLaiMZPMe7AZ2isiNgafuIgLfk8hmLdgB3CYiFwV+Ju7CLk3tX67fuQz2ge1PWxV4rAN6BJ7/B7aFcBz4HzA38HxhYE66r6+LHdGw5fTXRtojO/cAqIrt4lkNrAw86rr+nsL5Gkh3nupE6OgOD34OymE3OlkNfAzkd/09ObgHfYGN2ML+DnCB6+/pbA+dFq6UUj4WMd0dSikVi7RIK6WUj2mRVkopH9MirZRSPqZFWimlfEyLtIo4IrLwXKvdnXF8amC1tMIhzLRARA5nJZdSwYj4BZaUCkKKMaZcKC9gjKkhIgtDeQ0Vm7QlrXxJROIDax5PFpHVgTWQLzrjmGtEZJOIFBCRHCKySETuDuLch0Xk5cDiPPNFpHKgdf6TiDyQ7vqLRGRF4HF74PlCIvJNoGW+VkTuDM0dUMrSIq387EZgvDGmDHAIaJv+k8aY7cDLwBtAZ2C9CW5Fs4uBhcaYikAyMACojZ2x1i9wzB6gtrGL+PwTGBl4/lHsTLZyQFnszE2lQka7O5Sf7TTGLAl8PBXogF1m8nfGmAki0ghojZ3yHIwTwBeBj9cAx40xJ0VkDRAfeD438LqIlANSgRsCzy8DJgUWq/rYGKNFWoWUtqSVn525ZsFf1jAIdIFcHfjnJUGe96T5Yz2ENOxaDxhj0vij4fIsdv2HskACdhcTjDHfYBfO/xl4R0QeD/KaSp0XLdLKz4ql24PvEWBxBse8DLwL9Abe9PDalwG/BAr3Y9gt2BCRa7DrUr+JXVUwIpf6VJFDi7Tysw3AEyKyGvgbMDb9J0WkGlAJeNkY8y5wQkSae3TtMYFrf4vt6jgSeL46sFJEfgAaAK95dD2lMqSr4ClfCmzxNdsYc4sH5zpsjAm2KyQ711kIdDHGJIb6Wip2aEtaxYJD4ZjMgl3n+GSorqFik7aklVLKx7QlrZRSPqZFWimlfEyLtFJK+ZgWaaWU8jEt0kop5WNapJVSyse0SCullI9pkVZKKR/TIq2UUj7mbD3pAgUKmPj4eFeXV0opZ5YvX/6rMaZgMMc6K9Lx8fEkJuo6NEqp2CMi24M9Vrs7lFLKx7RIK6WUj2mRVkopH9MirZRSPqa7havoIJLx87peuopwWqRVVEtLS2PZsmXMnj2bxMRENm3axMGDB8mVKxcFCxakdOnS3H777Tz44IMUKVLEdVyl/sLZziwJCQlGh+Apz5zRkj4KvA2MKFGCzZs3kzNnTm655RZKlixJvnz5OHXqFLt372blypUkJSUhItSpU4du3bpx5513Ipm1zJXygIgsN8YkBHOstqRVVDHADKATsBO4dfNmegP3p6aSf9UqWLUqcOAfjZONGzcybdo0xo4dS7Vq1ahTpw6vv/46xYsXD/83oNQZ9I1DFTV+AxoAjYD8wAJgKfBY4N+Zuemmm+jbty/bt29n2LBhLFmyhJtvvplRo0ahe4Aq17RIq6iwDCgPzAJeBpYD1YGsdFrkyZOHTp06sWHDBmrVqkWHDh1o1KgRycnJ3gdWKkhapFXE++yzz6ge+Hgx8DzZ68crUqQIn376KUOHDuXjjz+mevXq7N69O9s5lTofWqRVRHv77bepX78+JYHvgFs9Om+OHDno0qULn376KRs3buT2229ny5YtHp1dqeBpkVaRReT3x1QRnmzenJqpqSwErgzB5erWrcvChQs5dOgQNWvWZPv2oNfFUcoTWqRVRPoQeALb7/wJcIlXJ073S+D0o1LlysybN4+DBw9Ss2ZNfv75Z6+uptQ5aZFWEedr4FHgNuBTIE8YrlmhQgXmzp3Lnj17uP/++zl8+HAYrqqUFmkVYTYDDwHFgdlkowWdQYs506nlAbfeeiv//ve/Wb16NY8++iipqanne3WlgqZFWkWMAwcOcH/g41mcfexzqNStW5fXXnuNWbNm0bVrVwcJVKzRGYcqIhhjeOKJJ9gCzAdKOMzSrl07NmzYwLBhw6hSpQoNGjRwmEZFO21Jq4gwYsQIO3YZqOY6DDZPZeDJhg3ZnIUuE6WySou08r1vv/2Wrl278uCDD/KM6zABcXFxvA/kBBoCKY7zqOilRVr52sGDB2ncuDFXX301kyZNytI071C7BpgKrAK6Oc6iopf2SStf69SpEzt37mTJkiXkz+/ircKzqwt0AEYCDwB3uY2jopC2pJVvzZ49m0mTJtGtWzduu+0213EyNQi4EWgGHHAbRUUhLdLKl/bt20eLFi0oU6YMvXv3dh3nrC4CpgC/gG/6zFX08KxIi8iFIvK9iKwSkXUi0terc6vY065dO/bt3s2U1au54MIL3Y+cOMfEl8pAD2yxnj17touEKkp52ZI+DtQ0xpQFygF1RMS/f6Mq35o9ezbTp0+nN1DWdZgs6AHcDLRt21anjSvPeFakjXX6lZk78NBtLVSWHDlyhHbt2lGqVCmedx0mi+KA8cDOnTvp1auX6zgqSnjaJy0iOUVkJbAH+D9jzHdnfL6liCSKSOLevXu9vLSKEv369WP79u2MGzeOONdhzsPtQOvWrRk5ciS60bLyQkh2CxeRfMBMoL0xZm1Gx+hu4epMa9asoUKFCjzxxBNMmDAhYmfvHfjtN0qVKsWVV17JsmXLyJVLR7qqP8vKbuEhGd1hjDkALATqhOL8KvqkpaXRqlUr8uXLx8svv+w6Trbky5ePkSNHsnLlSsaOHes6jopwXo7uKBhoQSMieYBawEavzq+i26RJk1i6dCmvvPIKl19+ues42XH+vGkAACAASURBVNagQQNq165N79690a49lR2edXeISBlgMnY5gxzA+8aYfpkdr90d6rSDIlwP3IRd0D8yOzn+agNQBmiOfUOREHQtqsiUle4OzzrLjDGrgfJenU/Fjv7Ar8BrRE+BBigJtAdeBVoBFd3GURFKZxwqp/773//yGvAk0fkb/kWgILZYh+JNehX9tEgrpzp37kweYKDrICFyGTAYWApMnTrVcRoVibRIK2fmzZvH7Nmz6Qlc6TpMCD2BnTberVs3jh496jqOijBapJUTJ0+e5Nlnn6V48eJRvyhRDmAYsGvXLoYPH+46joowWqSVE2+88Qbr16/nlVde4QLXYcKgKvDQQw8xePBgdu/e7TqOiiBapFXYHTx4kL59+1KzZk3q16/vOk7YDB48mOPHj9OnTx/XUVQE0SKtwm7o0KHs27ePIUOGIBE69ft8XH/99bRt25Y333yT9evXu46jIkRI1u4Ihk5miU27du2iRIkS1K9fn2nTptknY6hQ/woUB+4Efl91WofmxRzna3colZm+ffty6tQpBg6M1kF3Z1cAu+70Z8CXjrOoyKDLc6mw2SjCRKAtcF3x4q7jONMBGA10AZajLSV1dvr6UGHzAnY/wFhfDv9C4CVgJfCe4yzK/7RIq7BYunQpM4HnsNOkY90j2D3megEnTpxwnEb5mRZpFXLGGLp27cqVwLOuw/hEDmAQsA0YN26c2zDK17RIq5CbPXs2ixYtog9wieswPnIPUB3o378/ycnJjtMov9IirUIqNTWVbt26ccMNN/CU6zA+I9jW9N69exkxYoTrOMqntEirkJoyZQrr16/npZdeIrfrMD50G/CPf/yDoUOH6g4uKkNapFXIpKSk0Lt3bypXrsxDDz3kOo5vDRw4kKNHj/LSSy+5jqJ8SIu0CplRo0aRlJQUc9O/s6pkyZI0a9aMMWPGsH37dtdxlM9okVYhsX//fgYNGsR9991HtWrVXMfxvT59+iAivPjii66jKJ/RIq1CYvDgwRw8eFD/hA+GCEWLFaP98eNMmTyZtSIxtZ6JOjst0spzSUlJjBo1iqZNm1KmTBnXcSJGd+BS7MxMpU7TIq0816dPH9LS0ujXr5/rKBHlb8DzwCxgieMsyj+0SCtPbdiwgbfeeos2bdoQHx/vOk7EeQa4CuiG7i6uLC3SylM9e/bk4osvpkePHq6jRKSLgReBxcBnn33mOI3yA8+KtIgUFZEFIrJBRNaJSLTvL6rO8N133/HRRx/RpUsXChbUZZTO11NACaB79+6kpqa6jqMc87IlfQrobIwpiZ1I9bSIlPLw/MrHjDF069aNK664gk6dOrmOE9FyAwOAtWvX8t57uphprPOsSBtjfjHGrAh8nAxsAIp4dX7lb3PnzmXhwoX06tWLS/LmtUPIznyooDUCKgC9Hn+c43oPY1pI9jgUkXjgG+AWY8yhdM+3BFoCFCtWrKLOrooOaWlpVKhQgUOHDrFx40biLrjAdaSoMB+oDQwDfv/bRN9MjApO9zgUkUuAGUDH9AUawBgz3hiTYIxJ0D7L6DF9+nRWrVpF//79iYuLcx0natTCLmc6APjNcRbljqctaRHJjd0Eea4xZvjZjtXdwqOACCeAkkBeYAU6XMhrq4Dy2B1tXgZtSUcJJy1psSvoTAQ2nKtAq+gxHvgJuy6yFmjvlQUeA14DdjjOotzw8ufqDuzrqaaIrAw86np4fuUzh4H+QDWgjuMs0ax/4L+xvoFvrMrl1YmMMYuxm02oGDEE2AN8gv6PD6ViQAfgFaDTqlWULVvWcSIVTvoXqjovP//8M68AD2MHxavQ6g7kA7p27eo6igozLdLqvPTs2ZNUYLDrIDEiP9ATOx59/vz5ruOoMNIirbJs5cqVTJ48mfbAta7DxJCngXjg+dq1SdOJQjFDi7TKEmMMXbp0IX/+/OgSSuF1AXbM9A/ANMdZVPhokVZZ8vnnn/Pll1/y4osvkt91mBj0CHbc9AtAiuMsKjy0SKugnTp1ii5dulCiRAlat27tOk5MyoGdJr4D0MkIscGzIXgq+k2cOJENGzbw0Ucf6fRvh2oADwEvAc3QVcyinbakVVAOHjxI7969ufPOO3nwwQddx4l5Q7FrA3d3HUSFnLakVVD65svHXmDOnj1IDv3d7tp1QGfsdPyngVvdxlEhpD9t6pzWr1/PKKAFUNF1GPW77kAh7L6IaWlpjtOoUNEirc7KGMMzzzzDJdjhX8o/8mJb0t+B7uASxbRIq7P6+OOPmT9/Pv0BXQHcfx4DKmGnix8+fNh1HBUCWqRVplJSUujUqROlS5dGB9z5Uw7sMqa7du1iwAD9WycaaZFWmRo6dCjbtm1j5MiR+g6zj1UBmjdvzrBhw1i3bp3rOMpjWqRVhrZs2cKgQYN4+OGHqV69uus46hyGDBnCpZdeSps2bQjFvqXKHS3S6i+MMbRp04bcuXMzfLjOa4sEBQoUYMiQISxatIjJkye7jqM8FJLdwoOhexz6lAjvAk2B17FjcFVkSAP+DmwEfgQuB90T0aec7hauItt+4Fns5Ah9szCy5ADGAgcA3RogemiRVn/yPLZQjwdyOs6isq400Am7I/Qix1mUN7RIq9998803TMRONy7jOow6b72xmwM8hR1GqSKbFmkFwNGjR/nXv/7FtcCLrsOobLkEmABsAnr10j3GI50WaQVA9+7d2bRpExOBi1yHUdl2F9AKGD58OEuXLnUdR2WDzlGIVen2xVsIjATaY9cqVtFhCPB50aI0b96cH374gTx58riOpM6DtqRjXDLQHCiBXaxHRY9LgTfffJMff/yRF1/UTqxI5VmRFpFJIrJHRNZ6dU4Ves8B24G3gYvdRlEhcPfdd/Ovf/2LV155ha+//tp1HHUevGxJvw3U8fB8KsQ+A8ZhR3Pc4TiLCp0RI0ZQokQJmjZtym+//eY6jsoiz/qkjTHfiEi8V+dTofUzdn+8skB/t1FUKIlwCfAucDvQ8m9/431AdCZixAhrn7SItBSRRBFJ3Lt3bzgvrdJJTU2lKZAC/Bu40HEeFXqVsL+MPwTecpxFZU1Yi7QxZrwxJsEYk1CwoC4h78pLL73EQmA0cKPjLCp8nsOO3ukAbNiwwXEaFSwd3RFjFi1aRJ8+fWgCPO46jAqrnMA72HHwDRo0IDk52XEiFQwt0jEkKSmJRo0aUbx4ccYCcs6vUNGmCLaL68cff+Spp57StacjgJdD8KYBS4EbRSRJRJ7y6twq+44fP06DBg04cuQIH3/8MXldB1LO1AAGp6XxwQcfMCJHDjux6fRD+Y6Xozse8epcylvGGJ5++mm+//57PvroI0qVKuU6knKsC/AtdtXD8uhMUz/T7o4YMHr0aCZOnEjPnj35xz/+4TqO8gHBjvK4AWiA3SRA+ZMW6Sg3a9YsnnnmGerVq0efPn1cx1E+cil2QlMu4D7gV7dxVCa0SEexZcuW0fiBB6iQlsa0WbPImSuX9j2qP7kW+ARIAv6Bfe9C+YsW6Si1detW7r//fq4AZqPrcqjMVQEmA4uBpk2bkpqa6jiRSk+LdLRI9w79zyLUuu46Tu7ZwxzgStfZlO/9ExgGfPjhh7Rs2ZK0tDTXkVSAFuko8z/sgu97gS+Akm7jqAjSCejduzeTJk2ic+fOOobaJ3TR/yiyD6gN7MQW6Mpu46gI1KdPHw4ePMirr75Knjx5GDhwIKLvYTilRTpK7AbuAf6Lfcf+TrdxVISSHDkYDhwDBg0axNFBgxiRlqaF2iHt7ogC27Zt405gC/ZNwrsc51GRLQcwFugIvAa0atVK30x0SIt0hFu/fj1Vq1blV2A+UMt1IBUVBBgO9MBuwfVIrlykpJ8+ri3rsNHujkgU+AGZBzwM5AG+AUo7jKSijwADgPzYZU53YsdUX+EyVAzSlnQEMsAo4F7gGuwaDFqgVah0xm4WsAq4FVjnNk7M0SIdYY4ePUoL7MLt9YAl2EKtVCg9BHyNfUOxMnY7LhUeWqQjyLp166hcuTKTsH2FHwGXOM6kYkclYDlQEWgKtG7dmmPHjrkNFQO0SEeAtLQ03njjDSpVqsTevXuZi+0r1P95KtwKA18BXYFx48ZRKU8eVugbiiGlP+c+t3nzZu666y7atGlD1apVWbVqFbVdh1IxLRcwGJiDnUBVGegFnHAZKoppkfap48eP8/LLL1O6dGlWrFjBm2++ydy5c7nqqqtcR1MKsG9crwOaYP+yKwf8H/y5Va0t7GzTIu0zxhg+/PBDSpYsSbdu3bjn2DHWHzrEv1q0QE5vdaSUT+THrqA3GzgO3I1d8nSLy1BRRou0TxhjmDt3LlWrVqVRo0ZcfPHFzAM+xm4eqpSf3YdtVb+EbU3fBLQAtjnMFC20SDuWmprKJ598wq233kqdOnXYuXMn48aN44cfftC+ZxVRLgS6Y9ePaQ1MAa7HFuv1oN0g50lcLUeYkJBgEhMTnVzbmXQvyL3AJOANbGvjOuwL/HEgzkE0pbyWBAwCJmK7QmoB7YG6nDHVOQaXRBWR5caYhGCO1ZZ0GKUAH2A3/rwa6AbEA//GbgT6L7RAq+hxNTAaO518ILABqB94/lnsmOvYK89Zp2t3hNiePXuYN28ec+bMYRZwGLtTShugJVDKaTqlQq8g8AJ2/Y9ZwFRgDPAqUAKoJ8L9QFXSNVJisHWdGS3SHtu7dy9Lr7iC/wBf8kdroSB2i6JHgOpATmcJlXIjN3Z6+UPAfux6IDOxre0R2N3Lq2HXQr/z22+pUKECcXH6t6X2SZ+ntLQ0duzYwdq1a1m7di1r1qzh+++/Z/PmzYB9QVYC6mDHk1ZA+5aUyshhbIPmM2AhsCnwfJ48eShXrhxlypShbNmylC1bltKlS5M3b15XUT2TlT5pT4u0iNTBrhOeE5hgjBmc2bGRUKSNMaxevZpt27b95bF582YOHz78+7FFsYX4DuzuyxWxS4gqpbLmf9idyxcDK7Cr7x1M9/krgOLpHtdif/5uwPZ3/4lPu02cFGkRyYkdfVMb+8buMuARY8z6jI6PlCKdN29ejhw5AsDF2Df64rGjMW4JPG4GLnMTUamoZ4Ad2GK9DjtR5vQjiT/efGyN3VHmz18c+UXayz7pysBmY8xPgRDTsW/mZliknQtifKYAM4DLsYX58sBzSqnwEexyvNcAD5zxuWPYAv4zUCDDL87CT2xmBT2zc4TpF4CXRboIdrTNaUnYNcJ/JyItsYMaAI6LyFoPrx9NCgC/ug7hU3pvMqf3JnPnvjdZnViTvYk4QS8D72WRzijxn37VGGPGA+MBRCQx2OZ+rNF7kzm9N5nTe5O5SL43Xg44SML23592NbDLw/MrpVTM8bJILwOuF5FrRSQOaAx86uH5lVIq5njW3WGMOSUi7YC52CF4k4wxZ9uzcrxX145Cem8yp/cmc3pvMhex98bZZBallFLnppPglFLKx7RIK6WUj4WlSItIThH5QURmZ/C5TiKyXkRWi8iXIhL0+MFocLZ7k+6YhiJiRCQihxCdr3PdGxF5OPDaWSci74U7n0vn+JkqJiILAp9fLSJ1XWR0QUS2icgaEVkpIn+Z0izWSBHZHLg3FVzkzIpwrYL3DHY52Usz+NwPQIIx5qiItAGGYBeMixVnuzeISF6gA/BdOEP5RKb3RkSux+6TcIcx5jcRuSLc4Rw72+umJ/C+MWasiJTCbuwdH8ZsrtUwxmQ2ceVe7IYx12Mn243ljEl3fhPylrSIXI3dAm1CRp83xiwwxhwN/PNbMlgjJVqd694E9Mf+4joWllA+EcS9aQGMNsb8BmCM2ROubK4FcW8MfxTvy9D5CunVB6YY61sgn4gUch3qbMLR3fEq8DyQFsSxTwGfhzaOr5z13ohIeaCoMSbTrpAodq7XzQ3ADSKyRES+DazAGCvOdW/6AE1FJAnbim4fplx+YIB5IrI8sAzFmTJavsLXez2HtEiLyP3AHmPM8iCObQokAENDmckvznVvRCQHdi30zmEN5gNBvm5yYf9krY7dS2GCiOQLQzyngrw3jwBvG2Ouxm4p+E7g9RQL7jDGVMB2azwtIn8/4/PnXL7Cb0L9P+4O4AER2QZMB2qKyNQzDxKRWkAP4AFjzPEQZ/KLc92bvNiVUBcGjrkN+DRG3jwM5nWTBHxijDlpjNmK3Sby+vDGdCKYe/MU8D6AMWYpdiPvDBeJizbGmF2B/+7BbvxS+YxDIm/5CmNMWB7YFs/sDJ4vj10a9vpwZfHbI7N7c8YxC7FvsDrP64d7g930ZnLg4wLYP2Evd53XJ/fmc6BZ4OOS2CIkrvOG4X5cDORN9/F/gDpnHHNf4P4ItuHzvevc53o4+RNIRPqJyOmlYYcClwAfBIbNxPR6H2fcG5XOGfdmLrBPRNYDC4DnjDH73KVz64x70xloISKrgGnYgu3rP+k9ciWwOPB9fw98Zoz5QkRai0jrwDFzgJ+AzcCbQFs3UYOn08KVUsrHYuXNBKWUikhapJVSyse0SCullI9pkVZKKR/TIq2UUj6mRVqFlIikBoZWrhWRD0TkosDzRkTeSXdcLhHZm8mqbtVF5GBgVbeNIvJKBsd8IiJLz5Kjj4j8LCL9vPreMrlObhE55wzbdMfnCdyfEyISExNOVNZokVahlmKMKWeMuQU4AZwer3oEuEVE8gT+XRv4+SznWWSMKY+d/HS/iNxx+hOB6eAVsIvlXHuWc4wwxvQ+328kSFWxkyjOSURyGmNSjDHl8PusN+WMFmkVTouAEun+/Tl2BhjY9SamnesExpgUYCV/XhSnATALO026cTBBAi3rySIyL7AG8UMiMiSwFvEXIpI7cFxvEVkW+EtgvIhI4PkO8sc66NPTnboO8LmI9BeRZ9Jdb2Dga6oH1np+D1gTTFYV27RIq7AQkVzYRW/SF6bpQGMRuRAoQxBrZotIfuwaHd+ke/p0gZ8W+DhYxbG/JOoDU4EFxpjSQAp//PJ43RhTKfCXQB7g/sDz3YDyxpgy/PHXAUAN7BT+icATgcw5sL883g0cUxnoYYwplYWsKkZpkVahlkdEVgKJwA5s8QLAGLMauxj9I9jpumdzp4isBnZj16vYDSAiV2Jb54uNMf8FTonILUFm+9wYcxL7iyMn8EXg+TX8sUh+DRH5TkTWADWBmwPPrwbeDazeeCqQpTCw3xhz1BizDTttvTxwN/BDumnr3xu7KJRS5xSunVlU7Drd55qZT4FXsIsFXX6W4xYZY+4XkRuw6zPMNMasxO7ikx/YGuiJuBTbau0ZRLbjAMaYNBE5mW59izQgV6CFPwa7sNVOEemDXVEObEv778ADQC8RuRn7l8LcdOefADQDrgImpXv+SBDZlAK0Ja3cmwT0M8YE1T8baC0PAroGnnoEu9JZvDEmHqhIkP3SQThdkH8VkUuAhvB790VRY8wC7OL7+bCLhNXhz5tWzAw8V4k/F2+lgqYtaeWUMSYJeC2LX/YG0CUwkqMYdtu10+fbKiKHRORWY0y29oU0xhwQkTex3R/bgGWBT+UEporIZdglL0cAydjldjem+/oTIrIAOGCMSc1OFhW7dBU8FRMCXRWHjTF/GWPt0fmrAk2NMa3TPZcDWAE0MsZsOsfXb8N2q2S2gaqKUdrdoWLFYaBlqCazGGMWn1GgS2HXLP7ybAX69GQWIDfB7QOqYoy2pJVSyse0Ja2UUj6mRVoppXxMi7RSSvmYFmmllPIxLdJKKeVjWqSVUsrHtEgrpZSPaZFWSikf0yKtlFI+5myBpQIFCpj4+HhXl1dKKWeWL1/+qzGmYDDHOivS8fHxJCYmurq8Uko5IyLbgz1WuzuUUsrHtEgrpZSPaZFWSikf0yKtlFI+pttnqdhkN639K11fXfmMtqSVUsrHtEgrpZSPaZFWSikf0yKtlFI+pm8cqqhz4MABpk+fzrx581i5ciW7d+8mZ86cXHXVVVSoUIF69epRH8jrOqhSQdAiraLG/v376d+/P+PGjSMlJYX4+HiqVKlC4cKFSUtLY8eOHSxevJj333+f/MAzQGfgEse5lTobLdIqsmQydG4G0BI4ADwGtAcqbtsG27b96bg04D/AK0Af4G3gTaBWSMIqlX3aJ60i2kmgDdAQKA78gC28FTM5PgdQFfgY+Aa4ALgbGIAt4Er5jRZpFbEOA/WAN4DngMVAmSx8/Z3ACuBRoBfwOHDq1CmPUyqVPecs0iJSVEQWiMgGEVknIs9kcEx1ETkoIisDj96hiauUdRioDfwfMAEYAsSdx3kuAt4BBgLvAg8//DAnTpzwKqZS2RZMS/oU0NkYUxK4DXhaREplcNwiY0y5wKOfpymVSucY8CCwDPgAeCqb5xPgBeBVYObMmTRr1oy0NO38UP5wziJtjPnFGLMi8HEysAEoEupgSmUkDWgKfAlMAh7y8NzPAIMGDWLatGl069bNwzMrdf6yNLpDROKB8sB3GXy6ioisAnYBXYwx6zL4+pbYN+EpVqxYVrMqxQDsSI5h2D5kr3Xt2pWkpCSGDh1KiRIlaNmyZQiuolTwxAS56peIXAJ8DQw0xnx0xucuBdKMMYdFpC7wmjHm+rOdLyEhwej2WSorZs+eTb169XgcO4Ijk3XssscYUlNTue+++1iwYAFLliwhISEhFFdSMUxElhtjgnphBTW6Q0RyYxsw755ZoAGMMYeMMYcDH88BcotIgSxkVuqstm7dSpMmTaiAHc0RkgIdkDNnTqZOncpVV11Fw4YN2bdvXwivptTZBTO6Q4CJwAZjzPBMjrkqcBwiUjlwXn1lK0+kpqby2GOPAbalkCcM1yxQoAAffvghu3btolWrVgT7F6dSXgumJX0HdhJXzXRD7OqKSGsRaR04piGwNtAnPRJobPRVrbJLBEQYkisXS5Ys4fVDh4gP4+UrVapEv379mDFjBu+9914Yr6zUH4Luk/aa9kmrcxJhBXArdhTHdELbzQH8ZWeW1NRUqlWrxtq1a1mzZg1FixYNdQIVAzzvk1bKhVPYMdAFgbGEoUBnIGfOnEyePJlTp05pt4dyQou0ci/QrXHmYySwEhgF/M1hvOLFizNw4EA+//xzPvzwQ4dJVCzS7g7lXgYr220HSgE1gU8JYys6k5+H1NRUKleuzK5du9i4cSOXXXZZuBKpKKTdHSqiGaBd4OPXCXM3Ryat+pw5czJu3Dj27NlDjx49wplIxTgt0sp3PgNmA32BaxxnSS8hIYGnn36aMWPG8MMPP7iOo2KEdnco99J1d5wESgc+XgPkdpEnI4GfkwMHDlCiRAlKly7NV199hWSyCYFSZ6PdHSpijQV+xO6c4psCnU6+fPno168fCxcu5JNPPnEdR8UAbUkr9wKt0f1ACeyuKvNwM+QuGKeAssDx4sVZt24dF1xwgetIKsJoS1pFpH7AQewKd34t0GCXjhwObNmyhddff911HBXltEgrX9gEjMZOXsnKFliu3APce++99O/fn99++811HBXFtEgrX3gRu/1VJG3pM3jwYA4dOsSQIUNcR1FRTIu0cm41MA27M8pVjrNkRZkyZXjkkUd47bXX+OWXX1zHUVEqSzuzKBUKvYDLsDt+RxQR+gLvAwMLF+b33mld30N5yKvdwkVERorIZhFZLSIVQhNXRZtvv/2WT7EFOr/rMOehBLYffTyw1XEWFZ282i38XuD6wKMldrirUufUo0cPCmK7OiJVLyAntl9dKa95tVt4fWCKsb4F8olIIc/Tqqjy5Zdf8tVXX9EDuMR1mGwoArQHpgLrHWdR0SdLbxyeZbfwIsDOdP9O4q+FHBFpKSKJIpK4d+/erCVVUcUYQ69evShatCitXIfxwPPARcBA10FU1Am6SAd2C58BdDTGHDrz0xl8yV/ePTHGjDfGJBhjEgoWLJi1pCqqfPXVVyxdupQXXniBC12H8UAB4Gns7jE//vij4zQqmniyWzi25Zx+X6GrgV3Zj6eiSrqlPwfUqkVhoHmbNq5TeaYzcCEwYMAA11FUFPFkt3DsuuyPB0Z53AYcNMbowFGVocXAQmwXQTStenEF0AZ477332LRpk+s4Kkp4tVv4HOAnYDPwJtA2NHFVNBiI3bewhesgIfAcEBcXx8CB2jutvHHOySzGmMWcY70bY5fSe9qrUCp6JQJfAIOwb7RFmyuB1q1bM2rUKHr16kXx4sVdR1IRTqeFq7AaCOQjuv/Uev7558mdOzcvvfSS6ygqCmiRVmGzFvgYO3HlUsdZQqlQoUK0bNmSKVOmsHWrzkNU2aNFWoXNS9hJKx1cBwmD559/nhw5cjB48GDXUVSE0yKtwuK///0v/8Z2c/zNdZgwKFKkCE899RRvvfUWO3fuPPcXKJUJXQVPhcXgwYOJAzq5DhIOge3AumKHOg0pVoxRoKvjqfOiLWkVctu2beOdd96hJXb0Q6y4BngCW6h10oA6X1qkVcgNGTIEEYm89aI90A04id23UanzoUVahdSuXbuYNGkSzZs352rXYRwoATyKXbtXFxVT50OLtPJeujU6hhUpwqnjx+k6frzrVM70AFKAESNGuI6iIpAWaRUye4E3sC3J6xxncekmoBHw+uuvs3//ftdxVITRIq1C5lVsC7K76yA+0ANITk5m1KhRrqOoCKNFWoXEb8AooCFQ0nEWPygD1K9fn1dffZVDh85cjl2pzAWzVOkkEdkjImsz+Xx1ETmYboW83t7HVJHmdSAZ24JUVs+ePTlw4ACjR492HUVFkGBa0m8Ddc5xzCJjTLnAo1/2Y6lIdhjb1VEPKOs4i58kJCRQp04dhg8fzpEjR1zHUREimI1ovwH03Q4VtLHYF4y2ov+qV69e/Prrr4wbN851FBUhvOqTriIiq0TkcxG52aNzqgiUkpLCK0At4FbXYXzo9ttvp2bNmgwdOpSUlBTXcVQE8GLtjhXANcaYwyJSF7sa5fUZHSgiLYGWAMWKFfPg0spvJkyYwB6gl+sgfhRYi7BQ5QAAIABJREFU06MXUAOYeNFFtANd00OdlZggXiAiEg/MNsbcEsSx24AEY8yvZzsuISHBJCYmBpdSRYTjx49TokQJrk1K4hvXYXzMAHcC24EtQJwW6ZgjIsuNMQnBHJvt7g4RuSqwWS0iUjlwzn3ZPa+KPJMnTyYpKYmeroP4nGBb00nAZMdZlP+ds7tDRKYB1YECIpIEvAjkBjDGvIEdCttGRE5h5y40NsE0z1Xkkz+2vjyJ3bewMlDbVZ4Icvf/s3fn8VFV5x/HP0/CjiIi0QKKKEUFFFkCgiAgKlBrRav+QOv2U0vVutLWvdZa91q6WNv+QASlFhSUigoiq4BmIWyBsCiCBQpC2JR9y/P749zAGLNMkjtz78w879drXpnM3Dn3y83w5ObMPecAnXHH7OaDB6lZs2bAiUxYRbMQ7bUVPP9X3GWxJoWNAb4E/kIFqxYb4OjZ9OXAv/71L2666aaAE5mwshGHptoO45bGOhe4LOAsieQy3DF75plnOHz4cNBxTEhZkTbVNh5Yibsu2s6ioyfAY7ilxcaNGxd0HBNSUV3dEQt2dUcSEKEIdzZ4GLcauP3Wr5wi4Jw2bRAR8vPzSUuzI5gK4np1h0lt7+GK8yPYm6kq0oBHH32UgoIC/v3vfwcdx4SQnUmbKlMROgFf47o7bFXjqjl08CCtW7fm2GOPZf78+YhYp1GyszNpExf/BhYCj2MFujpq1KjBI488wsKFC5k0aVLQcUzI2Jm0qZKioiLOTU/nAFCAFelqUeXgwYO0atWK733ve2RlZdnZdJKzM2kTc+PHj2cp8ARWoP1Qs2ZNHnroIXJycpg+fXrQcUyI2Jm0qbTDhw9zzjnnIMuXkw+kBx0o0Xn/B/fv30/Lli1p2bIlH3/8ccChTCzZmbSJqTFjxrB8+XJ+ixVoP9WuXZsHHniA2bNnM3u2TVFlHDuTNpVy6NAhWrduTb169ViYn2+/5X22F2gBnA1MtylwkpadSZuYGT16NKtWreLJJ5+0N08M1MWtrj4DmDp1asBpTBjYmbSJ2r59+zjzzDM58cQTyc3NRWx0XEzsB84EGnXoQF5eno1CTEK+nklHsVq4iMhfRGSViOSLSMfKBjaJ4eWXX2bt2rU899xzdolYDNUGngIWLlzIW2+9FXQcEzA/Vgv/AW65rFa4pbH+Xv1YJmy2b9/O008/Tf/+/bnooouCjpP0rgPatWvHo48+yoEDB4KOYwLkx2rhA4DX1ckGGopIE78CmnB4tlEjdmzfzvMffugm+7cz6ZhKA5577jlWr17NsGHDgo5jAuRHZ1czYF3E9+u9x0ySWLt2LX8BbgDaBR0mhfTv359evXrxu9/9jp07dwYdxwTEjyJd2ilVqZ9GishgEckTkbzCwkIfdm3i4fHHHwfgdwHnSDUiwvPPP8/mzZv5wx/+EHQcExA/ivR64JSI708GNpS2oaoOU9VMVc3MyMjwYdcm1hYuXMjrr7/OPUDzoMOkoPPOO49rrrmGF154gXXr1lX8ApN0/CjSE4Ebvas8ugJfq+pGH9o1AVNV7rnnHk444QQeCTpMCvv973+PqvLAAw8EHcUEIJpL8MYAWcCZIrJeRG4VkdtF5HZvk0nAamAVMBy4M2ZpTVyNHTuWuXPn8swzz9Aw6DAp7NRTT+WBBx5g7NixzJkzJ+g4Js5sMIv5Nu+qjd24ARUnAbnYHB1B2w2cBWR06MC8efNIT7efSCKzYeGm2p4F/gv8BSvQYVAf+D3uM4KRI0cGHcfEkRVp8x2rgReBnwDdA85ijhoI9OjRg0ceeYTt27cHHcfEiRVp8y2K+1ChJvB8wFnMtwnw0ksvsW3bNh588MGg45g4sSJtvmUMMAV4BhuRFEbt27dnyJAhDB8+3OacThH2waE5YuvWrbRu3JjTgE+xvuhQUmX37t2cc8451KpVi8WLF1O7du2gU5lKsg8OTZX86le/YjvuOkor0OFVv359/v73v7Ny5UqeffbZoOOYGLMibQCYPn06I0eO5FfY/ByJoF+/flx33XU888wzFBQUBB3HxJB1d6SqiFnsvgbOAeoAi3Grg5iQivj/unnzZtq2bUvz5s3JysqiVq1aAQYzlWHdHaZS7sFNtjIaK9CJ5MQTT2TYsGEsWLCA3/3Opr9KVlakU9w7wOvAI8B5AWcxUSiey9u7XfnjH3Mz8Mwzz5CVlRV0OhMDVqRT2EbcUjqdgF8HnMVU3Z+BU045hRtvvJFdu3YFHcf4zIp0ijoEXAvswXVz1Aw2jqmGBsDrr7/OF198wZ133klQnzOZ2LAinaKeAD7GLUjZOtgoxgc9e/bkiSeeYPTo0bzyyitBxzE+iqpIi0h/EVnprQj+UCnP3ywihSKyyLvd5n9U45fJkyfzNHArcFPQYYxvHnvsMfr168fdd9/NggULgo5jfBLNfNLpwMu4VcHbANeKSJtSNn1TVdt7N/tVHlJr1qzhhhtuoB3wUtBhjK/S0tL45z//SUZGBtdccw3btpW3frRJFNGcSXcBVqnqalU9AIzFrRBuEsw333zDj370I4qKihiPXW6XjBo3bsy4ceNYv349V199NQcOHAg6kqmmaIp0tKuBXyUi+SIyXkROKeV5E6BDhw4xaNAgVq5cyfjx42kVdCATM127dmXEiBHMnDnTPkhMAjWi2Caa1cDfA8ao6n5vWa3XgD7faUhkMO6qL5o3t2VN40VVGTJkCJMnT+Yf//gHffp850djEp18+7/p9cBK4KkRIzjjjDNsfcQEFs2ZdIWrgavqVlXd7307HHfp7XfYauEBEOGptDReeuklhgA/u/327/yHNsnpt8DAgQN58MEHee2114KOY6oomjPpeUArETkNt6LSIOC6yA1EpEnECuGXA8t9TWmq7GXgceBG3PJLJnWkAaNGjWLLli3ccsst1K9fn6uvvjroWKaSKizSqnpIRO7CzQWfDryqqgUi8iSQp6oTgXtE5HLcGIltwM0xzGyiNHLkSO7C/dYcgV0Un4rq1KnDu+++S9++fbnuuuuoV68el156adCxTCXYLHhJ6uWXX+auu+6iL/AuboY7k7p2ABcBS4E3gSvsw8RA2Sx4qShi0p0XRbjrrru4HJiIFWgDDYGpQAfgamD06NHBBjJRsyKdRA7jph39FXANMB6whZVMsUbANKAXcOONN/Liiy/a5XkJwIp0ktiJG2H0EnA/bkFZmzTJlHQM8AFw9dVX86tf/YpbbrmF/fv3V/QyEyAr0klg2bJldAU+BP4GDMXWKDRlqwO8+eab/OY3v2HUqFH06dOHjRs3Vvg6Ewwr0gnu9ddfp3PnzmzBFek7gg5kEkJaWhpPPPEEb731FgsXLqRdu3a89957QccypbAinaA2bdrENddcw0033USXLl1YBFwcdCiTcK655hoWLFjAySefzOWXX87Pf/5zWzggZKxIJxhV5Y033qBt27ZMnDiRp59+mqlTp9Ik6GAmYZ111llkZ2czZMgQ/va3v9GmTRsmTpwYdCzjsSKdQHJycrjgggu4/vrradWqFYsWLeKRRx6hRo1oBo4aE6HEWom169ThD0OHMnfuXI477jgGDBjAgAEDWLFiRdBJU54V6QSwdOlSBg0aRNeuXVm1ahXDgbnZ2bRu0+bofzRjfNC9e3cWLFjAc889x4wZM2jbti233XYb69atq/jFJjZUNZBbp06d1JStqKhIP/30Ux0wYIACWr9+fX3kkUf0m2++UQW72S3mt02g94LWqlVLa9SooTfccIMuXLgw6P8aSQE3pQbR3KLaKBY3K9Kl27Ztm7700kvarl07BfR40CdAt4TgP63dUvP25Zdf6r333qv169dXQHv27KkjR450JwymSipTpG3ujhDYunUr7733HhMmTOCjjz5i3759dOzYkZ8uWMBPgGODDmgMbv6PYbi5iFcB9erV48orr+SKK66gb9++NGjQINiACaQyc3dYkQ7A3r17yc7OZubMmcycOZOsuXM5jJuo+8e4xWE7BhvRmDIpkAW8Nngw48aNY/v27dSsWZNevXpxySWX0KNHDzp16kTt2jYpQVl8L9Ii0h/4M24g2yuq+lyJ52sDr+Mm+98KDFTVL8trM1WK9Pbt21m5ciULFy5k4cKFLFiwgCVLlnDgwAHS0tLo2LEjl+TlcSWQSenL4BgTVoeAT4H3vVvxRPK1a9emc+fOdOjQgXPOOYd27dpx9tlnU79+/cCyhomvRdpbLfwz4BLcKi3zgGtVdVnENncC7VT1dhEZBFypqgPLazcZi/TXX3/Niy++yKpVq/jiiy/44osvvrVicyPcLGQdgZ7ABcBxwUQ1JiY2A58Ac3HFewmwO+L5pk2bcvrppx+5/frXvyYtLfUuMvO7SHcDnlDVft73DwOo6rMR20zxtskSkRrAV0CGltN4MhbpPXv20KBBA5ofPsz3gZbA94FWQHvcGmR2pmxSSRHwJZCPm8t6NfCF9/UgrlAQUJdrkCpTpKMZBVHaauHnlbWNupVcvgZOALZEE6LSyrouuLQfdhyvIa4H7MVmnzOmWBpwune7osRzB4vvxPL/aFm/AErbZ2W2LW97n/m1Wng023xrtXBgl4isjGL/0YvdD7sxsfqFEzuWOT4sc3xULXNlakJl60fF25eX+dRodxNNka5wtfCIbdZ73R3H4dY6/BZVHYa7iiehiEhetH+ahIVljg/LHB+pnDmaHvsjq4WLSC3cauElZ1+ZiLtyDNzqPDPK6482xhgTHb9WCx8BjBaRVbgz6EGxDG2MMakiqunTVHUSMKnEY49H3N+HW1YvWSVcFw2WOV4sc3ykbObARhwaY4ypWOpdRW6MMQkk5Yu0iNwvIgUislRExohIHRF5Q0RWeo+9KiKlXvosIs1F5CMRWS4iy0SkRQJkfsF77XIR+YtIfC4kLyPzCBFZLCL5IjJeRI4p47UPi8gq79/XLx55q5NZRC4RkfkissT72ifsmSNe31xEdonILxMhs4i0E5Es7/VLRKROmDOLSE0Rec3Lurx4cGC5op0uLxlvuEE4a4C63vdvATcDl+Ku/RZgDHBHGa+fBVzi3T8GqBfmzMD5uFG76d4tC+gdYOYGEdsMBR4q5bVtgMVAbeA03IC19JBn7gA09e6fDfw34PdzhZkjnn8bGAf8MuyZcZ+p5QPnet+fkADvjeuAsd79ergBmS3K25+tu+R+0HVF5CDuoG1Q1Y+KnxSRXNy14d8iIm2AGqo6FUBV47l6Z5Uy4wYY1QFq4Yp5TWBT7OMCpWf+BsA7m69LKQOggAG4N/V+YI13BVEX3C+YUGZW1YUR3xYAdUSktvdvCGVm7/krcCO2d5f2fAxVNXNfIF9VFwOo6tY45YWqZ1agvrjxJHWBA8A35e0opbs7VPW/wIvAWmAj8HWJYlcTuAH4sJSXnwHsEJF3RGShiPxe3GRUoc2sqlnATO91G4Epqrq85HbxzCwiI3FTOJwFvFTKy0ublqBZTANT7cyRrgIWxqNAVyeziNQHHgR+G+uckap5nM8AVESmiMgCEXkgATKPx/0S3Oi9/kVV/c7Av0gpXaRF5HjcmdppQFPcb7jrIzb5GzBbVeeU8vIauInsfgl0xk1PcHNMA1O9zCLyfaA17iy7GdBHRHoGmVlV/9d7bDlQ2syJUU054LdqZi5uoy3wPPCzWOf19ledzL8F/hjnvwirm7kG0AP4iff1ShG5KOSZuwCHvW1OA34hIqeXt7+ULtLAxcAaVS1U1YPAO7h+W0TkN0AGMKSM167HnSGtVtVDwL+Jz1z91cl8JZCtqru8/4yTga5BZgZQ1cPAm7izzpKimZYgFqqTGRE5GZgA3KiqX8QhL1Qv83nACyLyJXAf8Ii4QWyxVt33xsequkVV9+DGcgT6fzCKzNcBH6rqQVUtntm13KHjqV6k1wJdRaSe1490EbBcRG4D+uHmzS4q47XzgONFJMP7vg+wrIxt/VSdzGuBXiJSw+sW6cXRedqDyPx9ONKH9yNgRSmvnQgMEpHaInIabubX3DBnFpGGwAfAw6r6SRyyVjuzql6gqi1UtQXwJ+AZVf1rmDPjRkG3815bA/d+DvL/YDSZ1+L+ghWvi6lrGdsdFetPQsN+w/2ZtwI33e1o3FUEh3BXESzybo9722biVqYpfu0luE+XlwCjgFphzoy7ouP/cIV5GTA04OP8iXfslgJv4H06DlwOPBnx2ke9f9tK4Adhzww8hut3XBRxOzHMmUu08QRxurrDh/fG9bgPZ5cCL4Q9M+4qsHFe5mXAryral404NMaYEEv17g5jjAk1K9LGGBNiVqSNMSbErEgbY0yIWZE2xpgQsyJtYkJEDovIInGzhI0TkXre4yoioyO2qyEihSLyfilt9BaRr71h9ytFZLaIXOZTvi/FzUQW03XzRORaEXm0EtsPFDfj33eOh0lNVqRNrOxV1faqejZuEpnbvcd3A2eLSF3v+0uA/5bTzhxV7aCqZwL3AH/1cejvhaqa51NbZelP6XO/fIeI1FDVN4HbYhvJJBIr0iYe5gDfj/h+MvBD7/61uKlVK6Sqi4AngbsARCRDRN4WkXnerbv3+DEiMtI7U84XkVKHbkfyzqyfETc3cZ6IdPQm7vlCRG6PaHe6N5nPEhEZ4D1eX0Q+EDeX8FIRGeg9LkB7YJGIfF48OlVE0ryz5cYiMkpEhorITNw8H8Z8ixVpE1PecN0f4EZiFRuLG+pdB2gH5FSiyQW4GcYA/oybFKgzbp6EV7zHf42bmewcVW0HzIiy7XWq2g33S2UUbuX7rrhfDAD7gCtVtSNwIfAHrxD3x01Vea73l0PxmXMHYLG6uRz+iZsICNzcD4tVdYv3/RnAxar6i2gPgkkdNp+0iZW6IrLIuz8Ht6I8AKqaL24Vm2spscBxFCJnxbsYaCNHF5dpICLHeo8fWbFeVbdH2fZE7+sS4BhV3QnsFJF93nwcu4FnxM0cWISbSfAkb/sXReR54H09OgNhf9xfDQCvAu/i5sW4BRgZsd9xXiE35jusSJtY2auq7ct5fiJuTt7euBU1otWBo5NCpQHdVHVv5Abe2W1V5jsonvO5KOJ+8fc1cGfCGUAnVT0obsa4Oqr6mYh0wq2O86yIfKSqT+Impb8KQFXXicgmcUtpncfRs2qI/yT7JoFYd4cJyqu4SWeWVLilR0Ta4boyXvYe+givf9p7vn0Zjx9f7bTOccBmr0BfCJzqtd8U2KOq/8T94ukoIsfhVu6JXC3kFVy3x1t25myiZUXaBEJV16vqn6PY9ILiS/BwxfkeVZ3uPXcPkOl9OLiMo1eQPIWbRnapiCzG9R/74Q1vf3m4M+HiKSbPAXK97p1Hvf1fAkwr8fqJuFnQRmJMlGwWPJOSvK6KzIgP7/xu/xXcFLHZEY9l4j7ovKCC1/bGTRXqyzXhJrHZmbRJVYXA9FgNZlHV20oU6IdwK3E/XN7rvMv3/gZE+2GnSXJ2Jm2MMSFmZ9LGGBNiVqSNMSbErEgbY0yIWZE2xpgQsyJtjDEhZkXaGGNCzIq0McaEmBVpY4wJMSvSxhgTYoFNVdq4cWNt0aJFULs3xpjAzJ8/f4uqZkSzbWBFukWLFuTlxXp5OWOMCR8R+U+021p3hzHGhJgVaWOMCTEr0sYYE2JWpI0xJsSsSJvUJeJuxoSYFWljjAkxX4u0iKR7i4a+72e7xhiTqvw+k74XWO5zm8ZUnXVpmATn22AWETkZ+CHwNDDEr3aN8dOqVasYN24c9erV43rghKADGVMBP0cc/gl4ADi2rA1EZDAwGKB58+Y+7tqYir3zzjtcf/317N27F4BnganAOYGmMqZ8vnR3iMhlwGZVnV/edqo6TFUzVTUzIyOqYevG+GL+/Plcd911tG/fnvXr17NgwQLSgf7Atm3bgo5nTJn86pPuDlwuIl8CY4E+IvJPn9o2ploOA7fccgsZGRlMnDiRZs2a0aFDB94HCoH7778/4ITGlM2XIq2qD6vqyaraAhgEzFDV6/1o25jqGgXk5+czdOhQGjdufOTDxA64D09Gjx7NkiVLgg1pTBnsOmmT1IqA3wMdO3bk6quv/s7zDwINGjTg6aefjnc0Y6Lie5FW1Vmqepnf7RpTFR8CK4EhQ4YgpVyKdzyuK+Ttt99m48aN8Y5nTIXsTNoktb8BTYBrrrmmzG3uuOMODh06xPDhw+OWy5hoWZE2yUmEQhE+BG4AatWqVeamrVq14uKLL2bUqFGoatwiGhMNK9Imab2Fu7LjJ1Fse+2117JmzRpbLciEjhVpk7TGAGcD7eDo8PAyhohfeeWV1KxZkzfffDOOCY2pmBVpk5QKgU+B717PUbrjjz+evn37Mm7cOOvyMKFiRdokpUmAApW5zGjAgAGsXbuWgoKCGKUypvKsSJvk4nVpvA80BTpW4qU/+MEPAJg8eXIskhlTJVakTdI5AEzBTclYmUlKTz75ZNq1a8ekSZNiE8yYKrAibZLOXGAnrkhHJeIDxUsvvZS5c+fyzTffxCidMZVjRdoknRlAOnBhZV8owg+ee45Dhw4xbdo0/4MZUwVWpE3SmQl0AhpU4bVdgXr16jFr1ixfMxlTVVakTVLZBeRShbNoTy3g/PPPtyJtQsOKtEkqnwCHqHqRBujduzdLlixh69atPqUypuqsSJukMhO3JlyParTRu3dvAGbPnu1DImOqx4q0SSozgfOA+tVoo3PnztStW5ePP/7Yp1TGVJ0VaZM0du/ezXygdzXbqVWrlvVLm9CwIm2SxoIFCzgMdPOhrd69e5Ofn2+L1JrAWZE2SSM3NxeAzj601b17d1SVnJwcH1ozpuqsSJukkZubSwvgRB/a6ty5M2lpaWRlZfnQmjFVVyPoAMb4JTc3ly5+NCTCMUC79u2tSJvA+VakRaQOMBuo7bU7XlV/41f7xpRn8+bNfPnll9zlY5tdFy3iDeDw4cOkp6f72LIx0fOzu2M/0EdVzwXaA/1FpKuP7RtTpnnz5gH+9EcX64abqGn58uU+tmpM5fhWpNXZ5X1b07vZEhcmLnJzc0lLS6vU/NEVKb5KxLo8TJB8/eBQRNJFZBGwGZiqqjklnh8sInkikldYWOjnrk2Ky83NpW3bthzjY5vfB07AirQJlq9FWlUPq2p74GSgi4icXeL5YaqaqaqZGRkZfu7apDBVdR8advHlY8MjBDcrnhVpE6SYXIKnqjuAWUD/WLRvTKTVq1ezbds2uowY4Xvb3YAVK1bYoBYTGN+KtIhkiEhD735d4GJghV/tG1OW4kEs/p5HO+d5X+fPnx+D1o2pmJ9n0k2AmSKSD8zD9Um/72P7xpRq3rx51AXaxqDtzIh9GBME366TVtV8oINf7RkTrdzcXDriLifyW0OgVatWVqRNYGxYuEloBw8eZMGCBTHp6iiWmZlJXl5eDPdgTNmsSJuEVlBQwN69e2NapDt37sz69ev56quvYrgXY0pnRdoktNwOrofNz5GGJXXu7Fq3Lg8TBCvSJqHlAo2A02O4jw4dOpCWlmZdHiYQVqRNQsvFXXonMdxH/fr1adOmjZ1Jm0DYVKUmYe3atYsC4MpY70iEzsB7X32FqiISy18JxnybnUmbhLVgwQKKiM0glpIygS1btrB27do47M2Yo6xIm4Tl53JZFSneh3V5mHizIm0Slp/LZVWkHVCzZk378NDEnRVpk7DmzZsXl64OcMsNtWvXzs6kTdxZkTYJqXi5rHgVaXDXS+fl5VFUVBTHvZpUZ0XaJKTiM9p4F+lvvvmGVatWxXGvJtVZkTYJKRbLZVUkM9PNiWddHiaerEibhFS8XFb9OO6zTZs21KtXz4q0iSsr0ibhxGq5rIrUqFGDDh06WJE2cWVF2iScI8tlxblIA3Tp0oUFCxZw8ODBuO/bpCYr0ibhHFku62c/i/u+O3fuzL59+ygoKIj7vk1qsrk7TMLJzc2N2XJZ5RI5cjVJbm4u7du3j3cCk4LsTNoknFgul1WR04FGjRpZv7SJGyvSJqHEY7ms8giuy6O4y8WYWLPuDpNQli5dyr59+wIr0gCdp0zhWWC3CPVVA0xiUoFvZ9IicoqIzBSR5SJSICL3+tW2McWCGGlYUhfgMLAwwAwmdfjZ3XEI+IWqtga6Aj8XkTY+tm8MuT/7GScApwWY4ci0pQFmMKnDtyKtqhtVdYF3fyewHGjmV/vGAOTgJuAPcm2U7wGn4JbuMibWYvLBoYi0ADrg/k9FPj5YRPJEJK+wsDAWuzZJbOfOnRTg/kwLWmfsTNrEh+9FWkSOAd4G7lPVbyKfU9VhqpqpqpkZGRl+79okuby8PBQ4L+gguH7pL4CtW7cGHcUkOV+LtIjUxBXoN1T1HT/bNiY7OxsI9kPDYsX90rZSi4k1P6/uEGAEsFxVh/rVrjHFcnJyaAWcEHQQoBOuX9yulzax5ueZdHfgBqCPiCzybpf62L5JYapKdnZ2KPqjAY4DzsLmljax59tgFlWdS7AfupsktnbtWjZt2hSK/uhinYEpubmoKu4PSWP8Z8PCTULIyXEXCoXlTBpc3/imTZtYv3590FFMErMibRJCdnY2derUoV3QQSIUf3hY/AvEmFiwIm0SQk5ODh07dgxk5ruynAvUrl37yFUnxsSCFWkTegcOHGD+/Pl07Rqmzg6ojZsR75NPPgk6ikliVqRN6OXn57N//37OGxq+KzvPP/985s+fz969e4OOYpKUFWkTesXdCWG6sqNY9xde4ODBgzaoxcSMFWkTenPnzqUZ0DzoIKU43/tqXR4mVqxIm1BTVebMmcMFhPMi/MbAmViRNrFjRdqE2po1a9iwYQMXBB2kHN2BTz/9lKKioqCjmCRkRdqElwhzWrYECH2R3rZtGyvT04OOYpKQFWkTanOAhkDboIOUo7v31To8TCxYkTahNgdXBMP8Rj0D1zdtRdrEQpjf+ybFbQI+I9xdHeA+0OwBfBx0EJOUrEib0JrrfQ1nukH9AAAgAElEQVR7kQboA6wBvvzyy4CTmGRjRdqE1sdAXdwE+2HXx/s6c+bMQHOY5GNF2oTWdNxZdO2gg0ShDXAiMGPGjKCjmCRjRdqE0oYNG1gGXBx0kCgJ7mx6xowZqGrQcUwSsSJtQqn4jPSigHNURh/cL5fPPvss6CgmiViRNqE0bdo0GgHtgw5SCcX90tblYfxkRdqEjqoybdo0LiKx3qCnA82bN2f69OlBRzFJxLeFaEXkVeAyYLOqnu1Xuyb1rFy5kv/+978J0x9dTIBL1q5l/Nq1HDx4kJo1w7SOjElUfp6ojAL6+9ieSVGTJ08G4JKAc1TFpcDXQFZWVtBRTJLwrUir6mxgm1/tmdT1/vvv07ZtW04LOkgVXAzUBD744IOgo5gkkUhdfiYFfP3118yeMYPLCgqCjlIlDXDXdluRNn6Ja5EWkcEikicieYWFhfHctUkEIkxp2JBDwI+CzlINPwQKCgr4z3/+E3QUkwTiWqRVdZiqZqpqZkZGRjx3bRLE+0AjIFzrglfOpd7XD1q0CDKGSRLW3WFC4xAwCVfkEnn6/DNx05e+HXQQkxR8K9IiMgbIAs4UkfUicqtfbZvUMAvYClwRcI7qEuB/cP+ezZs3BxvGJDw/r+64VlWbqGpNVT1ZVUf41bZJDWOBYzjaXZDIrgGKgHfeeSfoKCbBWXeHCYUDBw7wNu4sum7QYXxwDq7bY9y4cUFHMQnOirQJhalTp7IDGBR0EJ8I7mx61owZbBIJOo5JYFakTSiMGTOG40nMUYZlGYTr8vhX0EFMQrMibQK3Y8cO3nnnHf4HqBV0GB+1Bc4DXgGbY9pUmRVpE7g33niDvXv38tOgg8TAbcAyICcnJ+goJkFZkTaBUlWGDx9Ohw4dEmItw8oaCNQHXnnllaCjmARlRdoEKicnh8WLF/PTnybjeTQci+ubHjtiBNvtA0RTBVakTaBefPFFGgI33Hln0FFi5m5gN/B/QQcxCcm3Sf+NqaxVIrwDPIQbxJKszsVdtfIX4P79+6ldOxHWPzdhYWfSJjC/x829fHfQQeLgl8BGYPTo0UFHMQnGirQJxOeff84I3NUPTYIOEweXAF2A3/70p+yzvmlTCVakTSB+/etfUxv4ddBB4kSA54D1wMsBZzGJxYq0ibtPPvmEN998kyHA94IOE0cXAv2Ap4BNmzYFnMYkCivSJq4OHDjA4B49OBV4MOgwAfgTsAe4//77g45iEoQVaRNXTz31FMuAv5HcV3SU5SzgEdxcJROtb9pEwYq0iZtp06bx1FNPcRPJMWd0VT0EdABuBlsH0VTIirSJi1WrVnHdJZfQWjXlPzirDYwDDgM//vGP2blzZ8CJTJhZkTYxt2HDBvr27etWKsHNZZHqWuKmMF28eDFXXnkl+/btCzqSCSkr0iamVqxYwfnNmlG4Zg2TcauVGOeHwKuHDzN9+nT69u3L9u3bg45kQsiKtImZMSKc17o1e3GLsnYOOE8Y3QiMwU001alTJz755JOgI5mQsSJtfLd8+XIuu+wyrsNNfJ8DSTkNqV8GATMPHIA1a+jZowd33nknX331VdCxTEj4WqRFpL+IrBSRVSLykJ9tm3Dbs2cP7777Lpdddhlt27Zl7ty5vADMBloEnC0RnA8sAm4Hhv/975zepAm33HILc+bM4dChQwGnM0ESv5b1EZF04DPcNAXrgXnAtaq6rLTtMzMzNS8vz5d9m/hRVbZs2cK6detYvXo1CxcuJC8vj9mzZ7Nv3z5OOukkBm/axD1A46DDJqhVwAu4bpBdwPHHH8+FF15Ix44dOffccznttNM45ZRTaNCgQbBBTZWJyHxVzYxqWx+LdDfgCVXt533/MICqPlva9lUp0gcPHuTuu4/OmRaZvaz70W4Xr9ckWtu7d+9m586d7Ny5k2+++YYdO3Z860qEGrgujV7Aj4CeJNc6hUHaCUwGPsT9RfJFieePOeYYGjZsSIMGDWjQoAHHHnssNWvWpGbNmtSoUeNbt/T0dKTE4JmS35f2WFW3SQVNmjTh8ccfr9JrgyrSVwP9VfU27/sbgPNU9a6IbQYDg71vzwRWVnF3jYEt1YjrN8tTsbBlsjzlC1seCF+m6uQ5VVUzotnQz0n/S/t1+q3fAKo6DBhW7R2J5EX7WygeLE/FwpbJ8pQvbHkgfJnilcfPDw7XA6dEfH8ysMHH9o0xJuX4WaTnAa1E5DQRqYW7smiij+0bY0zK8a27Q1UPichdwBQgHXhVVQv8ar+EaneZ+MzyVCxsmSxP+cKWB8KXKS55fPvg0BhjjP9sxKExxoSYFWljjAmx0BZpEblGRApEpEhEyrzMpayh6N4HmDki8rmIvOl9mFmdPI1EZKrX3lQROb6UbS4UkUURt30icoX33CgRWRPxXPtY5/G2Oxyxz4kRjwdxfNqLSJb3c80XkYERz/l2fCqankBEanv/5lXeMWgR8dzD3uMrRaRfVTNUMs8QEVnmHZPpInJqxHOl/vxinOdmESmM2O9tEc/d5P2MPxeRm+KU548RWT4TkR0Rz8Xi+LwqIptFZGkZz4uI/MXLmy8iHSOe8/34oKqhvAGtcQNeZgGZZWyTjhuIdTpuoNtioI333FvAIO/+P4A7qpnnBeAh7/5DwPMVbN8I2AbU874fBVzt4/GJKg+wq4zH4358gDOAVt79psBGoKGfx6e890TENncC//DuDwLe9O638bavDZzmtZMehzwXRrxP7ijOU97PL8Z5bgb+WsZ7erX39Xjv/vGxzlNi+7txFyXE5Ph4bfYEOgJLy3j+UtxgUAG6AjmxOj6qGt4zaVVdrqoVjUjsAqxS1dWqegAYCwwQEQH6AOO97V4DrqhmpAFeO9G2dzUwWVX3VHO/fuU5Iqjjo6qfqern3v0NwGYgqlFXlVDqe6KcrOOBi7xjMgAYq6r7VXUNbhqNLrHOo6ozI94n2bgxBrESzfEpSz9gqqpuU9XtwFSgf5zzXIub1iRmVHU27gSrLAOA19XJBhqKSBNic3zCW6Sj1AxYF/H9eu+xE4AdqnqoxOPVcZKqbgTwvp5YwfaD+O6b6Wnvz6M/ikjtOOWpIyJ5IpJd3PVCCI6PiHTBnTlFTknhx/Ep6z1R6jbeMfgad0yieW0s8kS6FXeWVqy0n1888lzl/SzGi0jxILVAj4/XDXQaMCPiYb+PTzTKyhyL4+PrsPBKE5FpwPdKeepRVX03miZKeUzLebzKeaLIEtlOE+Ac3DXjxR4GvsIVpmHAg8CTccjTXFU3iMjpwAwRWQJ8U8p28T4+o4GbVLXIe7jSx6es5kt5rOS/zdf3jQ953IYi1wOZuPmqin3n56eqJeda8jvPe8AYVd0vIrfj/uroE+VrY5Gn2CBgvKoejnjM7+MTjXi+f4It0qp6cTWbKGso+hbcnyA1vDOlqIaol5dHRDaJSBNV3egVmc3lNPU/wARVPRjR9kbv7n4RGQn8Mh55vG4FVHW1iMzCLVT9NgEdHxFpAHwAPOb9qVjcdqWPTxmimZ6geJv1IlIDOA73520spjaIqk0RuRj3y66Xqu4vfryMn191ilCFeVR1a8S3w4HnI17bu8RrZ1UjS1R5IgwCfh75QAyOTzTKyhyL45Pw3R2lDkVX14s/E9cvDHATEM2ZeXkmeu1E0953+s28wlXcH3wFUOonx37mEZHji7sNRKQx0B1YFtTx8X5GE3D9eeNKPOfX8YlmeoLIrFcDM7xjMhEYJO7qj9OAVkBuFXNEnUdEOgD/B1yuqpsjHi/15xeHPE0ivr0cWO7dnwL09XIdD/Tl238txiSPl+lM3IdxWRGPxeL4RGMicKN3lUdX4GvvJCMWxyfUV3dcifvNtB/YBEzxHm8KTIrY7lLcYgNf4LpJih8/HfcfbBUwDqhdzTwnANOBz72vjbzHM4FXIrZrAfwXSCvx+hnAElzx+SdwTKzz4Bb8WIL7xHwJcGuQxwe4HjiIW4Sk+Nbe7+NT2nsC13VyuXe/jvdvXuUdg9MjXvuo97qVwA98ei9XlGea9x4vPiYTK/r5xTjPs0CBt9+ZwFkRr73FO26rgP+NRx7v+yeA50q8LlbHZwzuyqODuBp0K27RnNu95wV42cu7hIirz2JxfGxYuDHGhFiid3cYY0xSsyJtjDEhZkXaGGNCzIq0McaEmBVpY4wJMSvSxhgTYlakTcxETCO5VETeE5GGJZ6/X9x0rseV00ZbEZkhborKz0Xk196Al+IpR6d5+xgoIheImwZ1kYjUrWTW+0SkXhnPfSkiS6ScKXOrS0TeEJFtInJ1xVubVGJF2sTSXlVtr6pn44Zd/7zE89fiRpxdWdqLvUI7ETeI4QzgXNwAhju9TToANb19vAn8BHjR+35vJbPeB5RapD0XqmpeJduMmqr+BFu42ZTCirSJlywiZgQTkZbAMcBjuGJdmuuAT1T1IwB103neBTwkIifiRia2986cf4abM+Vx76y0iYjMjjiTv8Dbb19xCw8sEJFxInKMiNyDG8k6U0RmVvQP8c6sn/HayRORjiIyRUS+8CYkwmt3urefJSIywHu8voh8ICKLvVwDy9+bSXWBTrBkUoOIpAMXASMiHi6e32QOcKaInKgR81Z42gLzIx9Q1S9E5BhgH3Ab8EtVvczbTzfgfVUdLyK/wE0l8LS3/3re/A6PARer6m4ReRAYoqpPisgQ3Nnylij/WetUtZuI/BG3YEF33HDzAtwiCvuAK1X1G2+/2eJWDukPbFDVH3qZy+zqMQbsTNrEVl0RWQRsxa1WMTXiuUG4CfaLgHeAa0p5vVD2VI8VzWcwD/hfEXkCOEdVd+JW0WgDfOLlugk4tewmylXcNbEEtzLHTlUtBPZ5fe8CPCMi+bi5OZoBJ3nbXywiz4vIBar6dRX3b1KEFWkTS3tVtT2uENbC65MWkXa4GeamisiXuIJdWpdHAW6CpiPEzRu8yyu6ZVK3ukZP3GRXo0XkRlzhnOr1WbdX1TaqemsV/23F04kWRdwv/r4Grn88A+jkHYNNQB1V/QzohCvWz4rI41Xcv0kRVqRNzHlni/cAvxSRmriC/ISqtvBuTYFmErEAq+cNoIe4uZaLP0j8C249xXJ5bW1W1eG4bpaOuKWpuovI971t6onIGd5LdgLHVvffGuE4b/8HReRCvDN2EWkK7FHVfwIvermMKZMVaRMXqroQN6XkIO82ocQmE7zHI1+zF7ee3GMishJ39jkP+GsUu+wNLBKRhcBVwJ+97oibgTFeN0Q2cJa3/TBgcjQfHEbpDSBTRPJwZ9UrvMfPAXK97pZHgad82p9JUjZVqTEV8LpkMivxoWJV9zMK74PPWO7HJBY7kzamYoXA9FgPZsGtbbgvVvswicnOpI0xJsTsTNoYY0LMirQxxoSYFWljjAkxK9LGGBNiVqSNMSbErEgbY0yIWZE2xpgQsyJtjDEhFth80o0bN9YWLVoEtXtjjAnM/Pnzt6hqRjTbBlakW7RoQV5ezFYjMsaY0BKR/0S7rXV3GGNMiFmRNsaYELMibYwxIWZF2hhjQsyKtEkZBw8eZOjQoXTt2pXevXvzlggqEnQsY8plRdqkhH379nHppZfyi1/8AoCvvvqKgcAvAZtT3YSZFWmTEu666y6mTZvGiBEjyM7OpqCggLuBocDw4cODjmdMmaxIm6T30UcfMWLECB5++GFuueUWANLT0/kT0Be47777WLduXaAZjSmLFWmT1IqKirj//vtp1aoVv/nNb771XBpuifCioiIefvjhQPIZUxEr0iapTZgwgWXLlvG73/2O2rVrf+f5U4F7772Xf/3rX6xatSr+AY2pQGAL0WZmZqoNCzexpKp06tSJ3bt3s2zZMtLT07+9gXdlx0agBXAr8Df7ENHEgYjMV9WoVp+3M2mTtHJzc1m4cCFDhgw5WqBFjt48TYDrgZHAjh07gohqTJmsSJukNXz4cOrXr891t9/+ncJc0h3APmDs2LFxy2dMNKxIm6S0a9cuxo4dy8CBAzk2iu07AWcDo0aNim0wYyrJirRJSh988AG7d+/mpldfjWp7Af4XyMnJYYWNQjQhYkXaJKVx48bxPaB7JV4z0Pv6TgzyGFNVVqRN0tm9ezeTJk3iKiC9wq2PagachxVpEy5WpE3SmTRpEnv37uXqKrz2x8B8YO3atT6nMqZqrEibpPPuu++SkZHBBVV47ZXe1wkTJvgZyZgqsyJtkkpRURFTpkyhf//+lerqKNYKaAu89957PiczpmqsSJukMn/+fLZs2UL//v2r3EY/YM6cOezZs8e/YMZUkRVpk1Q+/PBDRIS+fftWuY1+wIEDB/j444/9C2ZMFVmRNkll8uTJdO7cmcaNG1e5jQuAOnXq8NFHH/kXzJgq8q1Ii0gdEckVkcUiUiAiv/WrbWOisW3bNnJycqrV1QFQF+jZsydTpkzxJ5gx1eDnmfR+oI+qngu0B/qLSFcf2zemXDNmzKCoqIh+Tz5Z7jwd0ejXrx/Lly+3xQBM4Hwr0urs8r6t6d1s3kcTN7NmzaI+0NmHtvr16wfA1KlTfWjNmKrztU9aRNJFZBGwGZiqqjklnh8sInkikldYWOjnro1h1qxZ9MCdHVRXmzZtyMjIsA8PTeB8LdKqelhV2wMnA11E5OwSzw9T1UxVzczIyPBz1ybFFRYWUlBQQC+f2pO0NHoWFjL79dd9atGYqonJ1R2qugOYBVTvExxjojR79mwAevvYZk/gS2yIuAmWn1d3ZIhIQ+9+XeBiYIVf7RtTno8//ph69eoR1XpEUSo+K7cuDxMkP8+kmwAzRSQfmIfrk37fx/aNKdOsWbPo3r27L/3Rxc4BGnL0LN2YINTwqyFVzQc6+NWeMdHaunUrS5YsYeDAgeDj1RhpuIEtdiZtgmQjDk3Cm+ONLuz12GO+t90L+Pzzz9lYwRqJxsSKFWmT8D4FauHP9dEl9fS+WoeHCYoVaZPwsnH9bLVj0HYHoB7uF4ExQbAibRLawYMHyQO6xaj9GkAXrEib4FiRNgktPz+fvUAsJ4npBiwC9sZwH8aUxberO4yJOxGyvLuxOpMubvsQkAdVWpLLmOqwM2mT0LKApsApMdxH8Vm6dXmYIFiRNgktG1dEY3lxXAZu7cOsijY0JgasSJuEtRlYTWy7Oop1wxVpVZt918SXFWmTsLK9r/FYWaIb3i+F1avjsDdjjrIibRJWFu6T705x2Nf5xfvMsk4PE19WpE3Cysat01Y3DvtqCxyLFWkTf1akTUI6dOgQucSnPxogHTeoxYq0iTcr0iYhLVmyhD3Er0jj7Wvx4sXs2rWrwm2N8YsVaZOQsrPdx4bxXI7+fKCoqIh58+bFca8m1VmRNgkpKyuLk4AWcdzneRH7NiZerEibhJSdnR3zQSwlNQLOPPPMI2fxxsSDFWmTcLZs2cLnn38e1/7oYt26dSMrK8sGtZi4sSJtEk7xmWwQRbrrqFFs2bLFBrWYuLEibRJOdnY26enpcRnEUlLxLwbrlzbxYkXaJJysrCzOPfdc6gew77bAMWD90iZurEibhHL48GFyc3Pp2jWeF98dZYNaTLxZkTYJpaCggF27dtGtWxA90k7xoJbdu3cHlsGkDivSJqEUn8EGWaS74s7o58+fH1gGkzp8K9IicoqIzBSR5SJSICL3+tW2McWys7Np3Lgxp59+emAZijtarMvDxIP4db2niDQBmqjqAhE5FpgPXKGqy0rbPjMzU/Py8nzZt0kdZ4nQCngv4BytgLOBCQB2zbSpJBGZr6qZ0Wzr25m0qm5U1QXe/Z3AcqCZX+0bs23bNlYSzPXRJR1ZqSXoICbpxaRPWkRaAB2AnFi0b1JTkINYSuoGbAL+E3QQk/R8L9IicgzwNnCfqn5T4rnBIpInInmFhYV+79okuezsbNKAzkEHIaJfOtAUJhX4WqRFpCauQL+hqu+UfF5Vh6lqpqpmZmRk+LlrkwKysrJohxtMErRzgHocXWfRmFjx8+oOAUYAy1V1qF/tGgPukrecnJxQdHWAW1uxM3YmbWLPzzPp7sANQB8RWeTdLvWxfZPCli1bxs6dO0NTpMH1Sy8E9u7dG3QUk8Rq+NWQqs4lvtP7mhRyZBBLwDkidQUOAQsWLKB79+5BxzFJykYcmoSQlZVF48aNaRl0kAg2qMXEgxVpkxCysrLo1q1bqP5UOwk4DZsRz8SWb90dxsTKtm3bWLlyJTetXBl0lO/oBszyVmpxn50b4y87kzahF6ZBLCV1AzZs2MD69euDjmKSlBVpE3rFg1iimuggzqxf2sSaFWkTemEaxFLSuUCdOnWsX9rEjBVpE2phG8RSUk0gc98+sv74x6CjmCRlRdqE2pIlS9i5cyfnBx2kHN2ABcD+/fuDjmKSkBVpE2pz5swBoGfAOcrTFTgALFy4MOgoJglZkTahNnv2bJo3b07zoIOUo7gr5pNPPgk0h0lOVqRNaKkqc+bMoWfPMJ9HQxOgJe4XijF+s8EsJrQ+T0tjE3DBP/8ZdJQK9QImzJlDUVERaWl27mP8Y+8mE1pzvK/hPo92egHbt29n6dKlQUcxScaKtAmt2UAGcGbQQaLQy/v68ccfB5rDJB8r0ia05gA9SIz5b08FmjdvbkXa+M6KtAml9evXs4bE6Ooo1qtXL2bPno2qrSFu/GNF2oRS8ZUSFwScozJ69epFYWEhK1asCDqKSSJWpE0ozZgxg4ZA+6CDVEKvXq5n2ro8jJ+sSJvQUVWmTZvGhUB60GEqoWWrVjQBPr7jjqCjmCRiRdqEzurVq/nPf/7DRUEHqSQB+gAzgKKiooDTmGRhRdqEzrRp0wC4OOAcVXEJsBnIz88POopJEjbi0ISLCNOBZsAZQWepgku8r1OnTqV9+0TqUTdhZWfSJlSKcN0FF5MY10eX1BRoC3z00UdBRzFJwoq0CZXFwFZIuP7oSH1xU6zu3bs36CgmCViRNqFSfP6Z6EV6//79R+bCNqY6fCvSIvKqiGwWEZthxlTZB7hro5sGHaQaegK1atWyLg/jCz/PpEcB/X1sz6SYbdu28SlwWdBBqqke0KNHDz788MOgo5gk4FuRVtXZwDa/2jOpZ8qUKRwGfhh0EB9cdtllFBQUsHr16qCjmAQX1z5pERksInkikldYWBjPXZsE8MEHH5ABdA46iA8uHzIEgIktWwacxCS6uBZpVR2mqpmqmpmRkRHPXZuQO3z4MJMnT+YHJNZQ8LK0xF2KNzHoICbh2dUdJhSys7PZtm1bwvdHR7oct3DB9u3bg45iEpgVaRMK/+7Rg5q4y9eSxeXAYWDSpElBRzEJzM9L8MYAWcCZIrJeRG71q22T3FSVcbgCfVzQYXzUBTgJePfdd4OOYhKYb3N3qOq1frVlUsu8efP4D/DboIP4LA0YALwxaRJ79uyhXr16QUcyCci6O0zg3nrrLWriClqyGQTs3r2b9957L+goJkFZkTaBUlXeeust+gENgw4TAz2Bpk2bMmbMmKCjmARlRdoE6tNPP2XdunVcE3SQGEkHBg4cyOTJk+0qD1MlVqRNoEaOHEn9+vX5cdBBYui6667jwIEDvPPOO0FHMQnIirQJzG4R3hwxgv/ZvZtjgg4TQ506d+ZM3C8kYyrLirQJzHhgF3BL0EFiTICfAp988gkFBQVBxzEJxoq0CcyrQCuge9BB4uAm3PSlw4cPDzqKSTBWpE0g8vPzmQ3cSmIuk1VZjYGrrrqK1157zVZsMZViRdoE4k9/+hP1cN0AqWLw4MHs2LGDf/3rX0FHMQlEVDWQHWdmZmpeXl4g+zbB2rRpE82bN+fWAwf4W9Bh4kiLiujUqRN79uxh2bJlpKXZOVKqEpH5qpoZzbb2LjFx9/fvfY8DBw5wb9BB4kxEePDBB1m5cqXN52GiZkXaxNWOHTv4M26GuDODDhNvIlw1aBCnA8899xxB/RVrEosVaRNXQ4cOZQfJN5lStGoADwC5ubm8//77QccxCcD6pE3cbN68mZYtW9J/1y7GBR0mQAeBs884g7S0NJYsWUKNGr5NRmkShPVJm1B65JFH2LdvH78LOkjAauK6O1asWMGIESOCjmNCzoq0iYvc3FxGjBjBfffdx1lBhwmBK664gh49evDoo4+yefPmoOOYELMibWJu37593HrrrTRt2pTHH3886DihIGlp/N/cuezcupW77ror6DgmxKxIm5h77LHHWLp0Ka9s2MCxDRoEHSc02gBPAOPGjeNNSYVxl6YqrEibmJowYQJ/+MMfuB34QdBhQuhXQFfgNmD58uUBpzFhZEXaxEy+CDf8+Md0Af4YdJiQqgGMA+rh+qkLCwsDTmTCxoq0iYkVK1ZwCW5JrAlAnYDzhNnJwNvAunXr6Nu3r63gYr7FirTxXU5ODr1790aA6UDToAMlgB7AhL17WbZoEX0aNWL9+vVBRzIhYUXa+EZVGTlyJL169aJevXrMIgWHfldDP+Bd4Augc+fOzJ49O+BEJgysSBtfrF69mssuu4xbbrmFbvv3k7tmjV0PXQX9gSyg/ldf0btXL+6++27r/khxVqRNteTn5zN48GDObNmSWZMm8SdgGm6Se1M1bYFFwN3Ay3/9K6c1asRvRFi3bl3AyUwQfC3SItJfRFaKyCoRecjPtk047N+/n08//ZQnnniCTiKce+65vDZ8OD8DPgfuBdIDzpgMjgH+jCvWFwJPAqeeeioXX3wxQ4cOZcmSJRw+fDjQjCY+fJtgSUTSgc+AS4D1wDzgWlVdVtr2yTzBUuQxjeZ+VV7jd1v79+9n165d7N69+8jXrVu3smHDBjZs2MC6detYunQpK1eu5NChQ6QBnYHrgJ8AJ5R2IIxv1gAjcZfrrfAeq1u3LmeffTatW7fm5JNPplmzZjRp0oTjjjuOY4899sitdu3a1KhR41u39PR0xAbQBKYyEyz5Of1WF2CVqq72QowFBgClFumq2LdvH40bH/1DOohiVlZbyd/hMc0AAApKSURBVKx27do027+fNrgfaEfc2V2jYGOllNNwZ9NPAuuAGcDivXvJnzePGfPmsRGo7Hl1eno6aWlp3yrWJQt3db5P9l8CrVu3Jjc3N+b78bNIN8O9f4qtB86L3EBEBgODvW93icjKKu6rMbCliq+NhaTOs3//flYDq4FqzICc1MfIB3HPc/jw4fK6TMJ2fCBkmebNm9dYRKqa59RoN/SzSJf2a/Nbp5uqOgwYVu0dieRF+6dCPFieioUtk+UpX9jyQPgyxSuPnx8crgdOifj+ZGCDj+0bY0zK8bNIzwNaichpIlILGARM9LF9Y4xJOb51d6jqIRG5C5iCuwrrVVUt8Kv9EqrdZeIzy1OxsGWyPOULWx4IX6a45AlsjUNjjDEVsxGHxhgTYlakjTEmxEJbpEXkGhEpEJEiESnzMpeyhqJ7H2DmiMjnIvKm92FmdfI0EpGpXntTReT4Ura5UEQWRdz2icgV3nOjRGRNxHPtY53H2+5wxD4nRjwexPFpLyJZ3s81X0QGRjzn2/GpaHoCEant/ZtXecegRcRzD3uPrxSRflXNUMk8Q0RkmXdMpovIqRHPlfrzi3Gem0WkMGK/t0U8d5P3M/5cRG6KU54/RmT5TER2RDwXi+PzqohsFpGlZTwvIvIXL2++iHSMeM7344OqhvIGtMbNdDkLyCxjm3TczI6nA7WAxUAb77m3gEHe/X8Ad1QzzwvAQ979h4DnK9i+EbANqOd9Pwq42sfjE1UeYFcZj8f9+ABnAK28+02BjUBDP49Pee+JiG3uBP7h3R8EvOndb+NtXxs3yO8LID0OeS6MeJ/cUZynvJ9fjPPcDPy1jPf0au/r8d7942Odp8T2d+MuSojJ8fHa7IkbWLu0jOcvBSbjxoZ0BXJidXxUNbxn0qq6XFUrGpF4ZCi6qh4AxgIDRESAPsB4b7vXgCuqGWmA10607V0NTFbVPdXcr195jgjq+KjqZ6r6uXd/A7AZyKjmfksq9T1RTtbxwEXeMRkAjFXV/aq6BljltRfTPKo6M+J9ko0bYxAr0RyfsvQDpqrqNlXdDkzFza4azzzXAmOquc9yqeps3AlWWQYAr6uTDTQUkSbE5viEt0hHqbSh6M1w8/3sUNVDJR6vjpNUdSOA9/XECrYfxHffTE97fx79UURqxylPHRHJE5Hs4q4XQnB8RKQL7szpi4iH/Tg+Zb0nSt3GOwZf445JNK+NRZ5It+LO0oqV9vOLR56rvJ/FeBEpHqQW6PHxuoFOw01dUszv4xONsjLH4vj4Oiy80kRkGvC9Up56VFXfjaaJUh7Tch6vcp4oskS20wQ4B3fNeLGHga9whWkY8CBuvpxY52muqhtE5HRghogsAb4pZbt4H5/RwE2qWuQ9XOnjU1bzpTxW8t/m6/vGhzxuQ5HrgUygV8TD3/n5qeoXpb3exzzvAWNUdb+I3I77q6NPlK+NRZ5ig4Dxqho54Yjfxyca8Xz/BFukVfXiajZR1lD0Lbg/QWp4Z0pRDVEvL4+IbBKRJqq60Ssym8tp6n+ACf/f3rmGWFVFcfz3ryxNy9QsKgIfWEIv7WFSigZiFGYGUaLSQ0MNi4zMosz81phhH3pAJOiHLNKwGEpSTO1hZZqPJq1I64vSywJJKh+5+rD2ZY7TnZl7586ZuY7rB5e5Z59z9l5n3TPr7rPuOf9lZoczff+U3h6UtBiY1Rb2pLQCZvaDpPXAYLzuabv4R9KZwHvAnHSpWOi7bP80QinyBIVt9kg6BeiOX97mIW1QUp+SRuFfdiPM7GChvZHPr5Ig1Kw9ZvZ7ZvFVYH5m35EN9l1fgS0l2ZNhPDAj25CDf0qhMZvz8M9xn+4o+ii6eRZ/HZ4XBrgbLx9XCbWpn1L6+1/eLAWuQj54HFD0l+PWtEdSj0LaQNLZwPXAzvbyT/qM3sbzecsbrGst/5QiT5C19XZgbfJJLTBefvdHX2AAUKkWZbP2SBoMvAKMNbNfM+1FP782sOe8zOJY4Jv0fhUwOtnVAxjNsVeLudiTbLoY/zHus0xbHv4phVrgrnSXx1Bgf5pk5OGfqr674zb8m+kg8AuwKrWfD6zMbHczXmxgN54mKbT3w//BduFa6adVaE8vvPj19+lvz9R+NbAos10fYC9wUoP91wJ1ePB5DeiWtz3AdWnM7envlPb0DzAJOIwXHCm8BrW2f4qdE3jqZGx63zkd867kg36ZfZ9M+30H3NRK53Jz9qxJ53jBJ7XNfX452/MMsCONuw4YmNl3cvLbLuDetrAnLc8Dahrsl5d/3sDvPDqMx6ApwHRgelov4KVkbx2Zu8/y8E88Fh4EQVDFHO/pjiAIgg5NBOkgCIIqJoJ0EARBFRNBOgiCoIqJIB0EQVDFRJAOgiCoYiJIB61ORj5yh6TtcinOVjnXJE2V9G16fSFpWGbd8DTmNkldJC1IywvKHKOPpAmNrBspab+klZUeSxPj90/HcCCvMYLjh3Z9LDzosPxtZoMAJJ0DvI4/ev10JZ1KGgNMA4aZ2T65ju87koaY2c/AROA5M1uctp8G9LbMY9Yl0geYkOwuxsdmNqZFB1EC5toTgyJIBxAz6SBnzB9zngo8kB6jPTnNcDcllbVphW0lzZZUl2bfNUW6ewx41Mz2pb634OI/M+TC9HcAcyUtlQvAdwU2SrpTXkTi69T3R2m8xmypAYan2ezDTR1fmll/KGmZXJC+RtLENMuvk9Q/bXeLvMDAVklrJJ2b2keoXrR+q6QzWu7toCMSM+kgd8zFb07C5UtvxbUOrkm6CxskrQYG4pod15rZX5J6FunqEuDLBm2bcTW9p1Lq410zewtA0oHMjL4OuNHM9ko6K+07pRFbHgdmlTFbvgIvUvEHLvS+yMyGSHoIF6mfCXwCDDUzS18os4FHcCGpGWa2QVI34J8SxwxOECJIB21FQcZxNHC5pIK4U3dcyGgUsNiS+L2ZNSW63rDfUrQNNgBLJC0DVjRjy6ESxy6wyZKKn6TdwOrUXodXXQFXRHsziRedCvyYsWuhpKXACjPbU+bYQQcn0h1B7si1fv/F5UsFPGhmg9Krr5mtprRguxO4qkHblZSgfGZm04E5uMTkNkm9mrClXLI576OZ5aPUT4RewEtSXYbn1Tsnu2qA+4AuwOeSBrZg/KADE0E6yBVJvfEaii+aq3mtAu6X1Cmtv0hSV3z2OVnS6am9WLrjWWB+CrDIi9XeA7xcgh39zWyjmc3F9cYvbMKWP4HWzg13x9URoV4mtWBXnZnNx1M3EaSDY4h0R5AHXSRtAzoBR/AqLAvTukX43RNbJAn4DRhnZu+noLtZ0iFgJfBEtlMzq5V0AfCpJMOD6SSrLxjQFAskDcBnzx/g8pZfFbMltR+RtB1YYmbPt9APWeYByyXtxesY9k3tMyXdgF9p7OTY0llBEFKlQVAOkkZS3o+KlYx1wMy65T1OUN1EuiMIyuMQcGlbPMyCFwIITnBiJh0EQVDFxEw6CIKgiokgHQRBUMVEkA6CIKhiIkgHQRBUMf8BJzv5ZFn/EjYAAAAASUVORK5CYII=", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" + "ename": "UnboundLocalError", + "evalue": "cannot access local variable 'solution_details' where it is not associated with a value", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mUnboundLocalError\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m/Users/bluez3303/Documents/GitHub/orbitize/docs/tutorials/Hipparcos_IAD.ipynb Cell 4\u001b[0m line \u001b[0;36m2\n\u001b[1;32m 23\u001b[0m \u001b[39m# run the fit\u001b[39;00m\n\u001b[1;32m 24\u001b[0m \u001b[39mprint\u001b[39m(\u001b[39m\"\u001b[39m\u001b[39mGo get a coffee. This will take a few mins! :)\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[0;32m---> 25\u001b[0m nielsen_iad_refitting_test(\n\u001b[1;32m 26\u001b[0m IAD_file,\n\u001b[1;32m 27\u001b[0m hip_num\u001b[39m=\u001b[39;49mhip_num,\n\u001b[1;32m 28\u001b[0m saveplot\u001b[39m=\u001b[39;49msaveplot,\n\u001b[1;32m 29\u001b[0m burn_steps\u001b[39m=\u001b[39;49mburn_steps,\n\u001b[1;32m 30\u001b[0m mcmc_steps\u001b[39m=\u001b[39;49mmcmc_steps,\n\u001b[1;32m 31\u001b[0m )\n\u001b[1;32m 33\u001b[0m end \u001b[39m=\u001b[39m datetime\u001b[39m.\u001b[39mnow()\n\u001b[1;32m 34\u001b[0m duration_mins \u001b[39m=\u001b[39m (end \u001b[39m-\u001b[39m start)\u001b[39m.\u001b[39mtotal_seconds() \u001b[39m/\u001b[39m \u001b[39m60\u001b[39m\n", + "File \u001b[0;32m~/Documents/GitHub/orbitize/orbitize/hipparcos.py:423\u001b[0m, in \u001b[0;36mnielsen_iad_refitting_test\u001b[0;34m(iad_file, hip_num, saveplot, burn_steps, mcmc_steps)\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[39m\u001b[39m\u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 398\u001b[0m \u001b[39mReproduce the IAD refitting test from Nielsen+ 2020 (end of Section 3.1).\u001b[39;00m\n\u001b[1;32m 399\u001b[0m \u001b[39mThe default MCMC parameters are what you'd want to run before using\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[39m metadata for the performed Hipparcos IAD fit\u001b[39;00m\n\u001b[1;32m 419\u001b[0m \u001b[39m\"\"\"\u001b[39;00m\n\u001b[1;32m 421\u001b[0m num_secondary_bodies \u001b[39m=\u001b[39m \u001b[39m0\u001b[39m\n\u001b[0;32m--> 423\u001b[0m myHipLogProb \u001b[39m=\u001b[39m HipparcosLogProb(\n\u001b[1;32m 424\u001b[0m iad_file, hip_num, num_secondary_bodies, renormalize_errors\u001b[39m=\u001b[39;49m\u001b[39mTrue\u001b[39;49;00m\n\u001b[1;32m 425\u001b[0m )\n\u001b[1;32m 426\u001b[0m n_epochs \u001b[39m=\u001b[39m \u001b[39mlen\u001b[39m(myHipLogProb\u001b[39m.\u001b[39mepochs)\n\u001b[1;32m 428\u001b[0m param_idx \u001b[39m=\u001b[39m {\u001b[39m\"\u001b[39m\u001b[39mplx\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m0\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mpm_ra\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m1\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mpm_dec\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m2\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39malpha0\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m3\u001b[39m, \u001b[39m\"\u001b[39m\u001b[39mdelta0\u001b[39m\u001b[39m\"\u001b[39m: \u001b[39m4\u001b[39m}\n", + "File \u001b[0;32m~/Documents/GitHub/orbitize/orbitize/hipparcos.py:136\u001b[0m, in \u001b[0;36mHipparcosLogProb.__init__\u001b[0;34m(self, path_to_iad_file, hip_num, num_secondary_bodies, alphadec0_epoch, renormalize_errors)\u001b[0m\n\u001b[1;32m 134\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39malpha0_err \u001b[39m=\u001b[39m astrometric_solution[\u001b[39m\"\u001b[39m\u001b[39me_RA\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mvalues[\u001b[39m0\u001b[39m] \u001b[39m# [mas]\u001b[39;00m\n\u001b[1;32m 135\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mdelta0_err \u001b[39m=\u001b[39m astrometric_solution[\u001b[39m\"\u001b[39m\u001b[39me_DE\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mvalues[\u001b[39m0\u001b[39m] \u001b[39m# [mas]\u001b[39;00m\n\u001b[0;32m--> 136\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msolution_type \u001b[39m=\u001b[39m solution_details[\u001b[39m\"\u001b[39m\u001b[39misol_n\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mvalues[\u001b[39m0\u001b[39m]\n\u001b[1;32m 138\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39msolution_type \u001b[39m==\u001b[39m \u001b[39m1\u001b[39m:\n\u001b[1;32m 139\u001b[0m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mvar \u001b[39m=\u001b[39m astrometric_solution[\u001b[39m\"\u001b[39m\u001b[39mvar\u001b[39m\u001b[39m\"\u001b[39m]\u001b[39m.\u001b[39mvalues[\u001b[39m0\u001b[39m]\n", + "\u001b[0;31mUnboundLocalError\u001b[0m: cannot access local variable 'solution_details' where it is not associated with a value" + ] } ], "source": [ @@ -84,29 +81,29 @@ "from orbitize.hipparcos import nielsen_iad_refitting_test\n", "\n", "# The Hipparcos ID of your target. Available on Simbad.\n", - "hip_num = '027321' \n", + "hip_num = \"027321\"\n", "\n", - "# Name/path for the plot this function will make \n", - "saveplot = 'bPic_IADrefit.png' \n", + "# Name/path for the plot this function will make\n", + "saveplot = \"bPic_IADrefit.png\"\n", "\n", "# Location of the Hipparcos IAD file.\n", - "IAD_file = '{}H{}.d'.format(orbitize.DATADIR, hip_num) \n", + "IAD_file = \"{}H{}.d\".format(orbitize.DATADIR, hip_num)\n", "\n", "# These `emcee` settings are sufficient for the 5-parameter fits we're about to run,\n", "# although I'd probably run it for 5,000-10,000 steps if I wanted to publish it.\n", - "burn_steps = 100 \n", - "mcmc_steps = 500 \n", + "burn_steps = 100\n", + "mcmc_steps = 500\n", "\n", "start = datetime.now()\n", "\n", "# run the fit\n", - "print('Go get a coffee. This will take a few mins! :)')\n", + "print(\"Go get a coffee. This will take a few mins! :)\")\n", "nielsen_iad_refitting_test(\n", " IAD_file,\n", - " hip_num=hip_num, \n", - " saveplot=saveplot, \n", - " burn_steps=burn_steps, \n", - " mcmc_steps=mcmc_steps\n", + " hip_num=hip_num,\n", + " saveplot=saveplot,\n", + " burn_steps=burn_steps,\n", + " mcmc_steps=mcmc_steps,\n", ")\n", "\n", "end = datetime.now()\n", @@ -115,7 +112,7 @@ "print(\"Done! This fit took {:.1f} mins on my machine.\".format(duration_mins))\n", "\n", "# If you don't want to save the plot, you can run this line to remove it\n", - "_ = os.system('rm {}'.format(saveplot))" + "_ = os.system(\"rm {}\".format(saveplot))" ] }, { @@ -151,15 +148,17 @@ "the relative astrometry and RVs you're using in your fit.\n", "\"\"\"\n", "\n", - "input_file = os.path.join(orbitize.DATADIR, 'betaPic.csv')\n", + "input_file = os.path.join(orbitize.DATADIR, \"betaPic.csv\")\n", "data_table = read_input.read_file(input_file)\n", "\n", "\"\"\"\n", "Next, we'll instantiate a `HipparcosLogProb` object.\n", "\"\"\"\n", "num_secondary_bodies = 1 # number of planets/companions orbiting your primary\n", - "hipparcos_number='027321' # (can look up your object's Hipparcos ID on Simbad)\n", - "hipparcos_filename=os.path.join(orbitize.DATADIR, 'H027321.d') # location of your IAD data file\n", + "hipparcos_number = \"027321\" # (can look up your object's Hipparcos ID on Simbad)\n", + "hipparcos_filename = os.path.join(\n", + " orbitize.DATADIR, \"H027321.d\"\n", + ") # location of your IAD data file\n", "\n", "betaPic_Hip = hipparcos.HipparcosLogProb(\n", " hipparcos_filename, hipparcos_number, num_secondary_bodies\n", @@ -169,26 +168,30 @@ "Next, instantiate a `GaiaLogProb` object.\n", "\"\"\"\n", "betapic_edr3_number = 4792774797545800832\n", - "betaPic_Gaia = gaia.GaiaLogProb(\n", - " betapic_edr3_number, betaPic_Hip, dr='edr3'\n", - ")\n", + "betaPic_Gaia = gaia.GaiaLogProb(betapic_edr3_number, betaPic_Hip, dr=\"edr3\")\n", "\n", "\"\"\"\n", "Next, we'll instantiate a `System` object, a container for all the information\n", "relevant to the system you're fitting. \n", "\"\"\"\n", "\n", - "m0 = 1.75 # median mass of primary [M_sol]\n", - "plx = 51.5 # [mas]\n", - "fit_secondary_mass = True # Tell orbitize! we want to get dynamical masses \n", - " # (not possible with only relative astrometry).\n", - "mass_err = 0.01 # we'll overwrite these in a sec\n", + "m0 = 1.75 # median mass of primary [M_sol]\n", + "plx = 51.5 # [mas]\n", + "fit_secondary_mass = True # Tell orbitize! we want to get dynamical masses\n", + "# (not possible with only relative astrometry).\n", + "mass_err = 0.01 # we'll overwrite these in a sec\n", "plx_err = 0.01\n", "\n", "betaPic_system = system.System(\n", - " num_secondary_bodies, data_table, m0, plx, hipparcos_IAD=betaPic_Hip, \n", - " gaia=betaPic_Gaia, fit_secondary_mass=fit_secondary_mass, mass_err=mass_err, \n", - " plx_err=plx_err\n", + " num_secondary_bodies,\n", + " data_table,\n", + " m0,\n", + " plx,\n", + " hipparcos_IAD=betaPic_Hip,\n", + " gaia=betaPic_Gaia,\n", + " fit_secondary_mass=fit_secondary_mass,\n", + " mass_err=mass_err,\n", + " plx_err=plx_err,\n", ")\n", "\n", "\"\"\"\n", @@ -197,11 +200,11 @@ "\"\"\"\n", "\n", "# set uniform parallax prior\n", - "plx_index = betaPic_system.param_idx['plx']\n", + "plx_index = betaPic_system.param_idx[\"plx\"]\n", "betaPic_system.sys_priors[plx_index] = priors.UniformPrior(plx - 1.0, plx + 1.0)\n", "\n", "# set uniform primary mass prior\n", - "m0_index = betaPic_system.param_idx['m0']\n", + "m0_index = betaPic_system.param_idx[\"m0\"]\n", "betaPic_system.sys_priors[m0_index] = priors.UniformPrior(1.5, 2.0)" ] }, @@ -275,13 +278,15 @@ "num_threads = 1\n", "num_temps = 1\n", "num_walkers = 100\n", - "num_steps = 10 # n_walkers x n_steps_per_walker\n", + "num_steps = 10 # n_walkers x n_steps_per_walker\n", "burn_steps = 10\n", "thin = 1\n", "\n", "betaPic_sampler = sampler.MCMC(\n", - " betaPic_system, num_threads=num_threads, num_temps=num_temps, \n", - " num_walkers=num_walkers\n", + " betaPic_system,\n", + " num_threads=num_threads,\n", + " num_temps=num_temps,\n", + " num_walkers=num_walkers,\n", ")\n", "betaPic_sampler.run_sampler(num_steps, burn_steps=burn_steps, thin=thin)" ] @@ -357,7 +362,298607 @@ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAB/AAAAfwCAYAAADSycKfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdfZSeZWEu+uueSUJmIIQYAoiEGUMoQYqF3RFQglChLdiKli91C3apbfDsuutXD7t+9azT45bqKSrSrn3AvddmidqDwEJF5QgbKigWdbK0KgELDBn5EAgxIQMz+SBznz+STBNMJsnMJO8zk99vrWclz/O8731f8zDkn+u977fUWgMAAAAAAAAAtFZbqwMAAAAAAAAAAAp8AAAAAAAAAGgEBT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA0wrdUBmuTggw+u3d3drY7BJLV06dJnaq3zWp0DAAAAAAAAmJwU+Fvp7u5Ob29vq2MwSZVS+ludAQAAAAAAAJi8bKEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADTGt1gFYrpSxJsiRJ2tvbU0rZ7uu6urqyfPnyvZgMAAAAAAAAgH1JqbW2OkNjlFLqjp5HKSWeFaMppSyttfa0OgcAAAAAAAAwOdlCHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGiAaa0O0GqllCVJlrQ6BwAAAAAAAAD7tlJrbXWGxiil1B09j1JKPCtGU0pZWmvtaXUOAAAAAAAAYHKyhT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQANNaHaDVSilLkixpdQ4AAAAAAAAA9m2l1trqDI1RSqk7eh6llHhWjKaUsrTW2tPqHAAAAAAAAMDkZAt9AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAGmtTpAq5VSliRZ0uocAAAAAAAAAOzbSq211Rkao5RSd/Q8SinxrBhNKWVprbWn1TkAAAAAAACAyckW+gAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAp8AAAAAAAAAGgABT4AAAAAAAAANIACHwAAAAAAAAAaQIEPAAAAAAAAAA2gwAcAAAAAAACABlDgAwAAAAAAAEADKPABAAAAAAAAoAEU+AAAAAAAAADQAAr8XdTV1ZVSyg6P7u7uVkcEAAAAAAAAYBKb1uoAk8Xy5ctHvV9K2TtBAAAAAAAAAJiSrMAHAAAAAAAAgAZQ4AMAAAAAAABAAyjwAQAAAAAAAKABFPgAAAAAAAAA0AAKfAAAAAAAAABoAAU+AAAAAAAAADSAAn8v6O7uTillu0d3d3er4wEAAAAAAADQANNaHWBf0N/fn1rrdu+VUvZyGgAAAAAAAACayAp8JsRouwzYaQAAAAAAAABg56zAZ0KMtstAYqcBAAAAAAAAgJ2xAn+CdHV17XD1eVdX15jGHG1V+85WtI/nvXvCaM9nrCv3W/EzjjYnAAAAAAAAwHiU0VZN7wtKKUuSLNl8ekySX7QwzvYcnOSZVofYjibmanWmrlrrvBbODwAAAAAAAExi+3yB33SllN5aa0+rc7xYE3M1MRMAAAAAAADArrKFPgAAAAAAAAA0gAIfAAAAAAAAABpAgd9817Q6wA40MVcTMwEAAAAAAADsklJrbXUGAAAAAAAAANjnWYEPAAAAAAAAAA2gwAcAAAAAAACABpjW6gBNcvDBB9fu7u7t3qu1ppSSJBkeHs7GjRvT3t6etjafgWCTpUuXPlNrnbe9e6P9bsHOjPa7BQAAAAAAwNShwN/KkUcemXvvvXekqN/a8PDwSFlfa83Q0FA6OjpGXtve3r5Xs9I8pZT+Hd3r7u5Ob2/v3ozDFDLa7xYAAAAAAABThwJ/K48++mje//73Z9q0aWlra8s73/nOLFq06DdeV0pJZ2dnCxICAAAAAAAAMFUp8Lfy61//Otdee22SZO3atfnqV7+aH//4x9l///1bGwwAAAAAAACAKc8XuG/lxBNPzOrVq7N69ep8+9vfTl9fXz760Y+2OhYAAAAAAAAA+wAF/g6cfvrpec973pOrrroqd999d6vjAAAAAAAAADDFKfC38sILL2TVqlUjx1/91V+lu7s773znO/P444+3Oh4AAAAAAAAAU5gC/0VKKSPHAQcckCuvvDLLly/P5Zdfnvb29h0eAAAAAAAAADAeCvydOPXUU/Pnf/7nueaaa2ylDwAAAAAAAMAeM63VAZpk1apVufHGG5NsWol/xhlnZO7cufnoRz+a22+/Pe94xzvy05/+NPvvv3+LkwIAAAAAAAAw1ZRaa6szNEYpZZuHcf755+fqq69Oktx11105//zzc9111+Xiiy9uST6arZSytNbas717PT09tbe3d29HYooY7XcLAAAAAACAqcMW+ltZtGhR7r333tx7771529velltuuSUrV65Mkrz61a9OKSUPPvhgi1MCAAAAAAAAMBUp8Ley3377ZeHChVm4cGHe/e53Z/369bn++uuTJDNmzMj8+fPT19fX4pQAAAAAAAAATEUK/B049thjc9JJJ+ULX/hCtnzNwIIFCxT47LJSypJSSm8ppXfFihWtjrNXdHd3p5Sy3aO7u7vV8QAAAAAAAKDRFPhbWbduXfr6+kaOs88+Ow899FBuuumm9PX1KfDZLbXWa2qtPbXWnnnz5rU6zl7R39+fWut2j/7+/lbHAwAAAAAAgEZT4I/irLPOyqxZs3LzzTcn2bQC/8knn8zg4GCLkwEAAAAAAAAw1SjwRzFz5sycc845ufPOO7N69eosWLAgSfLII4+0OBkAAAAAAAAAU40CfyfOPffcbNiwIXfdddfId3jbChwAAAAAAACAiabA34lDDz00SbJ27drMnDkzSbJhw4ZWRgIAAAAAAABgClLgAwAAAAAAAEADKPABAAAAAAAAoAGmtTpAk2zYsCGPPvroNtcGBgaSJKtWrWpFJAAAAAAAAAD2EVOmwC+lvCbJ4UmerbXePpYxpk+fnvnz529z7dlnn02SzJkzZ7wRAQAAAAAAAGCHpsQW+qWUP0hybZLjktxYSnntbrx3SSmlt5TSu3r16j0VEQAAAAAAAABGNelX4JdS5iX52yTvq7V+q5TyfJK2UsrRtdYHd/b+Wus1Sa5JkmOPPba++P6GDRtG/j48PDxhuQEAAAAAAABga1NhBf7qJD9Ksr6U8ttJPpzkXUnuKqX8p/EO/p3vfCdJcvzxx+fJJ59MkhxyyCHjHRYAAAAAAAAAtjHpC/xa64YkzyV5a5KvJLmy1npJknOTfLyUsngcY+fmm2/OMccck2OPPTZ9fX1JkgULFkxAcgAAAAAAAAD4d5O6wC+ltCVJrfVDSf63JP8tyXc3X+tN8sWM42sCli1blgcffDBvetObUkpJX19fOjs7rcAHAAAAAAAAYMKNudxulVLKMUlekqQ3yfDma6XWur6UUpK8q5TyWJLTkpyV5DO7Ovbw8HCef/75kfMbbrghM2fOzGmnnZbnn38+fX19WbBgQTZN01wbN24c9X57e/teSgIAAAAAAADArppUBX4p5bwkn0jy+Oajt5Ryba11TZLUWj9XSvlykg8lOTrJBbXWR3Z1/I6Ojhx//PFJkjVr1uQ73/lOLrjggpxyyilJkr6+vhx11FET+jMBAAAAAAAAQDKJttAvpUxP8uYk76q1npnka0nmJ7mslDJ7y+tqrf8xybuSnFNrXTbW+W688cYMDg7m7W9/+5ZxR1bgT0a11gwODqbW2uooAAAAAAAAAGzHpFqBn+TAbFpZf0+Sm5M8k+SPkrw1yf9TSjk5ybpa60+SDOzu4A899FDOPffcJMkvfvGLHH/88TnxxBOTbFp9Pzg4OGkL/KGhoQwMbHoks2bNanEaAAAAAAAAAF5s0qzAr7VuSPLpJOeVUk6rtQ4n+V6SnyR5bSmlI8lrkjw5EfMtWrQoH/nIR1JKyRNPPJG3vOUtmTVrVv7gD/5gIobf6zo6OjJr1qx0dHS0OgoAAAAAAAAA2zHZVuB/N8kxSS4ppZRa691JvlxKWZLk8FrrZ8Yz+MKFC/P1r399m2tPPPFE3vjGN2bFihW5/fbb81u/9VvjmaJlSinp7OxsdQwAAAAAAAAAdmBSFfi11rWllC8lqUk+VEpZlGRdknlJnpvo+bYu72+88caccsopEz0FAAAAAAAAACSZZAV+ktRaV5VSPp9kWZJLk6xNcnGt9amJnOfF5X1PT88OX7tx48Yd3hseHk5b27bfVFBrzdDQUDo6OjJt2qT7T9AYoz33JGlvb99LSbZv884QS5LkyCOPbGkWAAAAAAAAoPlKrbXVGcaslNKepNZahydivPb29rplm/l169Zl5syZue2223a68n53C/zBwcEMDAxk1qxZmTVr1viD76OaVuCXUpbWWrf7SY+enp7a29u7V/O0QiklO/o3ZbR7jG603y0AAAAAAACmjkm9/LvWOnqDu5vmzZuXt73tbUmStra2vO1tb8sJJ5wwkVMkSTo6Orb5EwAAAAAAAAAmdYE/0Y444ohcccUVe3yeUkq2rPQHAAAAAAAAgESBv43169fnscceS7JpBf5LX/rSlFJanAoAAAAAAACAfUHbzl+y7/jZz36W+fPnZ/78+XnZy16WN73pTVm3bl2rYzGKWmsGBwd9tzoAAAAAAAAw6VmBv5Wurq589KMfTZL09fXl8ssvz4UXXpgbbrgh++2336jvrbVmaGgoHR0dVu3vRUNDQxkYGEgSX0sAAAAAAAAATGpW4O/AUUcdlQ984AO55ZZb8vu///u55557Rn39liJ5aGhoLyUkSTo6OjJr1qx0dHS0OgoAAAAAAADAuBRbj/+7Uso2D+O4447LWWedlSuvvDKnnXZabr/99h2uxB8eHs7g4GA6OzvT1uZzEfuiUsrSWmvP9u719PTU3t7evR1pryul7PDrDEa7x+hG+90CAAAAAABg6rCF/lbmz5+fyy67LEny+OOP5+///u+TJO9973tz5ZVXjrqdfltbWw444IC9mhcAAAAAAACAqUOBv5X9998/J5988sj53Llz86EPfSjJtiX+TTfdlOnTp7cqJgAAAAAAAABTkL3eR3H66afngx/8YO67777MnTs3f/d3f5dbbrkl3//+91sdDQAAAAAAAIApxgr8nXjkkUcyffr0nHLKKVm5cmWS5OCDD25xKgAAAAAAAACmGivwR7F27drceuuted3rXpeDDjoofX19SZKXv/zlLU4GAAAAAAAAwFSjwB/FHXfckYGBgfzJn/xJkuThhx/OYYcdls7OzhYnAwAAAAAAAGCqmVJb6JdSSq21jvX9++23XxYsWDByfuutt2bhwoU5//zzU0pJX1/fNvf5dxs3bhz1fnt7+15KAgAAAAAAADA5TbUV+LMnaqD7778/P/zhD/P2t789pZQkUeDvolprBgcHM47PUgAAAAAAAADsc6bMCvxSyh8m+fNSyn+qtT49ljEGBgZy5513Jkm++MUvZsaMGXnzm9+cJFm/fn0effRRBf4uGBoaysDAQJL4ugEAAAAAAACAXTQlCvxSyulJrk5y6VjL+2TTCvuLLrpo5HzRokWZO3dukuTJJ59MrTXz588fb9wpr6OjY5s/AQAAAAAAANi5KVHgJzkmySdrrd8upRyWZEGSabXWu3f2xlLKkiRLkmT//fcfWXF/2223bfO97VtWkg8ODk54+KmmlGLlPQAAAAAAAMBumioF/voki0spL09yU5LvJXljKeWqWuvfj/bGWus1Sa5JkhNOOKF+6lOfSpLMnTs3V1xxRZ599tnMnj07c+bMSSklK1as2LM/CQAAAAAAAAD7pLZWB5ggP0oylORtSa6rtf5lktcnubSUcs5YBjz11FMzPDyce++9N0nS3t6egw8+WIHPLiulLCml9JZSev3eAAAAAAAAADszJVbg11rvK6WsTnJuku+UUg7YfO3GJLv8RewbNmzIr371qyTJEUcckRkzZuS2227LK1/5yiTJvHnz8vTTT+9Wto0bN456f+tt+qeq4eHhUe9P1Wew9e4OPT09tcVxAAAAAAAAgIabdAV+KeWYJC9J0ptkuNa6MUlqrR8rpaxPcmSSvyylPJfkLUn++66O3dbWNvLd7Z2dnTnxxBOzdOnSkWuHHHKIFfg7MFVLeAAAAAAAAIC9ZVJtoV9KOS/J15J8PMn/SPIXpZQDt9yvtf5fSf4pyYokL0/y+lrrw2Od7+STT86yZcuyZs2aJJtW4CvwAQAAAAAAANgTJk2BX0qZnuTNSd5Vaz0zm4r8+UkuK6XM3vK6WuudtdbPJ/nfa633j2fOk08+OcPDw/nRj36UZGxb6G9PrTWDg4Op1a7qAAAAAAAAAGwyaQr8zQ5McvTmv9+c5BtJZiR5a5KUUl5VSvkPm++P/uXzu+DEE0/MjBkz8oMf/CDJpi30V61alQ0bNoxr3KGhoQwMDGRoaGi8EQEAAAAAAACYIiZNgV9r3ZDk00nOK6WcVmsdTvK9JD9J8tpSSkeSxUme2Pz6cS9v32+//XLiiSeOFPjz5s1LkqxcuXJc43Z0dGTWrFnp6OgYb8RJyQ4EAAAAAAAAAL9pQgv8Usp/mcjxtuO7SW5Lckkp5bW11o211i8nOTzJ4bXWz9Ranxzr4KtXr87Xv/71kePXv/51Tj755Cxbtixr1qwZKfDHu41+KSWdnZ0ppYxrnMnKDgQAAAAAAAAAv2naeN5cSvnK1qdJTkjyyXElGkWtdW0p5UtJapIPlVIWJVmXZF6S58Y7/mOPPZb3v//9I+e/93u/l9NPPz3Dw8O5/vrrc/bZZydJVqxYMd6p9mlbdh7YV3cgAAAAAAAAANiecRX4SdbUWv9sy0kp5b+Nc7ydqrWuKqV8PsmyJJcmWZvk4lrrU+Md+8gjj8yHP/zhJMl1112XH/7wh7n00kszffr0PPDAA7nkkkuS7F6B397ePt5Yk972nsGsWbNakAQAAAAAAACgucZb4P/XF51/ZJzj7ZJa6/ok/1xKuXvTaR2eiHFnzJiRl73sZUmSM888M/fcc0/uv//+HHPMMfn5z38+soW+FfgAAAAAAAAATLS2sbyplNJTStm/1vrI1tdrrb+emFi7pta6caLK+xc74YQT0tnZme9///s57rjj0tfXl2nTpqWUkqeffnpPTAkAAAAAAADAPmxMBX6SLyTZuOWklHJwKeWPJyZSMzzwwAMZHBzMrFmz8oMf/CCzZ89Of39/aq057LDDWh0PAAAAAAAAgClmrFvor621rt1yUmt9ppTyt0m+MTGxWuPhhx/ORRddlCRZv359XvrSl6atrS3Lly/Pxz72sXzta19LKSXnnXdei5MCAAAAAAAAMNWMtcDvK6WcU2u9datrMyYiUCvNnj07Z5xxRpKklJJFixblU5/6VM4444ycdNJJ+eu//ussXrw4L33pS1sbFAAAAAAAAIApZ6wF/n9Ocmsp5ZIk9yY5LsnDE5aqRebOnZs//dM/TZJs2LAhl112WQ488MC8853vzCOPPJL77rsvV111VYtTAgAAAAAAADAVtY3xfS9LsjjJTUnmJflpkv84UaFaZePGjVm9enVWr16db33rW1m+fHmuueaaXHDBBXnqqadSSsn555/f6pgAAAAAAAAATEGl1rr7byplWZL/UGtdu/n84CSn1Fq/McH59qpSyjYP45JLLsnVV1+dJOnp6cncuXNz9913tyQbzVdKWVpr7dnevZ6entrb27u3I+11pZTs6N+U0e4xutF+twAAAAAAAJg6xrqF/tot5X2S1FqfKaX8bZJJXeC/4hWvyD/90z8lSdra2rJgwYIkyQMPPJBly5blc5/7XCvjQSN0d3env79/u/e6urr2choAAAAAAACYOsZa4PeVUs6ptd661bUZExGolX75y1/mPe95T5JNBf673vWuXHDBBRkYGEgpJbfcckv+7M/+LB0dHS1OCq3T399vJT0AAAAAAADsAWMt8P9zkltLKZckuTfJcUkenrBULTI8PJzBwcEkyTPPPJO3v/3tWbt2bS6++OJcffXVufTSS/PGN74xX/va15T4AAAAAAAAAEyoMRX4tdZflVJ+N8mbkpyQ5KdJPjCRwVphcHAwS5cuHTmfM2dOlixZkiS5+OKLM2PGjLzjHe9Q4gMAAAAAAAAw4cZU4JdSjk7y10nW1lr/YmIjtc60adMyd+7cJMkLL7yQlStXpq2tLUuWLMlnP/vZ9Pb2Zv369bn00kvzhje8IV/5yldGSvwdlfkbN24cdc729vaJ/SHYo3b233NrpZQlSZYkyZFHHrmnIgEAAAAAAABTRNsY33ddkhuTnJYkpZTfLqV8YcJStcgLL7yQp556Kk899VRWrlyZZNO2+kmybNmyfPGLXxzZTv/OO+/MRRddlKGhoVZGpsFqrdfUWntqrT3z5s1rdRwAAAAAAACg4ca0Aj9JW6311lLKJ5Kk1vrzUspvT2CuxtmyEj/ZtJ1+klx66aW56KKLtlmJDwAAAAAAAABjMdYC/4lSysuT1CQppZQkU7rBHh4ezpw5c7JkyZK0tbX9Ron/jW98IzNnzmxxSgAAAAAAAAAmq7Fuof++JJ9Pclgp5R1J/t8kP5+wVA00e/bsrFq1KgsWLMjHP/7xJJtW4l955ZW544478q1vfavFCQEAAAAAAACYzMZU4Ndalyc5O8lfJlmQ5K4kl0xcrN1XSjmrlHJGKaV9T4w/MDCQU089NZ2dnTnqqKNGrp9++ulJkrVr1+6JaZkkaq3J2D8Qs0d0d3enlDKmo7u7u9XxAQAAAAAAYJ8z1i30U2t9IcmNm4+WKqVMT3J5kvVJ/qqU8qPN+XblvUuSLNnZ62qtueKKK/Ka17wmb3jDG8YXmClnaGgoSfbIh0fGqr+/f8sHC3bbpm/FAAAAAAAAAPamRq0YHocXkty7+c+PJFmcJGUXWsha6zW11p5aa89or5s7d25WrlyZ4eHhnHzyybsVrtaawcHBMZepWwwPD+e5557L8PDwuMZh4nV0dCTJxlbnAAAAAAAAACavMa/Ab5Jaay2lfCvJzUm6kry/lPLKJO2llM/VWnepWF20aFG+8IUvjJw//fTTectb3pKFCxfm6quvzje/+c0kyate9apdztbe3p7nnnsuAwMDKaXkgAMO2OX3bty4bezBwcEMDAyk1prOzs60tzdqwfc+YSfP3CcrAAAAAAAAgDGbKivwk6QmeU+t9X8meTzJZ5J07mp5/xuD1ZrLL788GzZsyMc+9rG0tbXlBz/4QRYtWpQ5c+bs1lidnZ058MAD09nZOZYoIzo6OjJr1qwtq70BAAAAAAAAmEIm/Qr8Ukqpm/am/19JTi6lvDrJmUn+R5LXlVL+udb6/V0Z6/nnn8+//Mu/JEl++tOf5p577skHPvCBzJ8/P7XW/OhHP8of//Ef73bGtra23Vp5vyOllHF/CAAAAAAAAACAZpp0BX4p5ZgkL0nSm2S41rpxc4n/Qinl5CT/R5I31lpvKaX8RZLHdnXsRx99NO9973tHzg899NBcdNFFSZLHHnssv/71r3PSSSdt857vfOc7SZKZM2eO6+cCAAAAAAAAYN82qQr8Usp5ST6RTVvkP56kt5Ryba11zeaXXJTkmFrr0iSptf7j7ow/Z86cnHnmmUmSO+64I07ont0AACAASURBVN3d3Wlr2/QtAw8//HCS5JWvfOXI66+77rq8733vy5lnnpnXv/714/nRAAAAAAAAANjHTZoCv5QyPcmbk7yr1npPKeX8JKckuayU8n/XWp+ttT6XZOnm17fVWod3Z45DDz00l112WZJkzZo1+dnPfjZyr6+vL0myaNGiJJvK+3e/+9153etel6985StW4DOldHV1pZSyw3sTrbu7O/39/WN6b1dXV5YvXz6xgQAAAAAAAKAF2lodYDcdmOTozX+/Ock3ksxI8tYkKaX0lFJOSJLdLe9fbMGCBfnVr36VwcHBJJsK/COPPDIHHHBArr/++m3K+46OjvFMBY2zfPny1Fq3e+yJsry/v3+H8+3sGGvxDwAAAAAAAE0zaQr8WuuGJJ9Ocl4p5bTNBf33kvwkyWtLKR1JTkvy5FjnWLt2bZYtW5Zly5Zl+vTpSZI777wzy5YtywMPPJBjjz02w8PD+chHPpKenp5cf/31ynsAAAAAAAAAJsSk2UJ/s+8mOSbJJaWUUmu9O8mXSylLkhxea/3MeAafNm1a5s6dmyQ57rjjkiTPPvtsDjrooDzxxBO58MIL86//+q954okn8slPfnLktXtKe3v7Hh0fAAAAAAAAgOaYVAV+rXVtKeVLSWqSD5VSFiVZl2Rekucmcq7DDjss06dPzy9/+cs8+eST2bBhQ4477rjccMMN2W+//XLuuedO5HQAAAAAAAAA7OMmzRb6W9RaVyX5fJJPJXldkt9LcnGt9amJnKe9vT1HHHFEHn300Tz66KNJkle84hX56le/mj/8wz/MgQceOJHTAQAAAAAAALCPm1Qr8Leota5P8s+llLs3ndbhPTHP/vvvn7Vr12bt2rVJkoMOOijPPPNMFi5cuCemAwAAAAAAAGAfNikL/C1qrRtbnQEAAAAAAAAAJsKk20IfAAAAAAAAAKYiBf5W1q1bl4cffnjkGBoaytDQUJ5++ulWR2u8jRs3jnrsi0opS0opvaWU3hUrVuyRObq7u1NK2e7R1dW1R+acTEZ7Pt3d3Xtk3NGO8cwJAAAAAADA1Dept9CfaPvtt1+OOuqokfOOjo4kySGHHNKqSJPC8PBwBgcH09HRkVJKq+M0Rq31miTXJElPT0/dE3P09/en1j0y9JQw2vMZz+/qWJ+7/z8AAAAAAAAYjRX4jNvg4GAGBgYyNDTU6igAAAAAAAAAk5YV+KOotW53xawVz9vq7OxMrXVkxwIAAAAAAAAAdp8V+DuwYcOGLF++PIceeug211/+8pent7e3Ramaqa2tLZ2dnbYHBwAAAAAAABgHBf4O/OQnP8nzzz+fxYsXb3P9ggsuyPe+97088cQTLUoGAAAAAAAAwFSkwN/K+vXr8/jjj+fxxx/PHXfckf333z+/8zu/s81rLrzwwtRac9NNN7UoJQAAAAAAAABT0bRWB2iSX/7yl3n3u989cn7aaafl+eefz+DgYJJk7dq1Ofroo3PcccfliiuuyNlnn50jjjgiSXz/+xht3Lhx1Pvt7e17KQkAAAAAAABAaynwt3LEEUfkgx/84Mj54sWL85KXvCTPPPPMNq/7x3/8x7zhDW/IOeeck1tvvXWkxN+XKdoBAAAAAAAAxkeBv5WDDjoo55577k5fd9JJJ+WWW27ZpsQ/+uij90JC4MW6urpSStnhvbHo7u5Of3//qHMCAAAAAADARGtrdYDJakuJ//TTT+ecc87JihUrWh1p0qq1ZnBwMLXWVkdhElq+fHlqrds9li9fPqYx+/v7dzjmeMYFAAAAAACA0Sjwd8GaNWuSJJ2dndtcP+mkk/KBD3wgDz/8cB544IFWRJsShoaGMjAwkKGhoVZHAQAAAAAAAGgZW+jvggcffDAHHHBADj/88G2ur1+/Ptdee216enqyePHiFqWb/Do6Orb5EwAAAAAAAGBfNGUK/FLKbyfZkKSt1nr/RI794IMPZuHChb/xPdtf+tKX0t/fn89+9rM7/A5udq6U8hu7GwAAAAAAAADsa6ZEgV9KeX2STyb5lyTHl1L+z1rr/7e747zwwgt5+umnf+P6v/3bv2Xx4sUZHh4eubZ+/fp86lOfSk9PT84666xxpAcAAAAAAACAKVDgl1J6knw6yZ8m+WGSS5KcU0r5dpJSax3eyfuXJFmSJIcffngOOeSQbe6vXLkyq1atyvHHH5+ZM2eOXN+y+v4f/uEfbP0+Du3t7a2OAAAAAAAAANAIba0OMAEOTvJfa60/qLXWJH1JXplNW+mPWt4nSa31mlprT6215yUveclv3H/wwQeTJEcfffTItfXr1+fyyy/Pq171qpx99tkT9GMAAAAAAAAAsC+b9AX+5q3y/9dWl36SZKjWujFJSimHjWf8hx56KMm2Bf51112X5cuX52/+5m9SShnP8JAk6e7uTillt4+urq5WR5+0urq69vpzHW3O7u7uPTInAAAAAAAAk8ek3kK/lFLqJr/a6vK0JEeUUtqzaTv9C0spF2ZTqV93d44f//jHmT17dg477N8/B3DVVVfld3/3d62+Z8L09/dnDL+ejMPy5csbNacPAwEAAAAAADDpVuCXUo4ppby6lDI9m/OXUrb+OYayaRv9/5Lk3Ukuq7UOjqW8X7duXe64446cddZZI+Xa/fffn5///Oe55JJLFG4AAAAAAAAATJhJtQK/lHJekk8keXzz0VtKubbWuqaU0lZrHa61riulHJrk4iTn11rvH+t83//+9zMwMJBzzjln5NqNN96YUkrOO++8cf40AAAAAAAAAPDvJs0K/M0r7t+c5F211jOTfC3J/CSXlVJm11qHt3r5LUnOG095nyTf/OY3c+CBB+bUU08duXbjjTfm1FNPzeGHHz6eoQEAAAAAAABgG5OmwN/swCRHb/77zUm+kWRGkrcmSSnl5FLKb9VaP1FrfWB3B29vb8/s2bMze/bszJw5M3fccUf+6I/+KPPmzcvs2bPzi1/8Ivfdd18uuuiitLe3b3PAi5VSlpRSekspvStWrGh1HAAAAAAAAKDhJk2BX2vdkOTTSc4rpZy2ecX995L8JMlrSykdSV6TZGAi5rvrrruyZs2anHvuuSPXbrjhhpRScv7550/EFExxtdZraq09tdaeefPmtToOAAAAAAAA0HDTWh1gN303yTFJLimllFrr3Um+XEpZkuTwWutnxjP4unXr8tBDDyVJrr/++syePTunn376yP0bbrghixcvtn0+AAAAAAAAABNuUhX4tda1pZQvJalJPlRKWZRkXZJ5SZ4b7/gPPPBATjnllJHzt771rZkxY0aS5PHHH899992XT3/60+OdBgAAAAAAAAB+w6Qq8JOk1rqqlPL5JMuSXJpkbZKLa61PjXfsI488Mh/+8IeTJKWUnHHGGSP3hoaGkiSHHnroeKeBfVJXV1dKKTu8t68b7fkAAAAAAACwb5h0BX6S1FrXJ/nnUsrdm07r8ESMO2fOnFxwwQUTMRTwIsuXL291hEYb7fko9gEAAAAA4P9n787jo6zO/o9/z0yWmUwSksiisiRWlrKJSLAuCIqiiChFqEuVahVQID7Kr60tdano4/K4wlOhyoMVFG2raF2gVgFbKFgEIgIKRZQdkSUhpBlmQjJzfn+EmSaQZZJMMkn4vF+veZGZ+9znXPedif5x3dd1gJNDs0zgh1hrA7GOAQAAAAAAAAAAAACAaGjWCfxoCwQCKiwsrPRYUVFRI0cDAAAAAAAAAAAAADiZkMAvx+l0KjU1tdJjycnJjRwNAAAAAAAAAAAAAOBk4oh1AAAAAAAAAAAAAAAAgAR+xEKt9Y0xMY4EAAAAAAAAAAAAANASkcCPQDAY1IMPPqi0tDRdcsklsQ4HAAAAAAAAAAAAANACxcU6gOZg1qxZWrlypebOnatTTz011uEAAAAAAAAAAAAAAFogEvg1+Oabb/Too4/q8ssv15gxY2IdDpqpDRs2VLv9QmZmZiNGAwAAAAAAAAAAAKApIoF/nGAwGP45EAjorrvuUkJCgp5++ulqE7BAdY4ePSprbazDAAAAAAAAAAAAANCEkcAvJy4uThkZGeH306dP16pVq/Tyyy+rR48eMYwMAAAAAAAAAAAAANDSOWIdQFO1ZcsW3X///Ro2bJhuvvnmWIcDAAAAAAAAAAAAAGjhqMAvZ/PmzRo8eLAkadu2bUpMTNQLL7xA63wAAAAAAAAAAAAAQIOjAr8KZ555pl599VWdfvrpsQ4FAAAAAAAAAAAAAHASoAK/nG7duunjjz+OdRgAAAAAAAAAAAAAgJMQFfgAAAAAAAAAAAAAADQBJPDLCQaDstbGOgwAAAAAAAAAAAAAwEnIkLD+D2NMnqQdkoKxjqWc1pIOxjqISjTFuGIdU6a1tk3ojTFmvKTxx952k7S5keOJ5f2I1dot9ZorfLcAAAAAAAAAAADQMpHAb+KMMWustdmxjuN4TTGuphhTLMXyfsRq7ZPxmgEAAAAAAAAAANBy0EIfAAAAAAAAAAAAAIAmgAQ+AAAAAAAAAAAAAABNAAn8pm9WrAOoQlOMqynGFEuxvB+xWvtkvGYAAAAAAAAAAAC0EMZaG+sYAAAAAAAAAAAAAAA46VGBDwAAAAAAAAAAAABAExAX6wCakoyMDJuZmSmn0xnrUNAM5ebmHrTWtqnsWOvWrW1WVlal5wWDwfDPa9eulST17t1bDocj/MLJrbrvllT99wuoSU3fLwAAAAAAAAAA0HhI4JeTmZmpVatWVZkwJbGP6hhjdlR1LCsrS2vWrKn0mNfrDf+cnJwsSfr444/lcrlkjJHH44lypGhuqvtuSdV/v4Ca1PT9AgAAAAAAAAAAjafFJPCNMQmSZK09Wtc5nE4n1c5oEtxud6xDAAAAAAAAAAAAANDIWkS22hgzStLrkhYYY64yxqTX4tzxxpg1xpg1Bw4caLggcdKpy3dr6NChVNwDAAAAAAAAAAAAJ6lmn8A3xnSV9N+SnpH0sqQ7JP3EGHNmJOdba2dZa7Ottdlt2rAFMKKnLt+t+fPna9++fQ0cGQAAAAAAAAAAAICmqCW00M+QtM9a+09J/zTGbJd0m6SgMWaOtfbfMY0OAAAAAAAAAAAAAIAINNsKfGNM0rEfV0naZoy5zhgTdyyR/7KkYZLOj1mAAAAAAAAAAAAAAADUQrOswDfGXCHpLGPM85KKJeVKOlfSfmPMCmvtJ8aYP0oaa4z52FpbGuncTqezYYIGqsCe9wAAAAAAAAAAAACkZliBb4y5UtKTklZba33W2qCkOZKKJI2QdMOxoVaS/9i/AAAAAAAAAAAAAAA0ac2qAt8Y00PSTEmPW2v/bow5RVI7SUestQ8ZY26WNNQYc7ukUyT9xFobiGHIAAAAAAAAAAAAAABEpFkl8CW5JX0gKWiMGSrp55LyJLUxxqy21v5S0jxjTG9J+6y1+2MYKwAAAAAAAAAAAAAAEWsWCXxjTFdr7VfW2lxjjEvSaElTJD0l6UVJHSTNMcYMtNYus9ZuqMs6+fn5ev311yVJDodDl112mVq3bh2lqwAAAAAAAAAAAAAAoGpNPoFvjBku6Q1jzHvW2hustSuMMSWSlllr/3xs2C5jzC5JR+uz1rZt23TTTTeF33fu3Fl/+9vf1KFDh/pMCwAAAAAAAAAAAABAjRyxDqA6xhiPpBxJ90jyG2NelyRr7SpJfy03bpSknpL21me9nj17avPmzdq8ebM++OAD7du3T5dccol2795dn2kBIOqMMeONMWuMMWsOHDgQ63BQTlZWlowxVb6ysrJiHSIAAAAAAAAAAGiimnQFvrXWa4y5TVKhpLclvWCMec1ae5O11idJxphbVJbk/6m1dkd91wwEApKkzMxMzZo1S2PHjtWFF16oOXPm6JJLLqnv9EBUeb1eSZK1Vn6/Xy6XS8aY8HGPxxOTeKrS0uNpzPWstbMkzZKk7OxsG7WJUW87duyQtVX/Ssr/jQIAAAAAAAAAAJTXpCvwJcla+621tshae1DSHZJcxph5kmSM6S7JI+l6a+0X0V67T58+mj17tvLy8nTrrbdSiY8my+/3y+v1yu/3xzoUAAAAAAAAAAAAAHXU5BP45Vlr81SWxC8xxmyW9K6kP1trtzbUmuWT+LTTR1Plcrnk8XjkcrliHQoAAAAAAAAAAACAOmpWCXxJOlaJv15SK0mjrLX12vc+EqEk/r59+3T99dc39HJArX333Xe666679Nlnn8U6FEnS3r17NXbsWOXm5sY6FEmxiSc3N1djx47V3r0N/p8oAAAAAAAAAAAAtBDNLoFvjEmXNEzS5dbaDY21bp8+fXTOOefo6NGjjbUkELE2bdpo0KBB6t69e6xDkUQ8ktS9e3cNGjRIbdq0abQ1AQAAAAAAAAAA0Lw1uwS+tfaQpKuttesbc93i4mKtXLlSF198cWMuC0QkLi5OY8aMUVJSUqxDkSQ5nU6NHj1abrc71qFI+s/9cbvd8vl8stY2+JpJSUkaM2aMnE5no60JAAAAAAAAAACA5q3ZJfAlyVrrb+w1161bp+LiYhL4QAT8fr+8Xq/8/kb/U61WLOJqqvcCAAAAAAAAAAAATU9crANoSoLBoIqLiys99s9//lMOh0MDBgxo5KiavmAwqKKiIrndbjkclT8T4nQ6GzkqVMfr9Z7wmbVWfr9fLpdLycnJEZ9XGZfLVeHfpiIacXm93gr3yhgTPhb6LNprAgAAAAAAAAAA4ORAAr8cl8ulLl26VHrsyy+/1DnnnKNWrVo1clRN35EjR1RUVCRJ8ng8MY7m5BLN+x2qFJdUZQK/NvHUdY5oquz+RCOu8veq/DYBLperwdYEAAAAAAAAAABAy9csW+g3Nr/fr9WrV9M+vwpJSUlKTk5uMvudo25CyWcqxWvGvQIAAAAAAAAAAEBDIIEfgdWrV6u4uJgEfhUcDoc8Hk+V7fPRtE2bNk3Tpk2TMUZut7tCS/jjWWvl8/lkrdXXX3+tMWPGqKCgoBGjbRpC9+rvf/+7JkyYEOtwAAAAAAAAAAAA0ELQQj8CxcXFkqSUlJQYRwJE35VXXhnx2ONbxw8YMKChwmoWLrroovD9AAAAAAAAAAAAAOqLBH4Evv/970uSvvzySw0cODDG0QDR1a1bt4jHhlrGu1wutW/fXnfccUdDhdUsxMXFafjw4bEOAwAAAAAAAAAAAC0ECfwItG/fXikpKdq4cWOsQwFiKtQ6HgAAAAAAAAAAAED0kcAvp7S0VPn5+ZUe69y5s7788stGjggnu5ras3s8nkaKJHZicQ+qW9Pv94c7EQAAAAAAAAAAAADRRAK/HGOMEhISKj32/e9/X0uWLGnkiJoPp9MZ6xBQC3VNesfqgQFrbThxboyJ6Zoul+ukeHACAAAAAAAAAAAAjc8R6wCai65du2r//v06ePBgrEMBTjp+v19er1d+v79FrwkAAAAAAAAAAICTW4tJ4BtjEowxlZfPR0G3bt0kSRs3bmyoJYATWGvl8/lkrdXBgwd11113qbS0NNZhNTqXyyW3263f/va3uvvuuxttTY/Ho1mzZmn69OmNsiYAAAAAAAAAAABObi2ihb4xZpSkGyWlGmOmS/rEWnsownPHSxovSSkpKXr88cclSQ6HQz/60Y/0ve99T5LUo0cPSVJubq4GDhwY9WtAy1P+u9WpU6c6zRGqApekffv26ZJLLtGBAwd02mmnRS3Opi4YDOrxxx/X9OnTdeTIEUlqlIS6MUZut1v33XefJDXagwMAAAAAAAAAAAA4eRlrbaxjqBdjTFdJ70q6TVKWyhL5SyQtsNZ+U8u5bFxc2TMNgUBAmZmZWrJkSXi/6/POO0/9+vXT/Pnzo3gFaCmMMbnW2uzKjmVnZ9s1a9bUes6ioqJq935vyXuxB4NBPfzww3rqqad05MgROZ1OBQIBSWX3JaQh7kHooQlJSk5ObpQ1q1Pdd0uq+/cLDcMYo+r+31rT8cZW0/cLAAAAAAAAAAA0npbQQj9d0j5r7T+ttX+Q9LikXpKGGWNSajPRWWedpd27d2v37t3685//rB07dujBBx8MHx8wYICWL1/epBIvaNlCVeCVJe9bqmAwqIceekgpKSmaOnWqiouLddNNN2nv3r3q27dvrMMDAAAAAAAAAAAAGkyzb6Fvrf3UGLPTGHOdpLettf80ZdnOByRtlvRRpHNt2rRJ/fv3l1SWOG3durVee+01ffrpp0pPT9ftt9+uefPm6ZtvvlHnzp0b5HqiIVSlXF4wGJTP55Pb7VZ8fHzM4ynP6XQ2UiRNU/lq7+OFqu+byppbtmxRYmKiFi1apAceeECFhYXq0KGDZsyYoS5dutS4VUBVleubNm2SJH333Xe64oorVFJSIofDoREjRmjKlCnhv7dgMBiOsaY5a7rO6s4tP39IQUGBEhMTZYyp8ry6rlcX0diioaXIysrSjh07qjyemZmp7du31/rc6s4DAAAAAAAAAABoCM0ygW+MOUdSkqQSa+2nkv4h6TxJ+40xK6y1nxhj/ihprDHmY2ttaSTzlpSUaNeuXSd8/vXXX0uSXn75ZUnSihUrmnQCvzI+ny/cAryxE/ioO5fL1eDt2q211bbpL+/jjz/W1KlTVVhYKElyOBzavXu3RowYoQ4dOujtt99Wjx496hTHvn37dPnll6u0tFSJiYkqLi7W1q1b9dlnn6lnz54yxsjhKGsa0hAPNZRX2fyhuBp67UhZa2dJmiWVtdCPcTgxtWPHjhpb1tfl3JOp8wUAAAAAAAAAAGgaml0LfWPMcEkvqazy9BfGmJskzZVUJGm4pBuODbWS/Mf+jYrvf//7SktL0/Lly6M1ZaNxu91KTk6W2+2OdShoYvx+v7xeb6VV5yHvvfeeOnTooJ/97GcqLCxUamqqnn/+eX3xxRf6r//6LyUkJGj37t0699xz1atXL23cuLFWMezbt09DhgxRaWmpsrOztWrVKj3yyCPKz8/XxIkTdfHFF+vDDz+M6fYVHo+nySTvAQAAAAAAAAAA0DKZ5rSfuzGmr8qS9WOsteuMMT+SdJG19r+O7Xd/o6QLJGVJOkXST6y1a2sxf7U343e/+50WLFigb775Jtzyuylqai3rm1o8DcUYk2utza7sWHZ2tl2zZk2l55Vvu75t2zbl5uZq9OjR4c8aogK//JrLli3T/Pnz5XQ6ZYxRaWmp4uLKmnMcOXJE77//vg4fPixJSk1N1WOPPabBgwefMOcLL7ygF198UcXFxZLK2rqvWLFC6enp1V7Ld999p44dO4aT96+88kr4WElJid555x39/ve/144dO+RyueT3+8PdJKqas7LrnDVrlm6++WYlJSXVeG7585KTkyUpojXLn3fkyBHNmzdP48ePjyjW6lT33ZKq/36dDIwxNVbgV1dlX5djDRVPLNT0/QIAAAAAAAAAAI2nubXQd0uaaa1dd+z9WpVV4WdZa7cbY/7PWjvLGHO2pG+ttfujufiMGTN07bXXauHChSopKaEVfR0Fg0H5fD653e5wS3SU8fv9GjJkSKOuOWbMGOXl5VU7Ji0tTS+++KK6du2qxMTESsfceeedeuyxx/Tkk0/q4Ycf1s6dO/XEE0/of/7nf6qd+7HHHgs/NBDapiIkPj5eo0aN0ve+9z3ddttt1XYJqM6uXbs0YsQIbdq0Sf369avVuWeeeWad1ty0aZOuueYa7dq1Sx06dJDf7+c7DwAAAAAAAAAAgGo1iwS+MaartfarY3vbbzn2mVPSt5L2Sco/NrSLpK+stZ83RBxpaWnhPZFbStV4LPh8vnA1c0Pv797cdO/evdHXLCkpkdPp1FtvvSVJOnr0qAoLC/XAAw+ooKBAL774oq699lpJ0pYtW6qdKxAIaObMmZKk1q1b67HHHqtx/eeee07z5s3ToUOHNHDgQC1btiz897Vo0SI98MADKiwslFT2N/jCCy9EfG3WWvn9fnXo0EHGGLVr1y7ic0PWrVtX86BKlH9QwOfzyev1yuVyhSv6AQAAAAAAAAAAgOM1+QT+sT3v3zDGvGetvcFae8AY47DWBowxfknOY+PGSPqRMeYWa+2hhojltNNO09GjRxUfH08VbT243e4K/57sQklml8sVfkCksXk8Hl122WWSpK1bt2rkyJEqKirSwoULde6550Y0RyAQ0JlnnqmDBw+qdevW+uabbyJ60MXpdGrZsmUaOHBgOIn/m9/8Rg8++GCFxP20adM0atSoWt0jv98fbmsfy++by+WSpArt+wEAAAAAAAAAAIDjNekstDHGIylH0j2S/MaYeZJkrQ0eq8B3SPJKelbS3ZJ+1VDJe0k6/fTTVVxcrISEhIZa4qTgcDjk8Xh4COKYUJK5ru3ho2nPnj0aMWKE9u/fr3fffbdWyfuBAweekLy31srn89W433coiZ+enq5Dhw7pnnvuUWFhoVJTU/X0009r165dGj16dK0fcHC5XPJ4POEEerQNHTpUGRkZ2rNnT7XjjDG0zwcAAAAAAAAAAECNmnQFvrXWa4y5TVKhpLclvWCMmWetvdlaG5AkY0y8pAskjbTWbq7PehkZGRo2bFj4/dq1a7Vx40aNGjVK8+fP1+mnn65du3ZVuQd4U9HU2vs3tXiamoyMDLlcLiUlJdU6wRuqLq9KbbYo2LNnj4YNG6b9+/dr9uzZOvXUU7Vz584KY+Lj49WpU6cKn4Uq7w8dOqQ2bdpo79694d95UVGRjh49Gk6gVxVvp06d5PF4dODAAd12221avXq1Hn30UY0cOTLi+CuTnJxcp5b11d23TZs2SZLGjBmj3NxcSVJWVpYWLVqkdu3axWQbBAAAAAAAAAAAALQMTb4c1Fr7rbW2yFp7UNIdktyhSnxjTBdJGyWNrm/yvjIFBQVKTU3V0aNHJf2nhT4V+Igmh8Oh5OTkmFZnB4PBcPJ+5syZ6tOnT0TnHd82v3zyXiprGZ+amhpx63in06m5c+dq48aN9U7eN6RQk8wRWQAAIABJREFU8j4uLk69evVSaWmphgwZon379sU6NAAAAAAAAAAAADRjTT6BX561Nk9lSfwSY8xXkhZKmm6t3dgQ6xUUFCgtLU0+n08SLfTRtO3atatO5wWDQR05ciTcNv+ss86K6LxI9rw//uGEUEv9b7/9VqWlpXWKN9bKJ+8XLVqkN954Q/369Qsn8Wtqpw8AAAAAAAAAAABUpVkl8CXpWCX+ekmpkkZZaxuk5DUQCMjr9apVq1bhvcnbtm2r0tJSWsKjyfnyyy/VvXt39evXT8FgsFbnlpSUKBgMyuVyRdRu3lqrDz/8UL169dLBgweVmJhYafK+Mn6/X7Nnz1bXrl01atSoWsXZFGzcuDHcNv+jjz5Su3btJEmvvvpq+L8PQ4cOjWWIqERmZqaMMZW+MjMz63ReVlZW410AAAAAAAAAAAA4aTS7BL4xJl3SMEmXW2s3NNQ61lpJZS294+LiJElHjhzRqaeeqr1794aPA01BqOp78+bNGjBggLxeb43f0VA1/BNPPKHExEQdOHBA5557roYPH64tW7ZUOn7p0qUaNGhQOPmelJSk4uJi3X333RHF+cc//lFTpkyRJO3cubM2l9gk9OjRQxkZGZKk0aNHKxAISJKeffZZ7d+/X5L09NNPxyw+VG779u2y1lb62r59e53O27FjR+NdAAAAAAAAAAAAOGk0uwS+tfaQpKuttesbcp1Qy+9gMBhumZ+fn6+srCz5/X72ukaT5HA4tH79el1yySU6cuRItWP9fr+8Xq9uvvlm5eXl6cEHH1RiYqL27NmjESNG6PLLL9eWLVvCifvrr79ekyZNUl5enmbMmKH169frX//6l9LT0zVnzhzl5ORUu96cOXN01113KT4+XpLk8Xiidt2NaenSpUpPT1d+fr4GDRqkZ555RrNnz5YkzZw5U1dccUWMIwQAAAAAAAAAAEBz1ewS+JJkrfU39BrGGEllCfzExERJUl5eXrhtcnVVm0BjCVXRh6rtx44dqz59+mjjxo0aMmRIte30XS6XPB6PXC6XJOnee+9VXl6e7rzzTiUkJGj37t0aMWKEevbsqQkTJujQoUOaOnWqPv/8c91yyy2Kj49XRkaG1q1bF07ijxs3rtK1Zs+erZycHMXHx2vJkiXRvxGNyOl0atmyZeEk/ksvvSSpLHl/8cUXxzY4AAAAAAAAAAAANGtxsQ6gKSkuLta2bdsqfHbo0CG53W5J0sGDB9W7d29J0tatW9W/f//wuEj2/wai7fDhw/L7/eFq+0AgoEWLFunSSy/V+vXr1bdvXy1fvjzcUSLE7/fL5XKFv9vl3XHHHbrjjjv08ssv64UXXtDRo0clSaeffrqys7MVCATCreOlsjb6n376qX7wgx9o9uzZKi0t1fPPPx8+HqrOj4uL0wcffKAePXpIKnv4wO//z7M4VVXke73eau9BdZX8dT23uvOKi4uVmJiopUuXasSIEfL7/XrggQciSt7X51oAAAAAAAAAAADQ8pHALycxMVFnnHFG+P3KlSuVmpqqzp07a9WqVcrPz1dmZqYkKvDRNLRq1UqJiYlKSkqSVPYgSVJSklasWKELL7xQ69ev14ABA05I4oeq7ytz9tlnS5KmT5+u6dOn67XXXtPPf/5zrV69WsOHD9fAgQP1wgsvqGPHjuFzTj/9dK1bt059+vTRnDlzJEnPP/98OHkfHx+vDz74QOedd174HGNMuPq/OenSpUv43m3dujXG0QAAAAAAAAAAAKAlaZYt9BuLw+FQMBiUw+FQQkKC8vPzlZKSolNOOUU7duyIdXiAjDFyu93hLR9CHA6HlixZoj59+oST+IFAoEK7/UjddNNN2rt3r+bNm6e2bdtq6dKl6tGjh6666irt2rUrPO74dvqXXnpphbb5oQcDAAAAAAAAAAAAAFSOBH4VQknO0L+JiYnKz8+XJGVlZVGBjyYltIXDrFmzlJycrOTkZLVt21br1q2TJK1fv17jxo2T1+ut0La+Nm666SZ98803eumllyok8r/66qvwmFASPzU1VZ9++qmcTqeWLFmic845JzwmGAxK0gkPHdQkGAzqkksu0SmnnKLx48eHtw2IxN69ezV27FitWbOm1g8xPPXUU3rqqadqFWuk8eTm5kZ1XgAAAAAAAAAAADRvJPCrUFhYqJKSErVq1UrBYFA+n0/t2rWTVLZPdV2ToEBDGDRokKZMmaKzzz47/OrTp0/4365du+q6666Tx+Opd9v666+/Xt98843Gjx8va63+8Ic/VDhujFF6erokKSEhQYmJiRWOf/7555KkTp06RZxIDwaDGjBggFavXq3i4mK9/vrrOu200yJO5Ldp00aDBg3SGWecEdFDDNbacKL/yiuv1JVXXhlRnDUJzdu6dWsNGjRI3bt3j8q8AAAAAAAAAAAAaBlqlcA3xmRE8EprqGAb07fffiupbG9vr9er0tJS9ezZM8ZRAZWLi4vTfffdp+XLl4dfS5Ys0fLly7VixQp99tlnGjp0aKXt9uvqV7/6lSRpxYoV4c8CgYBuu+02ffvtt3r11VeVmpqqG2+8UYcOHQqPee+99yRJP/jBDyJ6ECaUvF+/fr3OOussFRYW6te//rUSExP1+uuvq1WrVrrllluqTeTHxcVpzJgxysjIiOghBr/fH0709+rVS7169aoxzkiE5i0tLdWYMWOUlJQUlXkBAAAAAAAAAADQMtS2Av9bSWsk5VbzWh/NABtTcXGxtm3bpm3btmn79u1q1aqVkpOTVVBQIEkk8IFy2rZtq8TERG3ZsiX82SOPPKJFixbpqaee0qmnnqqXX35Zu3bt0u23365AICBJ+uSTTyRJ1157bY2J9OOT98uXL5fD4dCvf/1rfffdd+FE/iuvvKLU1FQNHTo0vE5ljDERPcTgcrmi0q2gseYFAAAAAAAAAABAyxBXy/GbrLV9qxtgjFlbj3hiyuv1VqgmPvPMM5WXlxeuxu/WrVuF5GD5n0N7kB+vumRidec1N+WvM7TlgNvtlsNR9oxIS7xOlHWo2LFjh4LBoN599109/fTTatWqlR577DHt379fqampSk9P10cffaTzzz9f69ev11dffaXExER16NAhPE9llfjlk/e9evXS4sWLdfTo0QpjRo8erauvvlp33323Vq1apQ8//FBt2rTRokWL5Ha7lZmZWWXs1VX/FxcXy+121+GOVC/0AEGU5hovabxUth0BGldmZmaVD4JU970DAAAAAAAAAACoTm0T+OdHaUyT1L59e919992SyhJtbdu2lcPh0IwZM3T48GG1atWqwviWkpSONp/Pp6KiIkmSx+OJcTQtW3X3tyHu/fFz9u3bV9u2bdPChQt15513SpIOHz4cPl5YWKjCwkJJ0tatW/WXv/xF+fn5OuOMM6qN7/jk/SeffBJ+GCTk8OHDmjVrll5//XUVFhZq8ODBys3N1aFDh3TZZZdp8eLFdb4HoUr5aIvmnNbaWZJmSVJ2draN2sSIyPbt22MdAgAAAAAAAAAAaIFqlcC31ta4YXUkYxqCMaajpH2S4q21XmOMw1obrM0cCQkJOu200074fPfu3erYsWOUIm35QhXGDVHBjKbl8ssv19tvv62JEycqJSVFXq+32vG33HKLgsGg+vatupHH8W3zFy9eXCF5f/jwYc2cOVMzZsxQQUGBBg8erIkTJ6pHjx4KBAIaOHCgDh06pCFDhujAgQM8aAMAAAAAAAAAAIBmw1HzkKbPGHOVpA8k/VbSy8aYbtbaoDGm3tdXWlqqvXv3Vmj3XV/BYFBer1fBYK2eL2g2HA6HPB7PCRXTLdmx3+XJc8HHjBo1SpJUUFCg+fPn1zg+9J247LLLqhwzYsSIE/a8D7n++uvVsWNHPfrooxowYID+8Ic/6Pnnn1ePHj0klXXFWLZsmdLT03Xo0CF169YtouuYMGGC/va3v0mSrLXy+Xwt9u8TAAAAAAAAAAAATVetEo7GmPONMWkNFUxtmTIdJT0hKUfSg5I+lfQ3Y0zPSJL4xpjxxpg1xpg1oVbf5QWDQQUCASUmJp5wrK5J+FCLeZ/PV+tz0TQd+11WKPUu/906cOBAbAJrYK1bt5bD4ZAxRhdccEGN40N/RyNGjKhyTG5urhISEk5I3k+aNEkLFy4M/80tWrRIy5cvr+cVlLnqqqt00UUXSZL8fr+8Xq+OHDkSlbkBAAAAAAAAAACASEWcwDfGPCKpjaQXGy6c2rHWWknfSvqnpC2S9ltrn1FZQv8jY0zXmtroW2tnWWuzrbXZqampJxxPSEhQcnKyCgoKKnweDAbrnIR3u91KTk6mxXwLcux3GSj/WfnvVps2bWIT2DFTpkzRypUrG2TuTp06KRgMRpRMz8/PV2Jiok499dRqx7lcrhOS93PnzlV6eroWL16srKwsFRcXa8aMGTr77LP14otl/1kq30I/PT1dmzdvjugahg8frri4uPDaHo9HSUlJEZ0LAAAAAAAAAAAAREttKvBXSDpP0lcNFEutGGO6GGP6S/JISpc0+lhCX9ba/5U0XdKvjTEuY4ypz1qtWrXSoUOHKnzmcDjqnIQ/GVvMt3THfpdNrud6bm6ukpOT9cQTT+j888/XggULor7G7bffLkm6//77Ixp/zjnn1Gr+e+65J5y8X7dunc477zx98cUXWrVqldq3b6+jR49q+vTpOvvss9W/f/9w8n7ZsmVyOp01L3AcY4zcbjd/nwAAAAAAAAAAAGh0cZEOtNb+VdJfGzCWiBljfihpqqStktZK2inpYWNMibV25rFhb0iaYq31Rzqv1+tVbm7uCZ87nU59++23CgQqFFjL5XLJWqtAIFCnRCHKKqaDwaB8Pl+lSVPua/W8Xm+Vxy6++GKtWbNGkpScnKyioiJdffXV+n//7/+pb9++uvnmm6MSw5QpU/TAAw9o1apVEY2fOnXqCZ/5/Sf+mfr9ft1zzz2aN29eOHmfkZERPt6jRw8tWLBAO3fu1KRJk7R7925Jqlfyvrp4yvN4PHWat7rfV33mBQAAAAAAAAAAQMvQ7EpMjTGnSLpD0o3W2pGSvpPUWdJ7kh43xvzMGNNF0sWS+hlj0iOdOy4uTunp6ZW+vF6vnE5nhaRg6H11icLyYyp7tRT1uU6fz1fn7QgaW3P4Xa5du1bt2rULJ++vu+46/e53v9PVV18tSXr22We1du3aqK3ndDqVlpYmv9+v5cuXa+PGjfrZz34mSRowYIA2btyojRs3yuFwyOFwaMiQISfM4XK5wq+Qn/3sZ+Hk/ddff62OHTvK4/FUeJ199tm65pprtGvXLm3YsEGPPPKIDhw4oF69eql79+7Vxn38XOVf5eNoSNZa+Xw+HWseAgAAAAAAAAAAgJNcs0vgSyqVlCzpVKlsn/Fjn38h6UlJPSTdK2mSpJ9aaw9VNkltpKSk6N///reCwSbXIb1FcLvddd6OABXdfPPNuuiii+T1enXKKadUSNxfd911FZL40Wynf8UVV0iSnnnmGUnST37yE33++eeaPn26JGnNmjUKBoPq1KlTRPMVFhZWaJtfvvK+Kr169dL999/fpB6mqInf75fX662x4h8AAAAAAAAAAAAnh1ol8I0xn0VjTH1Yaw9Lek3ST40xY4wxj0oqOvZKt9bebq0dJ2mItXZDNNZMSUlRIBBQXl5eNKbDcRwOhzweD3uO10NJSYlOPfVUvfPOOzLGaOrUqXrqqaeUnJxcYVz5JP7VV18dtSR+KHH/8ccfS5Li4+OVkJAQfijj2WeflSSNHz++xrkKCwslqVbJ+4Y0b948vfbaa1Gds7S0VNdff702bdrUqBX/TV1WVpaMMbV+ZWZmxjp0AAAAAAAAAACAqKhtxrS7MWZ9Na8Nklo3RKDH+YOkv0oaLCnJWnuTtXaGpB7GmDRJstYWRGuxpKQkSdKhQ/Uu5gcaxM6dO1VUVCRJ6tKli3Jycqoc2xBJ/IceekiSdPjwYb3zzjsVjj333HP6/PPPZYzRvffeG/GcQ4YMiXnyXpJGjBiha665JqpzLl26VAsXLtTAgQO1ceNGGWOiOn9ztWPHDllra/3avn17rEMHAAAAAAAAAACIitom8L8v6epqXsMlXRDNACtjrT1srX1N0u3W2smSZIz5iaQ0SSUNvT7Q1Jx55pl66623lJCQoK+++kpt27bV8uXLqxx/3XXX6Ve/+pWk+ifxx40bp9mzZys9PV39+/fXfffdF07iP/fcc/q///s/SdKTTz4ZUXt7j8cjSXrjjTc0adIk+Xy+mG5fkZKSopSUlKjOGQgEwj9fdtllys3Njer8AAAAAAAAAAAAaJ5qlcC31u6I4LW7oYKtJJ6gJBljbpP0K0l3WGu9jbU+0JRcccUVOnDggAYMGKBAIKDf//73mjJlio4ePVrp+Mcff7xCEv9HP/pRrdcMJe8zMjL09ddf68UXX9R5552n++67T7fccks4ef/UU09p6NChEc3pdDrl8XiUnp6uuXPnKicnR0eOHKl1bM1B7969VVJSQhIfAAAAAAAAAAAAkmpfgd9ULZF0TX33vPf7/frqq69OeO3du1dSWdVs+crZ0Pvynx2v/JjKXtWpz7k4OTmdTv31r3/VW2+9JafTqd27d2vcuHFaunRphXFbtmzRvHnz1LNnT914442SpPnz58vlcumJJ56Q1+ut9PX5559r06ZN+t///V+1atVKs2fPlsfj0YIFC7Rv3z65XC7NmDFDZ5xxhlavXi1Jmjlzpq666qpqq+/9fn/4FbqOTz/9VOnp6frTn/6knJycKmNqaNZa+Xw+WWvrPVfoGkMPVZx77rl67rnnVFJSoksvvVTLli0LX1dRUZEOHjwY3hoBAAAAAAAAAAAALV9crAOIBmvtjmjM43K51LVr1xM+L59ULJ+EjKQdOKrHPayfULv541177bUqLi7W4MGDtWzZMs2ePVtbt27VkiVLJEnz5s0Ljx02bJgGDhyo+++/X3l5eZoyZYpWr16tV1555YR5lyxZoocffliFhYWSyn5/1lrt2LFDaWlp6t69e3ituLg4vf/++xFV3rtcrhM+O/3007Vu3Tr16dNHc+fOlTFGzz//fET3pb7K39eioiIdPXpULperyvsdqdB1JiQkSCq7f+PGjVN8fLxycnJ02WWXafHixerXr5/8fn+jPKAAAAAAAAAAAACApqOlVOADOI7T6dTSpUu1cOFCxcXF6eOPP9agQYMqHZucnKxp06bpuuuukyS9/fbbateundauXStJevfdd9WhQwf9/Oc/V2FhoVJTU/X8889r0aJFat26tcaOHat169Zp9uzZ4YT0J598EnHb/KpkZGSEK/HnzJmjnJyces1XF0lJSUpNTVVSUlKDrXHrrbeGK/FD7fRDDwxU9nADAAAAAAAAAAAAWqaoVuAbY35prf2faM4JoH6GDRum7du3KysrS8uWLdOgQYM0bty4SsdeffXVGjp0qH7zm99o165duuiii+R2u+Xz+SRJqampeuyxxzR48ODwOXPmzNGtt96qW2+9VcXFxYqPj9eKFSvUv3//qMSfkZERrsSfM2eOJDVaJb4kORwOJScnN8jc7777bvjnQCCg3r17a8OGDRo0aJBat24tY0yDrAsAAAAAAAAAAICmqV4V+MaYN8q93pQ0NkpxNSnBYFDSf9q9+/1+xcfH12s+r9cbnrehzwPat2+v7du3Ky4uTsuWLdP7779f5diUlBRt2rRJ99xzjySFk/eTJ0/W3//+9wrJe0k69dRTdf7556u4uFjGGP3jH/+oU/I+tNe8x+NRYWFhOFkv/SeJH6rEnzhxYq3nb0rat28vh8Ohffv2adasWZo1a5ZeeuklbdiwITzm4MGDOnDggA4cOBDDSAEAAAAAAAAAANCY6luBX2itDSftjTG/q+d8TVIogZmeni5J2rp1q374wx/Wa76ioiJJqtWDAOXPq+9e3Dj5tG/fXitXrlR2drbeeOMNXXLJJVVWlu/Zs0fvv/++kpOTdcstt2jBggV67rnn9NFHHyknJ0cDBw4MV4c/++yz+tOf/iRJevnll9WzZ886xRfa833u3LkaNmxYuF3+DTfcIKliJf4rr7wiY4xmzJhRp7VirWfPntqwYYM2b94c/uzo0aNKSEiQJO3bt0/btm0LH3vyyScbPUYAAAAAAAAAAAA0vjol8I0x2ZI2SXr0uEP31TuiJsjn88kYo1atWqmgoEAHDx5Up06dFAwG5XDUvomB2+2u8G9DnweE9OvXT6NHj9b8+fN1//33a9q0aSeMycvL07Bhw7R//3699957Ovfcc/Xf//3fev311/Xoo49qwoQJ6t27tyZOnKjc3FzNnj1bkjRjxgyNGjWqznvFh/Z6P//887VkyRJdeumlysnJUUlJSbjlf/kk/ty5cyWpQqV+c5KZmanMzMzwe7/fX+V+9yTwAQAAAAAAAAAATg51baH/iqSAtXabJBljWhtjhltr86MXWtPh8/nkdrvldDr19ddfS5JOP/30cGV+bTkcDnk8nlon/+t6HlDem2++qcTEROXl5Z3QSj8/P18PPfSQ9u/fr3fffVfnnnuupLJOEbfccoveeecdPfLII8rLy9OECRPCyfuZM2eGK/rr+v00xsjtdssYo379+mnJkiWKi4vT5MmTq2ynP3fuXI0d2yJ37qiRMWa8MWaNMWZNc2qzn5WVJWNMpa/yDzQAAAAAAAAAAACcjOraQt9vrfWH3lhrDxpjHpa0IDphNS0+n08ul0tOpzPc1rp3794RJSudTmed163PuWgZvF5vhffW2nCltjGmzlspLF68WBdddJHefPNNPf3008rIyNCePXs0bNgwFRUVhSvvj5eVlaUtW7Zo3759kqTExETNnz9fw4cPr1McIZVdx8CBA/XJJ5/oggsuCLfTv/XWWyX9J4l/1lln6aWXXlJpaWm4nf7x9+h45Y9XtYVAXR3/+zpedb+v2v4urbWzJM2SpOzsbFurk2Nox44dsrbZhAsAAAAAAAAAANCo6lrKvdUYc+VxnyXUN5imKlSBL0lbtmyRVJbApxIejS20T7zf7695cDX69u2rkSNHylqrCy+8MJy8379/v+bPn39C8v7IkSMaP368TjvtNL3yyityuVyaOnWqjhw5Uu/kfXX69+8frsTPyck5oRJ/1apV4Ur8SZMmSar5HkXrHgIAAAAAAAAAAADRVtcK/LskfWCMGSNppaSekr6JWlRNzPEJ/A4dOrAPPWLiwIEDatOmTZV7pdfGq6++qnbt2mnXrl3q1q2b3G63HnroIRUWFmrx4sWSpJKSEs2fP1/z589XIBCQx+PRvffeq/vvv7/RHmAJtdO/9NJLq6zE79Onj+bOnasjR47ohhtuUElJieLj4ytU4KekpOj8888P37to3MOa7Nq1Sx07dmzwdQAAAAAAAAAAANAy1CmBb63da4zpJ+mHks6WtF7S/4tmYE1FIBBQQUGBWrduLUnauXOnOnXqFOOocDJavny5Nm7cqCuvvDJqSeG//vWvuuiiiySVPajyy1/+stJxHo9HkydP1r333quUlJSorF0bkSbx33zzTb355ptVzvPUU09pwoQJjfIAzkMPPaSnn35aH330kS644IIGXw8AAAAAAAAAAADNX10r8GWtDUh669irxfrqq6/k9XrVvXt3SVK7du2Um5sb46hwMrrggguUlJQU1Yruvn37at++fbrvvvsUDAZVUlIih8Mhp9MZrmLv1auXxo4dG/MtIypL4t9www2SypL4GzZs0DPPPHPCPvRvvfWW8vLy5HK5dOONNzZKrNZavfrqq5KkxYsXk8AHAAAAAAAAAABAROqUwDfGDJZ0k6QCSV+orAL/C2ttcRRjaxJWrlyptLQ0devWTZLUpUsXvfXWW+HkJtBYHA6HzjnnnKjP6/F4NG3aNFlrw/vCu1wu+f1+uVyuCm3oY+34JH5JSYnGjRsnSUpLS9MjjzxSYXxOTo7y8vKUnp6udevWKS0trVHi9Pv9CgQCjbIWAAAAAAAAAAAAWo66ltTOk7RA0kpJ35P0oKQvoxVUU/Hdd99p+/bt6t+/f7j6uHPnzgoEAtq+fXtsgwOizBgjt9stY0yFn+viz3/+s7p06aK//OUvUY6yLIm/ePFixcXFafLkyZozZ06l43JycjRnzpxw8j4jIyPqsVTF5XI12loAAAAAAAAAAABoOeraQv9ra+2fj/1c9YbTzUwgEFBRUVH4/YoVKxQXF6du3bqpqKhIgUBA3/ve9yRJmzdvDv8cCATkdDqrnNMYI5/PJ7fbfUIb8qrOQ8tSWlqqoqKiKhPiHo+nkSOqm1CFfmWstZo1a5amTp2qwsJCSdJVV12lmTNn6uKLL5ak8FYU9ZWdnX1CJf6YMWPCx++55x7Nmzev2uR9ddci1e13UtmcpaWl4c+by+8ZAAAAAAAAAAAAsVHXBP5SY8xkSdOstTaaAcVS69at9dOf/lSSVFBQoN/+9rcaOXKkJk6cGE68du7cWZL09ddfRzyvz+cLPxhAAu/kFAwG5ff75Xa7a3VeQ31fqpu3Lmu+9957mjBhgg4fPixJSk1NVf/+/bVkyRJNnDixQhI/WrEOHDgwnMSfPHmy4uPjdeuttyonJyecvP/6669jVnkf+m9GXFwcFfkAAAAAAAAAAACISF1b6PeUNEHSXmPMQmPMo8aYH0UxrjoxxnQ0xiQYYzzH3tf1+vTWW2/J7/frpptuqvB527ZtlZKSUqsEvtvtVnJycq2Tt2g5HA5Hi0zivvfee+rQoYN+/OMf6/Dhw0pNTdX06dO1cuVK/fa3vw3vTz9x4kT9/e9/j/r6/fr105IlSxQXF6ecnBxlZ2fHrG0+AAAAAAAAAAAAUF+1SnAbY35z7MdnJPWTdIak30jaIukH0Q2tdowxV0n6QNJvJb1sjOlmrQ3WJom/adMmZWdnKzs7W9OmTdMPfvADde3a9fh11LlzZ20skaDUAAAgAElEQVTYsCHi2BwOhzwezwnt83HyWLdunVJSUpScnKzk5GQNHDgw1iHV25NPPqkf//jHKigoUFpamv74xz9q5cqVGjJkSHjM5MmTw0n8SZMmNUgcoSS+0+nUv/71rzol7ydOnKh33nknqnGF/tvRtm1b+Xw+taBmJQAAAAAAAAAAAGggtW2h/9Gxf+9WWRV+vKSNktZLWhnFuGrFGNNe0v9IypG0SdLNkv5mjBlirf3SGOOw1garOHe8pPFSWavu0aNHhz7XyJEjK13vmmuu0dSpU7V27Vr17ds3+heEFqH8d6u8uLg4jRo1KgYRRVefPn0klbWN3717tyRp586dJ4ybPHmy3nrrLeXn5zdYLP369dOKFSsUDAbVoUOHWlfeX3311brwwgujGtPs2bN1+PBhZWZmyuv1SpKSk5OjugYAAAAAAAAAAABaFlOfqlBjTKLKEvm9JfWy1v4iWoHVIga3pKCkaZIekbTXWmuNMf8l6ZeSLrHWfhXJXL169bJvvvlmVeuoS5cukqSCggJ17txZAwcO1Ntvv61AICBjjHw+n9xud4VK+0AgIKfTWeWa1R1D82KMybXWZld27JxzzrH/+Mc/qjy3ofa6j7ZQIjqkQ4cOKigo0J/+9CddddVVlSbwJWnAgAHKz8+PehV6KB5rrfx+v1wuV3jvean6+1pUVFTpOZGcW1M85ZWPra4J/Oq+W5KUnZ1t16xZU6e5G5sx5qTvRtDU7kFN3y8AAAAAAAAAANB46tXT3VpbbK39zFo7N0bJ+xGSnpZ0uqQMST+1x7Ii1tr/lTRd0q+NMS5TWYaujtLS0nT33Xfrvffe09q1ayVJPp9PRUVF8vl80VoGaPJmzpwpSbrjjjtiGoff75fX65Xf72/Qc+rCGCO3213pQwIAAAAAAAAAAABAebVtod9kGGMGqaxt/t3W2m3GmF9I+ocxxmetffbYsDckTbHWRpShKykp0d69eys95nQ61b59+/D722+/XdOnT9dDDz2k1157TUlJSZIkt9td94vCSam6BHKocrsq1VWJV1YNHsm51Z13fDzXXHON0tLSVFBQoIULF6p169aVnhcMVrqDRdSEYqruXkXjHAAAAAAAAAAAAKAhNdsEvqR+kmZbaz80xnSSlCzpfkkzjTF+SUsknS+pnzEm3Vp7qKYJ4+Pjddppp1V6LBgMVmiNn5GRoUmTJunRRx/Vl19+qQsuuEDx8fEnnEeLfEiSw+FoNm3yq+NyuU64jt///ve69tprdeedd2rFihWVnhf62zn+76i+ysdS2/b0ycnJUd+TviX8jgEAAAAAAAAAABA70cukNb7Scj//UdLDknpJ2iDpckkTJU1SWVv9GpP3dTFhwgSlpaXp8ccfb4jpgZix1srn80W0T/fIkSOVnp6uQ4cO6eOPP6527JEjR6IVIgAAAAAAAAAAANDiNOcE/seSxhlj/ijp/6y1oyW9JGmppJettXdLutxau6GhAkhLS9Mdd9yhBQsW6IsvvmioZXASmT59ergyPDk5Wa1bt67wPisrSwUFBeEEeySt6a21GjduXI3J9fJC+8N/+OGHmjBhQo3jX3rpJUnSL37xCwUCgROOl5SUSFJ4qwkAAAAAAAAAAAAAJ2q2CXxr7ReSfi7pB5LOOPbZV5LaSmp1bFhBQ8awZ88ezZ8/XykpKUpMTGzIpXCS6NSpU0TbLoQS7JFUtPv9fg0ePFj9+/ePOI5Qq/xLL71UV111VY3jR44cqY4dO8rn82nQoEEVkvhjxozRv//9byUkJES1fT4AAAAAAAAAAADQ0sTFOoB6+kDSbyQ9ZIzZceyzPpIekyQbSf/vOtqzZ4+GDRum/fv3691331WXLl0aaimcREaOHKmRI0eG3/v9frlcrhPGhb7akVS0u1wu/fCHP6x0nqoYY+R2uyVJw4cPj+icbdu2qU2bNsrPz9egQYO0dOlS3XrrrcrNzVVcXJw+/PDDiNcHAAAAAAAAAAAATkbNOoFvrS2V9Iox5gtJoyUlqmzP+28act3jk/fnnntuQy6Hk4i1Npy0N8ZUOS6UYI+kor18Mr4hOZ1OLVu2TAMHDlR+fr569+4tSYqLi9OCBQvUtm3bBo8BAAAAAAAAAAAAaM6adQI/xFr7maTP6jtPIBBQYWFhtWOOHj2q0aNHa//+/XrjjTdI3iOqQq3xJTVK0j3ayifxDx06JKfTqQULFig1NVVHj/5/9u4+vMny7v/450xK07SFlkJRLKVFEBUQQapTUUBUZIJDYIo8OAFvcDwoCDqZQxkI3uoQb1R0IiJOBeSnEzadOh0itzg3FRFkjClCRUTAYsG2aUqT8/dHTe5W2tK0SZO279dx5KDNdeU8v1d6JfzxOR9KqnxdYWFhtYMXkpKSalVP4L2sSm3ajUSbtWGMmShpolS29UK4ZWdnKzc3t9JjWVlZ2rNnT9j7RPX4mwAAAAAAAAAA0Pg1igA/XOLj45WdnV3l8aSkJD3wwAPatm2bVq9erQEDBrCnN+qsfODrdruVkJCgxMREORyOOoXBtX1tXfo888wzJUmHDh2Sx+ORz+dT8+bNVVRUdMLl/hv64IX6Zq1dKmmpJOXk5IR9u5Dc3FxVtQtJdatDIHL4mwAAAAAAAAAA0PgR4Ifg448/1r333qvrr79eI0aMiHY5aIQcDoeSk5OjXUadOZ3OCtdRk2tKSEio8C8AAAAAAAAAAADQ1DB9vIZKS0s1duxYpaena/HixdEuB2h0jDFyu916/vnn9fzzz4e17dLSUt18883BlQGqmsUcqs2bN2vu3LlhaQsAAAAAAAAAAABgBn4Nbd26VVu3btUzzzyjli1bRrscoNEaMmRI2Ns8dOiQLrnkEn355ZfKysqSVPdl+q21at26tYYPHx6OEgEAAAAAAAAAAAAC/JrauXOnJOnCCy+MciVA49a8efOwt9m2bVsNGzZM1loVFxeHZZn+4uJiJSYmKj09PQwVAgAAAAAAAAAAAAT4NbZz504lJCSoQ4cO0S4FQC0FlukPh8AggHAMBgAAAAAAAAAAAAAkAvwKArNzK7Njxw6dccYZcjqd9VwVUDs7duyQJG3YsEFTpkxR69attX79+uA9fOaZZ0azvAYvnIMBAAAAAAAAAAAAAIkAv4K4uDi1bt260mNffPGF+vTpU88VAXWzYcMGTZ48WVLZPvB9+/bVO++8E3MDUZKSkhpMu5GqFQAAAAAAAAAAAHBEu4CG4Pvvv9fevXvVpUuXaJcC1Fj58P7GG29UWlqaDh8+rL59+8rn80W5OgAAAAAAAAAAAAA/RoBfA//+978lSV27do1yJUDNvPHGG8HwfsKECZo5c6beeeedCiE+AAAAAAAAAAAAgNhCgF8DBw4ckCSlp6dHuRKgZmbOnClJatOmjW699VZJktPp1Jo1ayRJhw8f1r/+9a+o1YfGLTs7W8aYSh9ZWVnRLi/qsrKyqnx/qnvw3gEAAAAAAAAA0PgR4NfAOeecI0l6//33o1wJUDNvvPGG4uLidPDgQV1//fWSygaiDBw4UJKUk5PDlhCImNzcXFlrK33s2bMn2uVF3Z49e6p8f6p78N4BAAAAAAAAAND4EeDXwCmnnKJOnTppw4YN0S4FqJGMjAy98soriouL00cffaRrrrlGl19+uUpLS5WTk6M//OEP0S4RAAAAAAAAAAAAwI8Q4NfQRRddpI0bN8rn80W7FKBGMjMzgyH+9u3bVVpaqh49eujJJ5+MdmkAAAAAAAAAAAAAKhEX7QJiSUlJib788stKj3Xt2lUrVqzQJ598ElxSH4i2goICFRcXKyEhQcaYCseysrLUpUsX7dmzR3fffbecTqcWLVqkxMREORyRGbtTWFhY7fGkpKSI9FufqrvGwN8iwFpb4e/TGK4fAAAAAAAAAAAAkdOoAnxjjLHW2sC/4Wz73HPPlSRt2LCBAB8xo7i4OBgou93uSs/JyMjQU089VZ9lNSnlQ/ofq8nfBwAAAAAAAAAAAAhoVAG+pDaSDqjsuo4ZYxzWWn9YGm7TRp07d9aGDRs0Y8aMcDQJ1FkgNE5ISNDevXuVmZkZ5Yr+T6zVEwmlpaVatGiRDh8+rPj4eElSXNz/fa1edtll6tmzZ6XhPgAAAAAAAAAAAPBjjSbAN8YMkvQbY8ynkr41xiy11u4JV4hfXFwst9utf/3rX3UvFggTY4zcbrf27t2r1157TV26dNFFF10U7bIq1NO7d+8qZ6g3dGPHjtXatWurPP7AAw9ox44djX4gAwAAAAAAAAAAAMKjUQT4xpiOkh6RNE6SX1IfSS8YY8ZYaz+rLsQ3xkyUNFGS2rZtW2n7xcXFmjJlirZu3apnnnkmIteAxqf8vdW+ffuI9pWZmamcnBz16NEjov3UVPl6yi8jn5ycHOXKwmvZsmXy+Xx6//33JZUtp2+MkSQ5nU6NGTOG8B4AAAAAAAAAAAA11igCfEl5kv5qrX3HlKVn70o6JukPxpjrrLW5Vb3QWrtU0lJJ6tatm/3x8UB4//777+vpp5/W9ddfH6FLQGNT/t7Kyck57t4Kt3POOSfSXYQkUE/5Zf4bm4SEBK1atSr4e2NdaQAAAAAAAAAAAAD1wxHtAurCGNPVGNNX0kmSzjHG3GZ/IGmhpL9Iut4Y4zSBabEhKB/eL1iwQDfccEOYrwBo/ALL/NfiIwgAAAAAAAAAAAA0KQ12Br4x5qeS7pe0R9IhSbMkPWKMKbbWPmqt9Rtj/ilpiLXWF2r7Pw7vr7766rDWDwB1UZ9bNPxYVlZWtQMysrKy6rEaAAAAAAAAAACAxqNBBvjGmH6SFksaY639pzHmz5K+l/QLSWuMMQ5Jj0hqK+l0Y0xzSQU/zMyvUm5uriZNmiRJ2r9/vz777DM9/fTTzLxHzEpKSop2CRXEWj2RUN011uf11/cWDeXt2bOnPrsDAAAAAAAAAABoMhpkgC/pgKSbfgjvT5bUS9JdkrZLWiNppKRuki6WdK219vtQO8jIyNC8efM0YsSIMJYNAAAAAAAAAAAAAEDlGmSAb63dIWnHD7/eKOkxa+18Y8wESWepbCb+XknJ1tpva9ru6aefrg0bNoS7XAAAAAAAAAAAAAAATqhBBvjlWWsXlPv5SWPM65JaWGuLJRVHrzIAAAAAAAAAAAAAAGrOEe0C6sIYY370+3BJ6ZL2RaciAAAAAAAAAAAAAABqp0HPwLfWWkkyxrgkjZE0Q9IIa+03kezX7/erqKhIiYmJcjga9BgIADHO7/dLDXywFQAAAAAAAAAAAGqmQQf45fgl7Zc0zFq7MxId+Hy+4M+FhYUqKCiQ3+9XUlKSJMnpdEaiWwBNRGFhYaXPezweSeILBgAAAAAAAAAAoAloFAG+tfaYpL/UV39ut7vCvwAQKQkJCZLkO9F5AAAAAAAAAAAAaPgaRYBf3xwOR3DmPQBEkjFGKltlBAAAAAAAAAAAAI0cAT4AxJhOnTrpm2++iXYZAAAAAAAAAAAAqGeOaBcAAKho0KBBIZ2/bds2GWNCfmRnZ0fmAhBTsrOzq70PAAAAAAAAAABA7CDAB4AYs3jxYhUUFAQfJ1JSUiJrbciP3NzcergaRFtubm619wEAAAAAAAAAAIgdBPgAAAAAAAAAAAAAAMSAuGgXANSWz+er9rjT6aynStAQFRYWVns8KSmpnioBAAAAAAAAAAAAyhDg1xBhMIBIYsAAAAAAAAAAAAAAWEIfAAAAAAAAAAAAAIAYQIAPoMmbNm2aXn/99WiXAQAAAAAAAAAAgCaOAB9Ak/fUU09p/Pjx0S4DAAAAAAAAAAAATRwBPgBIOnr0aLRLAAAAAAAAAAAAQBNHgA8AAAAAAAAAAAAAQAwgwEeD5vf7VVhYKL/fH+1S0ABZa+XxeKJdBgAAAAAAAAAAACBJMtbaaNcQM4wxhyTlRruOH2kt6dtoF1GJWKnLIckpyScpTdGtKctam17ZgSjdW9H8G0Wr71D7LX//1HUUSCSv+bh7yxgzUdLEH349XdLOCPUdEI2/aVPoMxauscrvLgAAAAAAAAAAUL8I8GOcMeZDa21OtOv4sVisKxZriqZovh/R6rspXnN9icb1NYU+m8I1AgAAAAAAAACAmmMJfQAAAAAAAAAAAAAAYgABPgAAAAAAAAAAAAAAMYAAP/YtjXYBVYjFumKxpmiK5vsRrb6b4jXXl2hcX1PosylcIwAAAAAAAAAAqCFjrY12DQAAAAAAAAAAAAAANHnMwAcAAAAAAAAAAAAAIAbERbuAWNK6dWubmZkpv98vh8Mhp9MZ7ZLQgHz00UffWmvTKzvWunVrm52dXc8VNQ4+ny/485YtWyRJPXr0kCT5/X5JktPplMMR2nik6toNtBkrqru3JCktLc22a9dOn3/+uTwej84666zgsfj4+HqpsSEqKSmRJFlrtWPHDvl8PrVp00YnnXSSpKbz3vHdhUg50XcXAAAAAAAAAOB4BPjlZGdn6+9//7s8Ho/cbvdxgWAsBXqoGMBWpr7/XsaY3KqOZWdn68MPP6zPchqN/Pz84M8tW7aUJL399tuSygL8+Ph4JSYmhhzgV9euJKWmpta65nCr7t6SpHbt2unVV1/VoEGDtG3bNr366qvBY5mZmRGvr6Hau3evpLIA/5xzzlFeXp5GjBih22+/XVLTee9+fH8ZYyZKmihJ7du357sLtXai7y4AAAAAAAAAwPFYQr+c4uJiff7559q3b5+++OILWWujXRJOwO/3q7CwMDgTG02Lw+FQcnJyyOF9gN/vl8fjCXNV9a+goEDvvPOO9u/fH+1SGiRjjIwx0S4jZlhrl1prc6y1OenpTJ4GAAAAAAAAAKA+EeCXs337dnXp0kVdunTRGWecoQkTJkS7JJyAx+NRQUFBowhhcWLt2rULa3ter1eFhYVhbTMadu/ereuvv17ffvstQXQtXXjhhZKkM888M8qVAAAAAAAAAACApowl9Mvp0KGD5s2bJ0nasGGDnnrqKQ0ZMkRXXXVVlCtDVdxud4V/0bh98MEHYW3P5XKFtb1oSUtL06BBg2SMUY8ePaJdToO0cOFCLVy4UAkJCdEuBQAAAAAAAAAANGEE+OWkpaVp5MiRkqThw4frgw8+0KRJk9S7d2+lpaVFuTpUxuFwKCkpKdploJ6EO1x1OByNYvBHRkaGFixYEO0yGjSCewAAAAAAAAAAEAtYQr8K8fHxeuqpp/Ttt99qxowZ0S4HAAAAAAAAAAAAANDIMQO/nGPHjunQoUPB39u1a6dbbrlFixYt0uWXX65f/OIXlb7O5/NV267T6QxrnUAk5efnV3s8NTW13vr0+/367rvv1LJlSzkc4R1vVFBQUO1ztbnOaLx3kbJ3795qj2dmZjaKPmurulrz8vLUqlUrWWvl9XrlcrlkjAkej6XrAAAAAAAAAAAAsYUA/0fKhyySNH36dL3++uu6/fbbNXjwYJbSjyEMjGj8vF6vrLWKj49XcnJyWNuurL1w9+H3+4MBbrgHIJQXHx9fb6FwIJT2+/0Rvab6EOn3zOv1yuPxSGKJfgAAAAAAAAAAUDMNO32pB/Hx8Vq8eLEOHz6s6dOnR7scoElxuVxKSkpSYmJitEupFa/Xq8LCQnm93miXEjaBULqoqCjapcQ8l8slt9stl8sV7VIAAAAAAAAAAEADQYBfzqeffqqOHTuqY8eO6tSpk5577jlJ0llnnaVbbrlFzz77rN59990oVwnUn3Xr1mnSpEny+/311ueDDz6oBx98UJLkcDjkdrvrZaZ3uGdIf/TRR5o+fbq+//77Bh/g3n777Xrttdck/V8oHclBFbm5uerYsaPWrFkTsT7CwVqr4uJidezYUe3btw8+evbsqfbt2ysrK0udO3fWVVddFe1SAQAAAAAAAABAA0GAX05aWprGjBmjMWPGKCUlRX/84x+Dx2644QZJ0rZt2yp9rd/vV2FhYb0GnUCknX/++brkkkvqdQb5FVdcoSuuuCLi/fj9fnk8Hvn9fv3jH//Qxo0bw9r+mWeeqT59+igzM7PBLzV/xRVXqHfv3pLKthlJSEiI2DVZa7V69WodO3ZMixcvjkgf4RJYjeDee++t8hyn00mADwAAAAAAAAAAaiwu2gXEklNOOUVz584N/r5ixQoVFxcrISFBaWlpkqRDhw5V+lqPx6OCggJJUlJSUuSLBepBenq6rrrqqnqdQd6tW7d66SewvL0kde7cOeztJyYmavTo0WFvNxouu+yyeuvL6/WqpKREkoL7x8eqwOfi2muv1YgRI4LP5+XlqVWrVtEqCwAAAAAAAAAANGANe1poBPXu3Vter1ebN2+WJDVr1kypqak6ePBgpee73W4lJyfL7XbXZ5lARNXnEvb1zeVyKSkpqcEvb9/YuFwuNWvWLCJtv//++5o3b17Y2gusRmCMCVubkLKzs2WMqfSRnZ1dr/1Fqk8AAAAAAAAAAKrSaGbgG2P6SWojKc5au7I2bRw7dkx79+6VJLVr107GGL3++uvKzMyUJLVp06bKGfgOh4OZ97Xg8/mqPe50OuupkujJz8+v9nhqamrMtBtYZSKcbdZFXa4xMDihMuWv0+/3y+v1yuVyBQcy1Pd1NhV5eXmSFJyB7/f7g89JCn4Xh2LRokUqLS3Vzp07tXz5ckllq6tMnTpVkjRjxoy6lh02gf9/qlKb669Ju7EmNzdX1tpKj0VisER1/UWqTwAAAAAAAAAAqtIoAnxjzCWSVkp6UNJ1xpiLJM231n5dg9dOlDRRktq2bRsM4ZOSknTmmWdqy5YtwefS09MrnYHfFEJmhK78vdW+ffsoV1Nz0Qin69pnZSF7uPosv9T+iVbYqM/3LtL3V23D4rpo1aqVrLWKj4+XVDbIoq5L0ZeWlurTTz/Vs88+K6ksjN29e7ceffTRYIhfG9W9P9F47wAAAAAAAAAAQOPQ4NfFNmVT434q6QFr7UJJF0lKkXSHMeakcudUylq71FqbY63NCexzH3Duuedqy5Yt8nq9ksoC/Kpm4KP2/H6/CgsL5ff7o11KWJW/t9LT06Nai9/vl8fjaXTvcUAgZA98VsMpVpfaj6X7K5y8Xq+OHTsWtvZ27twZDO/79++vu+66Sw6HIxjiFxQUNNrPBQAAAAAAAAAAaHgabIAfCOVt2bq3myWdbow5yVpbLGmCpJMkzSl3TsjOPfdclZSUaNu2bZLKltCvbAY+6sbj8aigoEAejyfapUTdo48+qv79+4e93cmTJ+vNN98Ma8C9a9cujR079oTL2NcHl8ulAwcOaNKkSWGvZ8mSJVq2bFmNZ/ajblwul5KTkyWpzrPvDx48GFw2v3///ho0aJBSUlI0e/bsYIg/ZswYFRUV1bnucNu9e7cmTZqkI0eOhLXdadOmqX379hUeAAAAAAAAAAAgdjTkJfRbSfrWGBOnsgB/kKTuxph3rbVFxphxkt41xvzMWvun2nSwc+dOSVJKSook6euvv9aPZ+mj7gLLkp9oefKm4Le//a18Pl/Y2x08eLD69u1b51nk5ZeqT0hIUO/evcNUYd04HA6lpqZGpJ4rrrgi7G2iasYYjR8/XklJSerZs2fE+4uPj1diYmLE+wmVy+VSr169qt2bvTb69u2rl19+OaxtAgAAAAAAAACA8GmQAb4x5qeSZhpj9kraLukhSW9LmvrD8U+ttfuNMX+TVKs09Pvvv9czzzyj/v3767TTTpPP59PGjRs1cuTIcF0GfuBwOJSUlBTtMmJCJMJ7qSzAD4fy+8FnZGRowoQJYWk3HCJVT+fOncPeJqqXkpKiiRMn1rmdNm3aaPz48Vq+fLnWr18vSbrooos0f/58+f1+dejQQWvWrKlzP5GQlpam4cOHKyEhIaztDhs2TMOGDavwHLPwAQAAAAAAAACIHQ0uwDfGXC7pf1S2TP7JkvpIOsdau9wY45I0UlKcMWafpFGSltW0ba/Xqz179kiSXnrpJR09elSTJ0+WJP373//W0aNH1bdv33BeDlApj8cjl8sVc8u2B2bwx9p+8EBVunbtWiHEDwT5HTp00NSpU6NcXdXq67P2wwz/2PqiAQAAAAAAAACgCWtwAb6kgZLutdZulCRjTF9JIyR9YK193BjzrqQOknpKutRa+5+aNvz555/ryiuvDP7et29fdezYUV6vV++9917wOSCcCgoKjnvu8OHDSkhIkMvlUmpqahSqqpzD4WjyWx1U9vcqL5b+XtGwd+/eKo/l5eXVeV/72igf4kuxH95LZVsJhHv2fWW8Xq8kOSPeEQAAAAAAAAAAqJEGE+AbY7pJaibpCUnecofeknRpud93WGu3SQp53/usrCzNmTMn+Hv//v3VunVrSWUz8Dt37qxTTjmlFtWjKk4nuVFycvJxz6WlpdV5Bn4kguRYC6cjVU+sXWdTkZmZGfY2Z8yYEfx50aJFksqW6I9Fkbj+E7Xr9/ulWm41AwAAAAAAAAAAwq9BBPg/7Hn/gKTdkqykSeUOeyRl/3DeSEmtjDGPSbL2h7WBayotLU3XXnvtcc/7fD5t2rRJ1113Xe0uAAhRU5/lDkRCrAb30fTDICF/tOsAAAAAAAAAAABlYn7fW2NMP0mLJd1orf2ZyoKGLuVOOSTpkDFmiKRZkv5qrfWHGt5XZ/PmzTp69Kj69esXriYBNAIff/yx7rnnnmiXEbPWr1+vrKwstW/fXu3bt1fPnj2DP7dv314///nPVVpaGu0yAQAAAAAAAAAAYkbMB/iSDki6yVr7T2PMyZJ+ImmqMWapMeZ6SYWShkm6XdKoUPa8r4l9+/bpv/7rv9SiRQtddtll4WwaOM7MmTPVv3//wLLWiHHt2rXTsGHDol1GzPr0009V3ViqDz74QHl5efVYEWrCGDPRGPOhMebDQ4cORbucmJadnS1jTKWP7OzsaJcHAAAAAAAAAGiAYn4JfWvtDkk7fvj1RkmPWWvnG2PGSfqppC2Svpb0S2vt9oJiIFwAACAASURBVHD2vW/fPl155ZU6ePCg1q1bp/T09HA2Dxxn5syZKiwslNfrZRn9GOf3+5WcnKxWrVpFu5SYZK3VxIkTdfPNN8sYI0n65ptv5HK55Ha7lZCQEOUKURVr7VJJSyUpJycnbKvZNEa5ublVDlIJ3PcAAAAAAAAAAIQi5gP88qy1C8r9/LQx5jpJhyV1CeeS+dLx4f15550XzuaBSrlcrgr/InZ5vV4VFhZKEoMtKuH1euXxeCQpGNbHxcXJ7XZzfwMAAAAAAAAAAFShwQT4xhhTPqQ3xgyX1FpS2Pa7/+STT3TyySdLKgufEhISCO9RrxwOB2FwA8Fgi+pV9v4YY5h5DwAAAAAAAAAAUI0GE+AHQnpjjEvSGEkzJI2w1u4PVx/p6ekaPXq0pLIgdfTo0erRo0e4mgcqlZqaGu0SEAL+XtXLzMys1TEAAAAAAAAAAAA0oAC/HL+k/ZKGWWt3hrPhdu3a6cEHHwxnkwAAAAAAAAAAAAAA1EiDC/Cttcck/SXadQAAAAAAAAAAAAAAEE6OaBcAAAAAAAAAAAAAAAAI8AEAAAAAAAAAAAAAiAkE+AAAAAAAAAAAAAAAxAAC/BBZa7VgwQItWLBA1tpolwMA+IHP51OnTp3UqVMn+Xy+aJcDAAAAAAAAAAAQsrhoF9BQFBYWylqrO+64Q4899pgkaf/+/brvvvtkjFFSUlKlrztRiOR0OsNeKxAp+fn58vv98nq9crlccjhCGwOUmppaqz7D3SaiY+/evdUez8zMrFW7ixYtks/n029/+1sVFRVJklJSUjRnzhw5nU7NmDGjVu0CAAAAAAAAAADUN2bg11D58H7y5MmaPHmylixZolmzZjETH02K1+tVYWGhvF5vtEsBJKlCeJ+UlKSkpCQVFhZq7ty5zMQHAAAAAAAAAAANCjPwa6B8eD9lyhTdd999wWNLliyRJD3yyCMyxkSrRKDeuFyu4L/PP/+8du/eXel5Xbt21dChQ8Pad2lpqQ4dOqS2bduGtV1Ex759+5SRkVGnNnw+n+bOnRsM7+fMmSNJmjt3bjDEnzFjBqudAAAAAAAAAACABoEA/wT27dunm266Sa+++mowvA8E9ffff7927typJUuW6Nprr1WfPn1q1Kbf75fH45Hb7SZUQoPjcDjkdrv1xBNPaNasWdWee/DgQd10001h6/u1117T7t27NXXq1JCX70dsuf/++7VkyRK9+OKLOu+882rdzpQpU1RYWKiEhITgkvmSNGfOHN19990qLCzUlClT9Pvf/z5cpQMAAAAAAAAAAEQMAX4VrLX6wx/+oGnTpqmkpET333+/Jk+eXGGW/fPPP6/169erf//+IQVQHo9HBQUFkqRmzZqFvXagPtxwww3Ky8vTihUrKj3et29fjRw5Mqx9nnfeeUpPT5fX65Xb7Q5r26hfL774oiTpnXfeqXOA/8QTT6i0tLTCgCin06nS0lJJ0tSpU+tWLAAAAAAAAAAAQD0hwC9n586d6tevnyQpPz9fn3zyiS6++GItX778uCW7n3vuOU2aNEmXXHKJXnjhBSUkJNS4n0DwSACJhiwhIUF33nmn7rzzznrrMz09XS1atAgu44+GK1x705911llKS0vT4cOH9dZbb+myyy6TJL355psqLS1Vq1at1K1bt7D0BQAAAAAAAAAAEGmsQV2Fli1b6uGHH9aGDRvUqVOnCsdWr15dIbwPNYh3OBxKSkpiCXA0CYEtI/x+f53bCizfX5+fnVGjRmn06NH11l9jZq1VcXGxrLVhbXf8+PGSykL7gLfeekuSNG7cuLD2BQAAAAAAAAAAEEnMwC/n1FNP1QsvvFDhuUOHDkmSSkpKlJaWps8//1w333yzLrroIq1YsSImZ9GfaGZr+WWmgR/Lz8+v8lhBQYGSk5NDas/r9aqwsLCuZdWrDRs2SJKmTZumrVu3SpI+/fRTLV68WJKCK3WEU3Xve2Nx4MABlZSUKD4+Pjigw+PxKC8vT5KUmZlZq3ZTU1OVmpqq/Px8vfbaa5Kk0tJStWzZUqmpqbWud+/evdUer6re2r4OAAAAAAAAAACAAL+G4uPjlZCQoClTpsjlcumpp55SRkbGCWcCx0pYHpgF7Xa7Y6YmxC6/3y+v1yuXy1XhHk9OTg45EG3RooWKioqUmJhYq1rqEsDWRSC8D3xetm7dqmnTpgVDfITupJNOOu6+io+PV1pamowxtW73F7/4hXJycjRw4EBt3Lgx+PyaNWt0+umn17nucLHWyuv1yu/3swILAAAAAAAAAACoFAlCCB555BFt2rRJixcv1mmnndagAhiPx6OCggJ5PJ5ol4IGIDBr3uv11rkth8Oh5OTkBvV5KR/er1q1SqtWrZLT6QyG+KgdY4wSEhIqhPXHjh0Ly33WpUsXtWvXTiUlJSopKVFmZmZMhfdS2efK4/GoqKgo2qUAAAAAAAAAAIAY1XAStSgrLCzUnXfeqUGDBun666+Pdjkhc7vdSk5Ojskl/xF7XC6XkpKS9Ne//lU333xztMupV/PmzdPWrVvlcDi0atUqpaenKz09XatWrZLD4dDWrVs1b968iNbQpk0btWzZMvhojE499VRJ0sknnyyXyxWWNpctWxb8efny5WFpU5KeffZZdezYUS+++GLIrx00aJB69eql/Px8uVwuud3uWq9GAQAAAAAAAAAAGr9GE+AbY/oZY641xoyKRPtxcXGKj49Xenp6nZZ6jhaHw6GkpKQGNQsa0eNwOOR2u3XJJZdo0KBB0S6nXg0YMEBS2TYCa9euDT6/du3a4L7tV1xxRURreOSRRyLafixYvHixXn/9dY0bNy5s36ldunTRn/70J/35z38O2+z7559/Xr/5zW907NgxffjhhyG/fvv27Tp06JD69OmjI0eOKCEhge9hAAAAAAAAAABQpUaRIhhjLpG0SlJ7STOMMY8ZY06p4WsnGmM+NMZ8ePjw4SrPc7lcGjJkiNauXauSkpLwFI5Grfy9dejQoWiXUystWrTQwIEDo11GvTr//PO1YMECSdLKlSv15JNP6sknn9TKlSslSffee69+8pOfRLSGESNGKC8vT19//bXy8vIqPaeh318ZGRnq0qWL4uLiwtpujx49dPbZZ0sq23O+uLg4OPAiVM8//7x+/etfB393Op0ht5GUlCRJys/PV58+fZSfn1+rWgAAAAAAAAAAQNPQ4AN8UzZ186eSHrDWLpR0kaQUSXcYY04qd06lrLVLrbU51tqctLS0avu65pprlJ+fr7feeit8F4BGq/y9lZ6eHu1y6pXP59Mtt9yib775Jtql1EpOTo5mz54tqSzELx/eX3DBBfVSg9frVWFhYZX7wzfl+6umfrzn/KZNmzR9+nT5fL4Tvnbp0qX69a9/rbi4uOC9UNuBAM2bN9eIESOCIX51g8ViQUMfHAIAAAAAAAAAQEMW3qmPUWCttcaYjyT1M8acZK09YIyZIGm5pDmSJltrbU3a8vl8Vc6OtNaqf//+SklJ0Zo1a45bQrs2MzObihOFZQ3pvatJ8BdOJ5qtm5qaGpHX1taGDRvk8/k0fPhwHTlyRI899lhwH3lJ6tevX8htRuM6mjVrposvvlgLFizQXXfdJUmaP39+ncP76q6loKBAycnJwd8D+8KHa3/4psjlcumNN97QW2+9pe3bt2v58uWSpIcfflg9e/bUuHHjNGTIkONeF5h5HxcXpxUrVujIkSOSpGPHjlVYESEzM7PSfsufE/jvZ9asWfJ6vVq7dq06duyojRs3VnrvVtVmfbLWLpW0VJJycnJq9P8nAAAAAAAAAAAIjwYb4BtjeknaYq31SfpC0pWSuhtj3rXWFhljxkl61xjzM2vtn2rSptPprDIMtNbK5XLpZz/7mdatW6fHH39c8fHx4bqcsGpIgThiT10C8fLhvdPplM/n08iRI7Vy5UqlpqbK7/c3iP2/L7nkEknSgAEDdOedd9ZLn8nJyREZjBBLIhVOV9duSUlJhfC+VatWysvL0+bNm/Xxxx/rb3/7mx566KHg92b58P7ll1/W2WefrXfeeUdS2YCAVq1anbCe8ucEFoBp1aqVHn74YUnS2rVr1adPnypDfAAAAAAAAAAA0HTFfpJWCWPMyZL+LukZY4zDWvuBpPclTZV0kTGmrbXWI+lvksI6ZfrnP/85y+jjOD8srd0gP0/hUj68T0lJ0RtvvKHu3bvL5/Np1KhR2rdvX3Apc6C+lA/v+/fvrzvvvFPz589XVlaWrLVau3atTj31VN18881asWLFceF9ebVdQr+8OXPmVFhO/0QrTAAAAAAAAAAAgKaloQaOXknrJZ0j6f/9EOI/LulVSaMl3W+M+W9JoyR9Fs6OL7/8cqWkpOill14KZ7No4DwejyRFdOmDXbt2aezYsTUO/Px+vzwej/x+v6ZOnRqcRRwpp59+ejC8f+mll+R0OrV48eJgiP/LX/5SiYmJderj0UcfVf/+/cNUcfTk5+dr7Nix2rVrV7RLadQOHjxYIbwfNGiQJMntduuWW27Rgw8+qF69eslaq3Xr1unuu++WpOPC+8DAk6NHj4Zcg9frVUlJSYXnfve73wVD/Msuu6xW1wYAAAAAAAAAABqnBhngW2u/k/QnST+V5FfZTPwLJG2U9DtJL0rySLrUWvufcPYdHx+v7t27a/fu3eFstknx+/0qLCwMy2zWWOF2u6Uwr/bwYwkJCerdu3eNz/d6vSosLJTX69WVV14Z0msjpbbL5wcGI/z2t7/Vxx9/HOaqoqN3796Kj48PDrJAdAT2qA849dRTj5t5H7jn3njjjZDafu2111RSUiKv16uvv/66wrE5c+ZIEqtSAAAAAAAAAACAChpMgG+M6WSMyTHGuH94qpWka62110jqLGmTpI7W2u3W2j9Za+dZa3dGqJZINNtkeDweFRQUBGatNwo/BNNhT2HLz6LPyMjQhAkTarxntsvlUlJSklwul6688krFxcWFu7wKdu7cqZSUFB05ckTDhw+Xz+fTtGnTtHXrVjmdTj333HO1bjswGMHni+gYiXqTmpqqCRMmqHXr1sFBFgi/Nm3aaPz48ZKk9evX69VXX5VU9h308MMPa+bMmdq8ebOMMbr66qvVunVrffHFF9q3b1+wjSNHjmjlypVyOBwqKSnRo48+WuP+b7/9dklSXFyclixZUuHYXXfdJUkaN27ccYMIAAAAAAAAAABA09UgAnxjzGBJf1TZ7PoVxpjTJP0/SSXGmExJ6ZL+IWmcMaZZ9CpFTbjdbiUnJwdmraMa5WfRh8rhcMjtdtd61nuonE6nXnrppWCIf9lllwXD+1WrVik9Pb3WbQcGIzQ25QdZIDK6du1aIcSfO3euZs+erdzc3GBw/8UXX+jhhx8Ohuq33XZb8PVPP/20jh49qkceeUSS9D//8z816vf111/X0aNHlZKSouuuu06rV68OzsIvKCjQ2rVrlZiYqPHjxzOAAwAAAAAAAAAABEV2Sm4YGGMulLRQ0khr7cfGmMck3S5puqSbJd0raai19q/GmDWSTpL0VW368vl81e4vnpaWdtz5AU5nRLc/j3nVzYz2+XwV3h+Hw9Eow9jaqu6eO3bsWLUBb3WvLSgoUHJycpXHqlPVLP/q+pP+L8QfPny4jhw5EpbwPlBr+WXmy9df0xUJYlFgkAUiKxDiL1++XEePHpUxRj179tS4ceM0ZMiQ4HlDhw7V/PnztWnTJu3bt0+bNm3S448/ru7du8sYo1atWikvL09Tp07VwIEDNWnSpEr7e+WVVzRz5kxJ0ogRI9S+fXv5/X7dfvvtuuGGG/Taa6/J5/PppptuqvD5zsvLq/Y6MjMzw/SOAAAAAAAAAACAWBVSgG+MSTvxWfJba6tP+UJ3n7U2sPH1HEnLrbVFxphbJBVYazdKkrX22rp04nQ6qwwDrbXHhfRNPbSvKafT2Wjeq/q+jhYtWlQbUB8+fFher1cul+u4mfbJycn1Hm7369dPUlkQ6fF45PP5lJKSUqc2A4MQym+5UNXAhFjXkAcbNFQzZswI/jxt2jS98soruuOOO6r8LD/00EMaM2aMfvOb36hZs2byeDy69NJL5fF4NG7cOC1cuFB/+ctf1Lt3b/n9/kpXuPjHP/4hj8cjt9ut008/XZJ03nnn6b333tP555+vdevWKSkpSQsXLqy3FTIAAAAAAAAAAEDDEOoM/K9/eFS3CbxTUvtaV3S8f0j6VJKMMU5JLkntjDGtrbV/Mca0MMY0s9YeC2OfQL3x+/1VhvAnElhiX1JMzeR2Op1hD9lZZh511b17d3Xv3r3ac0aPHq3bbrtN69evV0JCgrp27ap27dpJktq2bau0tDQdPnxYb731liZPnlzpfb5mzRpJZbPvAy699FL985//1IoVK1RaWqq77rqL8B4AAAAAAAAAABwn1PRgh7X2VGtth6oekqpfAzhE1lqftfboD78aSfmSvrPWfmuMGS3pfknx4ejr66+/1pw5czRnzhzNnTtXn332WTiabfT8fr8KCwsrLHGOmiu/z/3HH3+se+65p8avDeyh7nQ6NX369BMuwV2ZlStXatWqVfL7/fJ4PDX+O+7atUvDhg3T/Pnz9eWXX4bcb6gIO1FfFi5cKEkqLi7WgAEDKhwbP368JAUD/h9buXJlcPb9WWedFXy+ZcuWysnJ0aFDh+R2uzV79uxqazh8+LDuuOMOlZaWylqr4uJivmMBAAAAAAAAAGgCQk3ELgjTObVirS211hZI+tIY89+SZkh6zFpbGI72Dx8+rOeee07PPfecnnzySY0ZMyY4u7m8oqKiSoObpqqoqEgFBQUVljhHzQVCeJfLpXbt2mnYsGE1fm1gD/W8vDz17dtXBw4cCLn/q666SoMHD64wkKAmHn/8cb399tt68MEHdfbZZ+uUU05RTk6O7r77buXm5oZcR03MnDlTl19+eUTaBgJGjx6tpKQkSdK6desqHCspKZHD4ZDP59O5555bIVR/5ZVXNHr0aEkVZ98H7N+/X5I0atSoEw5IOXjwoC6++GLl5eXJ6/XK4/GoqKioTtfV2GVnZ8sYU+kjOzu71u1mZWVV2W5WVlb4LgAAAAAAAAAAAIUY4Ftri8NxTm2ZMvGSLpY0WtJ11tpt4Wq/W7du2rVrl3bt2qU1a9YoNzdX//3f/33ceV999VVwSWVIiYmJSk5Ojqkl3BuSQAjvcDiUnp6url27htxG27ZtNXToUHXp0iXk1zZv3lzNmzevMJAgFCNGjNBFF12k+Ph4ffTRR7rnnnuUnZ2tuLi44GzlcJk9e3ZweXIgknbu3CmHw6EvvvhCS5YskSTl5ubqiSeeUFpamk4++WRt2bJFvXr1kt/v1yuvvKKrrrpKktS/f/8Ks+8lqaCgQF9++aWMMXriiSdO2P8ZZ5yhwYMH66STTpLL5ZLb7VZiYmL4L7QRyc3NlbW20kddBhXt2bOnynb37NkTvgsAAAAAAAAAAEChz8CPKlumRNI9kn5qrY3YGvcXXnihbrzxRi1btkx///vfg8+XlJTowIEDBPjlOBwOJSUlscR5A1d+IEEorrnmGv35z3/Wnj179N133wVnF/t8Pj399NPKzMxUQUFBhKoGIiMjI0OzZ88Ohvj333+/nnjiCTVv3lyTJk3SzJkz1bNnT23ZskWdO3cOhvezZs3SoEGDjmtv+fLlkqSePXvK6XSGVIsxRgkJCXzHAgAAAAAAAADQBMSFcrIx5gJJO6y1+RGqp6aesdbacDe6devWYDBvjNEZZ5yhpKQkXX/99Ro+fLieeuopff3117LW1jjA9/l81R4PNchB07Jly5bgz9OnT9cnn3yiUaNGacKECZKkHj161Gs9gSDe7/eruLhssY3i4uLgFgqdO3c+7jVfffWVmjdvrg4dOmjz5s1VtpucnBzysRPJz6/+qyo1NbVW7aJqe/furfJYXl6eWrVqVat2T/TazMzMsNeTkpKi2bNna/78+Tp48KDi4+M1adIkpaam6j//+Y9GjRql/fv3a9euXZLKZt6np6dr165dOuWUU4LtFBUVKTc3V8YYDRky5ESXWqXqrkWq+j0AAAAAAAAAAAANR40DfGPMPZI+kDRd0vGb+9ajSIT3khQXF6eWLVtKKgtctm3bpszMTO3du1evvvqqnE5ncA/jrKwswvdyeC9qryYh8rRp07R161ZJ0sqVK2Wt1cSJE2sdQNf2dYEg3ePxBJ9LSEjQV199pXHjxlX72t27d2vKlCnB5chD6ZOgHZWx1srr9Ya87cOJ2jLGSJJmzJghSZo4caK6deum/Px87d+/X/PmzdOiRYuUn5+v0tJSORwOXX755RowYICksu1YBg8eHGz76quvDv5b3efkRAH8iQJ8AAAAAAAAAADQ8IWyHu8mSedL+k+Eaom6Zs2aKSMjQxkZGerQoYPi4uJ06NAhtWrVSt9++602btwYDFBYQh/1JRDeO51OzZo1S5K0atUqPfnkk1GryeVyKS6ubPzPhg0bdOmll+rAgQMnfN3KlSvVtWvXSpfU9/v98ng88vv9Ya8X0Wet1bFjxxTO8Vder1cej0derzeibWVkZGjXrl1KS0vTsmXLNGHCBOXn5+vxxx/X999/r6lTpwbD+x/77rvvtHnzZjkcDi1atKjOdQIAAAAAAAAAgMatxjPwrbWvS3o9grXElLi4OGVmZmr37t1q0aKF4uPjNW7cOI0fP14SSxWjfkyfPj0Y3q9atUrp6elq0aKF7rzzTq1cuVLZ2dlasGBBvdflcDiCs5QfffRRnXnmmfrqq69O+DqXy6Wvv/5amZmZGjBgQPBzdOzYMRljVFpaqri4OA0dOlR9+/YNW71+v19Lly7VddddJ5fLJZfLxX7i9WD37t1atmyZjDHy+XwqKipSYmLiCVfssNbqn//8p3r16hUcKFJcXKyEhARJ0pEjRzR+/PjgFhI1mYFvrdWOHTu0evXq4CCR8m2Wlpbq5JNP1rRp0yp9fVpamj777DOddtppWrZsmRISEmSt1U033aSsrKwq+x07dqwkaciQIWFZqSSwUsALL7yga665RomJiXVuEwAAAAAAAAAAxI4aB/hNUUpKipKSkpSfn6+MjAx98cUX2rx5s+Li4mq9JzcQik8++USSdPvttys9PV2SdMEFF+jCCy/Ue++9p8WLF0clwC/PGCOPx6Pvv//+hOeWn13/17/+tcrznnnmGS1evFi/+MUv6lyf3+9XTk6Odu/erT179ui2226TJLnd7jq3jerNnz9fb775Zq1fv3PnziqPrVu3TsuXL9dll11Wo7Y++OADXXfddSotLa32vGuuuUYZGRmVHguE+BkZGSouLtaVV15ZbXh/33336eOPPw7r7Huv16svvvhC/fv313/+85/gIAYAAAAAAAAAANA4EOBXI7Ckd2pqanAWaHp6ukpLS3X48GG1atUqyhWisRs1apRWrlyp++67Ty1atNAFF1ygJ598Uu+9954k6emnn45abQsXLtSWLVu0ZcsW7dmzR2lpaTp8+HCV5zscjmB46na75fF4JEn33HOPOnToEJwJvWfPHs2aNSs4E7ouIb7f71e/fv20e/duSVJJSYmSkpLCsmc6TmzhwoU699xzVVJSol69emn8+PFq0aJFlef7/X7NmDFDeXl5wecefPBBtWnTRkePHlWLFi309NNPa8OGDfL7/Ro/fnyNQvwtW7YEw/vJkyfrggsukCQdPXpUxhjdfPPN8vl8GjJkSJXhfUBaWppWrlypYcOG6e2339all15a6Xn33XefHnvsMUnSsmXLwjL7XipbbeDUU0+Vy+ViJRgAAAAAAAAAABqhkAJ8Y8xma+05dT2nofj+++/l9/uVmpoaDB6zs7MlSXv37q1xgB8YCOB2u1m2GyGZMGGCpLK94++8805dcMEF+vvf/y5Jmjt3roYPHx612pxOp95++20tXLhQCxYsqDa8l/5v9v3gwYP17LPPasWKFbr11ls1d+5cvfzyy7rooouC5/bo0UMDBw4Mhvi33HJLyPUFwvtt27apdevW+vbbb+VwOJh5X49atmypDz74QH379tVHH32k9u3ba/HixZWe6/f7NWjQIOXl5alr166aMGGCpk+frj/+8Y9atWqV8vLyVFxcrP/93//V6NGj1bx5cz322GPBEH/cuHGVtrtlyxYNGzZMpaWluv/++zVy5MjgsV27dmno0KHy+Xy67rrr9MADD9TouoYOHRochLJt2zadddZZFY6vW7dOb7zxhiSFtEpATRhjgoNdAAAAAAAAAABA4xNqmnymMWZrNY9tklpHotBoyM/Pl9PpVHJysnw+nySpY8eOklSj/b4DPB6PCgoKgjOOgVBMmDBBo0aNkqRgeH/vvfeqT58+MTEg5LbbbtOmTZtqFCo+9dRTevbZZyWV7Q3+0EMPqbS0VEOHDtXmzZuD5/Xq1Uuvv/664uLiNG3aNC1btiykmvx+v3r16qVt27ape/fuevzxx0O7KIRNy5Yt9c477yg1NVUvv/yyfvWrXx13TiC83759u7p27apXX31Vw4YNU3p6ut577z3t27dPkrRkyRJJ0pQpUzRr1ixNnjxZkjR+/Hi98sorx7X7wQcfVBne5+fn6+qrr1Z+fn5I4X3AiBEjJEkvvPBChedfffXVYHj/xBNPhDW8BwAAAAAAAAAAjV+oS+ifUYNzfLUpJBacfPLJmjlzpiTp2LFjmjp1qi688EJNnDhRf/vb37RixQp17txZkpSbmxsM9SVVuTxyYACAw+FQYmJiTASuaDj69esX/Ldz587av3+/Bg8erMGDB0sqCyGrUlBQoOTk5JCPSVJqampIz1944YU6evSozjvvPG3ZskWSdPbZZ2vr1q2y1io9PV3//ve/lZaWVuF106dPV2Jiom666SZdccUVeuONN3TOOWULeARC/IEDB2rChAkqKio6bjn9yq6j/Mz77t27yQcbVQAAIABJREFU6+2339bbb79d5bUivCpb1j0zM1Off/65OnXqpNWrV0tSMDAvH9736NFDH330UfB78qGHHtKYMWM0e/ZsXXDBBVq1apV+8pOfaNOmTZLKBlT1799f69ev11VXXVVhtnt1M+/z8/PVp08fHTlyRDfeeGPIA0Qkad68eXr55Zd15MgRpaSkaMCAAbrvvvu0fv16SdKaNWs0fPjw477z9+7dq71794b0/tXkGAAAAAAAAAAAaBxCSpOttbk1eNR8anoM2759u4qKinTeeedJKgsKJem0005TXFxcSDPwHQ5HMMQHamvOnDn6/e9/Hwzv6yKwrUNgWftwaNasmT7++GPdc889kqRPPvlE1loNHTpUBw8ePC68D5g4cWJwJv4VV1xx3Ez8l19+OTgTf8WKFSe8rr59+1YI73/8uYvEtePEWrVqFZyJv3r1av3qV786buZ9+fBekkaPHq2TTz5Z69ev11/+8hdJUv/+/Su0O2jQIA0YMEBS2Uz81157rUJ4f9ddd1Ua3gdm3tcmvA/43e9+J0maOXNmhT3vly9frmuuuabG3/nWWhUXF8taW+tawskYM9EY86Ex5sNDhw5Fu5wKsrKyZIyp9JGVlRXt8mosOzu7yusIbNUDAAAAAAAAAGiaQp2B36gVFRVp69atkqQ333xTiYmJ6tatmySpsLBQzZs3l8vl0imnnBJSgA/Uhw8//LDCjHyPx1Plfu9Hjx6VtVYJCQlyuVzKycmpcnZ9qGbPnq2rr75akydP1pQpU4JLjVdn7NixkqRbb731uJn4PXr0CM7Ev/XWW/X222/rtNNOk1S2UkazZs2C7bzwwgv66quvqgzvJcnr9aqwsDAMV4pQBZbT79u3r1avXq0XXnhB1trgsvmV/b0WLlyoMWPGaPPmzbrwwgvVsmXL4865+uqr1alTJz322GO66aab5HQ65fP5dP/99wfDfUk6fPiw+vbtqyNHjtRq2fwfGzhwoFJSUnTkyJEK4X1Nl80vLi4OzuCPpS1WrLVLJS2VpJycnNgYVfCDPXv2RLuEsMjNza1ywIYxpp6rAQAAAAAAAADEEgL8cg4cOBCcUSlJGRkZiosre4uKi4vVokULSdJJJ52kb775Jio1ApVZtGhRcOZ7bbRt21b/+te/wlZPt27dtHHjxpBeM3bsWO3atUuPPvqoxo0bp08++SR4rFevXnrxxRd19dVX609/+lO17RhjqgzvJcnlclX4F/UrEOIHlrCvLryXymbh//KXvwyuglKVyZMn691339XWrVuD4f3IkSOVl5cnqew7/NJLL9WRI0d0+umn1zm8Dxg8eLCef/55SWVbTGzdulXnn39+lecfPXpUS5cu1dq1a/Xll1+qWbNm+vzzzyVxTwIAAAAAAAAAAAL8Cpo3bx5cMn/nzp36/+zdfXzN9f/H8cfnnNmFjWGEL2tE5XKplC5clOT6W1+kL1kqXbpITYoilUQhIj+iIsqWNCLfSkpKvpUiX1q+XQhNSdps2pydzc7798c657vZ9Xa2c8bzfru52Tmfz+f9fn0+57OjW8/P+/1OTk4mKyuLwMBAQkNDSUlJwRhDWloaTZo0weVyaVp88QvPPPOM5+d27drRqVMnTp48mW90el55R66/9NJLfjEifceOHbzwwgsAPPjgg/m2paSkcNtttwG5Iaf7YRpjTL7RqkePHsUYQ2xsLPPmzSu0H5vNVuTMBFI16taty9atW3njjTe4/fbbS/weXbVqFf369ePf//43wcHB9OvXz7PN4XDw0UcfMXHiRI4fP07Hjh256aabuOGGGzz7ZGZmMmLECFJSUoDc7/enn36aiRMnVug84uLiPOF9eHg4qampPPfcczz33HO0aNGCmJgYxo8fjzGG2bNn89prr/HTTz/la8M9bXpwcHCFahERERERERERERERkdODVwN8y7ImGGOeKXlP/1S/fn3PVN579+5l+vTpbN++nc6dO1O3bl0cDgdpaWkcPnyYLl264HA4CA0N9W3RcsabPXs2WVlZREVF0adPH1544QW6dOnCY489Rq1atQo9Jj09nbCwMADeeOONqiy3UDt27KB3796cPHmSefPmERMT49l27NgxunXrxrFjx4iJieH555/3bMt7HgDJyclccsklrFixAqDIEF98Lzg4mMGDB5OdnY3dbi923759+zJixAiWLl3K5s2bAejevTtbt27lk08+weFw0LNnT+6//37PsidumZmZ3HvvvWzbto3Zs2cTERHBrbfe6pny/v/+7//KVX9cXBwTJ04kICCAt956i+joaNLT01myZAlr165l3759PPHEEzzxxBP5jouKimLgwIHUqlWLqVOnlmqJCREREREREREREREROXNUKMC3LCtv8mcBHYBqG+Dn1apVKxo1asRHH33kCfAB9u3bx59//klkZKRG8YpfcC/7EBcXR+vWrQFYtGgRWVlZzJo1q9LWU37nnXe47777mDlzJgMGDCh3O19++WW+8H748OGebSkpKXTt2pXU1NQC4X1hIiIi+PLLLxXiVwNlXcqgbdu2+UJ8d5Dftm1brrvuOkaOHFngmMzMTO6//362b9/O7NmzGTx4MACvvPKKJ8SvXbs2M2bMKFPtL774YoHwHiAsLIxx48Yxbtw4EhMTuemmmzh27BgAnTp1YtOmTaSmpgLQp08fAMaMGVOmvkVERERERERERERE5PRW0RH4x40xd7hfWJa1qILt+dTRo0dZsmSJ53VISAjff/89c+fO9YRMiYmJADRr1qzSp8/PyckpdntJo1bl9PfAAw+QlZVF48aNycrK4j//+Q833ngjR48e5eWXXwbgscceKxDiu0NEyJ2GHsi3xnidOnUK7W/Lli0AfPbZZzzyyCMADBw4kLCwMB566CHuvffeIms9dbQ85B95P3PmTAYOHOip49ixY57wfujQoSWG926nhvjZ2dmeKdezs7NLdZ7FyXvtClOeNv1RUlJSkduSk5OJiIgocntkZGSJ7Zdn2nh3iL9s2TKMMQQEBNC0aVMaNGjgWeveLW94f/PNNxMSEsKGDRs820eOHMmiRYt4+umnOX78eKmn03ePvLfb7SxfvpwmTZrk69vhcDBgwACOHDmS77gvvviC2rVr06lTJ+Lj49m7dy8NGjSgcePGZboGIiIiIiIiIiIiIiJyeqtogD/tlNeTKtheuVmWFQhgjMkqbxvp6els3bq1wPs7d+70/Pzjjz8C0LRpUwXo4nOvvvoqAE899ZTnPcuyGD16NAAvv/wygYGBPPXUUwVCfHeY7n7/1HC9KHnD+86dO7Nr1y7S09OZMmUKzz77LAsWLKB///4ltnNqeH/nnXd6tqWkpNCtWzdPeP/aa68V+sBMUWF5nTp1+OGHHzj33HOJj49n3759ANSoUaPU5yneV5pgvyjjxo3z/Dxv3jxGjx5NXFwcGzdu5JNPPuGee+7hvvvuw2azeabN3759OwMGDOCCCy7A4XDka69ly5aeEN89nX5JIX7eafOXL19Oly5d8m3//PPPGT9+fIHwPq8vvviCjRs34nK5uOGGGyp0TURERERERERERERE5PRTriHklmXNsyzrfWCxZVkzLcvqAGCMSfFqdaWvZxAQB2ywLKufZVl1y3DsXZZlfWVZ1lel2X///v0AGjUpJcp7bx09etTr7U+bNo3s7GwaN25M8+bNT+2b0aNHc88997Bo0SImTZrkGWlfEXnD+5tuuoknn3ySt99+m6lTp1KrVi3S0tK4+eabadasWb7Rzqc6dc37oUOHeralpKTQsWNHjh07xrBhw3j22WfLVWtERARbt26lbt26bN++vVxt+LPKvr9KwxhDZmamV+6tsggLC2P58uUcO3aM4cOHk5WVxdy5c2ndujWzZs1ixIgRnjXvL7rooiLbad++Pa+88goACxcu5Omnny5y31PXvG/Tpo1n24kTJ5gyZQo33nhjqeqfMmUKgOd3SURERERERERERERExM0qT/BiWdY9wD6gBtAGuBV4wRizwKvVla6W84B1wAigGTAU+BDYYIzZV8a2ir0YNWrU4PLLL+eTTz4hJSWFunVL/ZxAuWgK/erFsqwdxpiOhW3r2LGj+eqrUj0jUmphYWFkZGTw7LPPFhlSNmvWjIsvvpiUlOKfrQkPD+enn37yjHIvamS7zWbDGMOQIUO4++67C2w/dOgQd999NydOnCjj2RQUExPDzJkzycjIoFGjRuUaOZ+SksLhw4e5+OKLcTqdjBgxIt8DARWZQt/lcrFmzRq2bNnCggX/++qrjCn0i7u3oHLur7xT6Ldo0YLs7Owi923fvj3/+te/PK+relT53r17efTRR3nrrbc835vt2rXj7bffZuXKlYSEhBR6XEhICP3792f69Om88MILpeprw4YNREdH51tGYPDgwXzxxRcMHjyYmJgYrr/++hLbqV27NmlpaaU8w8pV1d9dpajH6w+FFNdmZfRXkT4rqx5fKOm7S0REREREREREREQKKtcIfGPMC8aYTcaYd4wxs4GOQME0r2pEAEeMMZ8ZY+KBGUA7oK9lWbW82VF2djY2m42mTZueNutcS/V15ZVXAvDQQw9x6gjs9PR0Ro8eTfPmzUlJScFms3H++edzwQUXcMEFF9C+fXvPz9HR0YwcORKn01lin/Xq1QPg3XffLfCAyf79+5k8eXKpw/vatWsTHR1doJ4LLriAhx56iOeff56goCBCQ0OpWbNmqdo8lc1mo0mTJiQmJtKnTx/GjBlTrnYK43Q6ufjii+nZs6fX2vRXs2bNKnKb3W7nuuuuq8JqCgoLC2Pu3Lns2bOHzp07A/DNN99wzjnn8MYbbxT5MNSuXbto3759qcN7gNdee63Ae7169SIgIIAtW7bw888/l6qdhx56qNR9ioiIiIiIiIiIiIjImaNcI/A9B+eOxG8J1ALaGWOu9FZhpei7sTHmsJW7gPdS4F1gjTHmpGVZVwCPAnONMe+Xoc1iL8bYsWNJSEigS5cuxMfHV6j+0jg1dHK5XDgcDkJCQrDZbBqB72d8MYo1OjqaPXv2YLfbiY+PJyQkhAkTJvDtt98CuQH2oEGDWLRoUb77JT093TOi3eVy4XQ6CQoKKnEE/ocffsigQYNIS0sjPDychIQEfv75ZyZNmsThw4cBCAoK4qGHHvKsWe5uPzs7m9q1axfaZ956ClPeB2bco+W92W7eEfinXrfytlkSX4/AdzPG4HQ6SU9Pp379+kUeW9Uj8N21uuvLyMjg9ttvZ+fOnUDuiOYLL7yQIUOGYLfb2bNnD6tWrcLhcAC5M1DMmjWL3r17F9q+MYYjR47Qs2dPUlNTGTJkCBMmTPCMwIfcBwYeeOAB9u7dW2K9EydOZMaMGRU9ba/RCPzKGfHerFkzDh48WOi2qKgoDhw4UKX1FKe8tZZEI/BFREREREREREREyi6ggse/A1wLDCR35HuVsCyrD3CbZVmPAD8BO4BLgd8ty9pmjPm3ZVmvA3dYlrXZGHPSG/2OGjWK+fPne0Z4VjWHw0F6ejoAoaGhPqlB/Mvs2bMZN24ciYmJ+dbftiyLHj16EB8fX+KDHjabrcgpxk9lt9tJSEjwhPg9evTwbKtRowb33nsv48ePz9eeu/28D6SUpU9/VdI5/Pbbb0yfPp25c+eeNg/bOJ1OHA4HJ0965SvV69z1hYaG8tZbb5GSksLf//53kpKS2LlzJ19//TV2u91Tf82aNXnuueeKDO7dLMuiUaNGfPLJJ3Tt2pXXX38dp9PJvHnzPPu4p+x//vnn871fGH8K76XylDf09oWDBw8W+4CDiIiIiIiIiIiIiFSdcgX4lmW9ATxmjNkLvGxZ1jLga2CDN4srou9OwGLgVmPMj3+9twyIBf4BRAKvAgbI/Otvr3CPQnRPXV7V3GFhdQ8+xXtq1KjBnDlzePDBB9m9e7cnuJ8wYQJ2u71cwbH7IZHCZGZmEhwcTEJCAoMHD+bYsWPUqFGDYcOGcfPNN9O6dWuCgoIqckrV2q5duwA4evQoQ4cOJScnhxUrVpCQkIDdbueqq67ybYEV5P5si5qSvqIKG/XvlnfN+aK2uetz/12vXj3uvvtucnJyWLp0KQcPHuTkyZOEhITwz3/+k0svvbTE8D6vOnXqeEL8tWvXAjBlypR8+9x6660lBvgiIiIiIiIiIiIiIiJFKe8I/NeAVX9NX78DCANcXquqeOcCrxpjNluW9TegI2ADpgM3A70sy7odiACGG2NKnTSFh4fTtWtXIHd0bfPmzXnuueeYNGkS9957L48//ji1atWiffv2Xj+pwpwavtrtdmrUqFElfUv1cPXVVwPQs2dPsrKySh3al3ea98suu8xzbEpKCllZWQQGBpbq2OL6rIxp5yur3ZLazBve2+120tLSGDRoEAkJCV6vpTJV9TT4FREREVFkvZMmTQJyg/YTJ05w/PhxGjVqVO6+IiMj2bdvHy1atGDt2rUEBQUxc+bMfPt88cUXvPTSS8TFxZGRkQH437T5IiIiIiIiIiIiIiLin8oV4Btj1gPrLcuKBjqQG6C/483CinEIuNyyrEhgHfA+0Av4uzHmdmD5X3X9Zoz5vSwNR0VF8eKLLwK508lec801XHbZZYwaNQqAbdu2ccUVV5w202HL6aW0QXp179Of5Q3vo6OjmTNnjme5gUGDBpGcnKzvj1Jwr2UfFBRUYPru4raVpGbNmtSsWbPC9dWrVy/fdPoAsbGxPP/882zcuJGjR48CuQ9dRUdH88QTT/CPf/yjwv2KiIiIiIiIiIiIiMjpr7wj8AEwxuwGdnupliJZlnWeMeb7v14eI3ea/OHAa8aYOcBEy7I+tyzrPmPMvL/qKrNvvvmG8847D8idKtxutzN//nzsdjvHjx/nm2++YfDgwd44JZFq4eOPP2b16tUsWLDA16VUCzExMZ7w3j2NekJCgifEP//88/nxxx99XKX/e++99xg7diwBAQHYbDYgN7h3B/aZmZmMGzeO0aNH+6zGvNPpv/76654g32az0bZtW8aOHcuIESMICKjQP7MiIiIiIiIiIiIiInKG8ftkwbKs/sAblmWtM8YMNcb8x7Ksd4CHgH9ZlhVujEkD1gDHvdWvMYbQ0FAaN24M5IYyNWrUICUlxVtdiPi9K6+80jMFuEhV+OCDD7j77rsByMnJISQkJN/2P//8E4BDhw5VeW2ncof4K1eu5PPPP6d3797885//JCAgoFotQSAiIiIiIiIiIiIiIv7D5usCimNZVigwBrgfcFqWFQdgjHkBmAGcB9xmWdYTwG3AZxXpr127dnz//fd8//33LFu2jD/++IPVq1cDEBYWRq9evXjzzTdxuVwV6Uak2ggICKBv376+LqPaeO2117Db7ezevZv77ruPnJwcz+j78PBwvvvuO1+X6Nc++OADRowYAUB0dDQnT55k1apVJCYmsnXrVvbs2UNISAh2u51HH33Ux9XmqlOnDqNHj+bVV19l2LBhGnEvIiIiIiIiIiIiIiIV4tcBvjEmAxgBxAHjgUDLsuL/2vYi8CSwD7AD/zDG/NdbfV9zzTV06NCBuXPnkp2dDcDgwYM5dOgQX3zxhbe6EfE7LpcLh8NR4QdVtm/f7qWKqo8GDRoQHx/vCfF79OjhCe8TEhKw2+2+LtFvbdiwwRPejxo1iri4OGrXrs1zzz3n2ee5557D4XAwYMAAr6xlf6qy3rPGGDIzMzHGeL0WERERERERERERERE5M/n9UEFjzK9//ZhuWdbdwBLLsuKNMUPJnTJ/vzHmbW/05XA42LNnj+f1DTfcwOTJk5k7dy79+vWjX79+BAYG8vrrr3PppZfmO/ZMD+ZycnKK3a7rk0NqamqR2+vUqVOF1RTP6XR6ps0/dfry9PT0Yo/dtWsXr776Kq+++irZ2dnUqVOHN9980/P5X3XVVYUeV9y1gaKvT3mPq0zuEH/o0KHk5OTkC+/9sd6qlJSUVOj7eUfe9+rVi3bt2nnWl9+wYQOLFi2iefPmLF68GLvdzrRp0/Idn5ycXGy/RU1nP2fOHCD39/OJJ54gIyODgIAArr32Wnr06MHgwYOLbDM5OZnQ0FAcDgcAwcHBxdYgIiIiIiIiIiIiIiJSGn4f4OdljEn+K8SfZVnWd+SOvL/KW+1blpVv+uMrrriCVq1aERcXR//+/QkPD6dnz56sWbOG2bNnY7P59QQG4kdcLhcul6ta3DMNGzbkxIkT1KxZs0z1zp49m5kzZ3pmrAgICCA1NZVBgwadMaPP8z6g0LNnT2w2GzVr1vSce0kB/pkob3jfvXt3evbs6QnFL7vsMj788EPWr19PkyZNcDgc3HLLLZx//vle6z9veG+32zl58iTvvvsumzZt4siRI4wZM6bQ4yIiImjSpEm5fldERERERERERERERESKUu0SB2PMH8BuIBwYYIw5VFl9WZbFLbfcwm+//cZ7770H/G8a/Y8//rjCU4zLmcPlcuF0On1dRqnYbDbCwsJKHUjOnj2bhg0b8tRTT5GdnU3jxo1ZunQp7733HuHh4aSlpTFo0CCvTMtfnYSHh1OrVq18Dy54a3mC00Xe8H7UqFH069cv3/aQkBC6detGYmIimzdvJiAggIULF3qt/7zhfWhoKDNmzGD8+PHUq1ePkydPMnPmTFq2bMnzzz9f6FT5Zf1dERERERERERERERERKUm1Sx0sy6oL9AV6GmP2lLR/RXXq1IlWrVqxYsUKsrOz6d+/P4GBgaxatcozSlSkJN988w1/+9vfqFu3LvXr12fBggW+LqnCtmzZ4gnus7KyiIqKYunSpcTFxdG8eXPsdjsJCQmeEH/YsGGcOHGixHbj4uKIj48vcz3Jycncf//9nDx5sjynUyXcyxNkZGQwbNgw9u3b5+uSfObrr7/OF95PnDix0P06d+5MQEAAJ0+eZNiwYdSsWbPYdhcvXszixYtLVcOTTz7pCe8fe+wx7HY7jRs3ZtKkSYwfP57IyEiysrKYNWsW7dq1Y+PGjWU7yWrKsqy7LMv6yrKsr44ePVrkfs2aNcOyLK//iYqKqsKz9T9RUVHFXp9mzZqd0fWIiIiIiIiIiIiInO6qXYBvjDkG/N0Ys7sq+rMsi549e/Lbb7/x22+/ER4eTvPmzTl8+HCB9cEll8vlIiMjQ6OMi5CTk8OaNWt8XUaF7NixgxtuuIGsrCwA+vbty9tvv03z5s3z7We32+nTpw+QO318ceGre3R6v3796N+/f5lrOnLkCN26dePIkSN+O8o9KCiI0NBQ4uLieOedd7j//vt9XZLPfPnll56fV65cyfvvv1/ofps3b/Y8lFGa0fdPPfUUTz31VIHR8oX5888/ATzhfV6NGzdm27ZtbNq0yRPk33XXXXzwwQcltlvdGWOWGGM6GmM6NmjQoMj9Dh48iDHG638OHDhQdSfrhw4cOFDs9Tl48OAZXY+IiIiIiIiIiIjI6a7aBfgAxpjMquwvPT0dgLPOOouMjAx++OEHLrzwQk2bXASHw0F6erpmKMijQ4cOHDt2zPNn8+bNvi6p3Hbs2EHv3r3Jycnhscce47bbbmPTpk1cfPHFzJ07lyNHjnj2ffHFF3n99deB3GC1uN8Z9+j0wMBAatWqVea62rRpw4ABA6hXrx4ZGRl+uWSBzWYjJCQE96jm7777zscV+c5dd93FkiVLPDM03HHHHUyePJk9e/43scq//vUvz+/KiBEjShx9n1dpPn/3SG/3PVqY888/n23btjFq1ChPHWdCiC8iIiIiIiIiIiIiIr6hBLoU/vjjD8LDwwkKCuI///kPLpeLiy++2Ndl+a2QkBDCwsI0Q8FpyB3enzx5knnz5nH//fczZ84cduzYQUxMDO+88w4xMTHMnTuXZ599lri4OACmT5/O5ZdfXmzb7tHpQUFBFarRW+1I5evduzd79uzxBPkOh4NXXnmFyZMns3Tp0nzhfdu2bcvUdmk+f/cU/l9//TU5OTnF7jtx4kSF+CIiIiIiIiIiIiIiUukCfF2AP8nKyip06t6kpCTPiOCdO3cCcNFFF5WqzZJCoVOnbT4d2Gw2QkNDfV2GFCM1NbXIbenp6YSFhRV4P294P3PmTAYOHOiZnaJu3bpMnTqVXr168dJLL/H22297pjAvTXgP/xudXlF52ynPebrVqVOnwrUU1idAdnY2AMYYz3uV1Wd10Lt3b3r37s2UKVNYtWoVDoeDxMREoHThfXJycoH3UlJSPD9HRkYWepzdbicyMpKkpCRWrlzJ4MGD823fsGFDvtft2rWjV69ebNy40RP+9+jRo9B6IiIiiqy3qHpEREREREREREREREQU4OcRGBhIs2bNCrzvcDho1KgRdrudnTt30qhRIyIjI7Esq+qL9FOn44MI3mS326t1OHvqyPvhw4cX2CcpKYklS5bw0UcfYYwhIiKClStX0qtXrxLbL++1Kem4UwN8l8uF0+n02eh89wMDNWrUAMCyrGIfIjjdlBRcL1u2jGXLlrF27VpmzZrFY489Vqr7p7CwvLgA3W348OH079+fDh06sGfPHt56661832WrV68ucEzPnj3Jzs5m8+bNjBgxgqVLlxYa4ouIiIiIiIiIiIiIiJSHptAvhbyjKXfs2MHFF1+s8F6qPZfLhcPhwOVyFfv+qSPvTw3vk5KSuP7664mOjmbz5s00bNiQlStX8scff5QqfK1KTqeTjIyMUq2PLr4zYMAA/v3vf1fJ/VOvXj0uuugiXC4XsbGxpTqmX79+ntpKmk7fGENmZqZnRgoREREREREREREREZHiaAR+CVwuFykpKURERJCRkcHevXsZNGiQr8sSqTB3mP3++++zdetWz/uZmZkABAQEYLPZePXVVz0j7wcOHOjZLzU1lVtuuYVPPvkEgIYNGzJnzhxuuummqj2RUpozZw6//vorJ0+eJCAggOzsbM9IeGMMY8aMoXnz5lVakx7KaMCUAAAgAElEQVQE8g9Lly6lQ4cOrF+/nlmzZpVqhobrr7+eFi1asHDhQkaMGMHAgQM9sylkZmYSHBwMQFpaGpdffjkDBw70vCciIiIiIiIiIiIiIlIUBfglyM7OxhhDTk4Ohw4dwuVyFTrNvkh1s379eqZMmcLvv/9e4r7uafPd67WnpKTQsWNHjh07RsOGDZk6dSp///vfadiwYWWXXS6ff/45Tz75ZLH7HD58mLi4uCqpp0ePHixYsIBbbrmlSvo7E6xdu5Zp06Z5XsfHxzN06NBSHWtZFoGBgWRlZdGlSxdiY2O54YYbij3GGMOll17K6tWrOXr0KGvWrCly33Xr1tG3b18F+CIiIiIiIiIiIiIiUiIF+Hns27fPM8LYsizuuOMO+vTpwyWXXMKHH37IK6+8QlBQEN9++22F+nFPUR4SEqK146XKrVy5knHjxnmC+65duzJixIhCRw8DnHfeefnWLs8b3g8fPpx58+bhcDjIyMjgxIkTfrmmu/vBg86dO3P//fcDuec5f/58tm/fTlBQEAsWLAByfz+dTie1a9fGZqucVUYuu+wyfvvtt0pp+0yzcuVKYmNjOXr0KAAtW7Zk3759TJgwAaDEEP/YsWN069aNrKwsunbtSlpaGhMmTGDBggVcdtllXHLJJfm+p40x/Pe//2XTpk0cPHiQyMhIHn74Yc477zwCAnL/ST1+/Di///47zzzzDC6Xi6ysLG677TbWrl1bSVdBREREREREREREREROFwrw8wgLC6NLly4AfPvttyxYsIDLL7+c3r1788QTT/DJJ58QHR3Njh07KtSPw+HwBIruKbxFKtvKlSsZP368Jzju2rUrCxYsyBfOQ27YXVQI7w4784b3gGfK8Zo1a1biGVRcq1atuOaaawAYNWoU27dvp27dunz11VfUq1cP+N/SAlXxMIL7YYGgoKBKe1jgdHXq/XzllVcye/ZsmjRpwq5duxg4cCATJkwgOzubhx9+uNDr676fU1NTGTJkCDNnzsQYw0cffcTcuXNZvXo1H374Iddccw0dO3bkhx9+YOPGjSQlJREREcHMmTMZNGhQge/xjz76iAkTJtCoUSPi4+O54oor2LFjB2lpaYSHh1fJ9RERERERERERERERkepJiVEeDRs2JDY2ltjYWB599FEyMzNZvnw5V1xxBbVq1WLZsmVcfPHF7Nixg5MnT5Keno7L5SpzPyEhIYSFhRESElIJZyGS3y+//EJYWBgxMTH89ttvdO/end27d7Nu3boC4X1xUlJS6Nq1a4HwHsBmsxESEpIvJHW5XOX+Hals9913H/Hx8QXCe8h9GCE0NLRUDyP06tWLsLCwfFO3l4X7YQGn01mu489ESUlJBe7nzz77jPj4eJo0aQJAhw4dWLNmDQEBAUyePJmFCxcWaCc5OblAeA+5s690796d9evXc8cddxAaGsrq1auZMGECL730Eunp6dx44408/vjjDBkypEB4v3PnTkaNGkX9+vVZtWoVTZo04brrrgPg1ltvrdyLIyIiIiIiIiIiIiIi1Z5G4Ofx/fffc/XVV+d776233uKtt94iJCSEtWvXMmPGDI4fP86ePXto2LAhLpeL0NDQIqfCL+x9u92ukfdS6bZs2cLRo0cZOnQoOTk5AISGhhIVFeWZ+ru03NPmp6amcscdd/Diiy8Wul9qaqrnZ/e0+qGhoZ6HVerUqVPicacqbkaA4tosyn333ceKFSuoW7cuP/74Y77wvjS2bNniaWf37t0APProo0ydOpXhw4cze/bsUtdau3ZtTpw4Qc2aNf1uBH5SUlKR25KTk4mIiCjzNqBM911ec+bMIS0tjWnTpnkeCgkODiYwMJB///vfDB48ON/+7hB/4MCB3HvvvZw4ccIznX5hI+9PZYyhadOmJCcn53v/+PHjhISEcO211xY4ZufOncTExBAcHMzNN9/Mp59+CuTODrB+/Xp27NjBihUrmDRpUrmugZRfVFQUlmUVua06KelcDhw4ULUFiYiIiIiIiIiIiIhX+Vdi5MeCg4NxOp2edcMTExM1il78Wt7wPjo6msWLF9OhQweWLVvG0KFDmTVrFmlpaSW2c+qa90WF96dyj2R3T69fGi6XC4fDUWmj9tesWeMJ708deV8W7vDebrfz7LPP0rhxY7Kzs3n55Zdp2LAhc+bMKVU7NpuNsLAwvwvv/VHe8L558+bExsbSokUL3nvvPSZPnsy8efM4fvx4vmPc93tAQAATJkwgPj4+X3g/YMCAAuG9y+Vi7ty5tG7dmscff5ysrCxuueUW/vzzTx5//HGCg4NZvnw5bdu2Zdy4cZw4cQL4X3hfv359RowYke9hDbvdzoUXXgjAkiVL/HJWitPdgQMHMMYU+qe6Bd7FncvBgwd9XZ6IiIiIiIiIiIiIVJBljPF1DX7DsqwiL0Z4eDhnn302QUFB7Nmzh9GjR+cLfooagS9nDsuydhhjOha2rWPHjuarr76qslp++eUXoqKiPOF93unuv//+e1asWMG2bdsIDw9n9OjR3H333dSuXRvIP+L91PB+3rx5xY54zzuSPikpqcBo65JG4DscDg4fPsyKFSsICMidICQ7O9szY4XNZmPYsGFERkZ61o4vLoR3t/vBBx94RmjnDe/LOnof4IILLvCE9/Hx8TRo0ACA/fv3M2nSJA4fPgxAYGAgEyZMYNy4cZ617hs2bFiusL64ewsq5/7KOwL/v//9L2+//bbntcPhICQkhJycnALffe5tf9XNjTfeyNlnn+3ZXp4R+L/88gtnn322J7wfM2aMZ9uhQ4f48MMP2b17N7Vr12b48OFER0d7ajh+/Di//vorTz31FJD7uWRlZTFkyBAmTJjgmS3A5XIxb948XnjhBRwOB3a7nZiYGBYuXJhvOQWXy8WTTz7JM88849mva9eubN++nQYNGrBq1So2bdpU4OGunJwcJkyYgDGGQ4cOeab79wfl/e6yLAv9N4R/Ke9nUpHPsrhjS/ruEhEREREREREREZGCTqsA37Isyxhj3H+X4/gijwkKCuLee+9l9uzZtGrViubNm+cLtBTgiz8F+O3atSMxMZGIiAjefPPNQvdJT09n6NChpKenc8MNN3hG1rsD/MLCeyh+ynp3YP7ZZ5/Rt29fYmNjmTJlimd7SQG+y+Wia9euJCYmFtlHYGAgBw4c8EzP37hx4xLr+fzzz+nTpw9BQUF8++23ntC/rAH+t99+S9u2bQFYtWoVZ511VoF9atSoQb9+/TyzG7z77rtccMEFZGRk0KhRo2KXAyiKrwP8c845h5MnT5arnRo1arBv3z7P6/IE+K1ateK7776jadOmxMbGFtgeEhJCVFQUEydOZM+ePSW2d+655/Lhhx/mm+5//vz5zJ49G7vdzoABA5g2bRrnn39+kW0cPHgwX+AP0KZNG1atWsW6desKnZ1l6tSppKWlcdttt7F06dLSnn6lU4B/+lCALyIiIiIiIiIiIlL9nW7zNrvTtAAAy7K8dn5BQUHExcXRqVMnfvrpJ1q1auWtpkW87tlnnwVy1yM/dcr79PR0VqxYQUxMDOnp6fTt25eHHnoo3z55w/uYmJh8I/hL48MPPwQgPj6+TMfZbDY++OAD2rRpQ4MGDWjQoAH169f3/BwVFcWcOXPKPD3/ZZddxuHDh/npp5/KPW0+5Aa04eHhANx1113k5OR4thlj+Pzzzxk7dixpaWmEhoYCudfbXW/ekdzVyYYNG4iMjKR+/frUr1+fevXqUb9+fSIiIjzvnbqtfv36REZGMmPGjAr3HxMTA+CZrr4wR44c8YT3Xbp0Yfjw4QwfPpwbb7zR83OvXr0A+OGHHwrcm0ePHgXg5ZdfZs6cOSV+VjabjdjYWPbu3cvgwYOxLItvv/2W9u3bs3jxYk+o7/Z///d/pKWlYbPZmD59etkugIiIiIiIiIiIiIiInDECfF2At1iW1Q+YZFnWN8AflmUtMcYcsCzLZoyp8ILDLpeLX3/9lQceeIAvvviCbt26VbxokUrSq1cvpk+fziOPPEJcXBwAQ4cOJSEhgTfffNMT3E+YMIHo6Oh8x7rXCHeH988//3y568gbcJdWcHAw27Zt87zOO6V/XoWNcC6pXZfLhcPhICgoqNzrzickJDBo0CDS0tIYNGgQCQkJbN++neXLl/Pdd99x9tlnM3/+fHbt2uUZZW2z2QgJCam2a923adOGTz/91LNsQUpKimfk+qnyjmo3xuB0OjHGYFlWufufPHkyTzzxBCkpKRw+fLjArAt79uxh0aJFAIwcOZKHH3640HoyMzP58ssvueWWW5gwYQLp6enceeed+doqa502m41nn32WmTNnEhsby7p160hKSmLy5MlERUVx5513snTpUn766SdsNhuTJ0+mUaNG5bkMIiIiIiIiIiIiIiJyBqieadIpLMtqCTwPPAK8CmQAqyzLOtcY4ypuJL5lWXdZlvWVZVnFzj+dkZFBz549SU1NxWaz0blzZ6+eg5x+8t5b7tG9Venyyy/3rPsdFxfH3//+d1555RUuuOAClixZwsqVKwuE9ykpKXTt2tUr4b0/cjqdZGRk4HQ6y92G3W4nISGB8PBw0tLS6NGjB4888ghpaWmMHz+er776iptvvrnSw/qqvr+cTicOh6NM1648xxSlR48eAAWmnk9MTCwyvD9VUFAQl1xyCWvWrCEgIIAnn3yyzLNE5GWMITMzE2MMdrud+fPn89NPPxEdHY1lWRw8eJDJkyfnC+/dMzhUxC+//EK7du3YuHFjhdsSERERERERERERERH/cloE+MAfwLvGmC3Ap8B0IAFYYVlWVHEj8I0xS4wxHUtao9UYw7Rp0/j444+58MILy7x2tpx58t5bDRo08EkNV1xxBdOnT/eEyYGBgbRs2ZLIyEjS09Pz/UlKSuLiiy8mNTW13OG9u63s7Gwg9/cmbx/elp6eTmpqapF/TlXWqfeLYrfbiY+PzzcKvVGjRlxwwQU4nc5818DhcFTK+Vf1/RUUFERISEiZrl15jilK586dsdvtpKSkcODAARwOB19//bUn0C8pvIfc0fXBwcF06NCBNWvWYLfbmTBhAi+++CKZmZkA/PnnnyQnJ5OcnFxiTYU9oGC327nxxht55plnuOiii7DZbAQGBnolvJ8zZw6PPfYYZ599NomJifTu3Zvbb7+dOXPmMGfOnAq1LSIiIiIiIiIiIiIi/qFaT6FvWdZlwLnkBvhXWJY1zhgz569ts4Eg4GbLsmYALmOMKUv7AwYMIDY2ll69etGtWzfat2/PF198wZgxY7Db7d4+HRGvuuqqqzx/33vvvYwePZq4uDiWL1/O6tWrGTt2LA8++CA2m42UlBS6devmCe9fffXVcvXpnuq+Ro0aQG5gWtj096cq7oGYijwsUxkP2rivq8vl4sCBA7z11ls8+OCD7Nq1i5tvvpmuXbuyYMECzzUICQkp1TXwN5GRkUVuO/vss8t1XEUMHz6c1NRUZs+ezbp163j88ceZPHkykBveL1y4sEz1REZGsnbtWgYOHMiTTz5J69atAahVq1aRywOcerzL5eLEiRPUrFkz34wLkyZNAuDBBx8s0zmWJC0tjWnTpuFyuahduzbHjx9n6dKljBgxgrZt23q1LxERERERERERERER8Y1qOwLfsqzrgCVAL6Af8DgwwrKsUQB/jbrfDvzNGJNTmvC+ZcuWvPPOO7zzzju8++67TJs2jSVLlpCVlcXYsWP5/PPPcTqdngBPpLoICwtj+fLlHDt2jOHDh+N0Onn66aeJjIzk0UcfpWPHjhw7doyhQ4cyb948X5dbLdhsNsLCwoiJieHw4cO89tprnHXWWXzyySdER0ezYsUKX5d42hk7diyBgYH8/PPPjBgxAijdyPuiuEfiBwQEsHfv3jIf774HKnu5BMidNt8d3jdv3pzHHnuM7t27A7nLCiQmJlZ6DSIiIiIiIiIiIiIiUvmqZYBvWVYEMBq4yRgTA9QGHMBYYKJlWaMsy7KAxsD5lmXV+ut1sYKCgmjWrBnNmjUjKiqKtLQ0Vq1axYABA2jWrBlbt27Fsiw6d+5cmacnUmncQf6BAwcYMmQITqeTBQsWeML7qVOnemW98iNHjgC508dXJpfLhcPhwOVysWPHDu655x4OHz5cqX0WZdiwYXz33XcsWbKEs846i6ysLADN1uFlo0aN8vxckfDezR3iu7lcLso4WUuVOP/88z3h/ZgxYwDo16+fJ8RftmyZL8sTEREREREREREREREvqa5T6J8EQoBWlmUlAV2ACGAv8DlwOxANdANuNMb8WZ5OUlNTyc7O5tJLL/W8Dg0NrZRpuUWqUlhYGIsWLWLWrFls2rSJyMhILrroIpxOp1fWK1+/fj2Qu0Z9Tk5OpYXYTqeTjIwMAFq3bk2XLl2oivXgizN48GAGDx7M2rVrOffcc2nVqpVP6zndxMbG0qVLF1JSUujVq5dX2uzQoQMbNmxg7ty5REdH43Q6CQ4O9krb3rBy5UrPff6Pf/wj37aLLrqIzZs360EREREREREREREREZHTRLUM8I0xaZZlzQceBsYDy4wxUy3L6gn0AOYDXwG1jDFHfViqiF8LCwtjwIABntchISEVbnP9+vUcP37c83rkyJEsWbKkwu0Wxv2wQVBQEDabjWHDhlVKP+WR97qK91iWxSWXXOL1dqOjo1m6dKnXHmLxpvHjxwMQHBzM+++/71k+AHKnzwe49tprvdafZVl3AXdB7gwSRU1gExUV5bU+pfI1a9aMgwcPFrqtIp9lVFRUkfeIiIiIiIiIiIiIiJRdtZxCH8AY8ya5Yf1WYOdf770PnAtEGGMyFd6LVL2xY8cCeEL7hIQEcnJyKqUvm81GSEhIlaxBXl55p/kX/2ZZFsHBwX4VRq5cuZLffvuN7t27061bNxITEzl06BAAhw8fJiUlhYCAAHr06OG1Po0xS4wxHY0xHXNycjDGFPrnwIEDXutTKt/Bgwcr5bM8cOBAke2KiIiIiIiIiIiISNlVyxH4bsaYY5ZlbQZutCwrCwgGooD/lKe97OzsfOtn//7770Du1Pm+WldbpDipqanFbq/q5R7mzZtHWloatWrV4txzz6VNmzZ8++23/POf/2Ty5MlcddVVVVpPZSjumqenpxMWFpbvvbzT/FcnSUlJxW6PjIys0j6Tk5OJiIjwep/+pLDzj42NBeCpp55iw4YNfPzxx7z33nsMGzaMl19+GYCrrroKh8NRpbWKiIiIiIiIiIiIiEjlqNYB/l8+I3fU/SQgE7jNGHOgPA3VqFGDxo0be147nU4gNwTN+75IdVdZwf7s2bMBeOihhwCYMWMG119/PZs3b2bixIle76+qH1AoSVhYWIGaateuzYkTJ6hZs6aPqqoYY4xnWnlfjkyPiIjw+kMDlfEQgjetXbuWo0ePcuWVV9KkSRPuvvtuHA4Hc+bMoW7duhw7dozAwEDPNPoiIiIiIiIiIiIiIlL9+e+806VkjEk1xswH+gODjTHlGn0vIhWTkJBAeno6tWrVonPnzkBueN2mTRuMMcyYMcPHFfqGzWYjLCzMr6f5L47T6cThcHgeaJKqM23aNOB/D8YA3HbbbdSuXZvRo0cDcP/99/ukNhERERERERERERERqRzVM1EqhDHmT2PMcV/XIeILqamp3Hrrrezbt89nNdxzzz3A/0bfuz3zzDMAbNmypapLqjTude0/+ugjxowZ4+tyKlVQUBBTp07lyy+/rLI+09LSGDlyJPv376+yPv3Npk2bOHr0KAA9e/akbdu2tG3bliuuuILMzEwAAgICTvv7T0RERERERERERETkTHM6TKEvcsZzuVxceumlBAYG+rqUAnJycnxdgte517Xv2LHjab/2uGVZ9OnTh8svv7xK++3UqRPBwcFV2qc/qVOnDq1bt/Y8xGCM8SxhEBgYSHBwMFOmTPFsczqduFyuajvTg4iIiIiIiIiIiIiI5FKAL3IaCAkJ4cYbbyQ0NNRnNSxevJhBgwYxc+ZMzxT6AI888ggAV199ta9K87qgoCDP33379vVxNZWvZ8+eVdpfeHg4t956a5X26W8uueQSNm7cCPwvoA8KCvKE+Hm5lzk4ceIEYWFhVV2qiIiIiIiIiIiIiIh4kYbqiZwGgoKCCA0N9QTLvvCPf/yDsLAw/vzzT7Zt2wbkToX+7bffYlkWDz/8sM9q8zabzUZISIhGO1ciYwyZmZkYY8p03O+//87vv/9eSVX5hmVZBAcHFxreQ+7vf0hICDVr1qziykRERERERERERERExNs0Aj+P7OxsDh8+7HntDoFSU1PzvS/ib9yBcl7p6elF7p+enl7kSN3itkHu1N6FOXHiBCNHjmTWrFk8/fTTrF69mokTJwLQrVs3srOzSzoNEQ/3qHKgxKn058yZA0BiYiJLly4FYMSIEbRt2xaAcePGFXpcUlJSvtcljXQ/VWRkZIn7VAV3wK8HSkREREREREREREREqj8F+HnUqFGDxo0be147nU4gN7DM+76IvygqTPeFmjVrEhsby5IlS0hLS+PQoUP897//xWaz8eabb2K3231dolf40zWvTL4Ip/P26XK5OHHiBDVr1ixVMJ03vAdYunRpvhC/NMry0EBl8JcHAkRERERERERERERExHc0XE9ECnC5XDgcDlwuV6mPcc8CMH/+fADuvPNOAAYNGnTahPdSdWw2G2FhYWUO77t370737t2B3BA/MTGx1H26p6L35VIUIiIiIiIiIiIiIiJyZtMI/GKcuvZyWddiFvEXAwYMYMuWLeU6dtiwYSxYsKDU+1933XWEh4eTlpYGwKJFi8rVr0hpfP755/nC+379+nm2bd68maVLl3LXXXfRqVOnYtvZv38/vXv39ozAP1WzZs1Yvnw5zZs3917xIiIiIiIiIiIiIiIip9AI/GK8/vrrADRt2pRjx47xxhtvKLyRaik5Obncx27YsKHMxyxcuJAWLVowevRojb6XSvX+++8DuevAd+7c2fN+586dPevYb9y4scR2EhMTycrKKnL7gQMH+Prrr8nMzNTDXCIiIiIiIiIiIiIiUmk0Aj8Pp9PJgQMHANi1axevvvoqw4cPJzo6mpEjR3L06FHefvtt3xYpUg6ffPIJDoeDjIwMQkNDycnJoWbNmjidToKCgvJNU56enk5YWFiF+uvbty99+/ataNkiJZoyZQqvvPIK+/fvZ9q0aUyePBmAadOmYYyhefPmTJkypcR2+vfvT//+/YvdJzMz0zNCPzg4uOLFi4iIiIiIiIiIiIiInEIBfh4//vhjvtCxffv2jBs3jqVLl7J161YWLlzIhRde6MMKRcrPva53UFAQJ06c8KxZL1LdjRkzhgULFrB//36efPJJAE94P2bMGK/1k/d3SEREREREREREREREpDIowM+jSZMmjB07FvjfdMy7d+9m3rx59OrVizvvvJOcnJxCj9U04eLvFNiXXmpqarHb69SpU+V9lkdSUlKx2yMjI73ep6/kDfEBr4f3kPvvQkVH3p9Jn4mIiIiIiIiIiIiIiJSdAvw8GjVqxAMPPOB5/ccffzB48GCaNWvGa6+95llPWaQ6KC5kLu+2ivQpUlnGjRvn+Xv9+vUAXHfddSUep7BcRERERERERERERET8jQL8IrhcLm699VaOHj3Ktm3bqF27tq9LEhGREpQmuBcREREREREREREREfFXCvDzSElJIT4+HoAvvviC9957jwULFnDhhRcWOXW+iJzePv30UwA6d+5cZX2+/vrrfPXVV15t8/jx4yQkJHDbbbd5tV0pv/3797Nr1y4GDBjg61JERERERERERERERMRPKMDPY//+/dx8882e10OGDOHuu+/2YUUi4muDBg0C4MiRI1XW56hRozDGeLXNSZMmsW7dOho0aED//v292raUzy233MKBAwcU4IuIiIiIiIiIiIiIiIcC/Dzatm3L6tWrAbDZbLRo0ULr3ouc4bKysqq8T2MMZ511FgsXLgTghhtuqHCb27ZtA2Dv3r0K8P3EgQMHfF2CiIiIiIiIiIiIiIj4GQX4edSoUYOWLVtis9l8XYqI+JjL5cLpdPqs/7/97W9cc801Putfqo4xBqfTSVBQkK9LERERERERERERERERH1NSnYfL5cLhcJRqv4yMDFwuVxVUJSK+4HQ6ycjI8HUZbl7/rjbGkJ6eru8xP+B0OnE4HD59YERERERERERERERERPyD5e11lqszy7L+AA6UYlcbYAdygMpOv+oDf1RyH+Xhj3X5uqYoY0yDwjZYlnUUOFjF9fjyeviqb2/3a6P0v+OVdc42cu+tiKJ2KOf9VdbvMV98pmdCn+7+ynKveatPt3zfXZZl3QXc9dfL84HvqqiuvHz9fa4avFNDkf8uioiIiIiIiIiIiEjhFOD7OcuyvjLGdPR1Hafyx7r8sSZf8uX18FXfZ+I5VxVfnN+Z0OeZcI7l4Q81qgb/qUFERERERERERETkTKIp9EVERERERERERERERERERPyAAnwRERERERERERERERERERE/oADf/y3xdQFF8Me6/LEmX/Ll9fBV32fiOVcVX5zfmdDnmXCO5eEPNaqGXP5Qg4iIiIiIiIiIiMgZwzLG+LoGERERERERERERERERERGRM55G4IuIiIiIiIiIiIiIiIiIiPiBAF8X4E8iIiLM2WefXeD9Y8eOcfDgQdq2bUtwcHCZ2ixshgOXy4XL5cJms2G328tdr/iXHTt2/GGMaVDYtvr165tmzZpVcUWnh6ysLM/Pe/bsAaBdu3ZYlgVAYGBgicceOXKE33//nYCAAFq3bu3ZXtSxhfXZvn37Eo+rLMXdW+Bf95cvrp27T2MM33zzTZX0WV7+dm9B8fdXvXr1TNOmTfn1119JTk6mWbNm1KpVC6jczxL85/r4k4p8H/qC/l2UylLSv4siIiIiIiIiIiLVmbRpdj8AACAASURBVKbQz+PCCy80H330UYH3V69ezV133cV3333HeeedV6Y2T548WeA9l8uFw+EgJCTE7/5nu5SfZVk7jDEdC9vWsWNH89VXX1V1SaeFpKQkz8/uB2wOHjzoCawiIyNLPHbWrFk8//zz1K9fn507d3q2F3VsYX3+/PPPJR5XWYq7t8C/7i9fXDt3n8YYoqKiqqTP8vK3ewuKv7+io6PNv/71Lx599FGWL1/O8uXLufrqq4HK/SzBf66PP6nI96Ev6N9FqSwl/bsoIiIiIiIiIiJSnWkEvg/YbDZCQ0N9XYZIteUOq0Ty0n0hZyLd9yIiIiIiIiIiIiKnFwX4ZeByuXxdgsgZLTg4mMzMzDIf16BB7iy755xzjrdLkmKU9/M6U1SH67Nnzx7yLi0TEKD/bPAX1eH+EREREREREREREZGy0/+JL4W//e1vQO40vq1atfJxNSJnrnfffbdcx8XExHDppZdSu3ZtMjMzCQoKKnHUqjEGp9PJ5s2bNcK1nN555x2ysrIwxlTZNSxsGRR/5b6f3fdaUFCQjysqKDg4mJYtW2JZFnXr1uXyyy+v9D7d10OKV97vQxERERERERERERHxbwrwS8Ed2icmJtKzZ08fVyNy5mrRokW5jgsICKBNmzZkZmbicDiA3GCyOE6nE4fDQdOmTUvcVwrXtGlTHA4HTqezyq5hee8RX3DXmve+9DfnnHMOa9asqdLfAffvnhSvOt3rIiIiIiIiIiIiIlJ6p02Ab1nWVcBZQIAxJs6bbUdERFC/fn0SExO92ayIVDH3COfSjHQuy75SOF3D0vHn62Sz2aq8Ln+8DiIiIiIiIiIiIiIiVeW0CPAty7oaiAOeBYZYltUZmGaM+bUUx94F3AXQuHFjfvnll0L3a968uQJ8KZO891beNaSrSlJSUrHbIyMjT4s+y8KyrFKPJC7Lvm5Vef6+vL+KO8/k5GQiIiKA8l1Db0tOTi52e1X/HuS9Pm7+cJ3yyntvNWnSpEqXkCjs88r7nj99b/n7952IiIiIiIiIiIiIVE/VPsC3cpOFPsBMY8xcy7IWAC8DEyzLmm6MOWJZlmWMMYUdb4xZAiwBaN++vSlq5N/555/P+vXry7yWc0BAtb/EUk55762OHTsWev9JySoSgpX32OoQvPnr/RUREVHl1686fF5uvrg+ZXXqvVWV9Z76cENR752p/P3eEREREREREREREZGKs/m6gPL6K7jnr2B+J3C+ZVkNjTGZwJ1AQ+CxPPtUSMuWLTl+/HiRI/RFREREREREREREREREREQqotoG+EAEgGVZAeQG+KFAtGVZIcaYE8BtQCfLsq7zRmctW7YE0DT6Um0YY8jMzMQYQ//+/Vm8eHGV9Z2WlsbIkSPZv39/lfXpb/bv38/IkSNJS0vzdSmVxhjDmDFjuO+++3xdSql8+umnjB8/vkr7vO+++6rN9RFYvHgxL7zwgue7s7Q+++wzrrjiCnbt2lWJ1YmIiIiIiIiIiIjImaBaBviWZfUBXrcsaxlwP7AP+AgYA3S2LKuxMcYBfAjkeKPPBg0aACWvpyziL5xOJw6HA6fTye7du3n66aertP9OnTr51breVS04OJhOnTr5uoxK5XQ6Wb9+PWvXrvV1KaVy2WWX0bNnzyrtc+3atdXm+ghcc801dOnSxfPdWVrr1q3j0KFDXHfddQrxRURERERERERERKRCqt0C7ZZlXQs8R+40+Y2ArsBFxpillmUFAUOBAMuyfgFuAl7yUr/eaEakygQFBeX7OyfHK8+ylEp4eDi33norkDtK2+l0euo4UzRu3LjANXC5XNhs1fK5qUJVp8/UGMPJkye59tprq7RPqThjTJX9G9yy5f+zd+fhUVX3H8ffNxOSTBIIJizGiIAgBSI2uBtcEAFBlK0ogrUKiK1KRREILSiloBZBEERrtYCglLWANKICxmoVEBT5yaLUBUPYISFAkslAMuf3RzrXhGyTdZLweT0PD5m5y/nee8+94eF7z/e0Ltczy+Fw2D/379+flStXar56ERERERERERERESmX2phJ6gE8Z4z5xBizDLCAgQDGmL8CM4EVQDZwmzHmv36LVMSPLMsiJCTE7y+f5K8EcL7ynoOsrCx/h1Kp/N23ysIf/fB87vOVqbrPY3menR6PB4BBgwaRk5ND//792bp1a1WFWGtZlvWwZVlfWJb1xbFjx/wdTp3UokULLMsq9k+LFi38HaKIiIiIiIiIiIiUotaMwLcs63KgHvA3IP//5m8Absv3+RtjzA5gTVnbOHv2LEePHi1ymUrnS1VJSUkpdllqaipRUVHFLi9phGdRfTb/d9U1OvTcSgDnI++xh4aG+jmSyuGPvlXSfeJLm9XZD73nIv8IfH/ce7VRUX0rIyODzMxMoGadu/yxnj17FoAbb7yR1q1bM3nyZOLj41m5ciVxcXFFbl+TjqW6GGNeB14HuPrqq1WiogokJyeXWP2jNr14JSIiIiIiIiIicr6qFQn8/815/wKwFzDAI/kWu4AW/1tvEBBlWdargDFlrF9cr149mjRpUuQyb/JApLLlL9dc2n+sl2XdohL/YWFhPm1bXudjQiq/8+X4o6Ki7L6Y/7vq5kupc39ck8jIyEJx+eP81EZFnafw8PAa+dzKH2tISAgADRo04K677iI8PJyEhAS7nH5cXFyZnt8iIiIiIiIiIiIicv6q8SX0LcvqDMwChhljegMeoH2+VY4BxyzL6gOMA9YZYzxlTd6L+EtZSntXtAz4+V7KXiqPty/WhBhqWp+uqXHVVrXxXA4aNIipU6fa5fS3b9+ufiEiIiIiIiIiIiIiPqkNI/CPAL81xmyxLOtC4DrAsizrHuA/wFagP3AZMFhz3kttk7+0d1JSElOmTLHnX87JySEw8Ofb9IILLuC1114rdxlwp9N5Xpeyl8rjz340depUevbsSYcOHfweS1E0bUTlqk3PrSeffJLo6Gj7c1hYGJmZmfTu3ZukpCQuvvjiWnMsIiIiIiIiIiIiIuIfNT6Bb4z5Bvjmfx+HAa8aY6ZYljUE6AlsBw4CvzPG7PJTmCLlZlmWXX75X//6F99//32J63/11VfcdNNNZWrj1ltv5fLLL7fbEakob7+95557qr3tPn360KhRowL3Tk2SPy5/nJ+64ve//z07d+6skdf4XNdccw2rVq3i+PHjHD9+vMh1duzYQevWras5MhERERERERERERGpbWp8Aj8/Y8yz+X6eb1nWvUAa0F4l86UuePHFF/nmm2/YvXs3sbGxLFy4kMaNGwPw9NNPs2DBAnJycsq83wULFlR2qCIATJ8+vdrbbNu2bbW3WV7+OD91xZgxY/wdgs/69OlDnz59/B2GiIiIiIiIiIiIiNQBAf4OwFeWZVnnfP4V0AjQfPdSZwQEBLB27Vrat2/Prl27uO+++/B4PP4OS0RERERERERERERERESqQa0Zge9N0luWFQz8GhgFDDTGHKqsNs6ePcvRo0eLXJaamlpZzYiUyJvEv+OOO9i9ezc9evRg0aJFZGdnA3D69Gm7PzZr1syfoUoZzZgxA4B3332XpKQkWrVqxaOPPmovHzVqlL9Cq9VKej6npqYSFRVV7PLqvodK+12ie7p4dencJSYm4nK52LVrF/Pnz6d+/fpMmDABh8MB6FkgIiIiIiIiIiIicj6rNQn8fDzAIaC/MWZPZe64Xr16NGnSpMhlmZmZldmUiK24pNOOHTvo0KEDu3fv5je/+Q1XXXUVAPXr1y8xIVnafsW/vMl7gB9++IE5c+YwYsQIP0dVNv7oW+Vp0xjD2bNnMcZwThGXKqV7r/xKO3fGGNxuN8HBwdV6TYtSkevsTd7PmzcPgFOnTjFp0iQmTpxoJ/FFRERERERERERE5PxUa0roexljzhpj1lZ28l6kpjm3nP5bb73l75CkgvIn7++9914CAgLYu3cvc+bM8XNkdZPb7ebMmTO43W5/hyKVxO1243K5av01zZ+8v/XWWwkLCyMzM5NJkyaRm5vr5+hERERERERERERExJ9q4wj8KpOens6aNWsAsCyLTp06ERkZ6eeo5HxmWRYrV66kf//+7N6929/hSAWMHz/eTt4PGzaM9u3b06ZNG6ZMmcLevXt59dVXVTa7EmzatIl3330XyBut7XK5cDqdWJaF2+2mWbNmPP744/ZIbo/HQ0CAf95l27dvH1u2bOFXv/qV30eT1xbBwcEA5ObmsmDBAh544AE/R1R2H3zwgZ2879KlC7169aJnz55MmjTJTuKPGTPGz1GKiIiIiIiIiIiIiL8ogZ/P/v37eeqpp+zP/fv3Z+rUqQCEhIQAcOTIEb/EJucnt9uN2+1m5cqV9OnTh59++ono6Gh/hyXl8NJLLwEQGxtL+/btAYiIiOCee+5hyZIl/PDDD/4Mr8743e9+x4kTJ0pcp02bNnTu3BmXy0VWVhbh4eHVFF1Bp06d4tprr8Xtdtu/Y6RklmUREhLC9u3b6dmzJwcOHCAmJsbfYZWJ998ZDRo0oFevXgA4HA6eeOIJnn32WTIzM9m9e7f9nBARERERERERERGR80utK6FflS677DLWrVvHunXr6NmzJxs2bODMmTMAREdHExsby6pVq/wcpZxPgoODcTqdOJ1O1q9fz3fffUfbtm39HZaUw9KlS4G80tneEeK7du1iyZIlQN5IXKm4nJwcHA4Hb731Fm+99RavvPIKs2bNomnTpgQFBQEwZswY+94KDQ31W6yxsbE0adLEHlUuvouLi6NJkya1LnkPeSPwAwICOHXqlD19xsmTJ3n++ecBuPTSS5W8ryItWrTAsqwi/7Ro0cLf4YmIiIiIiIiIiIgASuAXEBwcTMuWLWnZsiX9+vXj1KlTbNy40V5+99138+mnn3Lw4EE/RinnE+9oU5XXrv3uvPNOhg4dCkBSUhLz5s0rVEZbKkdoaCi33HILt9xyC61atWLmzJlkZmaybNkyIiIiOHnyJOvXryckJMRv5fNB9/f5KiYmhgkTJhAQEMDevXuZOXMmU6ZMwePxcOmll/LYY4/5O8Q6Kzk5GWNMkX+Sk5P9HZ6IiIiIiIiIiIgIoAR+sTp16kT9+vV577337O/uvvtujDH885//9GNkIjVfYmIiYWFhjB8/3t+h1CixsbF2En/Xrl2AkvdV6dChQwwfPpzjx4/z9ttvc+WVVzJt2jSAAtOliFS3iIgIO4m/f/9+Je9FRERERERERERExBbo7wBqkjNnzrB//3778w033MC6dev43e9+h9Pp5Prrryc2NpZly5bxyCOPFNg2MFCnUipfs2bNyr1tSkpKle27ODNmzGDXrl32yPLnnnuOzZs32wnqUaNGFbldSkoKxhjcbjfBwcGFRiRXRaz+4D3+fv36kZiYSHR0NBMnTgTyzkFp16ys/NEHaopDhw4xcOBAjh49ym9/+1t++OEHfvjhBwCcTicnT57kmWeeYf78+dUaV227p8+cOVNsu+Vtr6TjSE1NJSoqqtjlJbXp3W9xz5LitvXHefU+Cx5++GGeeeYZHA4Hr7/+eqW3IyIiIiIiIiIiIiK1j0bgl6Bz585kZGTw5Zdf2t8NGDCAzz77jB9++AGPx+PH6ERqnvzJ+9jYWCCvXLx3zveSuN1uXC4Xbre7SmOsCe68805ee+01O3lfEmMMVMGz2hhDRkZGnXyOeTweBg4cyPHjx3nwwQdp3rx5geUDBw4EYOnSpf4Ir1bxlhevTWrTsyQmJoa5c+cqeS8iIiIiIiIiIiIiNg0bL8HVV19NWFgYH3/8MTfeeCMAv/rVr5g0aRLLly/n97//PWFhYX6OUqR43pGo6enpNGrUqEorRSQmJhaa092b0E9KSgKKH4EPEBwcDEB2djZut5uIiIgqi7Wm+/bbb/nXv/4FQG5uLoCjMvZ74MABYmJigLwk56lTpwAIDw+vjN3XCB6Ph6ysLLts/s6dOwut06FDB5xOJy6XizVr1tC7d28/RFox+a9lVTp8+DBTp07F4XDQuXNnrrnmmkrd/8mTJwskr10uF06nE8i7loMGDeKSSy4p0z6Dg4M5ePAgDRs2LFc8wHn9/BERERERERERERER/1ICvwT16tXjyiuvLDACv127dlxyySVs2rSJsWPH+jE6kdJ5R6KuXr2aFi1a0KNHjypr6+677wYKzununfM9fxK/OJZlERISYieuvfs7H91xxx3k5OTk/yq3ovvcvHkze/bsoWvXrsTExBAcHEyDBg0IDQ2t6K5rlNzcXIwxBAcHl/iCVatWrdi5cyejR4+uNQl87ws5x48f58MPP+QXv/gF119/fZW2efz4cV599VUAXn75ZTZt2lQpLw54j2XgwIHs3r272PVef/11e+oDXx08eJD//Oc/HD16tMzn55ZbbgHgq6++KjSVh4iIiIiIiIiIiIhIdVACvwQej4dvvvmGX/ziF/Z3Bw8eJCUlhaFDhxIQoBkIpGbzjmrv2rUrTZo0qdK2zp49i2VZdvLeKzY2lvDwcDIyMnzaj7faxfksMTGR4cOH43K5ADh+/HiF69xfe+21hIaG2slXy7Lq1Mh7r+nTpzNq1ChSU1Pp1q0bF1xwAcOGDSM6Otpe591337VH5r/00kv+CrXMvC/kNGrUiI4dO3L55ZdXeZuBgYE0bNgQh8PBgAEDKm3Uv/dYlixZwj333MPx48eBvN+73t+tISEhjBw5ssz7jomJKff5SUtLs+MLCQkp8/YiIiIiIiIiIiIiIhWlBH4Jdu/ezfHjx3n44Yft71auXIkxhl/96ld+jEzEN95R7a1bt/Z3KD7Ln2g9X7Vv357PPvvM/lzWEuJFCQgI4Iorrqjwfmq63r1707t3b2bPns3s2bM5ceIE06dPJzIykqFDh7Jt2za7GsTQoUO54447/Byx77wv5AQHB1fbtWzXrh3vvvtupe83/7GsW7fO/j41NZWoqKgK77+i58cbn4iIiIiIiIiIiIhIddMQ8hJ8/PHH1KtXj/j4ePu7FStWEBsbS9u2bf0YmYiIlOTxxx/n+++/p2vXrgQGBpKWlsb06dMLJO9jY2OrPI7Bgwdz3333Vcq+vC/k1IXS7jX9WGpqXCIiIiIiIiIiIiJS92kEfj65ubl2+VyPx0NSUhJxcXG43W7S09M5ePAgGzdu5JlnnvFzpLXLOXN5FxIYqG5Yl/z3v/8t9F1pfaAkqampJS5v1qxZsctSUlLKva1Uv6q4Xp07d6Znz56sX7+eDRs24PF4ePDBB4mNjcXlcpXYZnn7x4wZMwCYM2cOe/fuBWDTpk2MGDECgFGjRpVrv7VJSee1skbZV5ainjH5vyuuH1Skv+rZJCIiIiIiIiIiIiLFUeY0H6fTaZfd3bZtG2lpafzxj3+0v3vnnXcwxjBw4EAlnaXG81cCqE2bNoW+K+1+UbKqas5BbT6vxhjcbjfBwcGljoYu6TjHjx8PFJ00Ly2JWhHe5L13Pve9e/cyZ84cO4lfHv64nkFBQWVu1+PxkJ2dXey1i4qKKnafFTnG8m5b1MsENekFAxERERERERERERE5v6iEfjHWrl1LUFAQXbp0sb9btmwZl19+Oe3atfNjZCLiK2MM2dnZGGP8HYqUkdvtxuVy4Xa7/R1KmeVP3k+YMIEJEyYQEBBgJ/HruqysrFp77bz07BARERERERERERERf1ECP5/du3cTFxdHXFwcb731FjfddBP169cH8srpfvbZZ9x9991+jlKkZipplHRubm6ltPHee+8xZswYn9f3JoH37dvHE088wfbt2yslDqlaR44cYdy4cXz33XcEBwdXS5srVqygVatWLFy4sEL7+fOf/8zevXuxLIsJEyYQERFBREQEEyZMwLIs9u7dy5///OdKirpmCg0Nxel02tduzJgxvPfee36OqmzK+gLJsmXLaNWqFcnJyXby3+Px+LRtbTw/5WVZ1sOWZX1hWdYXx44d83c4PmvRogWWZZXrT4sWLfwdvoiIiIiIiIiIiNQySuDnc8EFFzBw4EAGDhzIkCFDCpRcPnXqFMYYWrdu7ccIRWquiy++GGMMGzZsKPD9wYMHcblclTLtRKdOnbj99tt9Xj84OBin08lFF11EfHx8keX9peaJiooiPj6eyy+/vNTy+ZXl888/5+zZs0yYMIHFixeXez/du3cH8kZwf/rpp/b3n376qT2auyx9uDYKCAggJCTEvna33347nTp18nNUvvnoo4/46KOP7GeHry+QzJo1i7Nnz7J8+XI7+Z+VleXTtrXp/FSUMeZ1Y8zVxpirGzdu7O9wfOZ9MaM8f5KTk/0dvoiIiIiIiIiIiNQydWYid8uyOgNNgEBjzD/Ks4/o6Gj+8Ic/VGpcIueLd955h1/+8pesX7+erl272t/PmzcPgG7dulW4jQYNGhTYd2ksyyIkJASAe+65p8LtS/UIDAys9usVFBRk/5yQkADA2LFjy7yf66+/nqFDhzJv3jySkpLs770/Dx06lOuuu66C0dYuZbln/a1Vq1b2z95nhy9cLheQ9+KGN+kfGhrq07a16fyIiIiIiIiIiIiISNWrEyPwLcu6FVgMXAKMsizrVcuyLvJxW7uca1paWpXGKXk8Hg+ZmZk+lxeurWprqeDyuuKKK7jgggvIycmxR+EfPHiQEydOEBgYWKEkleajLux8619VzTtafPz48QQGBpKQkMDf//73cu0rNjaWoUOHAnmJ+/zJ+9jY2MoJuAqpb1WM98WhgIDS/4mlZ5uIiIiIiIiIiIiInKvWj8C38rIuPYEXjDEzLcuaA8wFEizLes4Yc8SyLMsU87/jxpjXgdcB2rZta44ePVpkO6mpqVVzAOchl8tFRkYGAGFhYX6Opurk71tXX311tWdnUlJSSlzerFmzSm9z8ODBvPLKK6xbt45OnToxd+5cADp37myPUC1KSbGmpqYSFhZmb1+WUbF1mb/7V3H80e/KK/9zPTs7G4CLLrqI+fPnM2TIEIYPH05aWhqDBg0qcvuSjiU2NpYHHniAhQsXAjBkyJBakbwH3/tWafdtVFRU5QdXgurue/n7j/eFNJfLZX/vS3vecvugZ5uIiIiIiIiIiIiI5Kn1CXxjjLEs60ugs2VZTf+XsB8OzAMmAo8Wl7w/V7169WjSpEmRyzIzMyst5vPNuXOf169fH4fDQWhoqE8jFKVyGGNwu90EBwdX2bziCQkJvPPOO+zfv589e/aQnp5OUFCQXUa/PKKiooiJiSErK6vMfaYmJYuldNV9vfInmL3J0wYNGnDLLbewcuVK+vfvb5fTHzRokM/30KhRo4C8pO6cOXPq/LOuqPMSFRVVa+6/8saZv/94r6/T6fTpxQVvmx6Pp1zPNhERERERERERERGpu2rt/xZblnWVZVmO/338EQgFrrAsy2mMyQKGANdZltXbb0FKkQICAggPD1eyopp5R3q63e4qbcdbdvytt94C4IknnqjwPtVnpLrFxcWxcuVKu5z+4sWLy3wPnS/9trqeLXXR+dJHRERERERERERERMR3tfJ/jC3LuhDYBCywLCvAGLMV2AyMAG60LCvaGOMCPgRyfd3vjz/+yH333cd9993H/fffz3/+859C62ieWqmNRo8ezdatW3E6nQQHB1dpW+3atSswAnXEiBE+beedC3rkyJGMHDmyqsKTavTpp58yevRo4Ofr6y01XtN4y57nn+rBm8S3LIuEhIRqu4dqm+zsbBISEjh48KC/QwFgz549/OIXv2DevHnV8jv7xIkTdv/Jzs7WnPYiIiIiIiIiIiIiUiG1MoEPuIEk4Epg+f+S+H8F3gXuA6ZalvU8MBj4rjwN7N27l9GjR3Pq1CkAGjduTFBQEF988UWlHIBIderevTs33HADISEhVVY+3+v9998vMDd0WlqaT9t5R/GuWrWKVatWVVV4Uo2uv/56unfvDvx8fbOysvwcVdHWr18PwFdffVXg+7i4OFq1agXkJWer4x6qbSzLIj4+HqfT6e9QABgyZAgul4tnn322SqsCnDhxgr59+/LLX/7STtj/61//UjUCEREREREREREREamQWpnAN8acANYAPQEPeSPxbwA+AaYBKwAXcJsx5r++7vfSSy9l0aJFLFq0iL/97W+kp6fz0ksvARAeHs7tt9/OihUrauwIUpHidO/encDAwCpvZ8OGDfz2t78FIDo6GoBevXr5tG1wcHCNSQBK5QgMDLQT+N7rGxoa6ueoCps9ezZnzpwhICCARYsW2S9uAezfv5/vv/+exo0b061bNz9GWXNFRETw4IMP2ve8P+3evZv9+/cDcPbsWd54441Kb+PEiRPEx8fzy1/+km3bthEQEEDfvn0JCgri8OHDpKSkqEqDiIiIiIiIiIiIiJRbrUngW5bV2rKsqy3L8mb4ooB7jDF3A22Az4BWxphdxpg1xpg/G2P2lLe92NhYBg8ezKJFi9i9ezcAd999N/v37+fzzz+v6OGI1DmJiYkMHToUgEcffZSkpCRCQ0M5cOAAr7zySqnbW5ZFSEhIhWLYsmVLhbaXquO9vjVxru/Zs2cD8PLLL3Pq1Cnmz59vL/NOAfDMM8+Ua9/79u1j3759FQ9SfPLQQw8B8MADDwAwa9asStv3yZMniY+PJzIykk2bNhEQEEC/fv344YcfmD17tj31xyOPPFJnqzQcPXqUo0eP+jsMERERERERERERkTqt6ofkVgLLsu4EngNSgaOWZU0AlgO3W5bVDGgMfA4MsSxrnTHmbHnaSUtL4x//+If9+eKLL8bpdDJixAgee+wxHnroIYKCgliyZAnXXHONvV5OTk6Jo5vLO/I5JyenxOXVMaLaV7Up1rokJSWl2GWpqakF5qKvyvY2bNhgJ++jo6N5//33efXVV4mOjiYrK4upU6eyfv16tm7dWmQCN3/J/aK+a9asWZHtzpgxA4Dc3FwmTZpEZmYmgYGB3HbbbXTv3p2777672GMpZyVPsgAAIABJREFU7fwU16aUX1HX2RiD2+0mODi4xKRncdfLGMORI0do2rRpsdsXdy0TExN57733OHPmDI0aNcKyLK644gpeffVVLrroIq6//no2btxI48aN6dOnT6nH4rVw4ULS09OZO3cuJ06cAGDo0KHExsYCMGrUqGK3LUlJ9zvUjT5bkWN87bXX2L9/P4GBgVx33XUkJiaSmprKiBEj6NGjB4888kiZ21y4cCG5ubnMmzeP5ORkIO9llI4dO9KjRw8uvvhi3nvvPQBatmxJYGAgKSkpvP7660yePLm0w60VvM/ZXbt2MW/ePKBy+rOIiIiIiIiIiIiIFK3GZ1Uty4oHpgODjDFfWZb1KjAGeAL4PXmJ/X7GmHWWZS0DmgL7y9PWoUOHmDJlirddOnXqRHx8POvXr2fjxo089dRTdO/enZUrVzJt2rRqH0nq8XhwuVw4nc4aOYpVapaoqKhqSejlT95D3n1U1M/btm0jKyuL8PDwQvsoKjHr68sH+ZP3DoeDnJwcPvjgAz788EOOHDnCiBEjynI4UkFl7XNutxuXywVQrgoMbrebM2fO2C8B+PIygJfL5bKTrw8++CAul4vbbruNr7/+mvXr15OYmAjkjeL29bj27NnD9OnTSU9PB8DhcNgJ4PxJz7qgpr0w8Ne//hWAbt264XK5GDJkCNOnT2ft2rXccsstJW5b1IskaWlp/O1vf7MT/N7E/b333ovD4eC///1voedU165d7ReY6koCHwom74E62Z9FREREREREREREaorakgX+izHmq//9PBGINsZkAY8DPY0x6wCMMfcYY8qVvAdwOp106NCBDh06EBUVxSeffEJMTAzR0dFs2LCB9PR0BgwYUGQZfY/HQ2ZmJh6Pp7zNl8rlcpGRkWEnu2qq6jgXUjPkT94/+uijpa7/8ssvV2r7+ZP3YWFhPP/884wePZrIyEhycnJ44YUXaN26NXPmzCm0rTGG7OxsjDGVGpOUTXBwME6n054zvKzXJTg4mKCgIDt573K5cLvdPm27fv16cnJyiIqKsudvv/jii4mNjeXf//43H330ERdeeCGDBg0qdV979uwhPj6ebt26kZ6eTmBgID179uSFF16gS5cuQF7Sc9euXT7FJmXz9ddfc+LECQIDA+natSuQVw3E+yzYsGFDidvn7ztpaWn07duXuLg4UlJSsCyLK6+8kqlTp3LffffhcDiK3U+3bt0IDAwkLS2NnTt3Vuox+kv+5H2XLl3Un0VERERERERERESqWI0fgU9eafydAJZlOYBg4GLLshoZY9ZaltXAsqx65S2bn194eDg333wzABkZGSxYsIBPPvmEW2+9lcWLF/OnP/2JSZMmERQUxIoVK7jhhhvsbb3JdYCwsLCKhlIkp9NZ4O+aqjrOhRSUk5PD+PHjSUhIIDIyslra/Oyzzwok79u3b1/qNuPHj+eJJ56otD48ZcoUO3k/ceJEHA4H0dHRjB8/nkOHDrF06VJSUlJ44YUXeOGFF4rdT/369Xn55ZftxJRUvb179/LAAw/w008/FbtOTEyM3Z9LmqrEu8wYgzGGbt26+VTW25vUHTJkSIHvu3fvzsyZM4Gfy4eXpEePHuzevRuAoKAgbr75Znr27Gkv79WrFwBJSUn2yOVOnTqVut/i+ON+94d33nmHzz//nOeee67Udfv27QvkJdDzGzp0KNOnT2f9+vUlbu99gWTMmDG88847AAQEBNChQ4dSk/bn8o7C7927Nz/++KPP29VEmzdvLpC89/Zl+Lk/P/zww1x33XX+CrHGa968ebEVQZo3b17iM1BERERERERERETOTzV+BL4xJtcYc+p/Hy0gHThhjDluWdZ9wFQgqLLbDQ8Pp3Xr1hw8eJAmTZpw6aWX8tFHHxEREcFVV13F9u3bC4wydzqdhIeHV2lyPSAggLCwsBpfPr86zoUUlJqayk033cTRo0errc3f/va3QF7yfty4cWzbtq3UbYwxJSYrvvnmG/vnPXv2lLq/06dPA3DttdcWSrBFR0fz9NNP+9QPT58+XeoIXalc27dvLzVxdeDAAXbs2MGOHTv45ptv7J/P/eNdtnPnTnbt2sVLL73EmDFjStz3okWLyMnJISgoiAsvvLDAMu8z1ul0+jT63pu8v+eee/j+++/p3LlzoXV69epll1tfvnx5qfssiT/u9+q2aNEifv/73/P222/b3xljyMjIKLK6S1paGlD4ueF9LuXm5pbYnmVZhISE2FMq1KtXj2effZb+/fuXKXkP2GXljx8/XqbtaqJ169YBeefnxhtvtL+/8cYb7aT0Bx984JfYaouffvrJfrno3D/Jycn+Dk9ERERERERERERqoNowAt9mjMkBMizL2mdZ1vNAd+BBY0xmVbSXlpZGo0aNgLzyut75fuvVq0dubq49yjw4ONhOrgs6F37QtGlT7rzzzmprb+3atZw6dYqIiAjGjRsHwNNPP11gjuSijBs3jnbt2hW7/KGHHrJ/HjZsGJ9++mmJ+xsyZAjz5s3jo48+wrIse3Tojh07WLp0qT3dREREBNOmTaNHjx72tqmpqYXmr5bq069fP/r161fs8n/84x+MGzeOwMBAVq9eTUxMTLHXK/+1TE9P5+abb2bp0qUATJs2rchtRo8eDcCZM2f49ttvC/RLbz9++umnfT6eoKAg1q5dy+DBg4tcnpGRQWpqKpZl8eKLL/q836JU9/1e3RYtWsQf/vCHQt+73W5Oncp7ny88PLzAsl27dnHJJZfw448/8sorr/DYY4/x7rvvkpSUBBSuslCcoKAgHA4Hbdq04Q9/+AMNGzakW7duXHPNNT4n8ufPnw9Q5DHUNs888wxvvvkme/fuZcqUKUyYMAHIq35ijKFly5Y888wzfo5SREREREREREREpG6p2UO5z2HlCQJuAu4D7jXG7KiKtnJzczl+/DhNmjQB8pIv3jmSARwOh0aZS41UHXO7jx07FqBAItKX5Nbzzz9f7LJvvvmGlJQUgoKCCAoKYt++fXz77bdkZ2cXOeIW8ka6esv4JyUl8cYbbzBhwgTefPNNXC4XERERvP766+zYsYMePXpo3vtaZPDgwfzlL38hJyeHvn372qPcS9OwYUM++eQTGjZsyNKlS4scib9o0SIOHz5M69atiYyMZN26dXafOHjwoD2Xui8JWO92l156KY0aNeLXv/41KSkphdbzvhTQsWPHMo/oPre9utyHvcn7wMBALrroogLLgoODadCgAaGhoYW2i4mJYcKECQQEBPDjjz8yYcIEO3k/dOhQe1R8aSzLIjAwkDVr1vDmm28SFhbG8uXL+ctf/sLmzZtLHcl/8OBB0tLSfO4/tcGIESNo2bIlHo+HyZMnM3nyZDweDy1btmTEiBH+Dk9ERERERERERESkzqltI/ANcMayrMnAVmPMd5W5/7Nnz3Lo0CEATpw4QW5uLsHBwRw8eJDTp0/TtGlTcnJy7MRJcHAwHo+H3NzcYudmFqlubrfbHnlenKISjPl5q02cKzExke3bt3Pq1ClCQ0M5c+YMiYmJ5Y41/369o529ifZ//etfDBo0iPHjxzNs2DAaNGhQ5LbeJP68efP49ttvgbzS5wMHDuTPf/5zgXV9OTeQN6K7JMWdH6lc3tHs48aN4ze/+Q0LFy6kffv2hdY7duxYoe9WrVpFnz59ihyJ/+STT2JZFnfccQf79u1j9erVfP3117Rp04a5c+cCFFkGPz9vHzl79iyQl/h97bXXGD58OPPnz2fIkCF2P8nKyiI5ORnLsujTp08Zz0JB+ftwSEhIhfblL8U9f/In7+fPn89zzz3HwYMHC9yPl1xySbH7jYiIYMKECUyZMsU+R74k7/Pv3/v7PS0tjV/+8pcMGTKEw4cPs3LlSpYvX87y5ctp3rw5w4cPJzc3t9DzxNf+U17lfXZXZL8ul4sRI0YwZ84c9u7dC0DLli156KGHyMnJKVd7IiIiIiIiIiIiIlK8MmWdLcuK9GE1jzEmvZzx+GqBqYLhhw0aNKBbt24AfPLJJwDceeedhIeHs2zZMmJiYggMDMSyLHJzcwkICCAgIIDAwMAqSeDXppcCalOsdUlRyRqPx0NWVlaRo1QryuVy8dZbbwF5832fm7zy3pbPP/88f/zjH4G85GtJI+8BfvzxR1JTUwkMDOSWW24B4L333iM1NZXvv/++2O1GjRpl/3z//fezZcsWLrvssmJLs+c/N955zqX6lCe5mJCQQGRkJA8//DAPPPAAq1ev5oorrii03rnl9aOiovj000+58cYbCyTxV61axbFjx+jUqRNDhgyhfv36fPnll3z99dfcf//9pKenExQUVOp0EN72vH0+MDCQ9u3bs2LFCgYMGMCiRYt4++23ufLKK+nbty8Affv29bmUe1GaNWtWZ/tw/uT9ypUriYuL44UXXgAKX9vieJ8HDz/8MLt376ZevXo+JdLz7987r7v3u8aNG/P3v/+dtLQ0e3lycjITJkzgqquuYuTIkURERACwZ88eu/+8+uqreDyeartGxhjcbneVtPmb3/yGZs2aMWrUKNasWQPk/duoqn7PiIiIiIiIiIiIiJzvyvq/vAeBL4AvS/jzdWUGWJSqSN6fKzk5GafTSePGjUlPz3sfIX8536JG3onUBAEBAYSHh5c5ieNLae4dO3bgcrlwOp106NCh0PK0tDSaN29epuQ9/Fxe3PsCDUDXrl0BWLJkSaH5rovSuXNnxo4dW+K86uU5N3W9ZHltMHz48ALl9L/+2rdfMw0bNuSdd94pUE5/ypQpWJbF9OnTgbw5z0eMGMH27dvp378/AE888YTPsXkTvl7R0dG88cYbdjn9jz/+mG3bthEQEMCMGTN83m9xynt/11TGGBYsWFBg5H1cXFyF9hkTE0O3bt0qNAp+9erVdoL+yJEjdOnSheTkZM6ePcvgwYMJCAjgyy+/pEOHDvTr14+TJ0/a03mMGDECl8tFVlZWhY6jLLyVGSq7Te/zzzuNSe/evendu3ed64ciIiIiIiIiIiIiNUlZh01/Y4zpWNIKlmV9VYF4/CozM5PPP/8cyBtJd8kllxAQEGAn8KOjo+11HQ4HTqfTL3GKVKZNmzYBeXNzl/ZSinck88CBAwst+/jjjxk9ejTGGMLCwvj444+56qqrSm1/x44d9pzR3qQ95CXzN2zYQFpaGrt37+byyy8vy2FVmo8//hiXy8Wtt95aa0uW1wX5y+nfdddddOvWzX4mZ2dnF3ttsrOz6datG8uXL7f7b1BQEK+99pq9XW5uLkFBQZw+fdpO6PvKm9jMr2nTpixdupSBAwdy//33A9CnTx8cDkeZjvl88NZbb9nTZ9x8880kJiayYcMGIO/3cHXLyMjAGMPjjz8OQHx8PIsXLy5Qun/RokUsXLiQAQMG8M4779iJfMjrWyNHjsTtdlf56PR9+/axfft2evfuTXBwMECltLlmzRo6duxIs2bNCrwY4MuLVCIiIiIiIiIiIiJScWVN4N9QSevUSMePH+eNN96wP19zzTVA3n/oAzRq1Mhe5nA4NPJM6gRvgvG7774DsBNBRXG5XFiWVWj0fUZGhl1aecCAASxfvtzn9l955RUgrwR5bm6uneTMzc0lMDCQnJwc5syZw2uvveb7QVWixx57jNOnT/OXv/zFTiKLfwwePBhjDBMnTmTdunXl3s+ZM2dYsGBBkctGjhzp0z48Hg+zZs2y+6W3jLpXdHQ0S5cu5YYb8n4lVsbo+7po/fr19s9JSUmFllfnSw/PP/+8XWnj6quv5uWXXyYmJqbIqR8cDgezZ89m5syZPPnkk7zzzjsYYxg5ciSWZRESElLl/0Zwu912lYHKbLNz584cOXIEoFJfDBARERERERERERER35QpgW+Mya6MdWqqiy66iEcffRTI+8/wxo0bF1iu0ZNSF505cwb4OQFUksjISNLS0tiwYUOB0fLeEvj33Xcfb7/9dpnaf+WVV3j77bfJzMxk0qRJTJw4EYBJkyaRnZ1NWFiYneT3B29VgnHjxmFZFoMGDfJbLJLXx+688062bdtmf3f69Gnq169f5Pr5lxljOHnyJA0bNixyu+joaNq2bVti+x6Ph8mTJzN16lRcLhcOh4MBAwYwZcqUQutGR0cTFhYG5P3+qMp5ymurt956i48++sj+fO41adOmjX3eSnq5qKKef/55/vrXv9qfPR4PMTExpW6XP5H/3//+l3bt2lVZjOe67LLLqmS/DRo0oEGDBkDlvhggIiIiIiIiIiIiIr4p6wj8Oq1evXpceOGF/g5DpMYaOnQo06dPZ/369XYCPyMjg+TkZCzLKnZUc0kcDgcTJ05k0qRJdhIf8qa0CAsLY+LEiX59ecbpdNpJ/ISEBADGjh3rt3gkb7T7rbfean9OTU0lKiqqyHXLu+xc3sT9tGnTyMzMLJC493V0ssqRF620a5mdnV3q9B4VkT95P2/ePIYNG8a2bdtIT0+3X/YojcPhqNbkvYiIiIiIiIiIiIjUXWUaUmVZ1g2WZfn2v9kiUudER0cTGRlJTk6OPU+1d/R9x44dy51o9ybxw8LCyMzMrDHJey+n08nKlSsJDAwkISGBv//97/4OqU5LTEwkLCyM8ePH+zsUIC+eoKAg/vSnP5Gdnc0DDzzArl27mDFjRplKiwcHB+N0OlWOvIy8560qRuCPGzfOTt7Pnz+frl270rt3bwAefPDBSm9PRERERERERERERKQ0Po/AtyxrMrAVeAIYWGURiUiNdffdd9OhQwe6d+/Ohx9+yPPPP89TTz2FZVn885//LPd+R40aZf89dOhQIO/FAIfDQUpKCikpKcVuW9T81BVVVMnuuLg4Vq5cSf/+/Rk+fDhpaWmFyumXNqK7KmKtS2bMmMGuXbvsl0Kee+45Nm/eTK9evYCf+8m5Sjqv5V1WVDyQV148KyuL9evX06dPnxK3P5fKkeepyDUpSUnPiaLuzfwj74cNG0ZaWhrLly+nU6dOrFmzhm3btrFgwQImTJhQrlhLiqek7fft22c/fyzLKnO75aFnk4iIiIiIiIiIiEjNUZYswmfA9cB/qygWEfEjY4xP67Vt25ZmzZpx5swZOnfuDECfPn0qZaS8w+FgwYIFLFiwwK8j772lzt1ud4Hv4+LimD9/vj0Sf/HixX6KsG7KnyyPjY0FICkpiXfffdfv8XTp0oWHHnqI8PBwli9fzp/+9CcWL17M2bNnfdqXMYbs7Gyf7zOpWvmT9/fffz/t27e3lzkcDjp27Ajgl2obxT1/6gLLsh62LOsLy7K+OHbsmL/D8bvmzZtjWVal/mnevLm/D0tEREREREREREQqyOcR+MaY94H3qzAWEfEjt9tNSEiIT+vOnTuX7t27k56ejmVZzJw5s4qjy5OTk0NqaipNmzat0na8I++9f2dmZvLxxx8DcOrUKRISEnj22WdJSEggKSmJNm3aAOByuXA6nfZ+OnfuzDXXXFOlsdYViYmJBZLlvXr1shPoSUlJQPEj8KsrHsh7geXbb79l/fr1JCQkMGfOHAYPHsyDDz5IWFhYsfvzJmWlemzZssW+Z6Hgvbl161Y2b94M5JXNP3DgQKHt7733Xr766iuSk5NJT0+nYcOKzR504MABYmJifFo3//Pn5MmTAERERFSo/ZrCGPM68DrA1Vdffd6/zfLTTz/5OwQRERERERERERGpgXxO4J/PTp06BUBg4M+nKzc3F4/Hc96XQpbabfv27fbP3377LXFxcT5t501YA9x4440EBASQnZ1d5ffEhg0bOHDgAMOGDauyNuDnUucADRs25PTp09x///1FrvvBBx/wwQcfFLns5ZdfZuPGjTRq1KhK5u+uSwYOzJuZJTY21k6Wx8bGcu+997JkyRI7ie/PeCCvb7Rr146OHTvy9ddf87e//Y2pU6cya9YstmzZUmyi99yXQqTqHDhwgAEDBpS63owZM7jttttYuHBhoWXeUfjbtm3jsssu4/Dhw+WuCrJlyxYGDBjAY489RkJCQqnr53/+rFu3DsibvkREREREREREREREzg9K4JciJyeHDz/8kFatWtGyZUv7+9zcXFwuV4kjLkVqsu3bt9O/f3/7c//+/Vm5cmWpSXyPx8Mdd9xhf37ooYfs0cVZWVmEh4dXWczx8fEcOXKkyvZflA8//JApU6bYn7Ozs+3k2rFjx/jiiy/ssuj5X2BwOBwMGDCARo0aaeS1D5544gmee+45du3axe7du2nfvj0nT55k2bJlALRq1crv8Xjt2LGDpUuX2tfV6XTicrm4+eab+eSTT4rcX/6krFStmJgYHnvsMZYvX05OTg6WZWGMse/NEydOkJuby9ixY7nxxhuL3c+9997Lnj17OH78ONHR0Rw6dKhcSXxvJYAVK1b4lMDPr6T4RERERERERERERKRuUgK/FBs3buT48eMMGTIEy7Ls7x0OR4FS2SK1iTd5n5OTw9SpUwFISEiwk/jNmjUrcjtv8n737t12Ugx+HlUcGhpaZTEbYwgKCqJ169ZV1kZRQkJCCiTwU1NTiYqKwhiD2+0mODjYfjZ4l50bN2jkdWmeffZZNm/eTFJSEnPnzuXee+9l2bJleDweLr30Uh599NFqjWfy5Mls3LiRf//738ydO5dhw4aRm5tbIHEfERHBtGnT6NGjB2PGjGHp0qXcfPPNrFq1qlA/kOqVkJDA2LFj7Xs0LS2twDUZMGAAW7ZsIT4+nieffLLI3+cOh4OJEyfywgsvcOzYsQol8SHvxb/8zw1fREdHl6stEREREREREREREam9ylTr2rKsbZWxTm2Rk5PD2rVradmyJVdccUWBZQ6HQ+XzpVbaunVrgeT9oEGDGDRoEFOnTiUnJ4f+/fuzdevWQtvlT97HxsYWKCnvHV1clfeEd5S/2+2usjbKwtd4vOcm/wtAUrRevXrRpUsXAJYsWWIn7x977LFqjyUrK4tu3brRuXNnAObOncubb75pz6X+8MMPs2PHDnr06AHkJfz79etHeno6ffv2JT09vdpjloJKuvdWrFjBtddeS05ODi+++KI91/y5HA4Hhw8fplGjRhw7dowLL7yQ3NzccsdU055jIiIiIiIiIiIiIlLzlHUEfjvLsr4uYbkFRFQgHr/Kzc2157sH2Lx5M8ePH6dv375kZGSQk5MD/Dyi1vsZIDCw6FOZfx0vj8djJ4GCgoIq8xD8pqjjzK+48yNVJyUlpdB3+UfeP/3003Tv3p3U1FQAunfvTkZGBpMnTyY+Pr5AOf38yfu2bduycOFCXnjhBQBOnz5t76O4kfvlidXLO6q9sucQL65NYwxHjhyhadOmJSbdNad52ZV0nb28881/9dVXREVF8cgjjwDgcrlK3L64vudL3wIKVVQwxhAYGMhdd91FQEAASUlJOJ1OBg4cSIcOHQqN2A4ODmbq1KkEBQWxdOlSbrrpJlavXm3/vvDeI+WNtaTt6pLSrldkZGShyhfltWLFCnsk/pQpU3jqqaeIiCj4T5iffvqJWbNmMXbsWCZNmsTx48eJiIhg4sSJOBwORo0aVWK8gF2xwePx2P+WqMhLACIiIiIiIiIiIiJSt5U1q9rWh3Vq7f9KN2zYkLvuuguAM2fOMGPGDK644grGjh2LZVl2EtqbNChvUtrlcpGRkQFQJxL4Ho+HzMxMnE6nqhLUYOcm74cPH15oHe93kydPtsvpX3HFFQWS9++//z4BAQH2fN7169ev0nLhUVFR1Zq49CYHIyMjCQ8PL7S8pFjOhwRrVfImQ4tKivqS/K8I78howB61PXbs2GLjKc6SJUsAWLp0Kf369cPj8eBwOCp0j3hfLvB4POf9M/bc65Rfee7Nzz//nOuuu44tW7Ywc+ZMNm7cyIUXXmgvX7hwIfBzOf1JkyaRmZnJpEmTmDhxYomxeq+592UPy7KIiooq9cUDPUdEREREREREREREzm9lygQYY5J9+LO/qoKtTqtXr2b//v38/ve/r/TS106nk/Dw8CLn3K2NsrKyyMjIsJMqUvOcO+d9//79i123f//+Bcrp33bbbXbZ/EWLFlVrAtEYQ3Z2Nh6Pp9raDA4Oxul0EhoaWm1tStXz9iXviPhzea97ZVRUmDZtGgMHDiQ9PZ2srKwKj7b2Jq2zsrIqHFttV5nXySt/Of34+HgOHz5c5HreJH5YWJidxC/LtfW+iCEiIiIiIiIiIiIiUpI6U9fcsqwgAGPMmfLuY+fOnVx22WX254suuohbbrml0HoVHQUZEBBAWFhYubevaUJDQ8nNza0zLyTURX379rWT4AkJCSQkJPi0XU5ODj/88AMAu3bt4qqrriq0TmVPjzBnzhwARowYUSBxWdRo+MoyZswYunTpQs+ePe15s8/3kc5Vbfv27bz55pv84Q9/oGnTpmXatkOHDtx+++1Mnz7d523cbjfjxo1j5cqVxa4TEBDA9ddfz4svvkhMTEyZYjrXtGnTgLyR+OVJvOc/P02aNAE4r14qyc3N5frrr+fIkSPFruNwONi8eXOZ+09R8pfT79q1Kzt37iy2zfwj8ePj4/n8889L3Hfjxo0BuPTSSzXlhoiIiIiIiIiIiIiUqk4k8C3L+hUwCGhgWdYsYKMx5oSP2z4MPAxQr1492rRpA8DRo0dJTU3l8OHDREdHF9jm0KFDRSYyz1d17YWEypK/b11yySV+jWXWrFnMnDnTvk45OTnFJt5zcnJwOBwYY9i/fz8nT57k8ssvx7KsQttdcMEF3HDDDZUaa5cuXeyfvcmuqk5c3n777Vx77bVV2kZlq0n9qzzatGlDfHx8mUvLG2M4efIky5YtK1MCPzg4mD179gB5LwBAwfvAGMOBAwfYuHEjN9xwA/Hx8SxevLhC53batGkMHjyYBg0alHnb/Oenul8q8Xffys3N5aqrriItLQ2AmJgYIiMj7etljGHnzp0YYyp1+o6bb76ZLVu20LBhwxLXczgU3OVkAAAgAElEQVQcNGrUiMzMTFq3bl3qfn/9619z7bXXEhERUekVfURERERERERERESk7qn1CXzLstoAU4ChQAvgt0Bry7ISjTE/lLa9MeZ14HWADh06mFWrVgF58y336NGDGTNm2CMpAc6ePctPP/1kz22sUbpSnPx96+qrry66bnf1xMHtt99O79697eRRampqsYmv1NRUwsLCcLlcOJ3OAvNMF7WdtzR5ZY0sbd++vf1zdSUuu3btWqX7rwo1pX+Vl9PppHfv3jgcjjJtV94S5JZl2f3o3XffBYruz6tWrWLKlCls3LiRFi1a0LlzZ958881yJ7Lj4uJwu90YY8qUvA0NDeWee+4pV5sV5c++lT95HxkZSbNmzUhLS2P16tWcOnWKqKgoZs6cyc6dO+nfv3+lVQAxxjB79mwA5s6dW+K6GRkZJCcnY1kWCxcuLHXfgYGBBZ5rIiIiIiIiIiIiIiIlqdSsmGVZvtXlrlxRwBFjzCZjzGLgeeBy4A7LsuqXZUfp6emsWbOGNWvW8H//93/8+te/ZvXq1Wzfvt1e56effiI3N5eYmBjN+S61grcMfVkSn2WZZ7o8+y+vzz77jCeeeKLCc4qL/5W331R1CfJ+/frx5ZdfMmvWLJo2bcpHH31E8+bNiYuL49ChQ2XeX3XeH7Xducn7L7/8kieffJKUlBT++c9/AnlT2Lz22ms4HA6mTJlSaW3PnDmTM2fOcMkll/CLX/yixHXnzZsHQMeOHcv8AoqIiIiIiIiIiIiISGkqNHTNsqxl+T8CccDUCkXke9vRxphDwGZgr2VZ9wArjTGbrLxhjk8De4B1vu5z//79PPXUU/bn6OhoQkJCePTRRxk8eDDTp0/n+++/B6Bdu3aa8138LiUlpdhl3tHF3oRnWRKf3pHvvvB1/77EWpTExERcLhe7du2yE2ezZ8+mY8eODBkyhNtvv53g4OAiRzc3a9bMp2Moi5KOo7Q2K7JtdavqWMvaL1NTU0v8rrh48q+Tk5NT4Ltjx44V297NN9+M2+1mxYoVbN26lf/7v//j4osvZsKECURERAAwatSoUuM+9ziLOo78sVZmSfiaKn/fMsbgdrsJDAzk6quvJi0tjfDwcCZNmsR7772HMYbmzZszdepUGjRowJ49e3C5XAwYMKDQ1Brl7bOJiYnMmTMHgN/85jckJibayw4fPsyFF15of87MzLRH3/fp06fMxy5Vr0WLFiQnJxe5rHnz5tUcTd1R2nn96aefqjcgERERERERERGROqyitWdPGWMe8n6wLOuvFdyfTyzL6gkMsSzrj8CPwJfAtcBRy7I+M8ZstCxrCfCQZVlJxpgcX/YbGhpKu3btgLzEzr59+4iOjubQoUO8//77vPTSS+zduxfIG3kXFBRU6j4rq7xvTXe+HGdtYYwhLCyMmJiYIsvPl5R8Le+yioiKiip23+cm76OiokhNTWXbtm189dVX9OzZkxdffJGwsLAytVmTkuXni4qc86IS274ku/Ov431O5f+uqH2cPXuWFStWMHXqVNLS0mjWrBm5ubkcPHiQKVOmFEjiF6W8x1nSfVBXud1uMjIyuO222zhx4gRhYWE888wznDlzxl6nW7du/P3vf+fDDz9k7dq1BAYGsmDBgjIn8IuzZs0acnJyiIyM5IILLihQXad9+/bceeed9ue+ffsC0KdPH4YMGVLifs+3a1lTJCcnY0ytm1WkxivpvJZlehAREREREREREREpXblL6FuWFUje3PPez5cA4ysjqFLavQ74G/CaMeZ7Y4wHmA+kA32Be/+3qgGy//e3TwICAnA6nTidTi6++GKcTicnTpwgNDSUvXv3kpWVxXfffUf9+vVp3LhxJR+ZSOXxlu3OysrydygVlj9536VLF/74xz8yZcoUmjdvjjGGtWvX0r59ex5//HGV1pcKOXv2LIsXL6Zz584kJCQQFhbGQw89xMiRI3nqqado2bIlHo+HKVOmcPLkyUpr1xhDdnb2eZl0DAwMtJP3kZGRjB07tlBZ+rZt29KsWTMSExPJzMzkvvvuK5S8r4gNGzYAMHTo0BLXS0tLY9u2bViWxYwZMyqtfRERERERERERERGR/MqcwLcsa7hlWXuAFGC7ZVlJlmVdD6w2xqRVeoSFXQa8ZYxJsizrIsuyegPdgOeAr4DbLcv6NzAGmGmMKVdGLyAggJYtW5KdnU3Dhg05c+YMs2bN4vvvv+eyyy7TaCOpUU6ePEmnTp3YtGkT8PMc9pWZ5KpMo0eP5tNPPy11vaNHjxZI3vfq1QsAp9PJ448/zosvvshVV12FMYbVq1fTqlUrjhw5UqWx5/fpp5/y1FNP+Zx89SZq09PTeeSRR+yKHjXd6NGj+c9//uP3JLP3/EHFRnzGxsYSGxvLTTfdZP/crl07LrvsMhISEoiMjOTNN99k5MiRtGvXzm5rxIgRdhL/ueeeK3f7OTk5vP3229x4443ceeed9gs3bre73PusrW699VZOnDhBSEgIX375ZZFzyluWxU033YTL5SIgIIBXX321xH1u376d+Ph4Nm3aVGqfnTFjBjk5OTRs2JDo6Ohi19uzZw+dO3cGoGfPnvZ0DCIiIiIiIiIiIiIila1Mdc8ty0oArgZuMcYc/t933YE3gEsqP7wi7QdusCyrGfAOeXPc3w7cZYwZBiywLOsK4LAx5mhFGrrgggtwOBwYY3A6nWzdurXCwYtUhYULF5KSksLEiRNZt26dPYd9UeXza4Ju3boRFxeHMabCL8P4M6F8/fXXc/LkSbvkdkhISInrexO1Z8+e5brrrit1/Zqie/fudOzY0efjrCre8zd58mQaNWpU5u179+5dbBloYwwej4fGjRuzZs0aLMti+fLlhdYbMWIE48ePt18k8FVOTg5z585l9uzZfPvtt3g8HgD27dtHcHAwgP33+SQ6Oprk5GSys7OJi4ujV69eXHXVVQXWOXnyJEuWLAHySteX9GLS9u3b6d27NwArV66kbdu2QPF91jsVQnp6Ort27SI2NrbA8oMHD9KpUye7PH9oaCgvvvjieXmtRERERERERERERKR6lDW7NwQY7E3eAxhj1v0/e3ceHlV1/w/8fSbLTPaQEJAl7IgYY6EiVNGyyBJIgIKWpbiBLVgX0IiiJQhaFFFMXbDiFtRWEQXhh4CgFOFLhQqIKIQlsoUYIISEJCQzmWQy5/dHuNcJJJPZ70zyfj1PHjLbOZ977plzefK55xwAQwBs9mRgtoQQV9s8vAAgEcDdAP4tpXxSStkbQJIQYualmH5yN3l/qRzU1NQgNDQUQUFBMJvN6NatG37++edmudQx+S8lmXj+/HmNI3HMgAEDUF1d3eiM41atWqnLWm/ZsgXr168HAJhMJrz22mt47LHHsHfvXuh0OowdOxbHjh1D69atvR6/Ijg4GCNHjkRYWJhDCT1lZYSEhATce++9dmf8+pNhw4YhIiLC4eP0FqX97r77bnU1BmdMnz4dBw4cQHZ2NrKzs7F9+3b198OHDyM0NBSFhYXIycmxW05wsOP3vr3zzju49tprodfrcf/99+PgwYOIj4/H4MGDAQA333yzesNNc1zZ5dNPP8Xbb7+NmJgYlJaW4uOPP0ZGRgb2798PoDZ5v2DBAlitVnTu3Bmff/55g2Xt27cP48aNUx+HhoY22mfvu+8+9VxkZWUhOzsbAHDmzBk899xzWLBgAfLy8hAaGorHH38chw8fRkREhM/O1dtvv43333/fJ3URERERERERERERkX9wagY+AEgpq+t5rkAI8bpnQqpLCJEG4FMhxP+TUk6SUv4ohNgA4AkA64UQMVLKUgCfAyjzZN3V1bWHGhISAp1OB7PZjO7du+PixYsoLCxEq1atPFkdkd8xmUw4cuQIevXq5dFynZlxnJSUhKlTpyIrKwtbtmzBjh076iyj/oc//AGZmZn1Lr3tC0ry1dPv9Tf+ELu3Y5gxYwYWL16M++67z6EtHhoze/ZsvPjiiwCAuLg4TJgwQb1xY/r06QCAadOmuV1PoEtJSUFKSgo2btyImTNnwmQy4f3334fBYIDZbIaUEp07d8ZDDz3UYBm7d+/GuHHjYLFYMGnSJCxfvtzh/qLcDLJlyxZkZWXBYDCoY0xwcDAeffRRPPzww24d465du3DDDTc4PE4VFxejd+/eOHXqFIDaJfwXLlzoVgxEREREREREREREFBicTeAfE0KkSinX2z4phHgWwBwAHs2gCSEiADwE4BEANwshPpZS/klKuVQIUQPgDgBThBAtAIwHMNad+iwWC4qLi9XHynLRZrMZNTU1MJlM6Ny5MwDg0KFDiIuLU9/rzIxMb2tsb15/irW5qKqqUpdgrk9iYqJL5RYVFQH4ta9arVb1OVfLzczMBFB35mtYWBgmTJiAvn37Ii0tTX2vlBJmsxl6vb7RGalFRUWIj48H4Hwi1jaJX1lZCSEEevfujSlTpmDMmDFOH2Nj7J0r2+PwJNvz1lTZa9fG2Gt3e23nzPmaMWMGXnvtNZw6dQpHjhxpcCZ+Y2Nsfd+F4uJivPnmm/jhhx/w6aefYvv27QgNDVVnf1NtIn/OnDk4evQoVqxYoY5rSvLeZDLV24eUmfcWiwVz587FVVddheXLl6OystLh8dA2iV9ZWYng4GAMHToUo0aNqjPmOUMZS5csWYITJ06o49bEiRMRGRnZYLkdOly5I9ELL7yAF154AYC224YQERERERERERERkfc5m8l9AMAqIcS9AH4EEAlgJIB9AI54NjRASlkhhJiK2pn1nwNYKoRYfmkm/jtCiEMAWgDoB+APUkq3YoiOjsawYcPUxydOnMCJEydw0003Ye/eveoS+gBw7Ngx9O/f353qfMpqtcJkMiEsLEzrUMiD4uLiYDab1fOq0+k8kly2Td4HBwerM2JXrFiB4OBgpKSkAPh1T3Kg8X3R4+PjXbqhID09Xf09MzMTP/zwA2699Vafzri3vVHB1eMAXL9RQwv+Fqur7W7vc/U9P3fuXMydOxfTpk1rcMa3chOU1WqFTufcTjT/+9//UFhYiPLycgwePNjv2tkX7B3znDlzAADLli3D+vXrcebMGfz5z38GUP8NILbJ+0WLFmHSpEnYtm0bgNoxyZHxUBlj0tPTUVpaiu+//95jN1bYJu+llNi7dy9++OEH9OnTByNGjKgzjhUXF2PkyJEeqZeIiIiIiIiIiIiIApdTmQcpZS6AGwG8B6ACwGkAd0op7wbwgefDA6SUp6WU5VLK8wCmAwgVQiy/9HIZgL1Sygx3k/f1URKT4eHhCAoKQmVlJTp16oSgoCAcPXrU09V5lclkQnl5uXpM5FtSSq/MmlQS6DU1NR4r0zZ536VLFyxatAj33nsvwsLCYDKZMG3aNCQnJ2Pjxo3qnuS+2hc9JiYGAwcO9Ply+Uo7m81mn9ZLtd+dyspKn806zsjIgF6vx4kTJ3DmzBm77zUajVc8N3v27EbreOyxx+r8S/VLTU1Vk/f1qS95fzln+09MTIzHk/c6nQ5z587FggUL0LFjR0gpsXv3bnTp0gUzZsxATU0NlixZgt69e+P06dONlvvUU095JD4iIiIiIiIiIiIi8k9Or6Uua/8KvvHSj+3zizwVlJ26i4QQ0wG8JIQ4gtol+wd6qz4lORMWFobg4GBUVVUhJCQEnTp1wrFjx7xVrVcoM7Q5A18bBw4cQMeOHQEAQUFBePLJJ9U9sN2hJM6VGcHu7g9eVVVVJ3n/4IMPAgCSk5ORnJyMI0eOYMWKFSgtLcW0adMQGRmJTp061btkeGhoKDIzM9VtJwLVZ599BgAYNWqUz25UmDx5MrZv3+6TurSye/duzJw5E7GxsVf0H4vFgtDQULz22mto06aNUzceffbZZxBC4I477nA5toyMDMydOxdZWVnqjPD6hIeH13m8YMECdc97e7Zu3YqQkBDOtnbDzp07MWnSJFit1iuS91VVVervtquE+FJKSoqavM/IyEBMTAyA2m0aTCYT3nvvPZw4cQJr1qzBmjVr1M8NHz4cmzZtslv2Cy+8gIiICGRkZHj1GIiIiIiIiIiIiIhIG86t/esHLs3E/wlADICxUspfvFWX1WoFULsseUhICCoqKgAAbdq0wdmzZ71VrVfodDpEREQ4vdwzeV5NTQ2++OILj5Sl7CU/fvx4/O53v8OsWbPcKu/kyZNqvx84cOAVr/fq1Qsff/wxrrnmGgBAeXk5Dhw4gP3791/x8/3332PZsmVuxeMPUlJSkJKSAoPBUO+NCt5QXFzsk3q0NGXKFPzyyy/19p9Dhw7hxx9/xI4dO5xe5SElJQXDhw93K7a77roLAHDhwoUrkr9SSnXFixUrVtR5zZHkveK6665zK8bm7i9/+QusVivGjRt3xcz7tWvXAgC6d+/u81VCFLt27QIAtGvXTk3eK8LCwjB58mS0bdu2zvPh4eGYPHmyQ+W/9NJLngmUiIiIiIiIiIiIiPxOwGVzhRAtAIwEMExKud+bdUVHRwOoXVLcYDDgwoULAMAkODktOTkZp06dUn/WrVvn0fI7dOiATz/9FOPGjXOrnKuvvhoDBgwAAGRlZSE7O1t97ZdffsHSpUuRmpqK06dP47HHHsOBAwfqHJfy869//QvArzfBBLKoqChERUX5tM4vv/yyTns2NRs2bEBZWRmA2v3Qjx07ph7rwYMHERQUhPDwcEyaNEm9ScXRmyc8cb6mTJkCoDZZ/9///rfOa4cPH1aT+sre6QBw6tQpXLx4EQkJCY2W37JlS+zevdutGJsz2/6ze/duVFdXq6+Vl5dj3bp1CA8Px1133eV0//GU/fv3Q6fTIS8vD2+88Yb6/JkzZ/Dcc89hwYIFOH36NEJDQzFt2jS0aNECRqMRd999d6NlJyQkoKysDL/84rX7F4mIiIiIiIiIiIhIQwGXiZZSXgAwSkr5k7frio2NBfBrAp97YFNzMHr06DpJ/K1btyIrKwv/+Mc/8PPPP+Oxxx7Djh07MHPmTPUml8Yo+1A3hYS+r/h673dfeuKJJwAA999/P/Ly8rBq1Sr1tblz56Kmpgb333+/2zdLudLvcnNzsXXrVlx11VVISkrCtm3b1IS9lBKbNm1CXFwcunbtirNnz2L58uUAgIULFwIA/v73vzdax9mzZxEUFOTCERHgu/7jjnbt2iEjIwM6nQ7Hjx9HZmYmnnvuOSxevBjFxcUIDg7GrFmzcPToUWRkZODHH3/EPffc41DZzz77LADg+eef9+YheIUQYpoQYo8QYk9hYaFLZSjbtjT0o2xXQ86z17ZsVyIiIiIiIiIiIt8J1joAV0gpK71RrtFoxN69e9XHyqy+7OxsNZlfWFioJtQsFov6XmUPciJnFRUV2X09MTHR43Xm5eU1+JrJZMLo0aMBANu2bcMXX3yBoKAgDBkyBLfddhtSUlJQXV1tN25ldmxlZSWKiopQXV2NqqoqtGnTBpGRkR6LFfBO+9hj77g//PBDhIWFYf/+/VixYgVMJhMGDhyIUaNGAag7Y7sxWu3drWio3aWUMJvN6Nq1q9MJ0nXr1mHfvn0oKytDeHg4kpOT0aFDByxatAhhYWG47bbbsGbNGoSHh2PGjBl1Pqu0u1K/Xq9XZ1UXFRUhPj7+ivqUNjQajfX2u/qOcdKkSZBSYs6cOTh06BCys7PxzTffYNCgQThy5Ajy8vLwhz/8AR06dMBrr72GmTNn4pZbbsHKlSuh0+kwbNiwRtuhoeS9v/V1d3jjWDzRfxSX9yNvtG1MTAwyMjKwYMEC5OfnA6j9v8KQIUMwevRopKWl1Xn/nDlzMH78eKSmptotd/jw4dDpdFi5ciWeeuqpOq/ZOw5Xz0l9n1Par7y8HC1btrRb7mWfexvA2wDQp08fl+5Oys3NbZI3NvkDti0REREREREREZF/YNb5MrYzNXU6HYKCgmAymdCiRQsAwMWLF9Wkkb8m7f01ruYsNDTUKwkib5R59913o0WLFpg4cSI+/PBDPPPMM6isrMTWrVsRGxuLsWPHIjw83G4Zysx8g8GA+Ph4NdnT2Of8havtmp2djTVr1tRJvG/duhUA1CS+o3VarVYYjUa/a7PGkuL2mEwmdXuF8ePHo7KyEkOHDsV7772H7du3Y/fu3aipqcHs2bMbnO1pe2ODwWAAAMTHx9d7zpxtw7y8POzcuRMJCQkYM2YMxowZg59//hm7du3Cq6++ismTJyMxMREvv/wyysrKsGfPHuzYsQPvvvsuzp8/j6SkJAQHB+PUqVOIjY3F0KFD8d133wGoXTafM+/d44n+o6ivH3macsPOtGnTMHHiRAwfPhwZGRkNvt9qtaJNmzaoqanBjBkz6iy9369fP3z99dcoKSkBAPTs2RPZ2dk4c+YM2rRp45X47VHaz/ZGRiIiIiIiIiIiIiLyjIBbQt+XlL1zKysrERISAgC4cOGCxlEReV94eDiio6PxxBNPoKKiAvPnz4der8fKlSuRlJSE9PR0GI1Gh8tTvkueXtJaSony8nLNl+bfsGEDrrvuOixfvhwmkwlhYWG49957MXXqVAC1Sfz169c7VaZOp0NkZKSmy4DXR6/XIywszKUbC/bv36+2T3JyMoDaRGRiYiK+/vprfPTRR4iIiLCb5FTq1+v1jdbnaBsqS+3PmjULAPD000+rrz3yyCMoLS3FPffcgx9//BEPP/ywej14+eWXAfy6bP4f//hHZGZm4pZbbkF0dLSavE9OTmby3gM80X8UzvQjd7Vr1w7bt29vNC7b/rpkyRIcP35cvRHhu+++Q3R0NG699VZkZmbi9ttvBwAsWbLE6/HXR2k/ezcMXprJ7V8DGBEREREREREREVEA4FTtRhgMBhiNRjVho8x+I/KGU6dOYdeuXbj99tvVlR68bdeuXQCAvn37qs8piSTFvHnzMHfuXMyaNQtLly7FypUrsXr1anTv3h39+vW7oswjR454JdZTp05h37596hL/ZrNZXa7f2dngnrB7925MmTJFjSEsLAwTJkxQk4sAMHXqVGRlZWHLli2YM2cOnnvuOZ/H6a61a9eid+/eSExMdOtmjBUrVgAAJkyYoD4nhMCwYcPw3nvvAajd39xe2UIIfPXVV2o8nmA2m3H8+HHs3LkTALBnzx7s2bNHfb19+/b4/vvvERMToyZOgdrE7M0334wdO3YAAObPn6++1rVrV9x111147LHHXOqbRqMRn332mcP7ovsz2/7jDk/0H0/G422dO3fGyZMnUV5ejsWLF+Pf//43jh07hldeeUV9z7///W+nxxQpJd577z1MmjQJERERTn12586dePDBB9XHVqu1wfa+lMDnXStERERERERERERETmIC346amhqYTCZYrVacP38eANREPpE3lJWVoW/fvjCbzV5b1vly7du3d+hmAZ1Oh0cffRQzZ87Eq6++irfffhtHjhzB4cOHG/yMp5d2NpvNGDhwoPpYr9cjOjra58vMK1sCzJw5U03e33///WjXrt0VsSQlJSEpKQnZ2dl49dVXAzKBP3DgQBQUFLhdjrJk+eUJvxMnTgCo3RvekdnTnopHodfr8d///ld9/MEHH9T7vlatWl1xDXj88ccxduxYAEDHjh0xduxYTJs2DT179nQrppycHIwYMQL5+flo27YtzGaz3WSpPxswYADy8vIcHmsa4q/9x9siIyMxf/58zJ8/H9nZ2Xj33XexevVq5Obmqtv7OOPEiRP4/e9/j+zs7Do3bjnin//8p/r/IQfVOFUBERERERERERERETGB3xApJY4cOQKj0YjExEQcOnQIEyZMwJAhQ/DCCy9oHR41UUlJSTCbzT5Z1lnRtm1bp95vm8g/fPgwCgoKUFVVhaqqKoSGhiI0NBRAbdLpxhtv9Gis3bt3r/NYCKHJzHtl/+fo6GgAtfvXL126FO3atcOIESNwzTXXqInK9evXIzs7GwDwySef+DxWT4iOjlaP1R2DBw/Gli1bkJWVhalTpyIpKQnr16/Hli1bAABr1qxxKEHtqXgUQghMmzYNvXv3Rnl5eb3vSU9Px9GjR5Gfn4927dqpz69atUr9fcKECXjooYc8ElOvXr3U3ysrK2EymWA0GjXp7+7S6/Vo166d2zcm+Wv/8aXo6Gikp6cjPT1dHXOd1blzZ5jN5ivGU0f861//wuuvv47KykoAULc0aMjrr7+u7f4mRERERERERERERAGICXwbVVVVyMvLA1C7fHFxcTHat2+P/Px8xMbG4p133lGTcjU1NQE7G5L8l7I8uS8os8j1er1Ls2J1Oh2uvfZaXHvttXbLsn2tqVCORfn+b926FatWrcLzzz+Pd999F4mJiRg+fDiOHz+uJhenTp2KtLQ0zWL2B6mpqbBardi6dSuysrJw7bXX4uDBgwD8o33s3XDy9NNPY+bMmZg1axaWL18OAMjPz8eKFSswbNgwfPXVV3jllVc8lsC3pfQ3X6804SlK/O6OAampqQCgJvH9rf/4gu146kryHnD/OvPwww+rvxcVFSE+Pr7B977++usu10NERERERERERETUXDH7bKOqqgq5ubnIzc1FYWEhWrdujXPnziE4OBh9+/atM8tMWV6fKFAps8jNZrPbZSkJofpuBPBkPf5CCAG9Xq/s8YyQkBBMnDgRjz76KMaPH4/y8nK8++67dZL3SUlJWobsFywWC4YOHapug2CbfPX39hk7diwSEhKwY8cO5OfnAwDeeOMNAMCzzz6LxMREVFVVYcmSJR6vW/l+BeoNY/bGh8tZrVaUl5fDaq1/4nZqaioGDx4M4Nf+c9ddd6FHjx6eC9iPNcXxlIiIiIiIiIiIiIjq4gx8G9dffz02bdoEoDaZ/8c//hFlZWXYsGEDrr/++jrvDQoKsrtsLJGjEhMTvVKusppEQ7p27Qqj0Yjw8HCHE4OuxGq1WtUVLezF1FDZ3mofdyl7ktuaMGECnn/+eZSVlQGonWqoqd8AACAASURBVHG8cuXKgJwZ7I12nzVrFoxGI5588kn8/e9/x5kzZ5CWluZQ+7gaT2PfA2fK/cc//oE777wTGRkZuOmmm7B8+XL069cP3377LcaPH4+XX34ZmZmZaN26NdLT052O1V/7uitcPZZjx46py7JfPkv8j3/8IxITE5Geno5nnnkGZ86cQWpqKgYNGtTo6gTeaFt3+parn3Vl3HYkHlc/15T6LBEREREREREREZG/YALfRn5+Pv72t78BAH7++Wfs2rUL77//Pnr16nVFoi4oKChgZ0MSAbXLv/tiP22lngsXLni9Ll/S6/XqGGA0GjFnzhysWbMGNTU1iIiIwBNPPIGMjAyOEzZs+9y8efM0jsZ5kydPxqxZs7Blyxa1Pyuzwdu2bYu4uDgUFxdj8+bNLiXwyfHl9gOx/3iCr8ZtIiIiIiIiIiIiItIOM0s2SktLsW7dOqxbtw4///wzFixYgDFjxmgdFpFLpJSorKyElBIFBQWwWCxah6Tyt3hcIYRQb+xJSkrCqlWroNfr8cwzz6CsrAxPP/00k/d+REqJ8vJynD171q1yFi9eDCkl9u7di379+qFFixbqa1OmTAEAfP31127V0ZzZLrdvsVhQUFCgdUgOU7ZWcNbZs2dRXl6ubslBRERERERERERERM0bs0s2rrvuOuTk5CAnJweHDx/Ggw8+WO/7LBaLQ3v5EmnJdq/kL774Aps3b9Y6JPWmgrVr1/pFPO46dOgQgNrZwunp6Th48CAT937KbDZj48aNWLNmjVvlTJ48WV2uXZl9r2jbti1iY2NhsViwceNGt+ohYPPmzVi3bp3WYTjkf//7HzZv3ozjx487nYhfs2YNNm7cyH3tiYiIiIiIiIiIiAgAl9Cv46efflL3cxVCYNasWZgxY8YV7zt9+jR+97vf+To8IqfYLkU9aNAgJCQkaBzRrzcV9O/fH+3bt9c6HI85ePAgk/Z+Tq/XY+DAgR7ZyiEyMhJGo7HO7HtFQkICSkpK8Msvv7hdT3N38803B8wM/L59+yIoKAgtWrSA2WyGwWBw+LNDhgxBbGxso9sGkHd17NixwZszO3bs6ONovMcbx2mvTCIiIiIiIiIiInIeE/g24uPjMX78eADAgQMHMH/+fCQnJ2PQoEHqeywWC/Ly8jBx4kStwiRyiLIUNQB07drV6c+bzWb069cPubm5OHDgANq1a+d2TEqCqmfPnk3qj/1M3vs/IQRatmyJli1bah0KOSg6OhrR0dFah+EQnU6HPn36wGw2O52I79atm5eiImecPHlS6xB8whvHqUXbNaX/QxAREREREREREV2OWacG9OzZE506dcK0adNw5swZ9fn8/HzU1NSgU6dO2gVHdJn8/Hxcd9112LRpk0fKe//99xEREYEff/wRJSUl6NSpk8v7O9uy3d+ayBv+9Kc/YfLkyVqH0azk5+fjmmuuwYIFC7QORVMc34iIiIiIiIiIiIjIE5rUDHwhhJBSSuVfZz9fWFiIN998EwBgtVoRHByMmpoa3HjjjejXrx82bdqE3NxcAGAC3w9YLBa7rwcHN6nuXa/MzEyUlpZiwYIFsFqtSElJwdSpU5GUlISwsDCkpaXV+7mioiJIKdXZokrCyWw2o3v37le832KxqEveu/DV8pq8vDy7rytbYnjys0VFRXafs1ent1RVVTV4PK7G42r7aHFOMjMzAQBLlizBiRMnAAA7d+7EQw89ZPd74K6cnJwrnjMajV6pC3Cvbb3h8vFn7ty5eOaZZzBkyBCMHj3abrv7OlZ7bVdUVIT4+PgGX9fiO+0NrraBq68RERERERERERERkWuaWoazFYAC1B5XtRBCJ6W0OlOA1frr25UEcUVFBbZs2YLg4GD1D+Bdu3ZtFglif2e1WmEymRAWFtYslzG3TZ5FR0ejrKwMWVlZahLfXuKpsrISJpMJAGAwGPDZZ5/h8ccfb7TO/Px8l5bT98ckWH03MTSmvmSV1gksKSWklM165q+SvFfGgRMnTmDJkiV46KGHvNb3rr766iueCw8P90pd/sh2/Gnfvj2MRiOKi4uxceNGbN68GcePH8eMGTOcKtNb58qV73pj3InVH8dDd3mjjYmIiIiIiIiIiIiaoyaT8RRCpAJYLYR4G8AzQohOUkqrEMJjx/j111/j5MmTEEI0yT++ByKTyYTy8nI1Ed2c5Ofnq8mzLl26YN68eRg8eDAAICsrC9nZ2XY/r9frERYWBgAYOnQoHnvssTo3sDTEU8vp+wOz2QyTyQSz2ax1KG6xWq0BfwzusE3eZ2RkICMjAzqdTk3ik+ddPv48+uijmDNnDmbNmoW4uDhYLBYsXrwY3bp1w2uvvaZ1uE3mu+7P2MZEREREREREREREntEkEvhCiG4AXgfwNwD/AlABYIUQontjSXwhxDQhxB4hxJ7G6rnvvvtw8uRJtGnTBnq93mPxk+vCwsIQGRmpJqL9iW3fKiws9Hj5ycnJsFqtSExMxIMPPggASE1NxaBBgwAAy5Ytayw+GAwG9O3bF0eOHEFwcDDeeeedRuu1WCxITk52/wA8SEqJXbt24ZFHHkFBQYHDn1NuYsjIyMCXX37pdL0Gg8Hpz3iKbf86ePAgrr76anTo0MEr5+bxxx93qX2+/PJLh1Z1sCWlRG5uLh555BHs27ev0fc//fTTdZL3MTExiImJqZPEf/rpp52O3R5ldnF9N8kUFxcDAEJCQjxap63c3Fx07doVn376qVfKd2Tsqm/8AYA2bdpgzpw5yMjIQNu2bVFVVYXFixfjjjvu8EqsjlK+63q9Hl27dkWHDh3Un969e9d57K0tF/xFQUEBOnfubLcNXHnt6quvxm9+8xt1LOrQoYPWh0pEREREREREREQUkJpEAh/AeQBfSim3AvgvgOcBrALwoRCio71l9KWUb0sp+0gp+zRWSUREBE6cOIHOnTt7Km5yk06nQ0REhF8un2/btxISEjxeft++fQHUzoQtLS0FANTU1GDXrl0AgKioKIfKUWZL2m4R0Zh+/fo5G65Xmc1mtG/fHn369HFqOXvlJoaUlBT079/f6Xq//PJLfPPNN05/zhMaGruGDx/u8bqGDx/uUvv079/f6XjMZjPCw8PRp0+fepeov9wNN9wAoDZBGxMToz4fExOj3mjVp0+jw7tTZs6cCeDKlS6WLFmCoqIi6HQ6TJo0yaN12vrss89QXV2NV1991SvlOzJ21Tf+KEwmEz766COcPn1afW7kyJFeidVRynddCIGXXnqpwfcFBQVh1KhRPozM9+Lj49Wb3oQQSE5ORs+ePZGcnFzvT8+ePR36LhIRERERERERERGRZwT0Ju5CiN8B6I7aBP7NQoh0KWXmpdcWA9ADuEsIsRCAVUop3alvypQpePPNN11KZBF52saNG9GlSxecOHECCxYsQEZGBl5++WVUVFQgIiICGRkZDpUTHByMiIgI9OvXD88++2yj7//973/v0mxsb9Lr9YiLi8PkyZNd2nt5yJAhLtXbtWtXlz7nacnJyVi/fr3Xylfax3aPa0dER0c73bZK2Y6eyzFjxiAsLAwmkwn79+9XVyDYv38/TCYTwsLCMHr0aKdiaMxTTz2Fr7/+Gt988w2ysrIwdepUfPPNN3VWAggNDfVonbaUS5mydYhyXqxWq89uZqpv/AkNDcU777yD3NxcALXJ4dGjR+OFF15AeHi4T+JyxLhx4zBu3Dj1cVFREeLi4prN/u3BwcH49ttvMWDAAJSUlCApKQmzZ89u8OanY8eOYezYsQCACRMm1LkBoqioyO5NU5yFT0REREREREREROQ8/5u27CAhxGgAbwMYDiAVwHwAU4UQDwDApVn3uwC0lVLWuJu8B4CJEyciLy8PnTp1crcoIo+4//770bFjR1itVjz77LNq8n7evHkICgpyuBydTodly5bh5ZdfbvS927Ztcydkr7CdXesrUkpUVlbCA0NLwHBmj2tX28eVczl+/HgAwIoVK9TnlN8nTJjgVP2OSktLU7eryMrKumIZf19SzovRaPRpvQ899BA6d+6sjj8ZGRnIzc2FEAJ9+/bF8ePH8dJLL6Gqqsrv90VvLvu3K9/L2NhYbNu2DbGxsfjkk08avHmrpKQEY8aMQUlJCSZMmIAXX3yx2Y17RERERERERERERL4WkDPwhRDxAB4E8Ccp5QEhxIcATABmAHj/UuLnTQBtAPQQQkQBKHc3iS+lRE1NDRP4zZjFYvF4mfaWrW9odqMy4zYoKAgPPPAAli5dihMnTiAqKgpz585tNHlfVFRUpyygdu/uwYMHu3gUtRpbgj8xMdGt8v2JkvADAIPBAKBuu9Yn0I9fmR3vyAz8xtrHdja/uzdedO/eHQaDASaTCd9//z0AqLPvu3Xr1uDn3O2vKSkpsFgs2L59O4KDg/G3v/3Nq8l7pf2UdrVarSgqKoKUEhaLpcFZ7o5ujeGKhx56CG+88QaOHz8OIQR69+6NiRMnIjIyEkFBQeqKALZ9xt73pLEZ3d76DjnTtxW27Vpff7YXq1Zjpe33skWLFti2bRsGDBiA1atXAwCefvpp9b1K8r6srEydeV9ZWXnF95qIiIiIiIiIiIiIPCsgE/gALADCAFwjhMgDcCuAeACHAPwPwH0ArgcwAMB4KeVFRwpt0aKFutzzvn37cObMGcyePRtz587F008/jZMnTwIAE/h+Ijg4ULuv+5QkzPTp0xEZGYknnnjCqc/bJsiUZJPy3MGDB/HJJ59g6dKlOHfuHIDaZfP9cea9O0kuVz+rfM5qtcJoNCI8PNxny5Y3JDQ01OMJP2+3T30JflfrvPvuu9GqVStMmzatzlYCr732GoYPH+5SmY1JT0+H1WrFAw884LM+oHxHlf3LdTpdne+yr/thenq6+m9VVRWCgoKcWvnDl+z1LU98d+rrz/4mMTHxiu9lYmIijh49im7dumH16tXQ6/V48cUXUVJSgrFjx6rJ+08++QTAld/rQL8piYiIiIiIiIiIiMgfBWQGVEpZKoR4DcBTAGYBWCalfFYIMQzAEACvAdgDIEpKWehouSUlJVi3bh2A2qTmlClTsG3bNkRGRqJ///5M4FODrFYr4MMtKZRZop7aV9pqtSIzMxOrV69W968GgM6dO2PGjBl45JFHHC7LkzOr/ZlOp0NkZGSj73N23/imorH2cWXGsz0pKSmIiYlBaWkpACAmJgYDBgxweKlvV/qto33Ak5SVYPxNaGiow+91pa2Vz1itVs1vmKmPO/3Zl2NmfX02Pj5enYn/ySefwGg04v/+7//UZfNt97zXos8TERERERERERERNTf+91dwB0kpV6I2Wb8dwN5Lz30FoDuAeCllpTPJe6B2GeYNGzZgw4YNWL9+PUaMGIHt27dj8ODBCA0NxcmTJyGE4IwzusKlmZduTz1966230KFDB/Wnd+/eVzwuLS1V9wl3N5FltVpx8eJFVFRU4JVXXkFubi46dOiA+fPn4+LFizh+/LhTyXugdiZqQUEBbr75ZuzcudOt+ALZiRMn8Ne//hWFhYXNYm9tZ508eRKPPvooysrKPFambaLxueeec6rdjxw5ggcffBCFhU5dNnzObDar33t7S803ZObMmXXGlA4dOng6xEbZ7jd/eTyXj3kjRoyo8xmj0ejzeB3hTn9OT0/HN998o+kYoSynHxsbi7Vr19abvPcEIcQ0IcQeIcSeffv2QQjh9E/Hjh09GhMRERERERERERGRvwnIGfgKKeUFIcQWAOOFEFUADAA6AvjRE+X/+OOPMJvNGDRoEADg9OnTSEhIaHYzaalxl5a0dntabPv27REUFOSTGbZWqxUjR45UHz/yyCO45557EBcX51ZST6/X4/PPP0d+fj7mzZuHr776yhPhBhyDwYB+/fohNDQUBoOB48ZllPbxpJSUFPX3f/7znxgyZIjD7R4dHY2bbrrJqZnkWtDr9bj33nsRExOD3/72t05/3na/c63YzlZ3NB5Przriae7055SUFPTv31/zMUJJ4v/mN78BAI8n7wFASvk2gLcBQAghHV0hg4iIiIiIiIiIiKg5CegE/iU7UTvrfg6ASgBTpJQnPVHwvn37EBISgmuvvRYAcO7cOSQkJHiiaGpiLs2ItbpbTmpqKlJTU9XHRUVFLs2ybYySvD948CAAICoqSt3P2l1CCFgsFgDA+fPnPVJmIGrTpg3uvfdercPwW95qn6ioKFy8eBEHDx7EuHHjsGHDBoc+17ZtW/z5z3/2eDyeJoRAq1atMH36dJc+P27cOIwbN67Oc76eha+sIFJfPA2NeZ5adcRb3OnPw4cP92wwbmjRooXWIRARERERERERERE1e/75l3AnSClLpJSvAUgD8EcppUdm3wO1CfykpCR1RmZhYSFatWrlqeKJ6iWlRGVlpcN7dzvLNnmflJSEqKgor9RDpJWoqCgkJSXh4MGDGDlyJKxWt++tabIujTMB/38Bco+3rztERERERERERERE5LimMAMfACClvOhuGTU1NSguLgYAVFRU4OjRoxg/frz6XGFhIXr16uVuNWRDmandkODgJtNFHabs9eyuvLy8K56zTd736NEDH374IQYMGACgduarIjEx0aU6lTKU+K1WK86fPw+LxYLg4GCXy3XV5W0gpYTZbIZer4cQwufxBBKl7S5vM4U/tZ1t31USkB9++CH+9Kc/4eDBg0hOTsaGDRuumL3d2AoXtv2nvnbwpzZw1aV914M8XW5944/ShuXl5WjZsqXTZdqe58vL1Ov1XllJoL7jsI3HGyukaKGgoABVVVV1tpDwxDWBiIiIiIiIiIiIiJzX/LKjdoSFheH6668HAPznP/+BlBKjRo1Sn+MS+uSNGwouT4xYrVYYjUaEh4d7dLnoy5P3mzZtgk6nU5ORnkhEKWWEhYUBqN1aIDIyEiaTSX1OS7Y3RyhLeHtSU0xyebLNvNU+tn1X6c8JCQnYtGkThg8frs7EvzyJHx8fbzcm2+Stt/uOI1xtP3ufu7Q6QY1rETlHacPIyMgGY3L2GD11w5MrGus/9vjbWNG6dWv1RghFU7k5gYiIiIiIiIiIiCjQcNncBuzatQuhoaHqjPvq6mqUlJRwCX0vsFqtqKio4DLXlyhJb08m72tqajBixAh12fyPP/7YZ3tJ6/V6hIWF1UkMacWfYgkUgdRmly//rdPp8PHHHze4nL6UEuXl5Q6NPYHUDs64NA74ZPD1RhtqcV6a4nLzQggYDIY6q2w0tWMkIiIiIiIiIiIiChRM4Ns4c+YMFi5ciIULF+LLL79E79691aTAhQsXAIAz8L3AZDKhvLxcs1mUzcEtt9yCQ4cOAahN1Nx5551ITU1FamoqLl50e/eJK9TU1E7otVqt9SaGfM1isWD27Nm4cOGC5rEEGiEEXn31Vezfv1/rUBplNpshpcTFixfV/n3nnXeq5/vgwYMYM2ZMnfeXlZXBaDTaLddiseDJJ5+E0Whk33HBokWL8NNPP3l0LCguLsbs2bNRU1Pjs+/0Tz/9hBdffFGd9X9p+4EmqzkcIxEREREREREREZE/4hL6Ni5cuIAVK1aoj0eNGqX+vnz5cgBAcnKyz+Nq6pSl1f1hifWmqkWLFsjPzwcAHDhw4IrXO3Xq5NH6Nm/eDAAoKSnxaLmuKioqwq233opz584hLi5O63ACzpgxY1zas9zX9Ho9xowZg48++qjBGw5OnjxZ5/3R0dEIDw+3Wy77j3u80X/OnTuHW2+9FUVFRWjdurVHy25I27ZtMWrUKPXGvqa2GoNi0KBBuO6665rkihNEREREREREREREgYAJfBvXXnstVq9efcXz2dnZWLp0Ke666y7ccsstGkTWtOl0OkRERGgdRpO2YcOGOo+Lioq8tr9xcXExcnJyANTOwP/qq68wbNgwr9TlqNatWyMtLU3TGALZNddco3UIDhFCqKuoKOz1dSEEIiMjGy2X/cc93ug/11xzjc/7ZcuWLdUbEQwGg0/r9qUPPvhA6xCIiIiIiIiIiIiImjUuod+IqqoqPPnkk2jRogVeeeUVrcMh8ntTp04FAFx//fUAgMcee0zLcIiIiIiIiIiIiIiIiIgCBmfg25BSwmq11nnun//8Jw4fPow333zTpaWTLRaL3deDg3kKqOn45JNPsHfvXggh8Je//AVPPPEESktLsWDBAvTq1Qt//etftQ6R/FheXp7d1xMTEz1aX1FRkUfLa27snS9vrvLhLxrrP57ur0RERERERERERETUPDB7bEOv16NLly7q4x9++AFvvfUWJk+ejD//+c8aRtZ08QYG77GXPPJWYumNN94AAPTu3RtVVVWYMGEC3n//ffzrX/9Cjx49vFKnPUyguS6Q2s5bfT2Q2sDfxMfHe7z9tDgfzaUPNJfjJCIiIiIiIiIiIgoEXEK/AVVVVbjvvvvQsmVLZGZmah0Okd8rLi5Gbm4uhBCYOHEiACA5ORlhYWEwmUzYv3+/xhESERERERERERERERER+Tcm8G3k5eXh4YcfxsMPP4zU1FTs37/f5aXziZqbtLQ0ALWz74OCgtTnJ0yYAABYsWKFJnFRYPrggw9gNBp9Vp/RaMQHH3zgs/qaGl+fL3/D/kNEREREREREREREnsL1y20UFhZi6dKl6uPExEQ1KUlE9u3btw8AEBMTU+d5na72PiGTyeTzmCgw5efnY8SIEcjJyUGvXr18UmdOTg5SUlJw/PhxdO7cGUIIn9TbFFx+vqSUMJvNsFqt6ve/qcvJycGIESOQn5+Pdu3aaR0OEREREREREREREQUwJvBtdOvWDa+++ioA4PPPP8d7772HH374Ab1799Y4MiL/9+mnn2LUqFH45ptvIIRAamoqsrOzkZWVBQAYPHiwxhFSoFASoK1atfJZnb169UJlZSVCQ0NhNpthMBh8Vnegu/x8mc1mmEwmGI1GREZGahmaz/jqRhMiIiIiIiIiIiIiavqYwLcRHR2NYcOGAQD69u2LVatWYcGCBVi1apXGkRH5v7S0NEydOhVZWVnYsmULCgoKkJ2dDaA2eZ+amqpxhET26fX6Ov+Sa5T2Cw8P1zgSIiIiIiIiIiIiIqLA0zzWtnVBbGwsZs6cibVr1+KHH35wqyyr1YqKigpYrVYPRUfkf6xWK3r06IGpU6cCAJP35BFSSlRWVkJK6fW6hBAwGAxcPt9NSjs2h+Xzfdk/iYiIiIiIiIiIiKh54Ax8G1arFeXl5erjKVOm4JVXXsH8+fPx0UcfITY21ukyg4ODUV5ejoqKCgQFBTWb5YSpacrLy2vwtcrKStx5552Ijo7G2LFjsW7dOrRp0wbz5s3zYYR12YsXABITE30UCTmivvNRXl6OsrIyVFRU2D2frpxLfzv/gdZf/S0eb2jsnMTFxaGsrAzR0dEBfX0PtL5HRERERERERERE1JQxgW9HTEwMHnjgASxcuBA//fQTfv/737tUjrKMMJcTpqZMr9cjOjoa4eHhSEtLQ1pamtYh1UtKCbPZzGXSA4QybloslnpfV86n1WptFjO+SXu2Ywiv70RERERERERERETkacx2NGL69OmIiYnBokWLXC5Dp9MhMjKSySVqcvLz89XfhRB+3c+VWM1mM0wmE8xms8YRkSOU8dN2WfuCggI1oa+cT6PRqFWIXmP7/SLtWSwWFBQU1BlDmuL13fb7RURERERERERERES+13T+4uwlMTExmD59OjZs2IDTp09rHQ6R31i0aBFuuukm7Nq1S+tQGrVr1y7cdNNNWLRoEfR6PcLCwjgDP4D17dsXEydOBAD1fDa1GdCB9P1qLiZOnIi+ffs2+THE9vtFRERERERERERERL7HBL4DunXrBqB2L2YiqrVy5UoAwLZt2zSOpHFKjCtXroQQAgaDoc6MbgosUko1sa2cz6Y0AxoIrO9Xc7Fr1y5IKZv8GGL7/SIiIiIiIiIiIiIi32taGQ8i8pmamhqtQ3BaIMZMzRP7KhERERERERERERFR88QEPhE5TEqJyspKSCm1DoWIiDyMYzsRERERERERERGR9gT/WPsrIUQRgFwAVq1jsdESwHmtg6iHP8aldUwdpZQJ9b0ghChEbd/yJW+0hw5AEIAa2P+eaHUutOwD3qy7wb4F+Kx/adG2zaHOhupz9LvmiTr9bewCtB/Pm2sM9fU7d2Ko07eEENMATLv0sAeAIy6W6yn+cI4V/hKLv8QB2I/F7nWRiIiIiIiIiIgokDGB7+eEEHuklH20juNy/hiXP8akJS3bQ6u6m+Mx+4oWx9cc6mwOx+gKf4iRMfhPDN7iT8fmL7H4SxyAf8VCRERERERERETkS1xCn4iIiIiIiIiIiIiIiIiIyA8wgU9EREREREREREREREREROQHmMD3f29rHUAD/DEuf4xJS1q2h1Z1N8dj9hUtjq851NkcjtEV/hAjY6jlDzF4iz8dm7/E4i9xAP4VCxERERERERERkc8IKaXWMRARERERERERERERERERETV7nIFPRERERERERERERERERETkB4K1DsCftGzZUnbs2LHB14UQPoyGGiOlhNVqhdVqhU6ng05X934UX5+v77///ryUMqG+11q2bCk7derk03jsqaqqUn/fv38/ACA5OVl9LjQ01Ocx+VpVVZXahw4ePAjAf9vAXt8CgJiYGHnVVVchNzcXZrMZV199tfpaVFSUT2Jsbi5evKj+npOTAwAB2+6BMnbZtvmxY8dQU1ODuLg4tGzZEkBgtXlTYXtO6ht/cnJy/KZv2V73Dh06BIvFgoSEBCQkJECn00Gv1zv02eZ6zfQ3gTJuUeBp7P9cRERERERERES+wAS+jY4dO+K7775r8PXgYDaXP7FYLLBarTCZTAgLC7sige/r8yWEyG3otU6dOmHPnj2+DMeuvLw89fcOHToAANavX68+l5iY6POYfC0vLw9SyjoJJ39tA3t9CwCuuuoqvPXWW5g+fTpyqrD2CQAAIABJREFUcnLw1ltvqa8NHDjQ2+E1S1u3blV/HzRoEAAEbLsHythl2+bjxo3DhQsXMHLkSNx3330AAqvNmwrbc1Lf+DNo0CC/6Vu2173f/va3OH/+PCZOnIiHH34Yer1evRY29tnmes30N4EyblHgaez/XEREREREREREvsCMNAU0nU6HiIgIrcOgACWEgMFg0DoMIiLSCK8BRERERERERERE5G+YwCciQmBvkXH06FGkpaWhoqJC61CarUDuP4EoJiYGFy5c4NLlfigtLU3rEBoVHx+P8+fPu5y85/ediIiIiIiIiIiIvIkJ/MtUVFTUuxw7UVOjLB//yiuvaB2K5hYuXIjY2Fitw3BbREQE2rVrp3UYzYaUEtXV1UhPT+f+6z6Wnp6OQ4cOYcSIEaiqqkJISIjWITV7kyZNwrvvvouSkhKtQ2nU888/jx9++AETJkxw+DPKNbOpXC+IiIiIiIiIiIjIfzGBb8NqtaK8vBwAuCw7NXlmsxkmkwkjR45s9ksIT548WesQ3NKtW7c6+06Tb1RXV8NsNmP48OGcCe5jycnJSE5ORlVVFcxms9bhEICBAwdi4MCBdZ4bNGiQNsE04sYbb8SNN97o1GeUa+btt9/e7K+ZRERERERERERE5F1M4NvQ6XSIjIxEWFiY1qEQeZ1er6/zLxE5R5n1zdnf2uE5IF/hNZOIiIiIiIiIiIh8hQn8y3h65r3FYrH7enAwTwFpQwjh8VmEeXl5dl9PTEz0aH3UtGzdutXu65fP7tWaEIIz7zWm5TkItP4aSPzxWuKNayYRERERERERERFRfZg9tiGEYEI9gPBcuY6J9KbVBlFRUUwW+hjb2/fY5v4nkM6JO2N+U7peEBERERERERERkf/TaR0AERERERERERERERERERERMYFPRF5gsVgwe/ZsFBcXax0KBSCLxYLFixejpKRE61CIHFJSUoLFixc3um0OOW/RokX46aeftA6DiIiIiIiIiIiIyGeYwCcijysqKsKtt96Kc+fOaR0KBaCSkhLccMMNvAGEAkZxcTFuuOEG3nTiBWPGjEHbtm21DoOIiIiIiIiIiIjIZ7iJuI3Kykrk5OQAAHQ6Hbp06QKdjvc4EDmrdevWSEtL0zoMClAtW7bEoEGDtA6DyGFdunRBly5dtA6jSbrmmmu0DoGIiIiIiIiIiIjIp5idtpGdnY0ePXqgR48e6N69O1JSUmAymdwu12q1oqKiAlar1QNREvknq9WKyspKSCm1DoWaECklqqqq2K/IL7F/eh6vJeQKIcQ0IcQeIcSewsJCrcPxmE6dOkEI4dGfTp06+TxWb9VJRERERERERNRUcQa+jfbt2+PRRx8FAOTl5eHVV1/F0KFDsXTpUhgMBnTr1s2lck0mE8rLywEAERERHos3UDS2J3BwMLthoMjLy2vwtcrKSvWGF4PB4JM6ASAxMdFjdblbpxaxNnXV1dUwm83Iy8uDEKLB9w0cONB3QTXCXpwDBgzA/PnzG3zdn44DAC5evIitW7fW+5q/xWpPQ8cAACdPnrSbXLJ3nEr/BIDQ0FCPxNNYnU2d0Wj0yrXEHd4Y2/3tehFo8VxOSvk2gLcBoE+fPk3m7o/c3FyP38xi7xrlDnuxeqtOIiIiIiIiIqKmiplTG7GxsRg9erT6+KqrrsJTTz2F+++/H0uXLnWpzODgYERFRSEoKAjh4eFckp+aLL1ejzZt2rCfk8vqS1parVYYjUbs3r3b9wF5waFDh1BTU4OgoCCtQyE3DRw4UO2fHPc8Jzw8HF26dGGbEhERERERERERUbPFv4zacfvtt2PhwoXYsWMH7r//fpeX09fpdIiMjOQfoqlJE0Kwn18ipeQS0B6ijJ/K7L1AX7L83LlzGDp0KBYsWICamhqtw2m2PNWPeH33vEBqU2Ws5xZJRERERERERERE5En+/9dRjdkm8ceMGYPKykqtQyLyC2VlZVi2bJlPk9WnTp3C2rVrvV4P8Gti5rvvvsOuXbuc+qzZbEZxcTHee+89L0XXfFVXV+Prr7/GL7/8onUo9Tp79qzd16OjoyGlxH/+8x8MHToUmZmZfn1TwrFjxzB27FjccccdeOedd7QOxyM++ugj3H777Rg/fjzGjRuHmTNnYuzYsRg7diymTp2Kffv2+TSeLVu2NNpvyH+sXr0aubm5AGrHepPJBKPR6FJZynWmoqICH3zwgSfDdIvRaPSbeKSUOH/+PP7whz/gt7/9rfpDRERERERERETUlDGB74Dbb78d8+fPx9dff40NGzZoHQ6RX5gzZw7mzZuH1atXw2QyqftAe5PZbPbZ3tBKYqZVq1ZO7/2r1+vxyy+/YNSoUcjPz/dShM1TSEgIbrrpJlgsFq1Dqdfzzz9v9/XevXvjqaeeAlCbmPriiy/UfdSrq6t9EaJTampqUFJSgqKiInz88ccoKCjQOiS3rVixAhcuXEBpaSlKSkpQVlaGkpISlJSU4MSJE1i0aJFP47nxxht5c2AAmTlzJu666y4AtWN9WFgYwsPDXSpLuc5kZ2djxIgRfnO9yMnJ8Zt4zGYzVq1ahb179+L8+fPqDxERERERERERUVMWrHUAgeKmm24CAP6R3QOsVitMJhPCwsICYolcqt+3334LoHaG7siRI6HX671Wl5QSZrMZ3bp1U5dS9zbleGJjY52uUwiBvn37eiOsZk8Igbi4OMTFxWkdSr3+8Y9/4PXXX2/w9W+//Rbbtm0DAERGRmL27NkICQkBAPVffxIXF4eRI0cCAPr27YvWrVtrHJH7PvzwQ6xevVpd9ry0tBQxMTGwWq0wGAwYO3asz2KRUkKv16Njx44+q5Pcd/LkSQC145HBYHD5/zLKdebGG2/02bWtIcp1Vq/Xo1evXprGYkuv1+Oee+5Bt27dsHfvXvV5e+MsERERERERERFRoGMCn3zOZDKhvLwcABAREaFxNOQJBoPBq+UrsxR9UZdCScwQOSMoKMju6xaLBVFRUXj88cdx6623qs+HhoZ6OzSXtGzZEvfdd5/WYXhUbGwspkyZoj4+efIkOnXqpEksyuoLgP/2AfIef7rOaHGddYTSRrfddhtuu+029Xkm8ImIiIiIiIiIqCnj9GfyubCwMERGRiIsLEzrUChAKMsUe3OWP5EvXHvttVi7dm2d5H195syZg4iICKxbt85HkZEWQkJCoNfr/XL1BWpeeJ0lIiIiIiIiIiLyH5yBT14XHHxlN+NMQ3KUs/vP28rLy3OpbHt15uXl2S3XnXipYQMHDvR5nVu3brX7ekMxSSkB1O4fP3XqVOzevRvPPfdco0uz17eE9qhRo64o15eioqJcantX285bZWrRf+zxt3i8cb4aU1VV5dJY6uq47m/8Lc4OHTpoHUId/tY+REREREREREREvsQEPhGRk2z3CtZ632LyX0FBQfjggw88Vp7VanV5r20tSSlRXV2NkJAQfl8ooGlxEw0RERERERERERE1P4GXCSAickF+fr7HylL2Cq6oqEBBQYHHyiX/5Q/nedWqVVqH4JKzZ8+ioqIC1dXVHi3XH85JU3T+/HlYLBav11NQUICXXnoJL730kstbRZSWlqK0tNTDkTXMbDb7rC4iIiIiIiIiIiJqvpjAd5Aya9BqtWocCZF2pJSorKyElBI333wzAKBnz54aR9W4/Px8bN68GTt37lTjd4eyV/D27du5R3kzcPz4cUycOBF33303ampqNItjypQpmtXtjv/+97/Yt2+fR/d5//HHH7Fz506cPXsWVVVVnBntIVJKbN68GTt27PB6XefOncPrr7+O119/HQ888ACWLVvmdBlfffUVvvrqKwC/Xp+8+f80ZX/4du3aea0OIiIiIiIiIiIiIi6h76Do6GgAQHFxscaREGlHmXkOAIsXL8bixYthMBg0jqpx7dq1Q+/evdGtWzc1fnfiFkLAYDCgf//+nAXcDBQWFgKo3Xt72rRpeOeddzRZyn7mzJk+r9MTfve736FFixYeXT4/OTkZBoMBcXFxnBXtQdXV1ejVqxdat27t9bqCgoIQGxsLIQT69++P22+/3ekybrnlFvV35fpkNBoRGRnpyVBVQgjk5OR4pWwiIiIiIiIiIiIiBRP4DoqNjYVOp1MTOUTNkTL7MBD3fr/++ushpYROp1OPw13R0dHqzT3U9AkhcPz4cUyfPh1vvfWWz+t/7rnnfF6nJyQmJnq8TJ1Ohx49eqgz7z05u785CwkJQZcuXXzSnj179sT69evdupa0adNG/V0Z18PDw92OzZ5AuGmNiIiIiIiIiIiIAluTWUJfCHGzEOIOIcRQb5Sv0+kQHx/PBD41KwsXLsTNN9+sLhuuzDwPtOS9ItDjJ22NHj0a3bp1w9GjRzF9+nRuqeIHhBAIDQ3ld9pDfNmeQgiP1qOM746sjrFp0yZcd911yM/P91j9RERERERERERERJ7SJGbgCyGGAVgC4CMA6UKIUVLK/3Pws9MATAOAhIQEHD58uMH3JiQk4Ny5cx6ImJoD277VoUMHjaNxXGZmJgBg7dq12LZtGwAgJiYG8+bNQ2RkJNLS0nwaT15ent3XvTG711suPxYpJcxms7qigTPHEqj9yxu2bt0KKSWqq6sREhJSJyl48uRJdOrU6YrPKO8fMmRIgwm/kydPAoC6TUJ5eTmeeuopPPPMMzh69Ch69OiBt956q97PDxw40O3j0oqjfWvr1q11Htueg9zc3HrbXSuXx3o5b5wve3Uq/bKhfhvI/cce277l633klWtbdnY2srKyANT27yeffBLx8fFIT0/3aTyNCaRrnyevbURERERERERERNQEEvhCiAQAzwJ4REq5QQhRAUAnhOgupfy5sc9LKd8G8DYA9OjRQ9rbN7VVq1acgU8Os+1bffr0kRqH4xTb5L3BYEBFRQWeeeYZzJs3T7M/xF+eEHCEN2L1ZJnKns2A88syB3L/8obq6mp1L/TQ0FCH39/QftlWqxVt27ZFSEiImsCPiopCly5dsGzZMkz5/+zdeVxU9f7H8ddhBgYEobByS8UlLbHULFNwz7TcSk1zTzQ1yxYtU68WaWiaZXv3moW72a9uprllhrt2S2+kgWmmqJkrIMg2DMz5/TH3nIZtGIYZNj/Px8OHzJxzvuc7w5lzeMz7fD/fiAh9JH5RIX5JaeXgy5urx5b97yAkJMTtIXRVCLW1wF5T0uPWU8rqvc1/bLlyPi3NOdg+vA8MDCQ1NZX58+czffp0j+3TVa5c8yqK0lzbhBBCCCGEEEIIIYQQVaOE/lXgJyBbUZQWwD+AscAuRVGecueObr75ZgnwRZW3ceNGPbwfM2YMc+bMwd/fXw/xtXL6ZU0LBLSwqyowmUz4+fnpczcL13l7e2MymZyeu1tbv6j5sjMyMjCbzXnCVo2XlxeRkZFSTj+fkv4OrkdaYK+dR+U9Kzv24X23bt2IjIykYcOGWK1W5s+fX+HK6Vfma55c24QQQgghhBBCCCGEKJ1KH+CrqmoB0oChwP8B76qqOhLoB0QpitLBXfsKDg6WAF9Uab/++is7duwAbOF9aGgoBoOByMhIPcRv1apVufTNZDKxe/duZs2aVS77d6eLFy/y/PPP88svv+Dr61vpRldWRNrc3U8++SRdu3bV/0VEROR53K9fvzzrFzVyvlq1anqwajAYADhx4oS+3MvLi8WLF+sh/uuvv+75F1lBXblyhXnz5nHs2LEKOx+9qqpkZ2ejqipvvPEGu3c7NcuOW1y5ckU//nr27Em/fv144okn6Nq1K926daNnz568/fbbZdaf65V9eN+7d28AJk2apIf4LVq0KM/uFaCF4FevXuX5558nNja2vLvklKlTp7J161a5tgkhhBBCCCGEEEIIUQqVOsBXFMULQFXVGcBE4J/Anv89dxBYhRunCfjtt99o1KiRu5oTosLRygQrisLtt9+uP28wGHjooYcAW8h/5syZMu+boih07dqVBx98sMz37W41atQgLCyMpk2blndXqhxtFG3Tpk1p2rQpDRo04LbbbtOXOzvvtpeXlx5Gt2rVisDAQH799VcWLlyYZ53FixcDlMtnoqK44YYbaN26dYWa8z4/beS7xWKhY8eO3H333WW27xtuuIFBgwYVudzf35+wsLAy68/1ymi0/TmY/3ffrFkzAG688cYy75MjiqLg6+vLTTfdVKmuFz179iQ8PLy8uyGEEEIIIYQQQgghRKXmtnC7rCiK0gwIBg4C1v89p6iqmq3YhvqMVRTlT6Aj0B1wy7C27OxsfvjhB5555hl3NCdEhRQUFESDBg04ffo0a9euZfjw4QDk5OQQExNDcHAwSUlJRERE8P3335d5/wIDA+nevXuZ79fdjEYjgwcPLu9uVFn+/v56sH7y5El9dHyTJk348MMPS9ye0Whk5cqVjBgxgs2bNwPogWxRI/ivJ0ajUb/Bp6LSStR7e3vTvn37Mt230Wjkqaee4qmn/p7VJyEhoULf8FAVde/ena1bt7J06VL+8Y9/6M9v374dgA0bNpRX1xyqbNeLqnCNFkIIIYQQQgghhBCivFWq5EFRlAHAeiAK+BR4WlGUQFVVVQBVVd8DFGAGEAE8qqrqKXfsOz4+HrPZTOfOnd3RnBAV1pgxYwD4+eef9XmaDx48SFJSEgMGDKBWrVrs2LHjuh5xLCoHq9XK7NmzOXHiBE2aNGHx4sVFBu4XLlzg2Wef1Y/5/AIDA1m1ahXVq1dn8+bNLF261JNdF26mTZkgJb2vXw888ABGo5HExETOnz8PwHfffUdOTg7BwcEVroS+O6xcuZKVK1eWdzeEEEIIIYQQQgghhBAlVGlG4CuK4g08BoxVVXWfoigDgXbAS4qiLFRVNQVAVdVh/yut76+q6rWS7ENVVbKysgpddvDgQby8vOjQoUOJ+p2Tk+NwuVbS1d3blrXK1FfhmMFgoF69epw9e5bVq1fTv39/vvvuO+rWrUutWrWYMWMGzz33HEOHDmXt2rUlalsr0e8uiYmJLu/v7NmzLm8rPGPnzp0Ol3fp0qXQ5xMSEvSfrVYrYBt5P3v2bM6cOVNkeP/qq6+ya9euPM+9//77+s87duzIs0wL8UeMGMHu3buJjIwkIiICALPZnKcf17uEhASHv8+ifpeOFHd8FNefoka8e6KvVYmrn8uKJjMzky5durB9+3Y+/fRTXnjhBb777jsAvdpMWSruGuSqRYsWAbBp0yZiYmIAWLZsGb179wZgypQpLvVHrolCCCGEEEIIIYQQQpSdypaqBgK3AfuAdcAVoDcwFPiXoij3AWZVVWOBEoX3YCu73K5du0KXRUVF0bp1a2644QZX+66zWq1kZmbi5+dX6raEcLdRo0bRp08fWrVqxZEjRxgyZAhXr17lnXfeoWXLltSoUYOoqCj279/PuXPnnJ5T3FVlHRqoqorZbMZqtbq9PLoEIJ5hH8xqv7PXX39dD++PHTtW6O8yf3ifn6MbBkJCQti9ezcBAQEAmEym664kuqPgtjRhuyOqqmKxWPD29i7RaPqQkJAi++upvlaWYPt6MWrUKEaNGkWTJk1ITk7m+PHj5ObmUq9ePaZOnVre3dNp16DGjRu7fA2yD+8B/WctxHc3ubYJIYQQQgghhBBCCOFelaaEvqqqFmARMEBRlI6qqlqBvUAs0ElRFD8gDLjg7n1nZWVx8OBBt30Zn5mZSVpaGpmZmW5pTwh3Cw4O5u6778ZqtTJjxgxatmxJ165d9eUvv/wyAC+88EJ5ddFjzGYzmZmZZGRklHdXhIvS09OdKptfnKLK6QcHB+cppy/KjsViwWw2Y7FYyrsr1yVVVcnOzuZ/MxdVKlqVpWeeeQaAFStWABAdHV2e3SqgtNcg+/B+zJgx+rQ4MTExbNq0yW39FEIIIYQQQgghhBBCeE6lCfD/Zw+wDRipKEonVVVzVVVdA9QB6qiq+raqqm4P8A8dOoTZbKZz585uac/Pz4+AgAAZgS8qNPtQ4/jx47Ro0YKOHTsSGhrKzJkzAdi/fz+NGjUiNDS0wL+WLVty4MCBMuvvgQMHCA8PJyUlpcTbvvjii+zduxewjaT28/OjWrVq7u6icFJaWhqvvvpqiUtMW61W0tPTAYoN77VS+440atSoyGWBgYFER0dTvXp1wFayXxRuwYIFHDp0yC1teXt7YzKZiIuLo2vXrkX+69GjB7GxsSVuf+zYsTzyyCPs2bPHLf2tatasWcPatWsr5Q0UWjA+YcIE/blatWrRrFmzcuyVzYEDBwgLCyM2NrZU16APP/wwT3ivXY/tQ/ylS5cW286pU6eYOHGiS9dTIYQQQgghhBBCCCFE6VWqAF9V1SxgNfALMENRlPGKojwO3AykeWq/N954I4BLYUBhvLy88Pf3d3t5biHcKTg4mIiICPz9/TEYDAWWa+Wrc3JyClSTyMjIIDk5uUxH+0VGRnL27Fl9VGVJ9OjRQ58+Q1EUfH195fNZzlq1aoWvr6/T61ut1jzBXHFee+21Ytc5c+YM//nPf4pc7u3t7fT+rmcdOnSgZcuWbmlLURR8fHwwGo3UrFnTLW1qdu/ezcmTJ0lJSeGVV16hb9++EuTn06FDB8LDwyvlsa8F4yaTSZ8OqW/fvuXcK5v169fz559/0q9fP3755ReXr0GRkZEAtG3bltDQUP350NBQ/TU7E8r7+vpy3333lXj/QgghhBBCCCGEEEII9zCWdwdKSlXVZEVRlgDxwAQgCxihqupFT+2zefPm9OrVi0WLFvHss88SFBTkqV0JUaHMnj2b2bNn648TExOpUaOG/njNmjVMnz5d/1kL6Xbt2sXIkSPLtK9XrlwBbFNelFSPHj3c3R1RCgEBATzyyCNOr6+F91rZfIATJ04wYcIEFi9eXOj6CxcudKrtsWPH8uuvvxZ4PjU1lZEjR3Lt2jXA8Wj96114eLjb27zzzjtZu3atW9vUjonBgwezefNm0tLSeOWVV3j77bf59NNP6d+/v1v3Vxk1aNCgvLvgMu3mLACj0fbnb0luEvIkrT8AAwYM4KuvvirxvPKrV68mMTERf39/jhw5Qr9+/fRKT3/99RdXr17FaDTy/PPPF9tW7dq1GT16dIn2L4QQQgghhBBCCCGEcJ9KOcRUVdVsVVV3AMOBMaqq/uyOds1mMydOnODEiROcPHkyzxyv06ZN4+rVq7z33nvu2JVLtPLQzpR+Lk+VpZ/Xk+PHj5Odne32docNG8b8+fPJycmhf//+/PLLL27fhyuysrLKZI7m7Oxsjh8/7vH9XI+cnWs7f3i/ePFiFi9eTJMmTfQQP/+56LXXXtNL7TvSvHlz4uLiCozCT0pKYsSIEVy7do1evXqV/MVVcVartVznSXdlnvZdu3aRlpZG9erVmThxIt988w1z5swhICCA5ORkBgwYQHBwMBs2bPBgz0Vld+nSJS5duuTy9kOHDiUnJ4cBAwbw008/lWjbF198EUVRGDJkCJmZmfq0MIBeNv+BBx4oUZuqqpbZ9VQIIYQQQgghhBBCCPG3SjcC356qqrnubO/o0aPce++9+uPQ0FAGDx6Ml5cX1apVo1+/fixatIinnnqqwCh8+9FTnpKZmUlamm2mAH9/f4/vz1Ul6WdOTo7D5WXxvlZVixYtAmDjxo3s2LEDLy8vZs2apR+7U6ZMcct+hg0bBsD06dPp378/y5YtIzU1FbAF6YmJifq6RY0oLGquc1VVMZvNNG7cuNBywvZtayFteno6ly5dwsfHh/r167v2ohzQ3teUlBSioqKwWq1069aN3r17A66/ryWd772i2rlzZ5HLEhISCAkJcaodi8WC2WwGwMfHh4SEhAJt24f39evXZ8aMGZw5cwaAGTNmMHv2bE6cOEGzZs1YvHgxXl5eWK1W5s+fj8FgIDfX8SXkqaeeYtKkSQwZMkQPwFJTU/XwvlOnTgwaNIjNmzdjNptJSEhw6rVVdRkZGXl+d2Ut/7FTnFdffZV9+/YBtnPUq6++qi9r06YNu3btAiA5OZmHH344z7auBpul+Zx06dKlTPdZks9tWSjuXFnUdaaw60VmZqb+fElHvGu0a0JcXBzR0dHA3/PPQ9HXBPv+aJVjOnToQJMmTXjttdcICwvjq6++olWrVoVua18NZ926dVy4cIGwsDDq1KnD7bffzs6dO7nnnnu4evUqSUlJGAwGfaoYZ5nN5gJT5AghhBBCCCGEEEIIITxP0lE7fn5+3HbbbYAtpImLi+Pbb7+lbdu2ZGdnM2vWLNq2bcv777/P5MmT8fPzK3aO0tIE0Pm3rV69OgaDgWrVqlW4+bnt+1rSflqtVjIzM516P0XJaOE92N7nqKioPCF+YRyFGEUtmzZtGkFBQUycOJHRo0frZfV9fX3zhAwlpYUHGRkZBAQEFFhu37Z27Pj7+3PLLbdgMpkctu1qWAN5w3uAmJgYAD3EF8VTVRWLxYK3tzeKogB5g0mr1UpGRoZ+HikuvF+6dGmB88fSpUuJiIjIU05/xYoVZGVl0bNnT4YMGUKDBg146qmnuHr1Km+++SajR4+mV69eTJ48GbCVDE9ISCA+Pp5bb701T3hvP72EyWSiTp06eV7P9apatWp07drV7dcqZ4Pr/MdOcbSAHiA+Pt7V7lUp9p/PkJAQl28aKCvazV6OzvuFXS/8/PxKdY3S2If3ANHR0XlC/KL6k7/fgYGB9O3bl4CAAKZNm8aAAQNYu3Yt9957r8PzSlRUFABvvfUWvr6+tGvXjt69e5OZmcn69esBePbZZx2WxS/smmj/WRJCCCGEEEIIIYQQQpQdSUvtZGZmcvjwYQ4fPkxCQgImk4n9+/dz6tQpAFq3bk2/fv149913+euvv8p8VJKXlxcBAQEVPuQuaT+1Efsyysu97MP7MWPG0KhRIz3ET0lJcfv+nnzySb2cvhYmaLQyvCWdVsFkMuHn51fi8MDX19djIap9eN+oUSPGjBkD2ELFn7SdAAAgAElEQVT8TZs2eWSfVZE2StpisRS63NF5JH/Z/MjIyELX8/LyIjIyMk85/c8//xyDwaDPA60oCo8//jgXLlzQw63hw4frbUydOhWAuXPn5imbHxERUaBPjl7P9aS8r1XlvX9XaaX/K4LiPp8VjXazl1Z5oSzZh/fdunWjW7dugC3Ej4uLc7it1u/818ahQ4eyYMECcnJyGDJkiMNy+uvWrePy5cuEhYVRt25dAO68804eeOABFi1axNmzZ/Hx8WHy5Mklvi5W1s+SEEIIIYQQQgghhBCVnYzAt1OjRg369OkD2OYx3bJlCyaTiS1btuiluLVR+KtWrSIyMrI8u1tl+Pn55flflN6sWbPyhPehoaGEhoby4YcfcvLkSaKiopg5c6bby1vbl9MH9DCquJH09r744gsUReHRRx9FURR8fX2dCg/Kas57+/D+6aefBmzvcXR0NDExMbz++uvMmDGjVPsZPnw4e/bscUeXy42qquzdu5dXXnmlyHVatGihl58uiUmTJuWZ814rmw+wbNkyAD2M9/LyYvHixXrgD9CzZ098fX31be677z5uueUWLl26RN++fbnlllv0ZaGhodSpU4e//voLgF69ejF16tQC5fItFgsmkwlvb+8Svx5Rfko7p/2cOXMcHuPOePHFFzl06FChywwGA+PGjeOxxx4r1T40qqqSmZnJ448/zpUrVwpdx9/fn5kzZ9KmTZsKfzxr14uBAwcCFFt5RRvxrn3+S3uj1w8//JAnvLevwhITE0N0dDQdO3YscuS7yWQiPT1dD+gnT55M7dq19eX+/v6kp6fz6KOPUrduXYKDgwHb9ENa5aPff/8dsI2+t/f888/z3Xff6T9XdYqijAfGg+1z4+rvVqu64k4hISGcPn3a5f64W4MGDYp8fzzx+oUQQgghhBBCCCFEyUmAb8dgMHDjjTcCcOONN3LixAlOnz5Ndna2HhC1bt2axo0bExcXJyOS3MTLywt/f//y7kaV8fHHHzN37lzAFpA2b95cX9alSxdOnjyJ1WolISGBpk2bun3/w4YNIzc3lw0bNhAeHg78Hao4M5L+wQcfLPE+Y2Nj9fmEPfFltyYhIUEfKWlfUvr222/H19eXrKwsvvnmm1IH+ElJSaXaviKwWCwcO3bM4TpxcXGkpKRw0003lajto0ePEhQUpM9rr1m4cCGbN28G4PLly/roeS3Ef+aZZzhz5kyBMEtRFObMmcNvv/1GWFhYnmWpqalcunRJf6y1qTl+/DgAZ86cKVVoJMrHgQMHSrX93LlzmTVrVqn+HnBUESU3N5cdO3a4LcC3WCxcunTJ4Uj19PR0fvjhB9q3b++WfXqSdr3QbvYqjnYz2XPPPce///1vBg8eXKr9b9u2Td9/hw4d9Oe1ID8mJoaIiAjeeustDh06pN80l5aWxqJFi1i3bl2eYPfKlStF3lhx7tw5zp07V+iynj176qPvNXfeeSe+vr7k5uYyadIk119kJaGq6sfAxwCKoqiu3tTniXP46dOny+QmQ2c5CujlGiaEEEIIIYQQQghRMUiA70BqaioBAQEkJSXpIzLT09M5deoUQ4cOLefeCVHQxx9/zIQJEzAajbRo0YLY2FjWr1/Pww8/THx8fJ6Rgp4I7zUjR45k5MiR+uOSjKSvXr16ifYVGxvLgAED9Mc33XQTWVlZxY7EdEXTpk3p2rUrO3bs0Oc4vv3225k9ezZZWVn4+/u7ZeT8li1b8syN7MmbEjzF29ubUaNGMXbsWD0QSEhIICQkxC3t16xZs9DwXjt+tCB/0KBBgC3E//DDD4tsr1mzZjRr1izPc6mpqYwcOZKcnBxMJhNms5n4+Pg8N8UsX74csI3snT9/PjNnznTL6xNlIyoqivnz57u8fXZ2Nq+99lqpKvIsWbIkz+OEhAQaNGigz0HvzkDN29ubOnXqsH79+jztuvOzWZZKer3QrguDBw92y00Rr7zyCsuWLePUqVNERUUxa9YsgoKCAFuI36hRI1asWMGvv/5KtWrVGD58OPv27eOPP/7Q2wgJCSEhIYFq1arx22+/FbqfNWvWMH36dIxGI19//TV169alRo0axfbP29tbr6KgXVOsVqvcgCqEEEIIIYQQQgghRAUn3+AVITc3lytXrmA0GjEYDNx8880A/PLLL1itVu6+++5y7qEQeWnhvbe3NwcOHGDEiBF07NiRPXv28K9//avIMr+VmRbe5+TkcMcddwC2EaaenAu5T58+dO3aFbDNcfyPf/yD9PR0/P39iYyMxGAwuGU/2k0PlXU0nKIo+Pj4lEn/ly5dqof3q1atYtWqVVSvXp3NmzezdOlSl9rUwvvU1FR69eqll6deuHChvs7x48fZv38/Q4YMAeD7778nNze39C9IlJnSfl6NRiMLFy4sMId5aXnq81OWn8uKyBPn1UmTJtGwYUOsVitRUVF5KirccccdZGRk0LlzZ3Jzc1mxYgV//PEHTZo0YfLkycTHx+tTMNhXdclv2LBhzJ8/n5ycHB555BHi4+NL3E/7qWyEEEIIIYQQQgghhBAVm4zAt2OxWDh//jwAycnJ5ObmkpmZSVBQkF6eW5unVgJ8URFo84dv2rSJmJgYFEXh6aefZvfu3fz+++88/PDDXLt2jdjYWKD04f3Zs2fd0u+S0D57+cXGxtK/f39yc3N5+eWXOX78OEePHiUrKwuz2ezRILVPnz4A7Nixg5ycHLeH96Kg/CV/zWYzCQkJLF26lN27d+vhfWBgIACrVq1ixIgR7N69m8jISCIiIgq0eeHChUL3lZaWxvTp00lPT9fnvIe/5waOj4/nxx9/ZOPGjRiNRs6ePUv16tW5du0aw4YN44477mDnzp1uff1ViaP3priR4I5CzvLQrVs3tm3bxpgxYwrMc17R+io8Z9KkSXzwwQecOnWKefPmMW/ePAwGA1988QUvvPBCgfVPnDjBgQMHmDx5sl6Bobgy98OGDQNg+vTpjBo1ihUrVuSpBqK5fPmy/rNWtj0xMRFVVcnJyXFqKhshhBBCCCGEEEIIIUT5kgDfTmBgIA888AAAu3fvBmwhUZs2bbj33nsxGo3ExsZSq1Yt6tevf92OYHMno1EOwdLSwnuwfVl/4cIF6tWrR9OmTenYsSPTp08H4PXXX9d/9pR69eqVyXbayPvc3FwWLFjA0KFDefnllwHb57hWrVou9cMZU6ZM0f/fsGEDXl5ePPTQQ6UO71197yoaT4WW+UNdk8nEF198oYf3CQkJBAcH51lHC4N3795NQEBAgfnrC2s3NTWV5557jvT0dMaOHcsnn3yiL/vss88ICwvjo48+Ii4uTn9+3759+s+XLl3i0qVLpXiloqzt2LGDqKgovv/+e0JDQ/nggw/0ZflvKDh+/DgTJkwgIiKCTp06ccstt/D999/z+eefM2rUKKdLk5dHuF9Vbigoq+uMs+yvCc2bN+fo0aNs2rSJnTt3Fhrea3744Qfq1avHf//7XwIDA3nooYeK3de0adMIDg5m/PjxPP7443z99dfcddddBdbTyutrf6fal9uX8vlCCCGEEEIIIYQQQlR88i1eEU6fPo3JZCI7OzvP/NOHDh2iTZs2Et6LCsE+vB89ejRNmzbl888/56effuLMmTOEh4eTk5PDkiVL3Breq6pKVlaWPrqvLNmXzX/55ZcZOnRomfdB069fP/r06SMj78vB77//nqdsfv7wHiA4ODhPOX378veFyV823z68B2jfvj3NmzfPE96LqmHGjBkoikJcXBxpaWlFrrd8+XICAgIYMGAAANWqVeP+++8nKyuLFStWALbzY3Z2ttvL6ouKLzY2FoPBwK5du9i6dWux67/55puYzWZ69Ojh9D7GjRuXp5z+4cOHS9NlIYQQQgghhBBCCCFEBSTDn+2kp6fzn//8B4Bjx44RHBzM+fPn9dF36enpHD16lIEDB5ZjL4WwmTlzph7ejx07lubNm3P77bcTHR3N2rVrURQFVVVZsmQJTzzxhFv3bTabuXjxIlu3bmXcuHFlNqLv8OHD9OvXD7DNLXz8+HF95L0zYYmoOlRVLVA2vzCBgYF6Of3NmzcDFDoSPy0tLU94X9g6AJ988glhYWHF9i83N1du7HBCbGwsc+bM0R/bv2++vr6MHDnSqZHJpWUwGOjWrRvff/89jz76KC1atAAgKysLX19fwDbNzuHDh4mIiCAgIIArV64A8Nxzz7F9+3Y+++wzRo0aRU5ODmazmYyMDAICAjzed1Fx+Pj48MknnxAREcHDDz9c7PrajXUzZ84s0X7sy+k/8sgjrF+/njvvvLPkHRZCCCGEEEIIIYQQQlRIEuDbuXLlij4XKUCjRo0wGo3Url0bgD///BOr1epwfl4hyso777wDQGhoqD4Prre3N+3bt+f48eMeC+8BMjIy6NOnDykpKXz99dds2rSpTEL81atX6z8fPXqUo0ePFlhH+7yKqkdVVSwWC15eXvj6+hYb3mucCfFXr15Namoq3bp1KzK8B9so/Jo1a3Lx4kWH+zx06BBt27Z14lVd39asWUNycnKRyxctWsT999+Pt7e3xyvfzJgxg127dmE2mzl06FCR6+Wfd7xatWo0bNiQP/74g3nz5ulhrMw1fn0aPXo0s2bN4ty5c8Wum5ubi4+PD61atSrxfuxD/MjISL766qsStyGEEEIIIYQQQgghhKiYqlSAryiKopaipnedOnV46qmntLZYtmwZ9erV0+dpb9SoESaTifj4ePd0WIhS+Pzzz+nbty9xcXFs2rSJ3r17ExcXx/LlywHo1q2bR8L75ORkunTpQkpKil5yunfv3mzatMnt+8pvwYIFDBw4kOTkZLKzs7FYLPj7++vhXu3atbn99ts93g9RPiwWC2azmVWrVnHzzTfr52ZnBAYGsnLlSkaOHKmH+IMGDdKXZ2VlAbbPjaqqDsPiQ4cOceuttzrcn4T3zlmwYAErVqwgJycHgJSUFIKCggDbXN1du3bFbDYDttHNnmQwGFi3bh07d+7Un0tMTNTnD09KSmLp0qV8+OGHLF26VF8nLS1Nv6EjJiaGGTNm4OPjI3ONX8dSU1MxGAzk5uYWu+6///1vl/czbNgwpk+frn9GhBBCCCGEEEIIIYQQVUOVCvCBIOCqqxt7e3tTq1YtAKxWK2fPnqVdu3Z5lt91110OR+YJUVb69OnDmDFjiI6OJiYmhosXL+pzc3fr1o3evXu7fZ/Jycl07tyZq1evMmTIEObPn6/fONC7d28OHz7s8dCqbdu2qKqK2WwmOTkZX19f/Pz89DLXoury9vYGICAgwKXR2EFBQXlC/LS0NGbPnp1nHYvFgsVicRgW161bt8T7FoWzWCwMGDAAk8mEj48PCQkJearcaFUXtN+9pwUEBNCnTx/9cf7+xMTEkJCQQHx8vD7C/quvviItLY169epx9uxZ5s+fX+KS6KLqOHjwINeuXaNr167s2LHD4br/93//l+d4E0IIIYQQQgghhBBCCIAqMzxMUZSewCeKotzijvYuXbpEVlYWDRo0yPN8mzZtOHToEFar1R27EaJUQkNDGTNmDIDHw/vExMQ84f0bb7yBl5cXmzZtIjQ0lLi4ONq0aVMmnw1FUfD19cXb2xs/Pz9MJpPH9ynca+bMmfj7+7Nx40ant1EUBR8fn1KVUtdC/OrVq7N7924WLlyYZ7m3t3eZhcXC9n6bTKYi33N3/M7dSZteQTtu0tLS+OKLLwgPD+eDDz4A4Pvvv3dq5LWoml5//XUAXnzxxWLXHThwoKe7I4QQQgghhBBCCCGEqISqxAh8RVE6A4uBCaqqXirhtuOB8QA1a9akcePGgG3UHUCHDh1o3LgxRqORnJwcWrduzb/+9S+OHTvGbbfdprdTklLO4vpgf2zVr1+/yPXOnj3rsJ169eoVuWzKlCkA9O/fn40bN1K7dm0iIyNd6K3j/uQfef/GG2/oy7QQv3fv3sTGxnLXXXexadOmQkfiO3otRXG0TXHtlea9reicPb4qksJC2L59++o/O5oBpUuXLkUu27lzZ56y585se+rUKRo2bKiX09dG3BuNRqfCYq2v586dIywsjDZt2nh8DmpHrxEcv0cl4eljy139dJeS9KdLly589NFHxMfHExERoT+/b98+Hn74YcB2bHTv3t3h8eyIo99z/ooAhfXPlXaL29ZdKuN5CxxfS+ynWQDYtm0bJpOJO++8kzNnznDrrbfyxBNPEB0dra/zzTffVLiR91X5eimEEEIIIYQQQgghRGVTVUbgNwMWqKr6raIotRRFCVMUpZMzG6qq+rGqqveoqnqPNu8uwLFjx/D29i7wRfndd98NwIEDB2QUvnDI/ti6+eabPbqvPn368K9//avU4X1h7MP7/v375wnvNflH4vfu3Vs+Hx5WlsdXZaCqKtnZ2U6HpjVq1NBH4m/evJmYmBi9nZKoW7cup0+f9nh4X5bk2HLsk08+cWo9i8Xi4Z78TTv+K/p5t6ofW0eOHCEtLY02bdpw7tw5ZsyYQe3atfXw3mAwVMjwPj9VVcnKynL5JhQhhBBCCCGEEEIIIUTpVJVh49lAB0VRGgL/BvYCDyuK8r6qqm8620h6ejo//vgjAD///LM+8t5eaGgoJpOJH3/8kYEDB+Lv7+++VyGuezk5OSQmJlKzZs3y7gpgC+/vvfdesrOzadOmDd27d2fXrl368ptuuonQ0FAg70j8uLg4HnzwQbZu3VroSPzycO7cOZm7vILbuHGjy8GWxWLBbDaTlpaGj48PAQEBxW6jldMfOXIkqampAJWm9PnFixcrzHnietO+fXuaN29OfHy8w/VGjhzJ2rVrS7WvtLQ0Pv/8c/1xSkoK2s2GXl5ePPjgg9SuXVs//jMyMpw69uX4cd3p06f54osv9HA7MzMTPz8/AL788ksAfvrpJ9q3bw/YQvu7776bCRMmMGbMmDKt2ORqAG82mzl58iSNGjXC19fXzb0SQgghhBBCCCGEEEIUp6oE+D8BbYDhwEpVVd9WFGUx8LWiKHGqqm5xppFz584xbdo0/XGzZs0KrOPt7U1oaCi///67/oWtEO6yfft2zp07x9ixY8u7K4BtDt/s7GwADh06xKFDhwqs8/777+ulo7UQv1u3bvz2228MGjSIf//732Xa58KcO3eO7du306xZM9q1a1fe3RFFGDx4MBkZGS5tq82hvnfvXgAeeughp7YLCgpixYoV9O/fH0AP8iuyI0eO8OyzzzJs2DDGjRtX3t25Ln3yySeEhYU5XGf9+vWl3s/kyZM5ceJEkcvXrFnDd999px//1apVK7bNixcvcuDAARo2bEjLli1L3cfrTbdu3YqtrpCbm0uLFi0YPnw4L774YrlMs3T+/HkyMjKwWq0kJSURHBzs9LY///wzcXFxBAYGcuutt3qwl0IIIYQQQgghhBBCiMJUiQBfVdU4RVGuAv2AnYqiBPzvuS8Bp1P2oKAgfQ7YAwcOkJOTU+h6AQEB5OTkVJiRxaLqCAsL4+LFi+XdDd2sWbOoVauWPid4VlaWPhpPVVVWrlzJnDlz9AAfbCF+o0aNOHnyJD/99FOeEaPlpW7durRu3ZoWLVqUaz+EY61bt3Z5W0VR8PHx4Z577inRdlarlalTp+qPSxJylRetUsy3334rAX450UZXOzJlypRS7+fDDz9k4sSJJCcnA7Zg2GAwAODr68vIkSOBv49/Z/4uqVmzJnfccQe33XZbqft3PXr99dd59913yczMBGznEPv3vU+fPrzyyit6aF9e4f1jjz2Gl5cXVquVXr168cMPPzi9/X333Ye/v7+E90IIIYQQQgghhBBClJNKF+AritIMCAYOAlZVVXMBVFV9WVGUbKA+8KyiKGnAEMC5yWqxfan9/PPPA3DDDTewcuVK0tLSnCpHK4Q7BAYGEhgYWN7dQFVVzGYzISEhzJ07V38+MTGRGjVq6I9PnDjBgQMHWL9+vR7iHzlyhO3bt1OvXj3Onj3L6NGjWbduXZm/hvzuuuuu8u6CKMbmzZtL3UZJ5tW2Wq1MmDCBEydOoChKpZvvuaLPd369sz93usrHx4dPP/0UVVWxWCz89ddfhISElLrdwioMCecMHjyYwYMHA7ZrpTYdgXajW3m7ePEiTz75JFeuXOHLL79k2LBh/PXXX3zwwQdMmjTJqTa8vLzkmnmdatCggcvHcoMGDVxqt0GDBiQkJLi0TyGEEEIIIYQQQoiqqlINIVcUZQCwHogCPgWeVhRFTztVVX0N+Ay4DDQEeqmq+ocr+2rVqhVWq5UjR46UvuNCOElVVbKysso9SDSbzWRmZmI2mx2u9+abbwIwZ84c/bl33nmHwMBANm3ahKIoHDp0iJSUFI/211kV5f0VhSvLSg324X2TJk3o169fme27NFRVvS6C+9zcXIYPH859991Hbm5ueXen3Glz3LvjvVBVlezsbDkPusj+OmI2m8nOzi72WllWzp8/z7hx47hy5QqrVq0iJSWFf/zjHwAsXLiQpKSkcu6hqOgSEhJQVdWlf45CeEftnj59uuxeoBBCCCGEEEIIIUQlUWlG4CuK4g08BoxVVXWfoigDgXbAS4qiLFRVNQVAVdUYIEZRFKOqqoXXwC9CRkYGP//8M2D7stxoNLJt2zZ8fX2pXr26XppZ+9LbvsR+eZRIFVWPFpwDeql6V509e9bh8nr16hW5zGQy5fnfURvt27fXR+GfO3eO7777jj59+rB3717uuecefvrpJ/r168fUqVOZOHGi2/taEs6+v672p6xeR3nbuXOnw+XaVCQVQUJCQoH+2of39evXZ8aMGaxZswawjV4t7UhAT70/CQkJ5ObmcvXqVcAWclfGUYuO3p+uXbsWeM7++uoodK5Mx2VJaXPca+XzS0O7GQBsI/yh8M+JJiEhweGo/4r0vpbFOdj+OmIymfDx8Sn2WuluiYmJeR7n5OQQHx/PuHHjuHDhAk2bNmXKlCmcPHkSLy8vgoKCSElJoW3btmV+s8H1cl0UQgghhBBCCCGEEMKdKlvqHAjcBuwD1gFXgN7AUOBfiqLcC+SqqvpfoMTD1AwGQ57y5Y0aNeLUqVMEBgbi6+urhwhaCUgJ7YU72H95bbVaycjIoFq1ak7NZezp/jiz7LPPPqNhw4bMnTuXGjVq4OfnR7t27cjMzGTQoEEcPHiQU6dOcenSpQJzBXta/v5WhPf3ehYTE4PFYmHgwIGkpaXRrFkzjh07RvPmzfnggw9cbtdRgFhceL906VK8vLyoXr06YJtKxR0lyj0hJCQEVVW54YYbANs1q6L2taRyc3OZN2+e29rTSs57e3t7rLR5/psJ3HV+8VQgrrVbWD+Lu/nheufoOl2/fv0y74/9VDZgOxaffPJJkpOTsVgsxMXF6cusVqteBSc7O5u5c+cyc+bMAm1KkC6EEEIIIYQQQgghRMVRaRIsVVUtwCJggKIoHVVVtQJ7gVigk6IofkAH4K//rV/q2rDNmjXjzJkzZGRklLYpIZzi5eVFQEBApQqXGzRoQJcuXbhw4QJxcXF07twZPz8/wBYwtm7dGoDo6OgSf5a0UsXuKhleGd/fqkRRFHx8fHjppZcAOHbsGACzZs3CYrF4fP/5y+ZHRkZ69FjwRKlyRVGq1PGbm5vLa6+9xgMPPEBMTIxT6ztDG2VeFseVprKcX9zRz+u5DH9F/D2fPHlSL5tfnJdffllK6QshhBBCCCGEEEIIUcFVnG8fnbMH2AaMVBSlk6qquaqqrgHqAHVUVX1bVdULrjZ+5swZnn76aZ5++mkmTZpEZmYmqqpy/PjxQtdPT0+/LuYiFpXf1KlT2bJli8faX7Zsmf5zhw4d8iwbMmQIYPt8VatWrdi2QkNDue2227hw4YJeqrg8b6L54IMPXBod/uWXX9K4cWNWrlzpgV5VHKtWrXIqNLLXsWNHfVR0SEgINWrU0EuEe8r27dsZOHCgHt4vXrw4TwB34sQJALeGchaLhQEDBvDggw9y+fJlt7UbHBwMVI0RswMGDCAmJgZVVQkNDS12/ebNmxd73V2/fj29e/dmz549Hj+uqqIHHniArl276v8iIiLyPH7yySfL5QaJktqyZQtTp04t726UiezsbF555RWnjndVVenevXsZ9KogV6+nQgghhBBCCCGEEEJcb9xaA15RlGmqqi5wZ5v2VFXNUhRlNaACMxRFuR0wAzcDaaVtPyAggHbt2gFw+PBh4uPjMRqNHD9+XH9ek5ubS1qabZf+/v6l3bUQHtWzZ0/atm1LVlYWJpPJ7SWl9+zZo/+cmJjIrbfeqj++dOkSYJtyorhw9L333uPatWsAhIWFsW/fPm688Uangn9P6datm0vbHTx4EIvFwsyZMzEYDAwbNszNPStfWonydu3auXQ8BQUFcfXqVcLCwvR5uD1h+/btfPTRRyQnJwNw3333MW/evDzH4sKFC/n1118JDAx0KkR21ueff056ejoAQ4cO5bPPPuPmm28udbt9+/blrrvuIiAgoNRtlbeAgABSU1MZMWIEY8eOpWvXrg7XP378OAcPHqRt27aFLt+4cSPvvPMOAEePHqVXr15u73NVN3XqVF5//fVClxkMBrp27aoHxRX5Bonw8PAK3T93CQ0NJS4ujpdeeomePXs6tc2gQYM83KvCaddTVVUxm82YTKZy6YcQQgghhBBCCCGEEBVdqQJ8RVH+z/4h0ArwWIAPoKpqsqIoS4B4YAKQBYxQVfViadsODg7mscceA2zzi65du5aQkBC9zLM9g8FAQECAXipciIqse/fuZGVlkZmZCYCvr69b23/xxRf1drdt28aYMWP0ZdHR0YBtVGdx3nvvPQDuuOMOjh49Snh4OPv37y/XUsXNmzd3aTuj8e/T6/Tp0wGYNm2aW/pUEWgjcOvXr+9SAK+F/p763a5evZoXX3yRCxdsRVlat27NtGnTqFmzZp71Fi5cyObNmzxO6nUAACAASURBVKlevTqffvqpW8/pWvWFxo0b88cff+ghfmkZjUYaN25c6nYqgjlz5vDEE0/w+eefM3bsWKe2GTJkCCdPnizw/MaNG3nrrbf0xwaDwW39vJ706NGDHj166I8TEhIICQkpsJ4nb7xxh8DAwHIbaV6WtmzZwgcffMDChQv59ttvi11/+vTpzJgxowx6VpB2PbX/e0QIIYQQQgghhBBCCFFQaZOTVFVVB//v3yBguzs6VRxVVbNVVd0BDAfGqKr6s7v30aZNGxRFwWQycebMGX0UpT1/f/8KNQeqEI6YTCb8/PzcPuJt9erVXLhwgW7dutG5c2fi4uL4888/ATh//jxJSUkYjcZig5T33nuP7Oxs6tevz7fffkvbtm3JyckhLCyMc+fOubXPJaGqKllZWS7P9Txr1iyMRiPTp09nyZIlbu5d+fH29sZkMlW4Ea5vvPEGN998MyNGjODixYu0bt2atWvXsmjRogLhfXR0tB7er1q1iptuuslt1SlWrlyJxWKhdu3afPLJJ9x1113k5uYydOjQUh3PVWHucfvX0LhxY2rVqoXFYmH16tXFbmsymTh16hS//vprnueXLFnCW2+9hcFgYOLEiR7p9w8//MCcOXM80nZFpaoqubm5lfZ4K+35u6z8+uuvPPnkk+Tm5rq0/aRJk/jvf/9L7dq1i123qOoKZclTf48IIYQQQgghhBBCCFFVlLaE/tx8j2eWsr0SUVXVtW86i5CSksLmzZv1x8HBwZw9exZVVfn6668ZNWqUtl8AcnJy9HXtR9sKUREpiuLUyPuzZ88WuSwxMZEaNWroj1VVZfLkyQDMnTuXjRs3smvXLrZu3crw4cP59NNPAejSpYvD0Xb2Za9HjRrFxo0bGT16NElJSZw4cYKQkBD2799PrVq1Cmzr6XnAzWaz05ULEhMT9Z+zsrIAqF27NsuWLWP06NGMHz+epKSkIsvpV6Y5zRVFKfEI3ISEBP1nLahKSUnJ83xRdu7cWeSyosquq6rKXXfdRWZmZoF9REdHs2fPHj28DwwMLLYPznr11VfZvXs3AHXq1OHVV1/lxhtvJDAwkNTUVBo0aFBkOf0uXbo4bFurfAAVfwR0UfK/hqioKJ544gmWL19e7LbDhw8nOjqaHj16sGbNGuDvkfcGg4GZM2fq09tcu3bNqWPLkcJu6IiMjNR/dhQMa8esNt2Et7d3nvaK+107arMorrTpiMViITc3F4vFUimPt5Kcvx0pyXVRo6oqFy9epGbNmoUeRytWrODq1atER0eTlJQEwKpVq4iMjMRgMDBlypQS9dHf35+tW7fSsmXLEm3nLFfeg6KWaX+PJCYmOrxpqjJdE4UQQgghhBBCCCGEcCeXUmdFUfarqhqmquop++dVVU1yT7fKR05Ojj5fN9jmaNYCuePHj+shvfZlo4T2oiIrzRff9vPTOvpy/YsvvuDy5cuEh4dTt25dJkyYQGZmJosWLeLGG28kOTkZHx8fvYx+UTZs2EBOTg7BwcHceOONeuAyceJE/vnPf3LixAnCwsKKDPHdzf69s1qtZGRkUK1atWIrbtiHFFpYFBgYSKdOnVi3bh39+/fXy+kXFeJXBq6GhPZluLXy5kFBQYWW5y5K/jBUK1NflI0bNxIeHs5tt92mP7dw4UI9vE9ISCA4OLhEr6M4u3bt0n8+dOhQnmVaiK+V0y8sxC9Kly5dSnQ8VlTdu3fP8xq6dOlCVFRUsWF7586dGTlyJCtXruT8+fOcOnWKuLg4Pbz/4IMPuP322/nxxx8BqF69eomOLU+pDDddFPWZrmzHW/7rXnn232w2k52djdlsLnDzwLFjx3jzzTe5evUqYPt70mg0kp6ezuzZs/PcJFKYwq7v2mvNzc3l6tWr3H333Zw+fRqwlc0vr5H3NWrUkCBeCCGEEEIIIYQQQogScvXbzALDmBRF6VjKvlQ4WhhnMpm4cuVKOfdGiLKjjVrUQqeiLFiwAIA333xTfy4iIoLAwECefvppAJ5//vli97d9u232jTFjxhRYNmXKlDzl9LU5zcuKl5cXAQEBpQ5/WrZsybp16/Ry+troYVEyWhi6fPlyevToUezNISkpKYwfP55Zs2bx+++/55nzftWqVW4P74vTunXrPOX0L1++XKLt3XU8lqfCXsP69eud3n7kyJEAPPPMMwXC+4qook434YzKfryVZ/9NJhM+Pj55ysQfO3aM8PBwHnjgAa5evYrRaOShhx5iwYIFzJkzB39/fz3EL2k5ffvXGhwcTEJCAl9++SWbN2/2aHiv3VRV0acpEEIIIYQQQgghhBCiMnF1CHkzRVHWAXHAr8BF4BOgsbs6VhGYTCYCAwPJzMwkJSWFlJQUgoKCUFXVbfMkC1ERaYHD8uXLmTs3/0wZeTVp0oS6devqj4OCghgyZAgff/wxRqORSZMmOdz+/fff10ffFzV/75dffsmjjz7Kjz/+SMeOHfn9999L+IrKz5kzZ/SftRBfG4lfr1497r333mIrHVRFQUFBeoWGksjIyGDo0KF5pig4f/58kevfd999NG3alC+++ILx48cDeKRsvsb+ZpaivPvuuzz33HMcPnyYESNG8O2337q9H5XNXXfdRUhIiFMl70eOHEl0dDTp6ekARYb3Vqu1VH2yr8hTlB49erBt2zaH66Snp/Pmm28yduxYt45EPnToENu3b2fatGlua1MU76GHHiIuLs7hOtWrVwfI8/diTk6OXl3Gx8eHTp068dBDD+nbGAwGIiMjmT17Nunp6TRr1owTJ06Uqq8DBw4s1faFSUlJoXv37ly+fBl/f3/A9lnTbpJQFIVnnnmG8ePH65V8nLF3716+/vprp86hQgghhBBCCCGEEEJUda4OSToFzAP+ANoATwCz3dWpiqR69er6XPcXL14EIDk52SPBjxAVhTY/rTP++OMPfvnllzzP3XPPPQD069fPqX1VRQ8++CBgmy/b/v1p2bIls2fbTpebN292qtJBVTRlyhQmTpxI//79nd4mJSWFUaNG6eH96NGji61kYDQaGTVqFPXr19cfeyq8B5wO49999138/PzIzs5GVVX9/+uZs+H2kiVLnFqvLEZdf/fdd4wbN67Y9Vq1alWqOdgL07JlSzp06ODWNoV7XLt2rdDntetd586dadq0aVl2ya0uX76M1WrVX6f9dTw1NZUNGzY4XclH065dO3r06OGR/gohhBBCCCGEEEIIUdm4+u12tqqqP6mqulRV1amqqg5XVXWFW3tWQRgMhjyhiqqqnD59mrp165Z6dJ8QFd2ECRM4c+aM/u/nn3/O83jBggWoqkr//v3zhNR+fn4ABAQEoKoqWVlZRYaTkyZNwmg0kpSUVORIam30vdFoZM+ePe5/oR7QoUMH5s+fT05OToH3RwuTvby88PPzc3qEYmVnH1TfeeedDB48mICAAKe2TUlJYeTIkVy7do2ePXvSpk0bli9fztatW4vd9rnnniM+Ph6DwcDq1asrzA1YWqCrTQtgsVjKuUfl5/Tp0+zdu7fY9ZYsWaLftNGnTx/Adg757bff3N6nW265pdh1goOD+eSTTxyG+AEBATzyyCPcfPPNpe6T/WfIaDQSHh5e6jZF8eyvY1u2bCnyupiQkEDz5s0B23l+165dxMXFERcXx7Fjxzhy5AgvvPAC//nPf/joo4+Ijo7mzz//BCA3N1cffe/v78+xY8fK8yUXKSgoiK+//hqj0VbEa9asWezZs0d/nRqTyeTU9U17bw0GgwT4QgghhBBCCCGEEEL8j6sBfme39qICyz+CLzk5mWvXrlGrVi29FKoQldmlS5ecKhVdmKFDh7JgwYJCQ2qNM6PwunfvDlDofOaLFi3Sw/t9+/ZRq1Ytl/paHoYNG1ZkiA9/VzqoqlUI8nM1qE5MTNTD+169ejF9+nTmzp3L3XffzRtvvOFw259//pnDhw9jMBhYsmQJN9xwQ2legkdU5jnS3SUiIqLYCgQnT57Uw/t58+bxwgsvMGXKFHJzcz0W4hfn999/10P8xx9/3OP7k5s9yoezo8m9vLzYvHkzzZs3Jy4ujmHDhuW52TMwMJDnnnuO/fv3c//993Py5EnefvttPv30U2bNmqWH95GRkRgMBk+/LJe1atWKr776CqPRyLRp0/jqq68KrOPs9a2kI/WFEEIIIYQQQgghhLgeGF3ZSFXVwmuDVnJms5lTp07leS4tLS3PY21+3iZNmuijjIXwlLNnzzpc7up8yosWLQIgLi5OD83HjBlDaGgofn5++shWZwwdOhSAadOm0b9/f5YtW0ZqaioAWVlZpKWlkZOTQ25ubpFtdOjQge+++46kpCQSEhKoWbMmYBtte/r0aYxGI/v37y8Q3icmJjr/ogvhzvmoizJs2DBUVWXGjBmFvj/2r6Es+uNpO3fuLHLZX3/9RZ06dYoMqgvb1n7kfadOnRg0aJB+Hh4/fjzvvvsu8fHxRe4zNTUVg8HAmjVruOGGG0oUkmv9UVUVi8WCt7d3njCqS5cuTrdlT+u/Nj3L6dOnXWqnssr/e75w4QI7duwgODiYpKSkIrfTzofz5s2jffv2APTt2xewndMmTZrEzJkz9ev2tWvX+OOPP4oNQh0ds8WpUaOG/vOKFStYseLvYkQ7duwocruEhASH+y3q2NKOX3ff7FHce+DqsV7WHF0zExMT8/y+8nN0/tVGkTtTLUUL8Xv16kV8fDw9e/ZkzZo1BW4IDQsLo3PnzqxYsUI/hzkb3rv6Ol1dVhgtxB8wYACvvfYaAAMGDABs5zZnr20leW8dURRlPDC+VI2UQkhISJHn8gYNGpRxbyqXBg0aFHmjR4MGDfRrZmGKe98dbSuEEEIIIYQQQghRkbkU4FdVFouFc+fOFbncaDTqpU5DQ0Px8fEpq64J4Xb24T3YRr9rIX5RX7YX9fxLL71EcHAw48aNY/To0UyfPh2wfSEfEBCAyWRyOApv1KhRJCcn89Zbb7F+/Xr27t3Lo48+qof3CQkJ1K1btxSvtmwU9f5Mnz6dGjVqMH78+Dzvj6+vb4kCk8pMVVXq1KlD9+7di5ybPH+ImD+8nz17doFtFi1axJQpUzh69CgvvfQSDz74IGArm6+NvNemPXGVNuoZcMt5PyQkBEAvQa09vl4tWLAAgKeeeorGjRtz0003MXToUFq2bElUVFSesvnffPNNgRuMunTpQrNmzZgwYQJz585l/Hhbhufv788tt9yCyWRy+fe2Y8cOPbw+cOAAnTp1IicnhyVLljgsm6/1qyiu3jTQtWtXl7YTpaNNe1KYos77R44c4c477yQ+Pp5Ro0axadMm/dxntVpJS0vj448/Jj09HYPBwNChQ1m2bJnbRt6rqorZbC7y+lvc8vwKe5316tVj//79hIWF8dprr+lTohiNRqeube68aU1V1Y+BjwEURXFczsMDTp8+XWwVEVE4RyF7ccemo/f9eqluJIQQQgghhBBCiKrJ1RL61y3tS6brPXARZaO4+eNdZR/ed+vWjW7dugG2EN9+DtuSeOKJJ/Ry+lFRUYAtpHC2NO6ECRPw8fHhzJkz9OzZUy+bv3///koR3hdn3LhxvP7663nen+uJFoJnZGQ4tb59eN+rVy8iIiIKXc9kMvHcc8/p5fS3bt2aJ7xfs2ZNqY8fT5e4v55DnwsXLhAbG0twcDD3338/YJsz/tFHH2Xfvn1ERUXp4f3s2bPp1atXoe2MHz9eL6f/z3/+E7CNhHbn7619+/bs378fb2/vYsN7Z9jPZy88x1PX0eLkL6ffu3dvrFYrb7/9NnfccQdvv/02ZrOZxx9/nNTUVFauXOnWsvnFlaZ3V+n6e++9N085fbBd++W4FkIIIYQQQgghhBDCdTICv4QSEhIIDAyskPMoi6pH+4IdYMuWLWzcuJG33nqrVMffDz/8kCe87927t74sJiaG6Ohoxo8fz3333Vfitu3L6YMtnPPz83OqNK7JZOKpp57inXfe4ejRo0WWzS+MqqocO3aMhx9+WH+/8gsJCWH58uU0bNiwBK/IvYYPH46iKPoI/Ozs7HLrS1k4duwYe/bs4YknntBD1GrVqjncRlVVMjMzGTVqlB7eT5061eEIPR8fH+bOncvMmTP10dzunPM+NTWVN954gyeffNKtI0a1aSUsFst1W9HlzTffBGyj7+0NHDiQZcuW8f333wO28L5169ZkZGToo3zzsy+nD5CcnFzi93Xr1q0oikKPHj30aRPs3Xvvvezbt4/w8PBi56Hv1KkTu3fvLnK5xWLhzz//ZOnSpfTu3Zt27dqVqK+esmjRItq3b0+bNm0KTBtRmXz66adER0cTGBioB8ra7zMrK4uaNWuyfPlyj92YA3nL6cfFxek3fxoMBh599FGWL19e7DmxOMOHD2fPnj1u6G1ebdu2ZdmyZfj7+xd7DNiX08/JyeHKlSuYzWZ8fX3d3i8hhBBCCCGEEEIIIa4HEuCXgL+/Pzk5OaiqitVqdetIKSEKYzKZ2LBhAwsWLODy5cvA36GQq8Hktm3bAFtp0Q4dOujPd+jQgR07dqCqKt9++61LAT7YykYrioKqquzatcvpL/AVRWHKlCns2LGDy5cv8/XXXzsV3oPtRofY2FiHgXhCQgKxsbHlGuADDBs2jNzcXDZs2EB4eHi59sXTbrnlFr3kt6Io+Pj4FFk+X2OxWDh48CCpqam0aNGCqVOnOrUvk8nETTfdBNgC/ZUrV5Z4zvvCpKSkMGjQICwWCzfddBOTJ092uH6zZs3Yvn17se0uWbKE1NRUFEXxaIBY0V25cgWA//73v/oIfLCNwr/11lv5888/mTdvHu3atcNisRQbdvbt25cff/yRvXv3cuTIkRL3p2PHjkDeaRPy00L8tm3bOmxrz549dO7cmV27dhVYdvHiRebPn09sbCwAf/75Z4UJ8L/55htiYmL47LPPAPdMG1HWcnNzmTNnjsNR4L///jvnzp3zeEUlLcQfO3Ysly9fpmnTpkRFRVGtWrVSh/cASUlJbuhlQT/99BPnzp2jQYMGTl3HtRB/9uzZtG/fvtRz2gshhBBCCCGEEEIIcT2TAL8E6tSpQ4cOHfjnP//JL7/8wt13313eXRJV2OrVq5k8ebIe3IeHhxMYGMiWLVv0EN+V0cCvvPIKy5Yt49SpU0RFRTFr1iwAoqKiUFWVhg0b8sorr7jU5/PnzxMeHq6HJjk5OWzbto0ePXo43cY333xT4v2aTCYeeeQRHnvssTwjBUs6x29ZGTny/9m78/gmqvV/4J/plu4UCoJAaaFAWcQLAiLIVnFjKQqKgIhXkM0ruLIIioiWna/IBe+PioILKOgVqqIIIhTUq6IoAkWEIi0VsdCF0nRJs5zfH2XGhDZpm0wySft5v168bDOTc56ZnGRinznPGY/x48drHYbbNWzYEA0bNqzVcwIDA5Wbo9q2bVvj561YsQK7du1CREQENm3ahMjIyFr1WxW5jL8807omY2j16tV49dVXHe5jvab7okWLvGpsetrKlSsxceJEfPbZZwCAUaNGKdvk5Gbv3r0BoEY3gAAV1Ta+/vprp+IJCwsD8PeyBvZurujZs2e1bQUEBODAgQM2SfyzZ8/ioYcewr59+wAAjRo1Qn5+vtclyYuLi926bIS7PfHEE8prePvtt+P1119HXl4eoqOjcejQIYwYMQLt2rVDbGysR+Lx8/PDxo0b3dL2zp07UVZWhtLSUoSEhKC4uNju+vPyOajJNuvrZ0117doV27dvr90BEBERERERERERUSXV/yWcFJIkYeDAgQCAtLQ0TWOhumvz5s249tpr8cADD+DixYu4+eab8e233+K9995DSkoKxowZg0uXLqF///5Oz7ybPn06WrduDYvFgpdeegkvvfQSLBYLWrdujenTpzvV5h9//IGbb74ZJpMJvXr1wmuvvQYAePrpp51qrzYkSUJwcHClRKi9x8l7SZKEgIDa3Vu2ceNGfPbZZ6om7/Py8jB+/HgUFRWhc+fONX5edZVZfv/9dyV5v3jxYiU5XV9FR0djw4YNiIiIwGeffea2JGdtyRUjXPnsyMzMVJL4vXr1wi233IK4uDjs27cPjRo1wnPPPYcPP/xQxajV5erxa0WucAIAjzzyCHbv3o1jx44p22fPng2g4uYRXzy+quh0uhovV1NTvH4SERERERERERFpp87MwJck6VYAJgBfCSHM7ujj0qVLCA0NRdu2bbFp0yaMHTsWISEhAKDKOsvk/Uwmk+ptyus1yyV/9Xo9ACA+Ph5TpkxRZq/n5eUBqFhf3mAwYPv27YiPj7dbTt/RTLvS0lJMnz4da9euxZkzZwCgRsn77OzsKh+XZ96bTCa0a9cO//znP2EymRASEoLCwkIkJyeja9eueOSRR2pwRqi+kte5z8nJAQAUFRUpj/31119VPmfjxo04cOCA3eT9Cy+8UGUJcwAYMGAAXnjhhUqPyzPvi4qK0L9/f/To0QPp6ek28ThLfg95MnnvzTecSZKExo0bY9OmTXjggQdw4MABLFiwABMmTFBK2Nf0nMv7FRYWAqj4THX19XJFy5YtlZ8PHjxosy0pKQnx8fFKfAaDQdNYq+pby3ictWPHDmzYsEGpJhMfH4+QkBA888wzeOyxxxAdHY1Tp06hffv26Natmyp92rsuAo6vw2q2Kyfb3cnZ49yxYwdKS0tRWFiIxYsXw2w2o1u3bhgzZgzCw8MxbNgwu+06U2WIiIiIiIiIiIioLqgTCXxJkgIBLAFQDmCmJEk/CCFqlGmVJGkKgClARSnb5cuXA6j4w//s2bMRExODY8eO4f7771eeM3v2bEydOhXjxo3D5s2blSQ+kTXrsdWqVSuH+5rNZixcuBDFxcXw8/ODxWJBQUEBjhw5gnvvvbdSGePVq1dDp9Nhy5YtSjn92txE8uCDDyImJgZPPfWUMlNx+PDhtTzCCtbJ+zZt2mDatGkoLS0FAIwePRpvvvkm3nnnHSQkJNhtw9k/0vvaH/fVjLc248uT5ColzpDXopYT+BERETbrU1+9VvWKFSuU5H1mZiYaNWpUqU17yXsA+Pnnn6HX6xEeHq48Zp28HzJkCGbNmqUkX6+Ox559+/YhOTkZX375JTp37oy1a9falM3/5JNPHCattObusWVvjGRmZiIuLg4HDhxAeHi4Mpu4pmuUy/s1aNAAQEU1hJo815Ux66wTJ07goYceUn7X6XRuX4vdkar6dkc87h5ber0ehw4dAgA8/PDDkCQJ/fv3x65du5Ceno5du3YBAN5++22PXD+io6Pd0o+jdh315+w2wHEC31E8cvI+OTkZFosFAPDTTz/h559/Ro8ePTB48OBqK5cQERERERERERHVN3WlhL4JwHdX/vssgL4AINWg7qcQ4jUhRA8hRI+IiAjl8fT0dBQWFiI+Ph6A7Uy6UaNGYe3atUhLS8O4ceOUZCWRNeux1aRJE7v7mc1mvPDCCyguLkZYWBiWLl2KSZMmITw8HJs3b8bAgQOxZcsWZR1u2fLly23K6V+6dMmpOIcPH65K8r5Xr1549NFHbbZ36dIFISEhKC0txdGjR53qg6pW0/HlS4QQKC8vV9audmTFihU2ZfOrSt5X5/Lly0hKSsL06dOh1+urTN47QwiBp59+GpIkIT09HWvXrrUpm+9Nyfsr59rvqsc0GVuNGjXCpk2blHL6p06dcqm92ownTzt48CBWrVql3KyiNU+dK3ePrS1btkAIgdjYWOXmyn79+iEkJASpqak4fvw4OnfujF69eqnet7sIIVBWVuaV47gmrJP3bdq0QXJyMmJjYyGEwA8//IA2bdrgscceg9nsluJZREREREREREREPqlOzMAXQghJkj4DsB1ALIAnJUm6HoC/JEn/rmlJ/eLiYnz//fcAgK+++grh4eHKH4BbtGhhs688I3/69OkYN24cPvvsM7eXL6W6aeHChSgpKUFYWBgWLFgAf39/dOzYER06dMCZM2fwzTffYPbs2Vi1ahXat29vMytSp9OhYcOGKCgowPXXX4/GjRsr2ywWC/z8/CCEQLt27bBixQrExsaqFveFCxdskvcffPABPvjgg0r7ybPwt27d6jXrW5N3MhqNMBgMSiLnwIEDyraioiLIN1llZGTg2LFj1a55L8/2tOeaa67BxYsXkZ6ejqSkJOVxV5L38nGYTCYMHDgQ+/btU9Y594Y17w8fPowXX3xR+f1KUtBrpr9GRkYq5fSLiopcasvPz08pwx8UFKRGeKpp1qwZPvvsM3z22WcAoHnyUn7v+TKz2Yyff/4ZADB58mTl8ZCQEGUWPgC88cYbbovh22+/hdlsRt++fVVr02Aw4I033sDo0aNtrvFa2rBhA4YPH47o6Gg4ulf2r7/+skneyzf5PfbYYygtLcUbb7yBM2fOIDU1FR999BHuv/9+LFmyxFOHQURERERERERE5LXqRAL/CgFguhBipCRJPQGsAvB8TZP3AJCbm4v169crv99xxx3IyspCaGholbM7x44diw8//BB79+7FwYMH0b9/fxUOg3zRlURhrStaHD9+HMXFxQCAJ554wqaMrCRJ6Ny5M+666y7ce++9OH/+PM6fP++wJHhubm6Vj+fl5eGll17C66+/XtsQ7Vq7di1MpoqVKrZs2WJ3vy5duiAwMBClpaX49ttvNU9gkveSl4po1qwZ/Pz8kJ+fj9TU1Cr3jYyMxDvvvOMwed+1a1eH/XXs2BFLlizB5MmTbZL9Tz/9tJNHUEE+jhkzZmDfvn0AgPnz53vF2H/33XdRUFBw9cNeNfU1MjISGzZswOTJk5XPmNq48cYbsWnTJtx5553Q6XSVliDxBvHx8WjVqpVy06A8w7oGhYPcQj5HgYGBCAkJwT/+8Q9N4nDFoUOHlHNYXl5us7zRiRMnAABNmzZ16+z7SZMmoaioCMuWLcPYsWNVafOLL77AsmXLcOLECaxZs0aV1eQDegAAIABJREFUNl2xY8cOvPDCC/j++++xevVqhzevLl68WLmZcNq0aTbbQkJCMGvWLJSXl+OJJ56AEAKbN29mAp+IiIiIiIiIiAh1IIEvSZIkKqYQ7gHQS5Kk3gAGAXgDwC2SJO0TQvyvJm01b94c//rXv+R2ERUVhZkzZ6Jbt26V/qguhMC8efOwd+9ePPLII+jXr5+qx0W+5coyCrWexdqpUye0bt0aZ86cwZIlS/Dcc88p6zefP38eGzduRF5eHoCKGaQPP/wwbrrppirbyszMtEngl5aWIiQkBGazGc2aNcMDDzxQ+wNzYMGCBfj444+Rn5+P7t27K+sOX+2PP/5Qyv9PnjwZx44dUzUOqjskSUJQUBDi4+OxefNmZGVlKdtycnLQtGlTABVrm3ft2hUBAVVfwiwWC7p3717tsg3fffedckNMYGAggoODUVRUhKlTpyIlJQV+fs6tMiMfx5NPPqk8tm3bNtxyyy1Otaem5cuX45133kF5ebny2KZNmxyXKtBAdHQ0tm7d6lTyvUuXLtiyZYsyXrzR119/rfzcsWNHzJ8/H0ajUbNKAfKYBaBUBfA1N954o3I9TU5OVq6na9euRVZWFvz8/Oxep9QiL6k0Z84cAFAliS/ffPDNN9+43JYafv31VwAVy0DodDqH+65atQobNmxAcXExFi5cqFQZAoCjR49i69atyjmLjIzE//3f/7k3eCIiIiIiIiIiIh/hcwl8SZISADQC8CMAixDCfCWJb5IkqReABQDuEkJ8IknSowD+qGnbgYGBaNasmfL7kSNHUFpaih49etjsJyfv161bh0ceeQSLFi3SbNYceYcrM/2cmsU6ffp0rF27Vkk6TJkyBVu3blVmyQYFBeHxxx/HjBkzIISAwWCATqerdszl5eUhOjramZBqxN/fH4cOHUL37t2VJP4zzzxjU0UAAHbv3o2QkBCEh4cjPT0d33//vU+tP0zaaNasmc3ncWZmps3yEUDFZ7HRaLRJ8srJ+8OHD6Nbt25KSe2qGAwGBAYG4p///Cfuv/9+GAwGTJ8+HRkZGS4n8QsLC3H8+HHlfZqenm6zDICWxo8fb/P7pk2bNIrEPuuEsjO8OXkv69y5M5YuXYqwsLBK45icc/X1tHnz5vjjjz/g5+eH5557rtJySGoLCQmplMSfPXu2W/vUiiRJ1X4P8ff3x4IFC7Bw4UIliX/PPffggw8+UM5TgwYNsHjxYgwbNozfpYmIiIiIiIiIiK5wLjOhEUmSRgL4CEAyKmbYPypJUuSVGfgAcB+AnkKITwBACPGqEOKss/398MMPCA0NRadOnWweX7x4MZP3ZONKks/pWazTp09H69atYbFYsG7dOhQUFCAgIABJSUnIyMjAjBkzAFQkHEtLS5W1ioUQSullZ5jNZrRt2xZt27Z1ag1mOYnfqFEj5OfnY+HChTbt/PHHH0hPT8eAAQMwZswYAMDEiROdipXoavK63XKFB7PZjBYtWuDw4cPo2rUrfvzxR4fPj4uLw+7duzFu3DhIkoTg4GC89tpraNu2rZLEty6tLxNCoLy8vMptsnnz5gEABg0apMy8nzt3rrOHSh5gNpvRunVrNG7cGNu3b3drX71798batWsRHh6u3KzA7xLqsL6eWifv5eo27hYSEoJt27YhICAAc+bMUXXpGl8kJ/HDwsJQXFyMt99+W6kQ9PDDD+Po0aNISkri+CciIiIiIiIiIrLiMzPwJUkKBDAawMNCiG8kSboHwE0AZkuStEIIUSiE0AM4dGV/PyFErRKqOp0O8fHxAIDy8nIcOXIE/fv3R0JCAgAgKioKZ8+exerVq/HAAw/g1VdfrfYPjtWt32uvBLQrtOizvnDHuXvqqaeU/06ePBnp6ekYOnQonn322Ur7WiwWlJSUIDQ0FH5+ftDr9bh8+TIiIyMRHh5us29MTIzdPl9++WWYzWZlVhxQMQtOLm8rx3Q1e21euHAB1157LS5evIilS5fi0KFD8Pf3x6RJk9CgQQOsXLkSRqMRn3/+OY4fP46PPvoIN9xwQ43azs7Otnsc1R2ns7Tok4CBAwfWan/5/VDVrPbDhw8r1SCEEJg0aRLeeOMNBAcH4/nnn3eYTP/tt9+UWfxTp07FpEmTbLbLNw6UlJRUet8BQGJiovLznj17lJ/T09ORmJjo9A03aWlpDrfbO3+1Pa/u5uxxVMfZ51V1HR85ciSAimVOXn311Sqft2/fPqXPhQsXIiUlBRcuXLDbx4033oj3338fkiRV+ZktS0tLs3uOqqpEYc3T504Ljj6fR40ahZiYGOV6arFY8OKLL7p95v3Vunbtim3btmHkyJGYPHky8vPzqyynXx+uJdbfcSZOnIgffvgBL730Eu644w7lu0xVsrOzq70WExERERERERER1VU+NQMfQCSAdld+3g5gB4AgAGMBQJKkHpIkdQWA2ibvr3bo0CEUFxdjwIABNo8vWbIEQMUsfM4WIrWtX78e//vf/6pM3gMVM/3Dw8OVP3iHhoYiMjISoaGhterHOnkfFhamzIy7egZ9Tfn7++P8+fPKTPzu3bvjyJEj2L17NyZPnozIyEgAFetvA3W3pDB5lvx+qI6cvG/UqBHOnTtX7Ux4ea1seSb+0qVLbbYHBgZCp9PV+n3nKnnmv7M3AHgTXzmW48ePIykpCV999ZXD/RYsWIA///wTJpOpyn9GoxHffPMNrr32Wqc+s6n21q9fjzfeeMPjyXtZ165dsXHjRmUm/nvvvadJHN7C398fb731Fo4fP4577rnH5ruMr4iLi1OWDrj6X2xsrNbh1UmxsbF2zznPOxERERERERHVZT4zFVsIYZQk6WUAMyRJOi2E+EqSpK8BtAAwTJKktwD0A+D0X0iLi4tx8OBBAEBqairCw8PRvXt3ZfvZs2fxxhtvYNKkST43a8pisSglS6nuqGkC09rVyfsFCxYAgM0atU899VSlteyrI5fT7969O/Lz8zFs2DBERkbioYceUvbp3r072rVrh5MnT+Knn36qNAu/OiaTCXl5eR5d37qwsBBCCAQHB0On0/HGHS9TkxtO5OT9qVOn0KhRoxq16+fnh5SUFEydOhUZGRkAoCSb5ZLnVSWf8vPzq207Pz+/xnFYk2f+A0BBQYFPrPNuj3wser0eQUFBtf4cU0t14ycgIAB6vR7PP/88wsPDMWfOHPTt29fp/mr7ma3X67F161ZYLBb4+fmhsLBQKQXv5+eHO++8E9dee63T8fi6wsJCAPBYefyaKC4uxv79+wEAly9fxpw5c7Bo0SLMmTMHZrMZDzzwgMYRukZ+z3j65pv3338fWVlZHu3zallZWV5/01Fdk5mZqXUIRERERERERESa8JkE/hVfAUgAMF6SJEkIcQDAu5IkTQHQXAixypXGz507hzlz5ii/x8fHIzAwUPl948aNMJlMPrmOcWlpKfR6PQAgKChI42hIK2azGc2aNbNJ3suJ+gULFuD5559HcXExHn30Uaxbt67W7ctJ/BtuuAEFBQXo1q2bMvte1q9fP5w6dQpr1qzBxo0ba9X+nj17cO7cOTz88MO1js1Zu3fvRnl5OYYMGQIACA4O9ljfVL0nn3yy2n0iIiJqlbyXyUn8UaNGIT8/Hzt27MDjjz/ucNbozJkzaxTzW2+9VatYACjXo/z8fHz33Xdo3bo1/vGPf9S6HW8gH8vXX38NABg8eLAmcVT3WXLzzTdj0KBBWL58OfR6PebPn499+/Z5KLqKsSLfQFKVd999F1988YXH4vE2u3fvBlBROt8bREVFoaioCOPHj69y+4IFC2qdwO/YsSMAoE+fPhBCwGAwQKfTuRyrs+TvDJ68mW3jxo3KzYZERERERERERET1gU8l8IUQZZIkbQYgAMyVJKkDAAOAJgD0rrbfoEEDZR3Yr7/+utJsdXlt+ZYtW7ralcfJx8IZ+PWXnLzPzc2tlLwHKv4oL4/x6dOnO92Pv78/Vq1ahYceeqjSWs3vvfceNmzYgICAADz66KMQQtQqCdCnTx/k5OQ4HZsz+vbtCyEEQkJCNE2aUNXmzZuHNWvWONznxIkTTs14ByqS+LNmzcLcuXNhsVgwdepUpKSk2E3iL168uNobU+SlWGpLnvnfrFkzdOzYEe3atav+SV5KPpYePXpoGse5c+eq3adfv34AgOeffx4RERHuDsnGq6++imnTpqGgoABARTUd+XM7ODjYbqK4vnClGoI7fPnll0hOToYQAhaLBUajUbnpy2Qy4R//+Eetr3vDhg3DrbfeCgAwGAwoLS11S+zebOzYscjLy8O7776rPJabm6thRERERERERERERO7lUwl8ABBCFEiStB7AcQBTAZQBeEAI4XJWr2nTpnjiiSfkfvDll18qZWuBilmcQgiUlJQgLCzM6X60KGfv5+fnUszk26yT902aNMGsWbMqlcj/4osvYDKZEB0djeuuu86l/qpKTmzbtg0vvfQSAgICsGXLFsTHx8NgMNRqRntERASCgoJqnQBxRX0uT+0LmjVrVu0+zZs3d6kPuWS0JEnIyMhQkvhaxQMACQkJLrfhDZo0aaJ1CDWyfPlyAMDs2bM92m9QUBA2bNig/J6ZmancGCWEgNFo9Ojnobfxts/n4OBgJCcnK7/n5eUhOjoaAFBWVobS0tJaX/fkdoG/y9bXt5vJgoODMXPmTKXCiRACsbGx9kuhEBERERERERER+Tif/OOXEKJcCLEPwDgAE4UQP6vdR/v27VFcXIw///xTeUyeeVdUVORS23I5+/o4i4o87+rk/fnz56tc337Pnj0AgAkTJqgew3vvvack77dt24aePXs6NaNdnn0orwNO5Any+2X48OFo27atksS3WCwaR0ae8NVXX0Gv1yMiIkKpyFFeXq75WthGoxEGgwFGo1HTOLQmhEBZWZnmr0d1dDqdy5VcJElCcHBwvb1hQ3blO0DlLzJERERERERERER1hM/NwLcmhDCr2V5JSQl+/vlnuW0AFeurduvWDcDfMwWLiopqNMvSnrpYzl4uvW5PQIBPDzWf9PLLL8NgMGDRokXKmvezZs3C6tWrcfr0aZtZwGlpaTCZTGjYsCGioqKc7jMvLw/A3ze5lJWVYf369XjppZfg7++Pbdu2oWvXrgCcW0teTnxoOftQPkZ72+TZllWJiYlxR0hukZaWZnebPAtYngEcGBhok1CSlyLxFmlpaU7FmpmZCQC4cOECAECv12Pu3LlYuHAhMjIykJCQ4LCcvjNx+pLq4nVmHGRmZjpsV4uxdfXsezlxXh13nB9rgYGBNv91F3cfh6usy8o7c12RZWdn293m6LO9us99mZx8t36epzk6RsDxNUqOVz7XZrMZubm5yuepM9c363iEEDAYDNDpdJAkyeF5vfIdQNX/ByAiIiIiIiIiIvImzKpa8ff3R2RkJAAgNDQUAQEByMnJUR5zZga+vcR1UFCQi9HWvk93sVgsKC4uRkhIiGqJLHKdwWBAcnKysuSD9Zr31113HYYNG6bs++KLLwIA3nnnHXTp0sXpPuU/tsvvlSNHjmDr1q1K2fykpKRat6lF0tuXEu1ask5kuvMzrTryDVcWiwUlJSUIDQ1VPovk5KMzscqlynNyKlZoiYiIQJs2bbBx40ZMmDDBppy+9Wffvn37VE1qyjcf3HrrrXXiM9bRufG2mxj2798PAGjYsCGee+45ALbjrKbs3UBSFa0T4t7u6s/nqt73nhQdHW33mlHba4l1ErtVq1ZqhKca+fou33wqSRLCw8NdumnC2tU3Yjg6r1ewBAoREREREREREdVZvp8JcJOAgAC0bNkSWVlZymPh4eEAXC+hX9eUlJRwSQAvYzabsWjRoiqT91dbs2YNysvL0bJlS8TExKhanv7XX39Vkvc9e/ZUrV3yDoGBgdDpdG6fAVxTfn5+CA8PrzKJp2asfn5+WLBggcfK6cs3H5SUlLitD3Js48aNys+Oxpk9LHfvPs68Ht7Kl5aJkSRJ1Wo4aiwxQEREREREREREVFdwBr4DsbGx+OGHH5Tf5VnFer1eq5C8UmhoKMxmc51aEsDX9evXD8XFxQgODrabvBdCYN++fVi1ahUA4JVXXlHtj+fWVSCsy+bXNXPmzMF7771nd7u/vz/S0tLQqlUrn16zOCkpyeHnXkJCAtatW+fBiGpPkiR89913+O6775RS6DUlv39SU1ORmppaaXtGRgaWLVuGuXPnqhIrAJw4cQLbtm3DlClTlJmvtZnx7Ul//PEHJkyYgCeffBJDhgxRrd2VK1diz549eOWVV9ChQwfV2rVm78Ymaw0bNsRdd93ldB+5ublISUlBUlKSSxVOvMGmTZsAAOPGjVMqCtQ1OTk51d5wNm7cOCxZskSZMW+xWFy6geDw4cN488038cwzzyAqKsojSeydO3di7969WL58uTLrvybk5aTi4+NVva59/vnn2Lt3L1asWKFam0RERERERERERL6KCXwH9Ho9wsLClN/lmXN18Q/WrvDz87M5T6S9pKQkfPvttygrK8OJEyfQuXNnZZsQAseOHUNKSgp++eUXhIeHQ6/XY9KkSThw4IAq5XB79+6Nzz//HADQqVMnl9vzVseOHQMAJSlnMpkQEBCAY8eOQQiBkJAQhIaGwmAwqFZmWAty8r59+/YAKmaJSpKkrBHvK6/xDTfc4NTnd9euXfHggw/if//7H4QQkCQJRqMROp1OSeAlJiaqGmtcXBy6deuGqKgoSJKEoKAgr51hvHPnTphMJrzzzjuqJvB/+eUXGAwGTJ8+HWvXrnVLEv+FF17Arl27HO6zbds2l/qIiorCDTfcgPbt2/v0jTxAxWc7YLskRV0THR2NyZMnY/369VVuj4iIwG233Qbg7xnzJSUlSpUmZ7Rv3x59+vRB48aNPbYM0s0334zAwECb0vU18cADD+DGG29EgwYN3BIPERERERERERERMYHvUFZWlrIGMvB3EsuVP9ISecLcuXPxxRdfYN++fdiwYQMmTpyITp064cSJE9i1axeys7MRExOD5cuX45577sG8efOwdetW9O/fHwcOHHB5DfiAgACfSeo6SwihlE3/9NNPAQB5eXlYtmwZjh49iqioKOzfv7/OlARu3749UlJSAFTcuDBv3jwAwJAhQ/DYY49pGVqNhYeHKwnI2ggICMCECRPw0EMPKbOOs7KyEBsbW+N1zWsrODgYgwcPVrVNd5FvLCgrK3O5Leu14uWKA2azWUniq70+/E033VTtPq72GRAQ4DOvZXXi4+MBVLxOQN28oTEgIADz58/H/PnzAVQca05ODpo2bVrpfS5/trtaHSM0NBT33XefS23UVmRkJG699Vbltazpdcpd13c5HiIiIiIiIiIiImIC3y69Xo/c3FwMGDBAeayoqAjA36X0ibzZsGHDAEBJ4ssz7Rs1aoRx48bhxRdfVJIvcslaOYl/+vRpNGrUSLPYfYFcNtnaiy++iO3btyMqKgoHDhxAVFSURtG5z+XLl/HMM8+guLgYQ4YMwaxZs7QOyWPkmfAy61nI1o/XV2rcxFDVzO6ZM2di5cqVmD59Orp3715teXNyv6vfC3WZwWBAeXl5lZVUJElCcHCw11bHqAn5GIiIiIiIiIiIiMh7MIFvxWg04vz58wAq1jQGKpL18mPyH2iZwCdPyc7OrvJxuWx3fHy8w8SBdRJfr9cjMjISY8aMQfv27XH58mWbfZ955hkYDAakpqYiPj7ebgLa1dn5vi4vLw9AxWsgz1zMy8urc8l7uTy+zGAw4NixYy4l79PS0pSfrWday4lfZ2c6W7d7tczMTJtKKmqSb4C5ehZyZmamw5jUnkWuFXmMFBYWAqiYKX/1uKmtP//8E2azGf7+/koiv3PnznjooYfw5ptvonfv3nbL6Xv6vFY3nsnzHF0z7c2ir45Op0NQUJDdGeryNcHetujo6FpvIyIiIiIiIiIiovqNCXwr4eHh6Nu3LwDg7NmzAIARI0YgMjISAHDkyBEATOBXxVNrtlKFmqy7+9RTTyn//f777zFx4kQcP34c//nPf9CuXTvExsaie/fuNs/597//DQBITU1VyunXJhFdH5L71gkXOXG7bNkyJXlfV6oXXJ30liQJ8+bNU5L38rIBzvLU7PW4uDinE7vuuKHAHf1pRR4j8lrY/v7+Lt8sERcXpyTD5YRpXFyc0u6bb76plNOvKonvDPlGHFdUNZ597fW0py4ch6NZ9DJH169WrVq5HIN8451Op4MkSYiOjvb4NdOV/twRa334zkBEREREREREROQM36356WYnT55E8+bNleQ9UFFWH4DdhCmRp+h0OoSEhNR43d1evXohPT0d//vf/9CpUyecOnUKI0aMwKBBg3Do0CGbfRcsWIDRo0fj0qVL6N+/Py5duuSOQ6hTtmzZosy8rwvJ+6pkZmaiqKgId955pypl8wMDA6HT6VRdQ1sIgfLyclUSslR7ap13ORl+9RIVAwYMwMyZM2E2mzF9+nScOHFClf7U4I7xTOpxNIteCIGysrJK401t8o13Vy8RQURERERERERERHQ1Tpu2kp2djSeeeAJARQL/xhtvtNleVFSk/JGeyNPOnDmD5cuXY+nSpWjQoIFT6+727t0b6enpSE1NxaxZs5REPvB3ZQkhhFJi+NKlS1Um+alCbm4uACAqKgr79+/3+bL51bnzzjsxe/ZsVdr6448/8MYbb2DmzJmq3RRlNBqxZcsW+Pv7Y9y4caq06aotW7YAAMaMGaNxJO4jV2BRa/zLSXD5801eCsRisSiPmc1mPProo/joo4+84qa6X375BcuWLcP69eu9Ih4CUlJSsHz5cgQGBsLf39/m2gYAoaGhWL9+PTp06FBtRZuaevzxx7F9+3a72zt16oSdO3e61AcRERERERERERHVfUzg25GQkIChQ4faPJafn1/nE3TkvYKDg9GrVy9V2urevTu+/PJLfPfdd/joo4/wySefVNonIiICxcXFaNasmSp91kXPP/88MjMzMW7cuDr92fDUU09Br9dj7NixqrUZHByMrl27qtYeUJH4vfnmm71qSY8+ffpoHYLbjRw5EkFBQejcubMq7UmShKCgIIwdOxavv/56pSogYWFhKC0t9apqF2vWrMFff/2F7du3Y/z48VqHQwCKi4thNBphNBoRGhpa6Ya3nJwcjBw5Etu2bUOHDh1qXNHGkQEDBjhM4EuSZHMTAalHkqQpAKa42k5sbKzd1yg2NtbV5slLxMXFISsrS+swiIiIiIiIiIjs8p4shxeIiYnBK6+8Ynf7xYsXcc0113gwIqK/XXvttXjooYdUa0+SJPTu3Ru9e/fG0qVLlcdzc3MRHh6urNNL9l19k09dlZSUpHqbTZo0wd13361qm5IkIT4+XtU2XRUTEwOj0Vhp9m9dEhERoerNHbKBAwfarL+emZmJuLg4m33kZRO0Ll1fUFAAACgvL9c0DvrbU089hfPnz2Pr1q0ICgrC9u3bbT4f3nvvPcyZM0dJ4rdr186l/oQQGDJkCEaMGKG81/Py8hAdHe1Su1QzQojXALwGAJIkOb2eR2ZmplohkRfLysqyu+xLXb1WExEREREREZFvqV397XqOCXyqD0wmE9fpJVKJvJ670WjUOpQ6ieeXHFmxYgVGjx6NS5cu4e6777ap5jB27FgsW7YMJpMJI0eOxA8//OBSX1zjnoiIiIiIiIiIiNRSZ2bgS5J0HQAjAD8hxK/OtGE2m5Gfn293+4ULF1Qv+UzkiuzsbIfbY2Jiat1mQEAAQkJCoNPpnA2rSu6I1V3Onj0Lg8FQZRUCzqisP9LS0gBUzKw1Go0IDAxUxkNVs8Fl1tvkmeFqzBCX47HHera61jIzMx3Gq1asap7f2rKeqWs2mwEAhYWFLs/g3bdvX6XxZs2bXmdfsGLFCgDA1q1b0a9fP6SmpipLntx+++3Q6/V46aWX0KdPH2zbts3u97zqrlHyNVOta2dV10whhHJtatWqlSr9EBERERERERERkfepEwl8SZKGAFgG4FsAXSRJWiiE+LyGz1XWzGzevDmuv/56u/tevHgRTZo0USFiqg+sx5azf2ivLmFQXVLcmXa9KZGuFXkmJVCxVru16OhorzhHaowvR9yRJHRX4tHdCU15ljcABAUFVbt/XFycTydZazq2HB1jdTcbONOmt7G+gcPf3x8A0KBBA7s3dtRUbcebL3H355a9z+YtW7YAqEjijxgxAgcOHFCS+JMnT0Z4eLhNOf3a3Kzpyeup9bWJiIiIiIiIiIiI6i6fL6EvSVIPAC8DmARgKoD/B2CwVKHa4xNCvCaE6CGE6NGoUSO7+xmNRhQUFLCEPtWY9djijR++RafTuaUKgZo4vjwnMDAQOp1O83XWPYVjS1t1ebxpObasy+n379/fYTn9w4cPezS2mvKFaxMRERERERERERG5zucT+AAaA1gkhPheCCEA/A7gelSU0reo1UlBQQEAcAY+eSWj0YgJEybg999/1zqUGlm2bBmOHDmidRh2SZKE4OBgSJKEDz74AP/973+1Dok0ZDabMW7cONxyyy1ITExEYmIiJkyYoPw8bNgwfPfddx6Lx2QyYeXKlUoCUgiB8vJyWCyqXfJUI4TAunXrcOLECa1DcSt5pryfn+tfqyRJQlBQECRJwueff45du3a53CZVWL58Oe69914liW8ymZRt1kn8ESNG4PTp0xpG+jeTyYRJkybhzJkzNtcmIiIiIiIiIiIiqrt8PoF/pVT+HquHDgMoFUKYAUCSpGZq9PPnn38CAFq0aKFGc0SqevPNN/Hll19i9uzZWodSI3fddReaN2+udRg1cuedd+KOO+7QOgzS0KVLl1BeXm53e3FxMb799luPxtO9e3fk5+cD+LvkeklJicdiqCmj0Yibb74Zjirc1AUTJ05E165dVf+s6NevH/r27atqm/WZwWDA/Pnz0bt3b1y6dKnRkNrhAAAgAElEQVTSjTeDBw8GUHHTzi+//KJFiJVs2rQJu3fvxpw5c7QOhYiIiIiIiIiIiDwkQOsAXCFJkiQqnLd6OABAS0mS/AGMBzBKkqRRqEjqC2f7ysjIAAB06tTJlZCJ3EKeievtM/CFEDAYDEhISPCZGYQRERFah0Aaa9y4MT766CObxzIzM23WOpdnwQcGBrp9bDdu3BiJiYnK73Kp9dDQULf264zAwEAkJCTUyXLw1m6//XbcdtttMBqNEEKoNgbCwsJUaYcqyKXn27Zti2+//RZms1nZJs/KB4BRo0ZhxIgRmsR4tYsXLwL4+3soERERERERERER1X0+l8CXJCkBQCMAPwKwADBLkmRdLr8UFWX05wAYDuBhIYTL0xIzMjIQHByM1q1bu9oUUb1lMBhQWloKAAgODtY4GiL1yLPggb/LqXuKXHJdjfLtapNjqw+0HANUM/ZK0MvJ+0uXLmHUqFF47rnnYDAYeJ0iIiIiIiIiIiIiTfhUAl+SpJEAFgM4d+Xfj5IkvSmEuCwn8YUQBkmSmgJ4AMA9Qohfa9q+xWKxW4L4xIkT6NChA/z9/VU4EiJ15ObmwmQyKePWYrEgLy9P2R4TE6NVaFWSZz/K/61rsrOzKz0mVx3Q6XRo1aqVBlE5Jy0trdJjQggYjUYEBgbazABXu0/rfqwTbQMHDlS9T7XIM8zr+kxzX3X1eLYeY1lZWYiNja1yzAE1H3ccA94tLy8PQgiYTCaUlZUBAC5fvozTp0/j7rvvRmFhIcaMGYNly5Ypn9laxwtAuenNbDYjNzdXGZ/edn0nIiIiIiIiIiIi9fhMAl+SpEAAo1Exo/4bSZLuAXATgNmSJK0QQhRa7f4JgG1CiBO16SMoKMhugi0rKwsDBgxwMnoi9wgPD0dpaamSaPDz80N0dLTGUVXNl5INasZqXXXA11nPMPZUP1rOZPa2Gwa8LR5HvD3Wq8eyM2POXcfo7efOV0VHR6OsrAylpaXKTRaSJGHEiBEoLCzEpEmTsH79eo2j/Jt8LQ8JCQFQEWt4eDirAhAREREREREREdUDPpPAvyISQDsA3wDYDiAXwFAAYwGskySpF4ACIcRiNTstKirCH3/8gU6dOqnZLJHL5MQ9K0N4r7pUdcBTM4w5k5nc7eoxxjFXP1jf7AYAM2bMgNlsxpgxY7wqeV8VSZLqxHWEiIiIiIiIiIiIquczCXwhhFGSpJcBzJAk6bQQ4itJkr4G0ALAMEmS3gLQB8AWtfv+7bffAACdO3dWu2kil8jr+Vr/Tt6hpKQEH3zwAf75z3/6/IzJPXv2oGPHjmjRooVHZsRLkoQdO3bg9ttvR3h4uNv7o/pl8+bN+PDDD5XfzWazchNUw4YNMWPGDHTt2lWr8MiN5Gum0WgEACV5v3z5co0jq56fnx+v8URERERERERERPWEn9YB1NJXAHYDGC9JUn8hhFkI8S6A5gCaCyFWCSHOq91pQUEBgIr1xYm80cCBA6HT6TB27FitQ6ErTp48icGDB+PcuXNah+KyRYsWYc6cOR7rb9++fVizZg1eeeUVj/VJ9cfWrVtRUFCg/Lt8+bLy8++//45ly5ZpHSK5WZs2baDT6XDXXXd5ffKe13ciIiIiIiIiIqL6x2dm4AOAEKJMkqTNAASAuZIkdQBgANAEgN5d/Q4YMACtWrXCkiVLcPfdd3MGFHmdnj174tSpU1qHQVbq2gxeT96I8PvvvwMAfvrpJ4/1SfXH22+/je3btys35RUWFqJBgwYAgKCgIIwYMULL8MgDpk2bhmnTpmkdRo3w+k5ERERERERERFT/+FQCHwCEEAWSJK0HcBzAVABlAB4QQuS4q8+goCA8/fTTePzxx7Fz504MGTLEXV0R1Qlz587F0qVLMWDAAKSlpWkdDhGRIioqChMmTFB+z8zMRFxcnHYBERGR6mJjY+3edB0bG+vhaIiIiIiIiIiIasfXSugDAIQQ5UKIfQDGAZgohPjZ3X2OGTMGcXFxeOGFFyCEcHd3RD5LTt4DwP79+zFgwACNIyJy7NKlS+jTpw9CQ0OxY8cOrcMhF+3YsQNhYWF49tlntQ6FiIg0kpmZCSFElf8yMzO1Do+IiIiIiIiIyCGfm4FvTQhhVrO906dP47777gMA+Pn54eabb0bz5s0BAMHBwXjmmWcwbdo0fPzxxxg6dKjNcwMCfPpUkpsZDAacPXvW7kygmJgYp9p19LyzZ8/i1KlT0Ol0VfbrbJ+OVNXPgQMHlMft3fySnZ3tsF13xOoOvhJnbWh9w5IQAkajEYGBgU49X64AYd2OPB4TExMr7Z+UlGTTtyt92jNw4ECn2vU29o5TCIHff/8dbdq0sflMsH4Nqjr3jtqUOTp3V3/+LF68GIsXL7bp31tYH2dVY7OujBFnydcEIQQMBoPNdSwvLw/R0dGVniPvGx8fDz+/yvenVvf5bH0dqqpfe8+/+vp19XPdcX3Pzs52eN2saay16ZOIiIiIiIiIiIg8xydn4LuLXq/HgQMHcODAAezZswerVq1CUVGRsn38+PGIi4tDcnKyVyUCyPtZLBYYDAaP9mkwGFBaWuqxfufOneuRfsizjEaj5v0bDAaX47Bup6ioCP/6179UipCuZjQaYTabK71mar2WdQ3Pi321uY7J+5aUlHi0XzWfS0RERERERERERAT4+Ax8tbVq1Qrz588HAGRlZWHJkiXYsGEDZsyYAQAICgpSZuF//vnnGDx4sJbhkg+5ePEi1qxZA6CimsODDz6IBg0auLVPnU6n/DcnJwfR0dFuqxRhXTbfkQEDBmD//v12twshcPHiRQQFBSEqKkrNEMlJzs58V7t/V+MIDAyEXq/HnDlz8Ouvv9boOTt27MCwYcNc6lev1wMAwsPDlZnWFoulyhnCvuzgwYM4evSo8ntBQQEaNmwIAGjUqBGSkpJq/VqaTCZcunQJ0dHR1VZh8OWlDwoLCxEWFqb5e80b6XQ6nDx5Ert27VIeKy0tRUhICADb66l8zQsNDXW539zcXDRu3Fhps6YKCwshhEBISEitn+sMIQTOnj2L5s2b13r8mEwm5OXloWnTpm6KjoiIiIiIiIiIiJzFBL4dsbGxGDlyJN5//32cPHkSXbt2BQA8+OCDWLRoEVJSUpjApxqzTuADwJYtW/DNN9+4tU9JkhAcHAwA+OSTT9CyZUvceeedqvej1+trlLwHKsrpHz9+HJ06dapyu8FgwKeffoqgoCCMGzdOzTDJSXL56GuuucZjfcrJuYKCAgghEBQU5HKbkiRh5syZOHPmDADgtttuwxdffOHwOXfffTfKy8tdSrZ/9dVXAIDBgwcrM61LSkoQHh7udJveJicnB3PmzHG4z6FDh5CcnFyr13Lu3Ln48ccf8cQTT+CWW25xuO/o0aNr3K632b9/P5o2bYp+/fppHYrXkSQJd999N0wmk9195OupfM1z9eaYc+fO4csvv0RCQgJuuummWj139+7dAIBRo0a5FENNGQwGfPTRR4iLi8Pw4cNr9dwvvvgCWVlZmDp1qt3lfYiIiIiIiIiIiEgbdWsKoMrk2VPyLEKgYuZg69atbUrrE1UnICAAjRs3RuPGjdGhQwesXLnSo/0nJiaiT58+bmm7NsdyzTXX2E3eAxXvucTERLvrY5M2du3ahXfeecdj/cXHxys/T506FRaLRZV2p06dqvzcpEmTavc3m81ITk52qc8ePXqgR48eACquHzqdTpUZwt6kadOmmD9/PqKjo9GwYUM0bNgQkZGRys9du3bFI488Uut2c3JyAACvvPIK9u7d63CG8RNPPOF0/Frr1asXunXrpnUYXmvHjh2IiYlRrqGNGjVy6/W0RYsW6NatG2688cZaP7dv377o27evqvE4otPpcOutt2LgwIG1fm7Pnj3Rs2dPlvonIiIiIiIiIiLyQpyB78Bvv/2GqKgoj848pbqpY8eO+PTTTzXr3zohqrZNmzYBANatW4dp06Y53PfPP/90uF2SJMTFxakVGqlEjRnwzpAkCRkZGZg6dSpSUlJcbq9Xr15YvHgx5s2bh3fffbfa/f39/bF8+XI899xzTs/qtb5RQJIkBAUF1bny+QBwyy232MySz8zMdPm9LFdi8Pf3xyuvvIKAgAC7N/csWrQIixcvdqk/rcTExGgdglfr1KmTTcWavLw8REdHu7XP66+/3qnnXXvttSpH4pgkSQ5vinMkOjoa4eHhHin1T0RERERERERERLVT97IIKhFC4LfffkNCQgJLixLZcfnyZZw+fRrx8fE2s5vt8ff390BUlZ07dw4dOnRweTY1edbw4cPRtm1bJYmvxkz83r171zjRO27cOBQXF3PcaOzVV1+Fv78/Vq5ciddff13rcKgeM5vN6NOnD5YtW6Z1KC6Tlxzgd1wiIiIiIiIiIiLvwxn4VoxGI86fPw8AyM3NRWFhIZo1a4bz588jIiJCWYNVCAEAyu9ms9lhuwEBPM1UN2RnZ9v8/vLLLwMAkpKSKm1TS15ensPtjmavvvzyyygsLERycjIsFgvmz5+PhQsX4tZbb8Xw4cMxbNgwp9p1B3ecv7S0NIfbnSm77M4+MzMzAfxdOl2v12Pu3LlYuHAhMjIykJCQgJSUlCpnsNfmWOQk/rx58xzuN3r0aGzevBlLlixB3759K/XrjvPnbYqKiqp9TdUkjwEASmlvnU6HZ599FsnJyZg8eTJ+++03DB061CPxaPEe8jaOzoErlRbKy8vtfu55YpZ9bezYsQN6vR4LFy5EcXExvv32W+zevRtDhw5FSEiIw2uJpzm6ZrpyXqu7Rql9zXTXdwoiIiIiIiIiIiJfwMyylfDwcGXt0k8++QQAcO+996Jly5YICAhQEvHybCUm5qmmgoKCPJ4Q9kR/27ZtAwBMmTIF58+fx7Rp05Camoq//voLQMWa93/++We1M++djVUIAb1ej9DQ0CqTutbJ+5YtW6KkpAT5+fn4/PPPsWfPHvz+++947LHHnOq7rtMiMSknAuUEfkREBNq0aYONGzdiwoQJNuX0a1qG3t5xyI/LSfz7778fXbp0wdy5czFz5kwlQTxo0CDs3r0bmzZtwoMPPuhSn3WNO47TOhksl/aOi4tTHl+0aJGy5vnVSXz55jpfUB/GyJXXw6lKT9HR0XavC+66tjlq1zp5HxwcjLKyMuzduxdAxTj0leu7o/NKRERERERERERE3oMl9O04fPgwGjdujBYtWmgdCpFXunz5Ms6ePQsAGDBgAHr16oV169bh4sWL6NatG1JSUnD+/Hm3ls03GAy4fPkySkpKKm07d+6ckrxv06YNnnzySTz77LOYOXMmGjVqBJPJhJUrV6Jt27b497//7bYYyXV+fn5YsGCBW8vpv/vuu5g7dy6aNWuGO+64Q9nn8ccfh7+/P9577z1V+iTntW7d2qac/qeffqp1SOSA0WgEAG3WTVGR2WxWkvdhYWF48cUXMXHiRADA3r17OQ6JiIiIiIiIiIhIdUzgWzl16hSGDBmCIUOGYN++fbj++uu5NiiRHdOnT1d+zsvLQ+fOnZGSkoKysjL89NNPmDJlSo1nSdfUzJkz0aVLF+V3nU6HyMhIhIaGVtr3uuuuU5L3jz76qPL4tddei2effRbPPfccYmJiUF5ejpUrV2LEiBGqxuqKLl26oFWrVso/NezcuRO33XYbzp07p0p7NbF8+XIkJSWp0pafnx9SUlKUJP6SJUtUabd3795YtGiR8vvw4cNtqquEhoZi4MCBKCsrw8cff6xKn77k5MmTSExMRGJiIgYNGqRUR9BKQkKCTRLfk/GoOZ591dSpU5XxkJiYiAkTJtj8bv3vyo0wdtcYOnr0qPIZFxsbi//+97+eO5Ba6NOnj5K8X7BgAfz9/dG5c2ebJP6xY8c0jrJqgwcPxuDBg1VtMysrC/Hx8Xj//fdVbdeR//73v4iNjVX9ukhEREREREREROStmMC3EhUVhWHDhmHYsGEYNWoUxo8fb3dfs9nM2ZhUr8kJi759+yIjIwM7d+7ElClT3Lq0xPvvv4/CwkLld0mSEB4eXuWNAkVFRZAkySZ5b6158+b45ptv8MUXXwCoSEp4C/kYu3TpIt+w4PJn9TvvvAOTyYTdu3cD+Hv5AXd+ju3cuRN6vV619uQkPgCl+oMa+vTpg9tvvx0AqlzPOzExEYDt+uz1hU6nQ/v27REYGAiLxeIV5yAhIUF5vTwZj9rj2RfJNwC1b98e7du3R2xsrPJzVf8A2P2ACQkJQZcuXdC4cWMIIXD48GEPHUXtyGNMTt7LOnfujLZt2wIAvvvuOy1Cq1Z6ejrS09NVbfODDz6A0WjE6tWrIYRAWVmZ25evOHz4MIQQaNy4sfV1kYiIiIiIiIiIqM7iIu5WmjRpgn/961812tdsNqO0tBRhYWEAAIvFgtLSUoSEhKg+65jIm3Xr1s2tSXt3S0hI0DqEKnXp0kUpzdyqVSuXy1CXlZUBgJKwNxqNuHz5MgAgPDzc1eZVI4SAyWSyu91dn68hISEAUOWSD4GBgW7p0xfExsYiJSUFq1evRmpqqtbhKHQ6ndYh1DtykjYsLEy5kSYzM7PKm15k8s0vVWnbti0+/fRT7N+/3+ENk96iqs8GX6nSVFZWBp1Op0q88jgoLS2FwWBAaWmpy23W1KpVqzBgwAAA4Cx8IiIiIiIiIiKq05hpdpK/v7+S8AEq/pCp1+s9+odMIm8hz8JjVQq3sVuG2lmBgYF2lx9QW21mZxqNRnnt7Bq3XV5e7tGxp0Wf9Yl8fmu6r6fJ8WnRt5aMRqNbj9lTs7nrIznZrjadToeQkBC33lAjhIDZrPolkIiIiIiIiIiIyKtJ/EPp3yRJygdwHhUlX41wUPrVDj8nnlOdxgByVW5TDd4Yl9YxxQohmlS1QZKkiwA8XaPdk+fDD4A/KhLNFg/3ba26fv0AyNOp5SyxWu9Zdx6z3bEFeGx8OXN8V4+L2jyvpuPI2T7s8XSfWrxXru7T2z67/AA0AXAR9s+v2q97Vey9Np7ou7oYPMk6htp+z6nN2PLkeZXV9vy6M0Z3vta1ed28YczJGgPIR9Xn3GZsSZI0BcCUK78mAPjNU0Fe4Q2f5XWxTy2O0eF3LiIiIiIiIiIiT2AC38tJkvSjEKKH1nFczRvj8saYtKTl+dCq7/p4zJ6ixfHVhz7rwzE6wxtiZAzeE4O7eNOxeUss3hIH4F2xVKe+fJbXh2skEREREREREZE3YAl9IiIiIiIiIiIiIiIiIiIiL8AEPhERERERERERERERERERkRdgAt/7vaZ1AHZ4Y1zeGJOWtDwfWvVdH4/ZU7Q4vvrQZ304Rmd4Q4yMoYI3xOAu3nRs3hKLt8QBeFcs1akvn+X14RpJRERERERERKQ5SQihdQxERERERERERERERERERET1HmfgExEREREREREREREREREReQEm8ImIiIiIiIiIiIiIiIiIiLxAgNYBeJPo6GgRGxtb6fH8/HxkZWWhc+fOCA4O1iAy8gWHDh3KFUI0qWpb48aNRVxcnIcjovLycgBATk4OLly4AH9/fyQkJMDPzw+SJCEoKMgt/QHAr7/+CpPJhGuuuQZNmzYFAKf7czS2AO8aX9bn4OjRowCA6667DpIkAXD+HFDl8RwQEICOHTsq290xvtwxtqzHSHp6OgCgc+fOAACTyYSAgIqvJhkZGSgtLUWXLl2U/Tl+fIunx1ZRUZHy88mTJwEA7du3Vx6LiIhQtT9yH/m1FEIgJycHly9fRosWLRAWFgYAOHnypN2x1aBBA9GsWTN5P+h0Olh/v6/v44DvE8f4fZ7cpbrv80RERERERETWmMC3Ehsbi/3791d6/P3338ekSZOwbds2mz9wEVmTJCnL3ra4uDj8+OOPngyHAGRnZwMAVqxYgTVr1qBhw4ZITU2FTqeDJEmIiYlxS38AcMMNNyA3NxejR4/GjBkzoNPp0KpVK6fadTS2AO8aX9bnQD7eTz/9VEngq33O65Ps7GwIIbBs2TL85z//QVRUFD799FNlu7Pn1tOfXWfPnoXBYIBOp8N1110HAMpx5OXlITo6GgAwdOhQHD16VJVjJG14emylpaUpPycmJgIA1qxZg8DAQEiShIEDB6raH7mP/FoKIbBq1Sp88skneOyxx3DjjTcCABITE+2OrWbNmiElJUXeD7GxscrvAOr1OLBYLNizZ4/ynpDfJzw/f7v6c0uSpCkApgAV32u85fsW+Z7qvs8TERERERERWWMCn4jqPDl5HBwc7LEqGnI/FosFpaWlHunTW8nnn1xnMBhgMpkAwGcrwhgMBpv3RFFREYYOHQrAdga+XMGByBXyWGP1Bt8kSRL8/CpW/Fq6dCmaNOHkVVeUlJTAYDAA4HuipoQQrwF4DQB69OghNA6HiIiIiIiIiOoJJvBrQC7XeenSJY0jISJn3HfffTh48CDGjBnjsT5nzpyJLVu2YMyYMQgJCYFOp/NY395ixowZOHbsmNZh1Ck6nQ733Xcfjhw54tHxrCb5vaDT6TBixAi8/fbbdpP1DRo08GRoVAc9/fTTNrOLyfd06dIFe/bsQUFBAQoKCrQOx6eFhoZCp9MhMDAQANCrVy+0a9dO46iIiIiIiIiIiOhqTODXgFw2//jx40rpTiLyHa1atcL777/v0T5HjhyJkSNHerRPbzNr1iytQ6hzJElC+/btPT6e1SRJklI9IDk5GcnJyco26xL6RK5o164dTp06hdOnT2PatGlM4vuwQYMGYdCgQTaPyaXfqXb8/PxsZt4vXbpUw2iIiIiIiIiIiMgeP60D8AVt2rSBTqdDenq61qEQERERUTXkpTvatm2LjIwMTJ06FRaLReOoiIiIiIiIiIiIiKrHGfhWjEYjLly4UOW2Nm3aMIHvJHm9Znvk9Y6psuzsbIfbY2JiPBRJBS3icdQnZ+v6lry8PJee7yvj3dvet3VFdePHV8aHq891B2+Lx1mZmZnKz/I633PnzsXChQuRkZGBhIQEpKSkKGuqWxs4cKDddtPS0hz26+i5vqIuHWN5eXmlsWD9uzt4+vzVpdfLWTwHRERERERERFSXMXNqRZIkm7KS1hISEvDzzz97OCIicoWnk06+kuRyJ54D96kr59bRcdSVYyRtxMXFKT/rdDoAFTdgbty4ERMmTFBm4ttL4pP3cCX5GhQUVGksWP9e3zGxTURERERERETk/fjXyxpq164dsrKyoNfrtQ6FCEIIlJWVsRww+Sx5DAshtA6FyGUcz97Nz88PCxYsYDl98jghBMrLyzneiIiIiIiIiIioVpjAr6H27dsDAI4fP65xJFRflZSU4K233gJQUQ62tLQUJSUlXhGPp24oOHPmDAYMGIAbbrgBN9xwAwYNGqT83LNnTyxbtsyt/ZN68vLyMGrUKOX1u/rfjBkzcPnyZa3DVLz11lvK+6024/3gwYM4ePCgu8Ord4qLi/H66697TcK8oKAAGzduVMq218bHH39cbQl7T/K2eNTi5+eHlJQUJYn/4IMP1vqaJYTA7t27cf78eTdF6R3KysqQmpqqdRhOu3DhAlavXo3Vq1dr0n9qairKysoAVCzPZTAY3Pp9zddfLzWcP38ee/fu1ToMIiIiIiIiIiLVMIFfQ/n5+QCAwsJCjSOh+urkyZMYPHgwzp07B51Oh5CQEISGhnpFPJ66oWDdunU4c+YMcnNzkZubi/z8fOXnnJwcvPrqqzh37pxbYyB1fPbZZ/jll1+Ql5envIbW/z766CN8+OGHWocJADh37hwGDx6MkydPAqjdDTQtW7ZkWXg3SE9PR//+/XHmzBmtQwEAnD17FkOHDkVubm6tnztw4EAl2ecNBg4ciNLSUp+vKBAeHg6gYqzI5CR+w4YNce7cOSxevLhWbRqNRnTp0gXFxcWqxuptMjMz0a9fP+Tk5GgdilMuXbqE1NRUJakdGfn/2bvz8Caq9Q/g35M0TdOmLVJ2aCktFqSUfS1bWxbBsij+cEMRkCvKFfEii2iRxYIUAYWL3stivagouHBRQIELlO1SLgiiQBVkaSlFCrTQNU3S5vz+qBlTSLNOMkn6fp6nD01m5px3Zs5MQ94554S4re78/Hz069cP2dnZAACFQgGlUunSz2vZ2dno27cvrl696tXXrDO0Wi169OghdRiEEEIIIYQQQgghovGTOgBvcP36dSxatAj9+vXDwIEDpQ6H1FGdOnWq8TogIEDSOXxN4zF+YezqBwrS0tLQuXNnoXeoRqOBSqVCVVUV9Ho9EhMT0bx5c5fGQMQxbtw4tGjRAidOnKjxvvFcxsbGYvTo0RJFV5OxTTVq1AjAn3Nr29LemzVr5rrA6rDu3btDq9UK50Jqd9+f7RESEuLWBKM1ISEh8Pf3h0ajAVD9t8YbTZgwASdPnsSyZcvw0UcfCe+Xl5dDp9MBAPbt24c5c+ZALpfbVKZCoUBYWBiaNGnikpg9Rdu2baUOwSnNmjXD1KlTwRiDXC536vq0V+PGjQEAYWFhAADGGPz9/V36ea1t27bQ6XRQKpXQ6/Xw9/d3WV2eKjIyUuoQCCGEEEIIIYQQQkRFCXwrOOd47bXXoNPpkJ6eLmnC1FdwzoXEK2NM6nCICBhjLn2ggHMuJOueeOIJ4f2CggKEhYXVWE68R1JSEpKSkmq85w3n0tb2brovdK8Tl/EceDtPbSPG68+Tr0Nr2rdvj5YtWyI7OxtZWVnCAzdbtmxBWVkZwsPDkZubiyVLluCNN96wqUxjMtYXcc6h1+uhUCg8qi06Qq1Wo1evXlKH4VYKhaLGv3WFL7VbQgghhBBCCCGEEFOUjbbiq6++wr59+zB79my0bt1a6nB8gkajQUlJidC7jxBrjEOW1za/tDGZR1/eej9fOpfW2i0hntpGfOU6nDFjBgDgnXfeAQCUlpbiyy+/RJ8+ffD3v/8dALB3715UVVVJFqOnMM7VrtfrpQ6FOCyUK1UAACAASURBVMD4cIm3X7P2quvtNjIyEoyxWn9oZAJCCCGEEEIIIcR7sbo6V6I5Xbt25f/73/+E13l5eejYsSPi4uKwd+9en+115W4GgwHl5eUIDAx0qsd2ZWWlxeV+fu4dYIIxdoJz3s3csm7duvEffvjBrfE4yjg8fW2kmM9brDZjyhP3szaW2hYAdOjQge/YscPsMk/aD19iS/txRbt1BV+5d1niqde7t7SR2lg7rhEREZK3rdjYWGRlZVldr65/Hva2tlgX7lt1xf79+y0uT0hIqHWZo+3WUp2JiYle07YYYxbvXdaWE/ey9nmeEEIIIYQQQggx5fnf0EmEc44pU6ZAp9Nh3bp1XvFlpreQyWRQq9V0TInNqM0Qb0TtllhDbcT11q9fb9N6db0XPrVF4o2o3RJCCCGEEEIIIcRXubeLsocrLi7G7t27AQCZmZn47rvvsHz5cho6n9RZlZWVKCgoQOPGjaUOxaXy8/MRFhbm9lEbxJKfn4933nkHjDE89thjiIiIkDqkOsXb209dQ+fLNSorK7Fu3TqUlpZKHUoNvXv3Rrt27az2wh8/fjw++eQTN0VFCDHn1q1bqFevnlvvz8eOHcPp06fdVh8hhBBCCCGEEEKILejbaxMXLlxAcnKy8DosLAxTpkyRMCJCpLVnzx7k5eXhueeekzoUl9q2bRtatGiBoUOHSh2KQ27cuCHM5/yPf/wDFy9elDiiuuPzzz/H7Nmz0b9/f3z66adSh0Ns4O3Xu6eaOnUqapvKQ2rr169HfHy8xXW++OILSuATIrH9+/ejcePG6Nevn1vqy8/Px+zZs91SFyGEEEIIIYQQQog9KIFvomHDhnj00UcBAFeuXMF3332Hd955B3PmzJE4MlIbzjk0Gg1UKhUYY1KH43Pi4+ORn58vdRguwzmHVqtFQkICGjVqJHU4DpPL5bjvvvugUqkwbdo0qcOpM4zJewC4evWqxNEQWyUmJqJhw4ZSh+FzVqxYAZ1Ohx9//FF479atWxJG9KfevXtbXaeuD6FPiCfo2bMn7rvvPrfV17hxY8ydOxcffPABDAYDOOe4c+cOjcdPCCGEEEIIIYQQyVEC30R4eLjQi5VzjmeffRbz5s1Dx44d8dBDD0kcHTFHo9GgpKQEABAYGChxNL4nJCQEISEhUofhMlqtFhqNBi1atEBAQIDU4TisTZs22Lp1q1fvg7cxJu/9/PxQWVmJoKAgqUMiNoqOjpY6BJ/EGMOyZcugUqmEexFN50EIsUd4eLjb60xKSkJSUhIAQKfT4cEHH5S7PQhCCCGEEEIIIYSQu1APAxNXr17FzJkzMXPmTLz22mt4+eWX0aFDB4wbNw6//fab1OERM1QqFYKDg6FSqaQORVJ5eXlo3749du3a5XRZnHNUVFSAcy5CZJ5NqVRCpVJBqVRKHYpTZDKZy/ahqqoK8fHxSEtLc0n53mj9+vVC8n7r1q1Sh0NsYOt97fHHH8eAAQNQVFTkpsh8h6/cTwkh0uCcQ6fTSfr5U6FQAAANx0EIIYQQQgghhBDJUQ98Ezdv3sSaNWsAVPfA+Oijj5CSkoIFCxZg6NChOHPmDIKDgyWOkphijNXpnvcrVqxAUVERUlNTYTAYMHToUEycOBGxsbEAgOnTp9tdprFXOgBRe3Tn5uZaXC5FryvGmN37aGk/CgoKEBYWJrw2DtGvVCrBGHPZPjLGRJ9CYsWKFaiqqsKCBQtQVlaGzMxM7N69G8nJyaisrMSMGTMgk937DJgnnmdHmdsXY897uVyODRs2oHnz5gCAyspKFBQUCOt5037WBZbua9u3b4dGo8Hq1atx+fJlAEC9evXQsmVLvPzyyxgzZkyt5XrTeXb02jS3nfHeVlpaigYNGgBw7H7qLfbv32/2fc459Ho9Bg0aZPZ+WNt2RgkJCc4H5wF1+gpXHTvTco1tRqFQgDGG7OxsREZGil6nK1g6PmLsh16vh1arBQD4+/vbGZ04/vgsZZCkckIIIYQQQgghhBATlMA3oVQqERUVBaA6gZ+dnY21a9di2rRpWLRoEcaPH4+vvvqK5lr3EH5+1HxNk/chISEoLi5Genp6jSS+vaKjo1FeXo7AwECzCQlf4Wzi7e7kvDmuehjibv7+/qInEk2T9wEBAaioqMC+fftQWVmJIUOGoLy8HGq1utbtbTk+3sZ02PwNGzagX79+wjI/P78aD28Qz2LpvmaavJfJZIiNjcWZM2eQk5ODV199FRs3bsSGDRsQGhoqUfTiEeu6NN7b1Gq1Vz3EIDZjwtHa/ZB4N2PS3WAwOP25yBOS1O5w94MKlhiT+waDwW2fPz3pwQhCCCGEEEIIIYQQc3w3O+ek4uJicM5x7tw5HD16FM8++yy2bNmCxYsXSx0aIQCqh803Ju+joqIwb948YQ7P9PR0nD171qFyZTIZ1Gq1S7889YVh+o0JLOMX8eZ465DSpsn7oKAgLFy4EBMnTgQAHDx4ELt377Y68oUtx8dbcM7x8ccf1xg2v127dlKHRexg6b5mmrxPSUnB+PHjkZaWhi5duoAxhpMnTyIuLg4PP/yw1w+tL9Z16a33NrEpFAoolUqbRgLyhOHBiWNMH9RwlrHN/DFUOwDfbBvGY6bX623exh2fPwkhhBBCCCGEEEK8BXVhNtG8eXMsWrQIQHXP5pdffhmVlZX4z3/+g5SUFIwePRpz587FyJEjERcXJ3G0pK6Li4uDwWBAeHg4/vrXvwIAkpOTwTlHRkYGPvroI3z44YcSR2neq6++it69e2PEiBFeO+SyUqnEm2++iU2bNtW6DmMMx44dQ+PGjd0YmfP69esn9LyfN28e5HI5YmNjMXHiRKSnp+PgwYO4cOECYmJiai1DqVRi165dOHToEJYtW+bG6MV35coVpKSkAKgeKn/48OH3rOMrowzUNW+++WaN5L2xl71cLsfYsWMxYcIE7N27F9988w1OnjyJjh07Ijs7W9qgnaBUKpGfn48FCxZg/Pjx6NSpk13bDxs2DADw/fffe+29uza2XsNLly5Fr1690L9/fzDG4O/vb1PCMSMjA5mZmZg5c6bbel4b71Xbt293S32+5ODBgzh69ChmzZolJNvFmLJpyJAhqKysrHV5mzZt8M9//tPpelxtxYoV2LZtW63LGWPYuHEjjUxBCCGEEEIIIYQQ4iDq4mBCr9cjLy8PeXl5+Omnn1BcXCzMsR4aGorjx48jPDwcLVq0kDpUQtCjRw8A1T3xjb1Cq6qqcOzYMQBAcHCwZLFZM2zYMCQmJnp1703GGCZPnizMgW5O9+7dvXJY9REjRgAAKioq8OuvvwrvG+e/lclkFue6BaqPT2JiIoYOHeqqMN2mWbNmeOmllxAVFYW4uDjExcXhgQceQFxcHNq3b4+4uDj87W9/kzpM4oCuXbsCqE5smxsiXy6X491338V9990HAGjYsKFb4xMbYwzNmzdHfHy8xQdwanP27FmHR3fxdIMGDbJpvX79+qFLly52l9+9e3f079+/Rs9rV+Gc41//+hfKyspQVlaGjRs3urxOX9OlSxdhmhR7HtSwZubMmbUuk8vlSExMdLoOdxgzZgwaNWpU6/L27dujYcOGPvFwG2PsecbYD4yxH27evCl1OIQQQgghhBBCCKkjqAe+iStXrgg9mQFArVajtLQUr7/+Ov71r3/h5s2b+O9//yt8kU+IlHbu3ImoqChcvnwZqampSElJwfLly4Vhz1977TWpQ6zV4MGDpQ5BFNHR0cjMzBReFxQUeGXC/m5z5szBf/7zH2RkZCA9PR0TJ07E/v37cenSJaGnsi09SENCQmxOinkyhUKBWbNmYdasWcJ7xnNdUVEBjUYDlUolYYTEUaNGjYJKpYJGo8Hp06fvGV2nqqoKXbt2RWFhIe677z7hIRZv5ufnh8cee0zqMDzO999/b9N6vXv3dqj84OBgISHsanq9Hp999pnwesOGDRg7dqxb6vYVarXa4XNtyZAhQzBkyBDhdXZ2ttUH4jxReHg4Nm/eDJ1OB61Wixs3biA6OlrqsFyCc74WwFoA6Natm+/Mc0AIIYQQQgghhBCP5pM98JmD3T1CQkIwbNgwDBs2DF27dkVpaSnGjh2Ln3/+GWfPnsW6desc6nVFiKu89NJLaNWqFQwGAxYuXCgk79944w2v7t1OpDd8+HChJ2B6enqN5L25nsp1Fc0F7v2MyezNmzfXeL+qqgpz5sxBYWEh6tevjyNHjogyhDYhrrZ582bo9Xo0bdoUTZs2hV6vp174xCUUCgWUSiXkcrnUoRBCCCGEEEIIIYT4FJ/qgc8YU3POSznnDvWOKC4urtEDq3fv3qhfvz42btyI4cOH4+mnnza7naW5LIHq3m6OcFW5xLPk5uZaXB4eHm5x+UsvvYT3338fly5dQnBwMObOneuyL1KdjdWT+NK+uIpx/uSMjAz4+fnh9ddfd2ny3tFzIuW5ZIzdMxd4QUGBZPEQ+91///0ICAiARqPBiRMn0K5dO1RVVSEtLQ3l5eWoX78+Tpw4Yfd91VfuMebas+l73rIfdcX8+fNx8OBBANXTfwDA77//jg8//BC//fab20eRsFZfQkKC6HWWlJRYrNcVdbpCdna2x++HcXoBa6RoB4QQQgghhBBCCCHezGcywIyxkQDGMsY4gI8BnOGcX7GnjNjYWHzxxRcAqud4vnPnDhITEzFgwADhfUI8yfTp02v868l8JcljaT98ZR8Bx9uWLx2DunKu67px48ahYcOGmDx5Mnbs2IFFixaha9euQvL+xo0bPtG71NE2a25aEG+cKsTBZzsBOJ5clCIpeeDAAeH3EydOCL9zzmssI/dy1flytFxPm7LDmePjaftCCCGEEEIIIYQQ4ul8IoHPGIsB8A8AjwHoBqAPgAcZYx9wzs9Z2fZ5AM8DQEREBGJiYgAAN2/exJAhQ9CoUSN8/vnnUCgULt0H4nvubluEiInaF3GVuti2hg0bhtDQUBQVFaFt27bQarUO97wntauLbYu4h2nbaty4scTREEIIIYQQQgghhBDiHJnUAYhECeAw5/y/nPOVAL4GcBPAZMZYC0sbcs7Xcs67cc675eXloUGDBmjQoAGioqJw/fp1fPnll2jYsKE79oH4GNO2ZWsbOnz4MGbMmOHiyMRx+fJlvPjiiygqKpI6FKfNmDEDhw8fljoMuzjSvrxFUVERXnzxRVy+fNnubdesWYM1a9a4ICr7/fDDDxg6dCimTZsmdSh28eW2Zck777wDAKIn70+dOoX4+HhkZmY6XZa3q6tty12WLVtmdZ3Fixe7IRLzNm3ahE2bNrmkbNO2lZ+fj8TEROFn8+bNLqnTnU6cOIG0tDSpw3BaZmYmhg0bhvXr10sdCiGEEEIIIYQQQohH85UE/q8AohhjLwIA5/wkgO8BVAKIAQDGGLO3UIPB4BPJSeI9evXqhSFDhkgdhk0CAgLQs2dPqcMQxZAhQ9CrVy+pwyAmevbsec/c8rYYOHAgBg4c6IKIbPfDDz9g4MCBGD16NLKysrB9+3ZJ4yG2MR1i/e233xYteT9y5EhcvXoV33zzjdPlSWnnzp3C77t375YwElKbXbt2WV1n4cKFbojEvPj4eMTHx0tWvzfr2LEj+vbtK3UYTsnMzMTrr7+OiooKbNy40WMetiOEEEIIIYQQQgjxRF6fwGeMyTnnegApAHoyxh4DAM75CQCFAJ7+47XVyU/VajX69++P/v37IykpCS1atMCYMWNw5swZV+6CzTjnKC8vd2oeV+J5OOeoqKgA5xx+fn5ek8Bv2rQpxo8fj9DQUADV+1FaWgqDwSBxZPYbMmQI/Px8YkYRnxAaGorx48ejadOmdm3HOUeLFi0QHR3tosgsO3LkCGJjYzF69Gj89ttviImJgVwud+hBBOJenHPMnDlTeD1r1iynyzx16hRGjx4tvJbL5cK93huZHp9XX31VwkiIM7RaLd5++21J6o6IiEBERAQ459DpdC67FmJiYpCRkSH8PP744y6px538/PzQp08flx87Vzly5Ahef/11ABAe4ti0aRMl8QkhhBBCCCGEEEJq4fUZK8551R+/HgPQCEAyY6wJ53wVgDwAbRljSs651lpZpaWlOHjwIIDqLzirqqoQEhKCkSNH4vDhwxbna+WcQ6PRQKVSwYHO/jbRaDQoKSkBAAQGBrqkDuJ+Wq0WGo0GAJxK9GVlZaFdu3ZihWU3rVaL4uJiANUPwzjqypUrAFw/PzLnHFqtFkql0mXXLLGfM+dFrGvJnJ07d+Lq1atml5WUlGDdunX45ZdfAFQnj9LS0tC1a1fExsaKGgexjb33w23btqG4uFh4IKmoqAi7du3Cgw8+6FD9x48fx+jRo1FZWYknn3wSn3/+OQwGg8vap6vt3LkTRUVFNY7P7t27veaBM3Pc/TdTp9MhOzsbMTExdm8rdqwLFizAnDlzRCvPXnq9Hlqt1Y/lTuGcQ6/XQ6FQ+NTf+NqOndSfAS3Zvn073njjDQDAU089hb/85S9Cb3zjlAoJCQkSRkgIIYQQQgghhBDiebwugc8YawbgFgAF57yMMSbjnBs457cZY9tRnbR/hzHWH0B3ACNtSd4D1V/2VVZWAgCqqqqg1+tx584d3L59G+3bt0deXh6Cg4PNbuuO5LpKparxrycxHrfaUO/m2imVyhr/2mPFihUAgNWrV+Py5csICgrCvHnzhKGfp0+fbneZubm5tS4rKChAWFiY2WVKpRIhISEOtX/jfpw9exbp6ekAgPr162PixImIiorC8OHD7Y4HAMLDw2td5miy19LxsVanM9t6C2f30ZkkvLlrqaCgoNb1rbWfL7/8Ev/5z3+wZ88eq/c4AAgODsYzzzyDLl26IDIyEgUFBUIvSdM4HD3P3tR+pIjV0fvh9u3bhd7lxp66a9euxbRp07Bs2TK8+OKLZrerbR+NPe8rKysxd+5cNGnSBJ9//rmQeKuqqkJZWZlHnS9Ltm/fLvS4Nz0+L7/8ssXj42msJXFd0aPZmTpdFW+TJk1w/fp1/OUvf8HYsWNrLHNXElWhUNT41xVME93+/v5Ol7d//36Ly9197BYvXmzxASNL7cPRfbG0XXZ2NiIjI+9535ioB6rv+3l5eZg/fz4AIDY2FmfPnhWS+JMnT7YrHkIIIYQQQgghhBBf5lVZVcbYUADzUD3nvY4xNo9zfv2PZYxzfhvAPsZYTwCRAIo55zdsLT8gIEDovaLX63H27Fno9Xr4+fmhpKQEY8aMwbZt2+75wtHPzw9qtRoymQyBgYGQycSZmcBc0tuVX3YSaTjb09yYrAKAsrIyLFiwoEbSSkxhYWEuSzqZJu/lcjkKCwuxbNkyhIWF4f7770ebNm1ErS86Ohrl5eUOX7PUg1984eHhMBgMdp8XV7TJVatW4b333hMS9/Xq1UPDhg2F5cYYAcBgMKCkpAQ3btzApk2bUFRUhMTExBo9Py09KEDE48j98H//+58wgo7xPqNSqVBeXo5jx47ZlaA2Td6npaXhySefxIEDBwBUf8Zo0qSJE3snDTGPD5HWgAEDMG7cODz33HPYsGHDPQl8V5Ai+RocHIxBgwY59TfeE1g6do6ODuJOpsl7oPqhp9oefLKWxCekNpGRkcjJyTG7rGXLlsjOznZvQIQQQgghhBBCiEi85hstxlgigFUAZgJ4H8AdAIP+WCYzznHPGIvinFdyzi/Yk7y/m0KhQJs2bSCTyVBZWQl/f3/s2rULU6ZMMdurRSaTCUl8QtzFmKySyWSYO3cugoKChKRVVVWV9QI8hGnyPikpCUuXLsXQoUPh5+eHgoICDB48GH369MG5c+dEq9PZa9bYU9zVwwDXNVLfS1etWoXWrVtj2bJlqKysRP369TFjxgzMnTsXL7zwgvAzfPhw4fcpU6Zg1qxZmDRpEoKCgrBx40YkJCTg888/97p5ir2Zo/fDL774AgBqzJNt/H3z5s02128uee8LxDo+xDNERUWhSZMm0Ov12Lhxo9ThuIzUf0vqOtPk/VNPPWVxXeNUM5s2bcKaNWtcHhvxLTk5OeCcm/2pLbFPCCGEEEIIIYR4A2/6VqszgLc454c55z8AKADQDwA45wZWLQLAu4yxECZCl1iVSiXMVarT6dC2bVusX78eS5cudbZon8Y5R3l5OSWuXGzo0KFCsiolJQX16tXDvHnzhKRVamqq03X8/PPPLm/vR48erZG8T05OBgAMHjwYaWlpGDFiBPz9/ZGbm4vBgwcjIiJC+OncuXON1//3f/8HvV6PiooKl7c/pVKJCxcuYNWqVXZvW1lZidmzZ6OwsNAFkXkOd7Qfe+zbtw9JSUl46KGHkJycjKeeegrJyclITk7G0KFDER0djWXLlkGn0yEiIgIzZszAG2+8gaZNm1otmzGGBx54ANOmTcOUKVNQv359zJ49G2VlZTYNv2+Pu9sP5xwVFRUwGAyi1iMGzjkWLVqEn376yaX1OHo//Oabb4Te5XFxccL7cXFxUKlU0Gg0+Oabb6zWf/HixVqT96Wlpc7voETEOj7eYOjQoaKWp9PprK7z9ttvuyWWuy1atAgAsGHDBpfW46vu3LmDZcuWefRn3cGDB9u03rp16xx6OPLo0aN49tln8fzzz2Py5MmYP38+Jk+ejMmTJ2PSpEk1kvd/+ctfLJbVoEEDLF68GEB1Et+XHywhhBBCCCGEEEIIsZXHJ/AZYyMZY5MAfADggEli/gCAUJNVlZzzKwCe5pwXc5G+UQsODhbmvb9x4waGDBmCv//972IU7bM0Gg1KSkqEeayJaxw7dgwA0Lx5c4SGVl8KcrkcPXr0AACUlJQ4XUezZs0wYsQIp8uxZPfu3QCqE6B9+/a9Z/mQIUPw0EMP2VTW8ePHce3aNbf0jGeMoVWrVg4dn4KCAvTr1w83bjg8SIhXcEf7sce2bdtw4cIFnDlzBqdPn8Yvv/yC06dP4/Tp08jKyhKmTNm+fTsOHz5sU+L+bsZE/pNPPomgoCBwzkVP4N/dfoyjQZSXl4tajxi0Wi0GDx6MBg0auLQeR++HJ06cEOIsKioS3i8qKhLuIcZ1LNmwYQMqKysxZcqUGsn7O3fu4LXXXgMAdOzYUXjYwlOTfncT6/h4A2MbEostwzZv27ZN1FhsnWpm7969ACD6vamuKCwsRMeOHXHjxg3o9XqpwzFrz549uHLlitX1Bg4ciIYNG0Kn09l1X8rIyMCVK1fw22+/4fz588jJycH58+dx/vx5XLx4EUD1Z4Bx48bZVF6PHj0QEBAAADhy5Ag453bHRAghhBBCCCGEEOJLPDqBzxgbAmAhgFzOeQXn/IpJYp4DaPXHes8AmMsYkwMQtavb7du3hS/+V6xYgfj4eFy7do2GzbZApVIhODgYKpVK6lB82unTpyGTyZCbm4v3338fALBjxw5kZGQAACZMmOB0HQ0aNMADDzzg0LZZWVk2rffmm2+iVatW4JwjNTVVSBJVVVVh48aNePnll7F161YA1QmwY8eO4cqVK7hy5Qp+/PFH4fcrV64gJycHERERUKlUUCqVDsVtD3uPjzF516hRIwwfPhxt27Z1YXTSc6b9uMLy5cvRrl07ANVD9p44caJG+1m+fDmqqqqQlpaGiooKu8uvqqrC0aNHMX/+fLz22mto3bq1S9pi48aNa7QfpVIJlUqFwMBAUesRg1KpRIcOHdCsWTOX1uPo/XDhwoVo1aoVDAaDcP8pKipCamoqDAYDWrVqhYULF1qt3zj6Qe/evYX37ty5g/79+6OoqAhPPPEExowZ43VTb4h1fLzB6dOnRS3POIKTJYcOHRI1lpUrV1pdZ926dfjss88A/NkTn9gnKioKgwYNQrNmzaBQKKQOp1bjx4+3uk5UVBTUajW0Wq1dDyPMnj0brVu3BgC0bt0aH374ITIyMoSf2bNn4/fff0dKSorV+11VVRUeffRRVFRUIDQ0FKtWrYJer7c7JkIIIYQQQgghhBBf4rEJfMZYPIBPADzPOd/FGAtljLVkjKkZYzIAVwFcZoyNAfAKgE8451Vi9bwHqr9QMs6dp1arMW7cOERGRoJzjtzcXLGq8TmMMQQGBkKEWQyIBc2bN0dKSgpkMhkuXbqElJQU7Nu3DwAwceJEtGnTxukhtR3tLTpgwADExsaicePGFueeNnrppZdqJInS09Mxe/ZsnDx5EpxzdOnSBT/99BO+/PJLNG7c2GJZjDEEBAR4ZPvztuSdmDxhmHeZTIbvvvsO7dq1w9mzZzF27Nga8YwZMwbLli3D4cOH8dxzz9mcODAm7pcsWYIvv/wSarUa//rXv/Dtt9/Cz8/P5W3R2OY9ca5nd12Plu6Hzz77rDDHsjmm95+33noLb731lpCcfuGFFxxqs8bk/Z07d/DEE08IU0kYH7ZwxwNGYrF0fF566SWpwxNN8+bN3V6nXC43+76jsdRWntGlS5dqJO+7du1KPZwdxBiDv7+/R37WAIAmTZpg//79NvXCVygUUCqVdj2MIJPJsGbNGrRu3RoXLlzAggULatwrhw4dilmzZuHEiRNISUmxWNbRo0dRVFSE0NBQfP3115DL5Q7FRAghhBBCCCGEEOJL/KQOwIICAHoATRljYQC+AqABUAZgG4DvAQwC0BrAOM75r2JUappsvHr1qpDAiYiIQFVVFcLDwwEAZ8+eRcuWLYUv7vz8zB9Ka8OT1rYdIbYIDQ1FSkoKUlNThSkLjMn7yspKlJeXQ61WO1y+MeEMQBja1JK7v8i+ceNGjTZuKVHwwgsv4IMPPkBOTg7Onj0LAGjZsiWmTp2Kxx57zJHwLbL2EI7xWrdHQUGBxeXGpJ03Je/EotVqkZ+fL/SwM5f0sHTMxTpfMpkMW7ZswahRo/Drr79i6NCh2Lhxo5D8TkpKwvz58zF//nxcu3YNTz/9tNkEQlVVFTQaDdatWyc86FW/fn1MmjQJsbGx6NixIwoLC4U2WIp3VgAAIABJREFUb9o2HGlbxHobMHc/fPbZZ9GhQwdoNJpat9doNHjppZewevVqXL58GQCE5L2l+6jpOTWO2FBcXIyLFy9i1KhRKC4urpG8B/58oKGgoMBi4q+2NnLlyhVotVoolUq7ryFnmDs+vpS8t8bSuRowYADmz5/vULn79+93LCAHGa+BxYsXo2vXrsLDZP7+/m6Ng7jec889h0WLFmHUqFFYsWJFjTacnZ2NyMhI4bXxYQR7GZP4kydPxoULFzBhwgTMmzdP+Hvatm1bTJw4Eenp6RbLqaysrJG8tzUma9dPQkKCzftCCCGEEEIIIYQQ4mk8NnvMOT/HGEsG8G8A/gAWAPgQwHgAwwAcAXASwCucc9vG6rYiOjpaGKr7zJkzSE5OBgD87W9/w9/+9jcA1QlFADh//jwSExM9cshiKdCDCNKYPn06AOD5559HVlYWFAoFEhISYDAYUF5e7lD7NE0AmZbjyt6906dPh8FgwJQpU7Bnzx589913WLp0KerVq2dzrO7iTJ0REREiRuKZajs+BoNB6IGv1WpteiDEVfEYDAYcO3YMvXv3RlZWFsaNG4cdO3YIbXzChAlQq9WYMWMG9u3bhw8//LBGvEVFRXj22Wexfv16ANWJBs45CgsLsX37dnTs2BFhYWHCMgDCa7H3xVNJEWtt90PAcvJ/3LhxCA8Px/Tp0/Htt98CAEaOHGn1Pmp6To3tgzGGRx55BMXFxZg0aRLWrVsnxq4J7H2oSgzG4zp9+nRs3boVWq0WY8aM8cgRHyypqqoSzufBgweh1+vRrl07p3veGx/gMScjI0Nog99++y1kMhkefPBBaLVaHD9+3GK5xod/8vLy7mnPlmRkZCA1NRV79+5FbGwsVq9eXWPY/G3btmH48OFu+/vuKzwtGZyRkYGioiI8/PDDYIxh69atGDt2LDp27IjU1FQAwAcffIBTp04hLy8PLVq0ELaNjIx0aH9q2+bcuXOIiYnBxYsX8fbbb2PNmjVCm4qMjESDBg2wdOlSdO3aFampqVAqlcKw+cae9wUFBVZHkCCEEEIIIYQQQgipSzz6GzvO+U8AhgN4m3O+jnNu4JynAwgDoAXwoFjJewC4cOECRowYgREjRmDcuHFgjKFly5aYMmWKsE7z5s0hl8uRn5/v8BzvnHOUl5fTsKVENM2bN8fgwYOFL1dlMhnUarXTX8rbU86AAQOsrmNpSHJjXQ8//DDWrl1rNXnvKp4w1LsvkslkCA0NRWBgoOQjEMhkMoSEhNQYTj85OdnicPoVFRVCsiQuLg4nT56ETCbDU089Bb1ej5ycHCQlJSE/Px9Tp05F165d8c0330i4l77Jlmk97r4f2mPkyJEYOXIkAMfuo1OnThWGzbc3eW/Lvkk9BP/DDz+Mxx9/3CsTvqbnMyEhAYMHDxZl2Pzs7GwMGTIEn3zyicX1Ro4cieHDh0OhUECtVtfaq59zDp1OJ9yPHGnPc+bMAWMMZ8+exerVq4Xk/eLFizF8+HAA4n1OINIJDQ1Fu3btwDnHpEmTUFpaimeffVZYbvz/y4oVK1wah0wmw9q1a4Xh9CdPnmxxOP3y8nIheR8SEoKvvvqKkveEEEIIIYQQQgghd/H4b+0451mc8/eNrxljjwJoAEAv5nz3QPUQjrdu3cKtW7eg1+thMBiwdOnSGl+U+/n5ITw8HHl5eQ7Pe6nRaFBSUiL0oiPE2yUkJODgwYNW12vWrJkborHft99+K/TQNfZwLS8vd6rM4uJifPTRR2KE5zNM50MvLi5Genq6Qw9KmJ4vZ8hkshpJfGNiy8g0iR8TEyMk7hljePjhh6HT6bBx40bI5XJERERg7969yM7ORnx8PG7evImpU6eipKREGF6dOM94fd6+fRsbNmxwqIx///vfuHjxoqhx6XQ6ANW9vO8eNt+WeHJycoR9Mw5rbo7pNXTlyhVhxADiOt99953F5QEBAdDr9UhPT8fgwYMdenCnoqJCGAFKr9dDq9U69TdILpcjKSkJAPD1118DqE7e9+7d2+EyiWdavHgxAODmzZto0qQJvvvuO6xcuRIrV64UpiP68ccfcfPmTZfGYRxO35jEHzlypBDHypUrce7cOXTu3Bk//PADkpOTheT9hg0bRHlg8vfff8e+fftE2BNCCCGEEEIIIYQQz+DxCXwjVm0igLcAPMM5vy52HXq9Hnl5ecjLy0NRURFat25t9svOoKAg3Llzx+F6VCoVgoODHe7BT4inOXDggE29+G7duoWjR4+6ISL7JCQkCElWYw9XZ6fHeOONNzBv3jxs375djBB9zsqVKzF//nwMGDDA7i/vTc+Xs2QyGT777DPIZDKcOXMGv//+e43lY8aMwYsvvggAQuL+0qVLWLVqldkegxEREdi0aRMyMzMRHx8PAKhfv74osZI/r88rV65g2LBhyMvLs7uMadOmITExEadOnRItrqioKCiVSowaNcqu5L0xnmeeecbu3vVardbjhvX2RdOmTbO4vGfPnkhPT4dCoUBlZSX++c9/2l1HdnY2+vXrh/z8fCgUCiiVSqf/Bs2ZMwdKpRKMMUre+7DQ0FB06tQJAHD9+nVs3bq1xo/RoUOHXB6LMYkfExOD8vLye2I5efKksG69evXw9ddfIzAwEAqFwum6tVotevTo4XQ5hBBCCCGEEEIIIZ7C2yYuvwRgNOf8V1cU3qpVKyxcuBAA8N5776GwsPCede7cuYOsrCw8+uijDtfDGHP6i1lCPIlMJoNMJrMpEduxY0c3RGSfkJAQhISEAPizh6uzwwr/97//BQD88ssv9/TsJhAS8Dk5OUhOTsaOHTts3tb0fDnr9u3bSEhIgMFgwBNPPIGmTZves07v3r3xwQcf4Omnn8aiRYtsKrd58+bYtGkTioqKRImTVDNen8aElTNGjx6NLVu2iFLWCy+8gBdeeMHh7bOzs4V9s9X999/vcH3EdkuXLsXo0aMtrrNnzx5hipg333zT7jratm1b47W/v7/Tf4Pkcjl27tzpVBnEO7z77ru4ePEibt26ZXZ5YGAg4uLi3BKLMYnv7ngiIyNFLY8QQgghhBBCCCFEal6TwP9juPz9rqxDrVYL83ifO3cOqampuH79Opo0aSKsc/jwYXDObZrvm5C6Qq1Wo7i42Op6jDEaeYIAgDAFSVhYmDAH/c8//+zW+Zhv376NAQMGCHOWW+s5beu0KZxzaLVaKJVKhIaGihEqEVlQUBDKysqEJH54eLhD5Ziea0en1SGe7ZFHHrG4/NKlSzhw4AAAzxqmnnMOvV4PhUJBbbMOiI6ORlRUlMec8+joaERHR0sag1gYY88DeB6oHmWnLoiMjEROTo7ZZS1btkR2drZ7AyKEEEIIIYQQQuogrxlC39169eoFAPjf//5X4/0DBw5AqVTSMI2EmGjevLlN69WV5D3nHNXPHBFrVqxYgdjYWJw9exZdu3a1OooD5xwVFRVOH9+CggK7kvf2sGUucyKtqKgopKWlobKyEqNHj8bx48cdKofONcnNzQXgWcl7oHpaKK1WK4wMQKSXl5eH+vXrY9iwYS4pn8559WcEnU4n6mcwzvlaznk3znm3hg0bilauJ8vJyRE+y979U1tinxBCCCGEEEIIIeLymh747lBZWYmbN28CABo1aoSgoCBkZGQI8xiHh4fj4MGD6N27N9RqtU1l+vnRIfYllZWVopdp/PIfMN+b09GeoablmuNoueZ0794dv/zyC/r27YtOnTph9erVGDhwIPbu3YtHHnkEMTExSEtLQ7NmzUSr01li7v/dtFotJfDNMG3fRjKZDDt27EBycjJOnTqFDh06YMeOHWZ74oeHh6O0tBTFxcUICQmx6T5s7jqwt+e9vaKjo1FeXo7AwEC3jijgbu68x7iivCeffBIAMHv2bMTHx9c6nH5t9YaHh8NgMLj1XDtzDIznq7ZRA1x5T3SX/fv3W1yekJDgULkZGRkYMWIESktL8dZbb6Fv375Yt24dPvvsMwDAF198gTFjxthVprVYHN0X4/vm2ub+/fstlmspJlcdW0/iqn28uzf8zp07a7xX2+cFe+MR436UkZFhsRe/tXbnTubqNP2MQAghhBBCCCGEEOLNfDez4CS5XI4uXbrgxIkTwnt37tzBjz/+6BNfUhLP5MrenGL1XDbHOD9wdnY2WrZsidDQUOzduxeMMXTo0AE//PADAKBDhw6i1+2JaDht82pr38YkvrEnfnJycq098QMDAxESEoLAwEC76ja2/8LCQiF5/8gjj9iVvLf1GpLJZFCr1T6dvDflynuLqz355JOYO3eu0BP/1KlTdu2LN55rGjXAMbNmzQIALF26tEbyfsGCBXj00UelDM0sW9umIz2WXdHLmThPjPuRt/fid/QzAiGEEEIIIYQQQoin8Z5vnCXQtWtX5OTkCL3yDx06BM45JfCJy8jlchQXF9fooSyG/Px8lJWVuSxpM3z4cABAYWEhZDKZkKhv2rQpQkJCcPHiRQDAiBEjRK/bEzHGKIFvhlKphEqlqtG+jx8/jgMHDuDQoUOYNWsWwsLCcPbsWQwYMMBsEt/RBIVWq8W1a9eQkJAg9Lx/8803a6xz4sQJHDhw4J4f4/DqBoOBEp9maLVaXLp0yauOy++//y6c3yZNmuDJJ59EZWUlRo4ciePHj3vVvthLqVTi9u3bov+d8TSVlZW4deuWaOX169cParUaJSUlQvJ+8eLF6N+/v8sf4MjPzxe9TOPxcSRhm5eX59VJXluI1X7y8vJEiEb89lwbhUIBpVIJhUKB0tJSlJaWurxOMXnjQ1WEEEIIIYQQQggh5tD47hZ07twZAHD69GkkJSXh6NGj8PPzQ8+ePSWOjPiqvXv3Ii8vD88995yo5fbo0QPdu3fHp59+6pKkjVwuh1wuR3l5ObKystChQwccOnQInTp1QlFRkTBf5uOPPy563Z4qPj4e3377LR544AGpQ/EYjDEEBAQAAFQqFQBg1apVZtfNycnBhg0bMGHCBFHqViqVeOONN2oMm19QUACgOjE/fPhwnDlzxmIZarX6ngcQCHDr1i0cOXIERUVFHjUHuCW3bt3CM888Y3bZrFmzcOTIEbfG07x5c7fVde3aNRw6dAg3btxAr1693Favu2VmZiI/Px//93//J1qZs2bNEh78cdec9/n5+cjMzESrVq3QsWNH0co1Hh/j6AEKhcLmeI4fP46IiAh06dJFtHg8jVjt58EHH7S6TlZWFtq1a+eWeKxhjMHf3x9A9YPLADBs2DCX1kkIIYQQQgghhBBC7mVXAp8xVt+G1Qyc8zsOxuNRgoODAUDoiVdRUYGAgAAhAUWI2OLj413S045zjmPHjrm07c6ePRuLFy/Ghx9+iOeeew7Lly9HUVERUlNTwTlHdHS0kLStC5YtW4Zly5bR/aIWr776KqKjo80mzTnnCAgIEHVYasYYiouLAaDGsPkGgwHJyck4e/YsoqKi0LdvX7Pbq1QqTJ06lc6nGS1atECPHj3Qvn17qUOxyZ49e/Dxxx8Lr41/24HqXq6jRo1y6wga58+fd1tdQPXDAp07d/aa8+Wozp07Cw/piKVfv37YtWsXdDod1Gq1qGXXpnHjxnjggQdw//33i1qu8fiYJmxtjaddu3a4//77fXqkGbHaz/LlyzF06FCL61hL3osZjz26devm1voIIYQQQgghhBBCyJ/s7YF/7Y8fS9/YyQFEOBwRIV7oj3lgnR6vMyQkBCEhIc4HJIFFixbh6NGj2LdvHz788EM88cQT+OKLL2AwGBAVFYUpU6ZIHaJbUaLXsoCAADzxxBOSxmCavI+NjcXXX38NlUrl00kpVzFOm+ENYmJikJqaKrwuKChAWFiYZPEolUpotVpwzt3W9rzpfDlKrVZDrVaDcw69Xm9zD3Nr/P397Up4i6FNmzail2k8Po5wRTyexpnjY8qWHvi2CAoKgr+/v1vvEw0bNnRLPYQQQgghhBBCCCHkXvYmHH/hnEdxzlvV9gPAvd1DCPEAGo0GqH54xScYDAaUlpaanYPckuTkZCQkJAAANm3aJCTv//rXv7ogSu/AOUdFRYXxIQ9iA0vHzNG2aa6csWPH1kjea7Van5773Nu8/fbbiI+PR1VVFQDxzj3gWdelVquFRqOhtucijszx7k4GgwFbt25FbGxsrfOlc86h0+k8or3WRcbjL8a9x1GOtuO8vDy0bdsWqampot0/CSGEEEIIIYQQQojr2dsD35bJPr1jAlwzdDodrl69Kry+fv06AKCwsLDG+4Tc7Y+h4aukjsOUuaFWTd8LDw83u11ubi4qKiqg0WigUqnu6Ule23ZGI0aMAAD89NNPCAsLw4svvmg11tzcXIvLrdUpNjHjMSbnfImrz5fpMTO2P2Pbra1t1lanaZuvrKwEANy8eRNjx47Fr7/+itjYWOzYsQOMMchkMpfPb+9pbd0anU5nNWYxrVixAgCwfft2ZGRkAABCQ0Mxb948cM7x9NNPA4DTPWNtvS6tDVktxvkytjlXt726ytjzXqwe+GIx14u6RYsWwu/G9g/8mbwF4Pbe/87av3+/xeXGh/7s3c6djMe/vLzcbVMn3M3ednx3+5o7dy7mzp0LABgwYADmz59vdrvs7GxERkY6HKc7Odq2CCGEEEIIIYQQQryBXQl8znmFGOt4Kn9//xpfnhp7/dWvX7/G+6Tu8vOzeMk41K3JVQk7c0NC2zpMtKMJpenTp9f4t64xdy4NBgPKy8sRGBgoQUSexda2bnrMZLKaA8XY2zZN27zx+h03bpyQvP/555/vqYPYxlX3LtPkfUBAAMrKyrBgwQLMmzcPISEhDl1Ld8dqqY25gxQPanjawyGu4KqEnRSJQNM6xWqvzuxHXUiG1raPzv4dd3TkBFcd84MHD+KTTz7BM888c8+yyMjIOnGuCSGEEEIIIYQQQjydQ98CMsbGMMaC//g9hTG2hTHWRdzQCCFis3XIaMYYAgIC6vRc4GINsS2TyaBWq30uSezKIcgtHTNn2qYxVuOw+Tt27PCI8+JJw7nfjXPu1rhMk/fPPfccFi5ciKCgICGJr1KpRDlnvnpdEt9hOpy+r7VXe6YE8ITpA7zt+Nc2FYMR5xzp6ekYMmQIPvnkEzdF5Xqe0FYIIYQQQgghhBBCxOLoN1FzOecljLG+AB4EsAHAP8QLixDiCvbOs/z9999j5syZLozoXqtXr8bq1avdWqc5xiG233vvPY+Ix9NIeXxmzpyJ77//3q5tDAYDzpw5AwAek7w3Xl+ePAf6mTNn0LJlS0RERKBly5bIz893aV2myft27dpBLpdj3rx5QhK/ffv2LqvfGinuh6TuiouLkzoE0X366af49NNP7ZrPXa/XY9euXUhKSkJiYqLwQ2pn7T7ZtWtXNG3aFHq9Hunp6XjllVfcFJnrHDx4EGlpaTa3K1I92gJjzOxPy5YtpQ6PEEIIIYQQQgip8+waQt+Eca7vZAD/4Jx/wxibL05IhBBXUalUdg2L36dPH7fPG5yUlOTW+mpjPE5Dhgyp0yMR1EbK4/Pggw+iR48eNq9vMBjw0EMPCa89IXkP/Hl9ecsc6N27d7d5Gg5HHD16FADQunVrtGvXTnjfmMSfM2cOfv31V5w5c0aSRL4U90NSd/Xs2VPqEETXu3dvAPbN565QKNC5c2f07t0bmZmZLo3PV5SUlFhcrlar8dlnn2HixIm4fPkyGjVq5KbIXKdLly7w8/ODUqmk+7SNcnJyaLQCQgghhBBCCCHEgzmawM9jjK0BMAhAGmNMCcd78xNC3CQgIMCu9UNCQjBo0CAXRWOeaeKOcw6tVguDweD2hKtxqPbY2Fi31ustpDw+9rRJY/I+KytLeM8TkvdAzevL3mvTXeLi4rBjxw631mnugRC5XI7Bgwdj586dGDlyJC5duuSWWIz3IKVSKcn9kNRd9o4y4g2io6OF3/39/W3ahjGGFi1aYPHixTXep174zikqKsLly5fBGMPs2bOlDsdparUa8fHxUodBCCGEEEIIIYQQIhpHsxiPAdgFYCjn/A6A+gBoXFlCiKiMQ4uXl5dLHQpxo6qqKrz88su4fv26U+WYJu9jY2MlHX6dOG/w4MFQKpW4fPmyMB2Cq3ny9AaEEOKo119/HUD1qEdyuVziaAghhBBCCCGEEELI3Rzqgc85L2eMZQC4nzHW/4+3K8QLSxo6nQ5Xr14VXhuTR4WFhTXet0dlZSU459BoNFCpVPf0LPTzc3QQBOJNdDodcnNza10eHh4uep0FBQUW3xO7ToPBgIsXL0KpVNY6pLq9dRqHFA8MDHQ6PnewdI7NMe3dyxhzSTvwJitWrEBVVRUWLFiAsrIyvP/++0hJSUFQUBCCg4MxfPhws9uZa+umyfs2bdrg448/xtNPP33P+q445pbaQUFBgUuHofcF5eXlOH/+/D3vy+VyTJ06FcuWLcNDDz2E//73v3aV68i5tjS9QUFBwT3XsLP1keprd8+ePVAoFLX+LUlISHBvUBbs37/f4nJPitUZlvYzOzsbkZGRNd7jnEOv1+PatWv3LDPdrrZyzZUpBm86X66KVafTISsrC4wxzJkzx6EyPF12djYyMjKg1+vN3ks86TwTQgghhBBCCCGEmONQ9pgxNgnANAAtAJwC0AtAJgBJJ69mjMUDqARwknNeae/2/v7+aNGihfC6qqoKAFC/fv0a79tLo9EI81F6SyKSiItzDs65W+cKN5cktCVx6GjSqby8HBqNBoD9w4F7WqLLXfEYe/cCnjuEujmuOj6myXuZTAaDwYDU1FS88sordtV7d/J+165dkMlkwgNTUibQw8LCPK69W+Lv7+/2eAMDAxETE3PP+yqVCsOHD8eqVauQm5uLc+fOoU2bNhbLMk2wOyIiIsLi8oqKCq+8hj1ZeXm5MOKBrcOsexJj4trSAwjG9XyZXq+HVqtFs2bNak2WWkpQR0ZGujXJajxvUkzZ426ZmZkAgCeffBIDBw6UOBrHWWof+/fvh06n8+p7CSGEEEIIIYQQQuo2R7+hmgagO4AcznkigM4AbooWlQMYY8MAfAVAZfKe+7KlFqhUKgQHB0OlUllfmfgkg8EgyRDMnHNUVLhncIzAwECoVCqHE2V1kVKppGP2B9PkfVBQEJYsWYKoqCgYDAa89957KCoqsqmcu4fN/+yzz+5Jxvh64szXTZs2DQAwceJEq+u6egh8uobFFxgYCKVSCYVCIXUoDjEmrvV6vdShuAznHDqdzuK9VKFQeNV5NJ43T56yx5bjbiuZTIaPP/5YhKg8l7e1QUIIIYQQQgghhBBTjibwKzjnFQDAGFNyzn8FYLkbnIuwavUBzAAwkXN+AICxm4XVjDlj7HnG2A+MsR8uXryI559/Xvg5deoUAOeTPYwxBAYGurX3NZGeadvKyspCTEwMIiIiEBERISSgXM20h7eryWQyBAQEgDGGoqIivPjii7h8+bJb6vZEmZmZwvk299O6dWscPXpUOGb2Mm1fN29K+vyUKNq0aSMk7+fNmwe5XI6//vWvQhJ/6dKlVsu4O3m/Y8eOGsn7O3fuAIBbH6ZZs2YN1qxZ47b6xCBV26qstG3gnKlTpwKonqrA0vWVmZnp8gQ7YwwBAQHYtGkT+vTpY/ODJnWVLW1LJpPB399fuC+mpaXhxIkT7gzTYZs2bcKWLVt8OmlYWlqKQYMG4cEHH0RSUhISExMxYcIEJCYmCj+bN28GY6zGebRm8+bNeOGFFxyOy5H71qZNm7Bp0yYAfyZ7PXWkrBMnTmDJkiWiPRzyxBNPQC6XixCZ5zK2watXr2L+/PkoLS2VOiRCCCGEEEIIIYQQmzmawL/KGKsHYCuA/zDGvgFwTbywbMerFQLIArCLMdYYwBeMsQ8BvMsY62pl+7Wc826c826m89H/8ssvwtCexqSPQqGQpBc18U6mbUuqGIzJK6OZM2e6re6ePXvW6SGl/fz8nJp6wxrT9tWwYUOX1eMtrCXvZ86cidzcXDRq1MitvaUHDhzodUMUS9W2Pv/8cwCwOmrIkiVLbC7TmGB35QN0GzduxOzZs5Gbm4uTJ0+6rB5f4Ejb6tu3Lzp27OjiyMQRHx+P+Ph4uxLX3qh9+/ail7lu3TqcO3fO4e0daVvG8wX8mez11OHzO3bsiH79+tn0cEhkZKTV8ny9972pgIAAdOrUSeowCCGEEEIIIYQQQuziZ32Ve3HOH/nj1/mMsQwAIQB2ihaVnRhjMgAtASxH9T59A+BnAD0BvMIYmwqgiFvpSt+yZUusXbsWADBr1iz8+uuvCA4OxpUrVwAAwcHB0Ov10Ol0NJcisUtcXBx27Njh9nqNySujzZs3AwDeeecdl9YbGhqK8ePHu7QOT9e9e3ccOXJE6jC8xrlz5xAaGoqysjIsWLAA8+bNwz//+U9cunQJMpkMr7/+eq3b2pK837x5M+rVq4c9e/a4NbHWunVrt9XlzXJycnDo0CH4+/sjNzcXV69eNfsAzJIlS/DBBx8AANLT0zFo0CB3h1rDxo0bMWfOHElj8HV9+vSROgSbRURESB2Cy6nVaqxcubLGe9nZ2TYljS2pqqpyantHeNP58vPzQ9++fW1a99y5czB9KNkcX+99b6phw4Z4+OGHpQ6DEEIIIYQQQgghxC4OdTNhjHVjjP2bMXYSwN8BLAYgyfimjDHGOTcAmAIgGkA3zvk6zvn/AHwPoArVQ/7bNQ7+Aw88gLy8PDRr1gw5OTkAqhP4AFBSUiLmLhDiFjExMahXrx42b97s1p74pHoajoqKCpp73QK5XI558+YhKCgIZWVlmDVrlpC8T0lJQWhoqNntrCXvFyxYICTvDx48iHr16rlrl+i822HChAngnGPUqFFQqVTYvXv3Pets3brVI5P3fn5+SEpKkjQWQryVcV53Ih53JOd1Oh3Onz/v8noIIYQQQgghhBBC6iqHeuAD2AhgJoDTAAwJ8yxWAAAgAElEQVTihWM/zjn/I4l/lTH2LoDPGWPvcM5nAugKIApAEADLY/IC0Gg0OH36NAAIvZZlMhkuXLiA06dP10jgh4WFuWaHCBFJQUFBjddyuRz//ve/MWrUKLM98Tnn0Gq1UCqVtfZKy83NdV3ADnA2nvDwcJEisUyr1UKj0QCAT0wrYO24O3pcjUn8BQsWoKysrEbyXqPR3FOvafK+TZs2+Pjjj3H79m1h+YIFC7B169Zak/d3XyP27IelY1BQUICwsDCfO+9iufvY5ebmIiMjAw0bNkTbtm1RUFCAffv24eLFi2jWrBkAYPfu3Th48CAA8ZP3tpzLu5km7z/66CNs374dQPXnA2O7ctf9xVuVlJQIUxXdzdEe3ebK45xDr9dDoVAgMTHR7jKdkZ2dXes+AkBCQoJD5Voq05ly3S07OxtVVVU1et9nZ2c7Xa4r2pYzXHG+7m5bpu3cVaPMWCuXHlYjhBBCCCGEEEIIEY+jCfybnPNvRY3ERn8k62t8Q2R8zTnfzxjrC2A9Y+wDAH0BPMU5t5yl+YNcLhcSPB06dABQPYd4YWEhVCqV0KvTnh741oawJHWDv7+/25M5dyed/Pz8EB0djcOHD6Nv3773JPFNk42OqusJq9r232AwoLy8HIGBgR47v64nmD59uvCvRqNBVVWV0PPeWvJ+165d9wybb0zeX7x4EfXr13fbfoSFhSE8PJzOu41mzJgBAHjzzTfRt29fPPbYY+jTpw8uXLiA1157DUuWLBGS91988QXGjBkjZbg1kvdbtmxBp06dsGfPHgDVI/XQA37Oi4yMFC0JrdfrodVqRSnLHEtxWkvcehNXPBQQGRkpJJ5N33MlMduWq9nTtkzbub+/PzjnMBgMKCkpAWMMnPNaR7LxRWKeY8bY8wCeB7xr2gVCCCGEEEIIIYR4N0ezy/MYY+sB7AUgfCvKOd8iSlS1YIwlA2jDGFvLOS+9axnj1S4yxgYBCAYg45wXOlJXSEgIGjVqhPLycgDAtWvX8MADDwCgIfSJdzDtUW+qXr16+Oabb/DII4/USOIb17t7feI8mUwGtVotdRiiM21jYvb4k8vlFo/X3cPmf/zxx7XOeX/gwAG3Ju9N+ep5F1Nubi4yMzPRsGFDjBo1CgUFBQgNDcWkSZOwYsUKvPzyy9i6dSsAYM2aNXj00UddHlNt907g3p73nTp1cnk8xDkKhaLGv8SzMMbg7+8vvOacu6wHuacxPrxgMBicfsjLXDuXyWR1KmnvKpzztQDWAkC3bt1omAFCCCGEEEIIIYS4haMJ/AkA2gJQ4M8h9DkAlyXwGWPdAXwB4HcApYyxz0yT+MZe+IyxKM75JQB3nK2zdevWOHfuHIDqBH737t0BUAKfeIe7e9SbDlFrHFK8f//+2Lx5M27duoWPPvrIrmG+CwsLkZaWhkWLFnnESBOXL1/G9OnTzc6lazAYUFxcjJUrV6Jbt24SROebtFotNm3aBH9/fzz11FNuq/eRRx6pMee96bD5EydOxJ49e+ye8/7y5ctITU3F8uXLbd7GKC0tDcOGDRNGbiG2e+211wBUt6Xk5GRUVlbCz89PuF8Zk/fGYfNdPZLBmjVrsHXrViGhZjAYhPtbWVkZLl26BLlcji1bttT5EUecdf78eWFI++bNm+Ptt98W9ZieO3cOhw4dwqRJk2okiKViGo+Y1q1bh/79+6NNmzailisVvV7v9PkybVtBQUFISUlBr169xAjPaabny9hrvry83KmHve7cuYP169fjlVdecdnDD+Y+W90tJSUFqampLqmfEEIIIYQQQgghpK5xNOvWkXMeJ2ok1qkAPALgBoB3ASgYYxuMSXzGmAxACwDvMsaeAVBy91D79oqJicGRI0fAGEN2drbQi6WoqMiZYglxC9Me9f7+/rh8+fL/s3ff4VGU2wPHv7ObTkIgIEVIAb2AYASNoIIUlaKEiyjeCxZQonivYkUkFq4IhKqiNCsiRSkqVZo0EQEVDMUQMAgpYoQACSSE9M38/ogzvwQ227Kb3ZDzeZ48kt2Zd87MvDMb98x73gqjvOrVq8fatWu5/fbb2bp1K0lJSXYlAE6fPk3Xrl3JzMykcePGLtkHe3z22WfEx8dbXGbYsGEkJCRUU0RXPl9fX/r161ftybH9+/dTv3591q1bVyGh+9VXX+mlzEeOHGlXIn7u3Lls3ryZjh07snfvXrvWvffee2nYsKHtOyB011xzDT/88AM5OTlmr02j0cgnn3zi1DnvLZk1axY5OTkWl4mOjqZ9+/ZkZTlU4EeYkZ6eTlJSklMT+I0aNar2Oe8tcVU8d911F/Xr13d6u9XtkUceISkpyemVEi5evMiPP/7oMQn88udL29eAgIAqtZmVlUVUVBTnz5932WdRamqq1WUmTpxIRESE0x9SEUIIIYQQQgghhKiNHE3g/6QoSltVVQ87NRozFEX5JxAKfADUV1U1S1GUWGBK2dvK/L+T+H6qqv6hKMojqqo6ZYj8zTffzPz58wkJCeG3337T57XNzMx0RvNCuJSiKPqI+n/+858sX76cmTNn8sILL+jLrFjx/0UzYmJi2LVrl83tt2nThjZt2jgv4CoqLS0rBrJo0SK6d+8OQEFBgb5fPj4+ZGdn8+2339KnTx93hnrFUBTFbYnr5s2bX5a8HzVqFJGRkSQkJPDmm2/y0EMP2fxwgTZqsbCwkG7durFjxw6bk4medB3UNOPHj2f8+PH675mZmW6dQ15VVYKCgkhMTNTjSU1NZciQITRs2JDbbruNJUuWcNVVVzFixAi3xXklaNWqFR999JHL2q9fv75HJbZdFU/Lli2d3qY7PP74405ry9V9qyrKny9t+oCqVhZp2bKly/tBq1atrC7j5eXF8OHDASSJL4QQQgghhBBCCFFFjn5jdDtwQFGUJEVRflUUJUFRlF+dGRiAoii9gQnAsb/nt88CUFV1DzAGuB/opyjKM8BHiqJ4AbmVNminZs2a0bRpUwwGA7///rs+Al8S+KKmmTBhAkajkQ8//FBPdGdnZzN37lx69+6Nj48PJ06c0KeMsEZVVQoKCqhikYsqsxRH+eT922+/zaxZswAYNWqUR8QunGfNmjWMGjWKLl26sHz5cm655RZKS0vp16+f3W1poxi7detm1whrT7kmahpPP24HDx7Uk/fLli1jypQpxMTE8Omnn/LOO++YjVvbJ+1eK2yjqipFRUUe2xecSdtXZ/aR2nT8rFFVVY6DG+zevRtvb2+GDx/O3Llz3R2OEEIIIYQQQgghRI3m6Aj8u50ahRmKonQGFgH/VFV1j6IowUA9IAsoVFV1t6Iow4CfgBIgWlXVkqpsMysri8WLF1d4LSgoiN9//x1VVUlKSiIwMFAS+KLGCQwMZMCAAfoo/LZt27Jq1SpycnKIiorC19eXb775hsGDBzNhwgSeeuopi+0VFhaSn58PoI/yBzhx4oTF9Sob0ezoehkZGRQVFeHj40NBQQEAOTk5pKen88ILL7Bnzx6GDBmCv78/JSUl+Pv7k52dzdSpU+nQoQPPPPOMxe1WJ2vHoLa79L5bUlJCZmYma9asYezYsQQHB1NQUMCtt96qj6b/7bff6NGjB8ePH7faptZ/YmJiCAsLY+XKlVxzzTXs2LHDbDn9S0eKl78mLl68aHFfHC0T7uh14skqu5eYY+2z96uvvuLkyZN8+umnnDt3jmuuuYann35af3/kyJFW29WSfpmZmRw8eJD//ve/BAUFMXz4cH2KjqioKFJSUvjiiy8AeOmll/T+c+HCBf2+1LRpU4fmtb4Sz7MttPnAAYuVMyzN8d29e3fefPNNZ4dm0fbt2yt9LzU1lYiIiMtet2Xuc3vb1dqcNGkSd955p9n1rB2fHj16VPqepXisrVvdVFWluLjYbD9KTU21uC/VvR9vvvkm33//faXvO/oggqPny9p6lnTq1En/9/Dhw/XR+FD9+yGEEEIIIYQQQghR0zmUwFdVNc3ZgZiRCRQDTRVFaQB8DeRTNsJ+IzCPsjnvfYGeqqomVnWDhYWFpKSkVHhNURT9S6cff/yRBg0aSAJf1AiXJnnmz5/P6tWr+eijj4iNjWXr1q20a9eOhg0b0qNHDzZs2EBmZibJyclW2ywtLSUvL4+AgIAKpV9PnDiBqqoUFhbi6+trMdFyKUfWa9y4sb6Olvzz8/Pj5ZdfZs+ePQwaNIj27dvrCcJBgwYxf/58Fi9eTNu2bW2OTVTkjgTipWXVvby82LZtm56Mys7O5pdffrlsveTkZP0hD0ttav2nbt26zJgxA19fX5YuXaqX0780id+gQYMKx6H8NZGenu7wftYGlR03g8HgcN9KSkoiLi6Oc+fO6a8dP36cOXPmWC11X74faPee1NRUnnnmGerUqcN///tf/Pz89PsIQHR0NABffPEFfn5++Pr6AmUP/Wn3parOa32lCwoKqpB8q+xzxR7ff/+9RyX0IiIizMZTfl+d1a7WZv/+/Std78iRI5SUlODl5aUnub29ve36rL6U1k5paand581V5yooKIiePXuajad8QthZx8AaS/tpKXnvaJtweeLbGfv63Xff0aNHD0pLS4mLi2Ps2LF4eXnx448/0rFjR4faFEIIIYQQQgghhBDm2fVNm6Io+5yxjC1UVU0CooF3gYPAYqAfZcn7XoqiNAFUoJMzkveVCQwMxGg0oigKu3fvpmHDhpw9e9ZVmxPCZQIDA3nooYe4ePEiCxcuJD8/n969e+vv9+zZE4DPPvvMalsGg4HAwECzX45rI2q1kZS2cmQ9RVHw8/Or8GX09OnT9bL5l36hHBkZib+/P/n5+SQkJNgVn/As586d08vmW3PzzTfb3f60adMYPHiwXk7//PnzFpe3dE2A55eKdxdrx82apKQkunTpQq9evTh37hxeXl7cc889vPHGGxgMBpKTk5kzZ45dbZpMJr1sfkxMjNkKDIqi8MADD+jl9Pfu3VvhPT8/vyrPa13bVLUv1CSO7qulMvlam5acPn2a3r17ExcXR0FBAYWFhRQXF9sVw6XKVxPwFAaDwaZjq8Ve1WNQEzhzXw0GA2+88QYff/wxJSUldO7c2QkRCiGEEEIIIYQQQojy7P2W9Lq/57yv7CcBaOis4FRVPUhZ0n6yqqqfqKpaqqrqPKA+0FBV1d2qqh5z1vbMMRgMBAcHA2VzO8oIfFGTzZkzB6PRyLFjx2jXrh3NmzfX3+vVqxdeXl5kZmZy6NAhh7fh6+uLqqosXLiQnJwcu9bz9/fn4MGD7Nmzx+7tmkwmAA4fPszbb7/Nv/71L7PLDRo0CIBly5bZvY3q8vXXXzNmzBj9R1zuzz//pEuXLnzwwQdWl01ISGD+/Pk2tVt+TupLk/jZ2dl2x7lnzx727Nnj8IMtl1JVlaysLD7++GO7rq8rTVZWFp07d6ZXr16cOHECHx8f7rnnHqZOnUrPnj0JDg5mzJgxehL//ffft6ldk8lEXl6ePue99vlvjqIojB07lpiYGI4cOQLg9DnIf/zxR3788UentVfTnTp1yinLuEpCQoLTHw4zmUzMmjWL7Oxsq0lYa/tet25dVFVl69atREdH8+GHH+Lt7W1XPKWlpcyaNUt/qMnb2xtfX98aWXHit99+4+jRo3YfA2c5efKk1WWcUdFl1apVmEwmfH19Le5raWlphXuYtf48fPhwPv74Y5seCnj99dftD/wSBw4c4MCBA1VuRwghhBBCCCGEEKImsDeB3wb4p4WffoBTh2GoqnpYVVV9+JyiKAOBq4BqGwbv4+ODqqqkpKTQqFEj0tLSZBSlqJECAwO56667APPzCIeFhQHYPWJVk5eXx8iRI+nQoQNxcXHMnDnT5nW1UauhoaEOldH28iqbEURVVRYvXlxpslUblVe+HLaneemll1i4cKH+I/7f6NGj9X/37duXo0eP2rTe1KlTLb7fuHFjAOLi4i5L4vfp04fz588ze/Zsu+Nt3rw5oaGh+gMqWql1R+Tl5fH88887dH1daWbOnMmff/4JwKhRozh27JheRUSjJfGhrJy+LbRzn56ezvLly60uf+HCBYKDg/X76dSpU516bxkyZAhDhgxxWns13aRJk6wuM3ny5GqIxLzGjRvr9xJnMJlMDBw4kBUrVvDf//5XT5ZXloS1dnxuvPFGXn31VaDss3L9+vV2l1OfOHGiHg+UfXb7+PjUyMoJTZo0ITQ01KXl8y255557rC4TERFRpSR+RkYGXbt2JS0tDR8fH4v7mpeXV+EBEVv6s5bEt2bGjBn2BW7G6NGjK/wNIIQQQgghhBBCCHEls+vbNlVV02z4+dMVgSplYoAJwFBVVatliFVJSQlnzpzBx8eHq666ittvv52MjAyOHXPpwH8hXGbJkiUAJCYm6qPWoSxRkJKSAsCUKVPsajMvL49HH32Udu3aVUh6OZLIuvrqq2natKnd602YMIH77rsPRVGIj48nMjKSmTNnVoghMTGRefPmAXDnnXfavY3qoqoqDRs2ZNGiRSxatMjd4XiM0aNHs3TpUoKCgrjxxht57bXXbHrYxMvLiy1btlhcZsSIEbRr147ff/+d6OjoCkn8Rx55BKhafzY33YOtyl9fq1at0l/35IdQXO1///sfISEhAMybN6/Cvaw8rbS9tqw1a9euJTQ0lOLiYqZNm8bYsWPN9p38/HzWr19P586deffdd+nZsyctW7bk2LFjDBw4sEL/cYQ25UJRURFFRUVVautK8u6771pdZvr06dUQSUVaafurrrqKRo0aOaVNLXmvPYx26tQpUlNTLSZhrR2fXbt26Q84BAYGMmHCBLtj+u6774CyxLD2N0NN1ahRI6edL3ulpaVx8OBBq8uVlJRUKYnfuHFjGjRoQJs2bawuGxAQUOEBEVuPz/Dhw60us3TpUuvBWlFcXFwrpjsQQgghhBBCCCGEAPtH4LtbMnC/K+e8v9Tp06cxmUx4e3sTERFBjx49ANi+fXt1hSCEU4WEhBAeHo6qqhW+UF26dCmqqhIeHm6xbHR5WmIxODiYhQsX4uvry8iRI1mwYAFgfpS/K82YMYPk5GQGDBiAoiikpaUxZswYZs6cyYEDByok76Ojo6s1Nns1bdqU7t270717d3eH4hG05H29evXYtWsXK1as4I033mD37t1W101MTKRZs2YWlzEYDKxbt4527dqRmJh4WRIfypJX1Vl9xdOuL09iNBqJj48nJCSErKwsoqKizCbxN2/eDEBMTIxN7bZq1Ypdu3axadMmQkNDMZlMbNiwgdjYWLZs2UJ+fj6bNm1i4sSJrF27lltvvZX169fz6aefsm3bNov9xx7alAuiIqPRaHUZd1wXzp5LvXzyPjg4WO+/1sqQWzs+JSUlBAUFMX78eL755htuv/12u+KaPHkyqqoSFBRkUzyicsOGDbNpua5du1Y5iW8rg8FgdZS+o/r161el9T2l8llCQgKKojj0ExERUe3xhoeHVxpPeHi409usyjGIiIhwqE1H98PaNt1xvoQQQgghhBBCiPIcSuArihLo7ECsUctsV1X1t+raZklJCadOnaJevXqYTCYiIiJo1aoVTZs2Zc2aNR7zZZKoPUpLS8nNza3y6E4tGbB//35MJhMmk4n9+/cDto2kAnjttdcIDAxk4cKF+Pj4MG7cOA4fPswLL7zg1lK6RqORmTNnkpyczE033aQn8rWR7N26daNPnz5ui0/Y74knntCT9zt27KBevXoYjUaeeOIJvv32W6vrX3vttTZtx1oSv6SkpMpz2NvKU68vT2I0Gtm1axf169cnKyuLcePGVUjib9myhZKSEkJCQuyu6tGmTRt27drFM888Q0hICCUlJWzYsIExY8bw7bff0rJlS1599VXmzp3L9ddfD1zef6Kiohy+V2tTLgj75eXlVfs2rZW2t4fJZKJp06Z68n758uUMGTIEb29vTp48WaVR723btmXNmjV07drVobi2bdsGwBdffFGleJz1t0xNlZaWxvbt22nSpInVZXfs2FGtSXxP5Skj74uKilBV1aGftLS0ao83NTW10nhSU1Od3mZVjoE2RZ29P47uh7VtuuN8CSGEEEIIIYQQ5Xk5uN5+RVHuBY6qqloCoChKK1VVbZuM2EOFh4fz4Ycf6r9/8skn7N+/n9mzZxMTE8PVV19Nbm4ujz32GJMnT+aZZ55h8uTJKIqij0aqjbQvYv39/SsdtaPNTy7sc+LEiQq/FxQUkJ+fj7+/vz5fvCOGDRvG6tWr2bdvnz6CWVVVbrzxRovzLWulidetW6d/kQ/QoEEDTpw44fCoLUf3w9p68fHxmEwmhg4dyoYNG3j66ad55ZVXCAgIsJgEvfS4Oyve6lbT9sNcvNrI++DgYD15X16LFi1ISUlh1apVvPLKK3qC3cvLi9TUVIsj7yvb/19//ZWoqCgOHDhAdHS0Pueul5eXTXPYO3pcXXV9VUVRUVGl/cjR/XS0X5p7vbS0lJSUFP7xj39w5swZpkyZQnx8PEajUZ/re9myZbRu3dru7QHMmjWLWbNmcejQIe69916Sk5MByMzM5Oqrr75seS2JHx0dzYEDB7jhhhtYt24diqJQWFiIr6+vfh4tbVebcqG6uONeceHCBYvVjLSKR5fSHp40mUz6w2jz5s1DURTy8vIICAhwdqgWVRanNeb2vaSkhIEDB5KTkwNAdnY2PXv2rLCMts+VPUR66fHZu3cvEydO5L777nMoTk35OPr3729zPOb2s6ioSL8eevfuXaW4zHG0b1lirfKWpTYvXXfkyJGoqsoTTzzBNddcQ2JiIm+//TaTJ0/m1ltv1Ze74447Ktz3S0pKaN68uf67pQeJHe2Xjq5XPpZx48Zx8uRJ+vXrV+WR9xpnPBwjhBBCCCGEEEIIUZM4mlUNAeYAbRRFOQscAW4CbBvmWANcuHCBL774gu7du9OwYUOKiooICwsD4JVXXuH8+fO8//77APp8orVVXl4eFy5cAKj2L85rGy15aEsS0Zp58+bRoUMHVq9erb82a9YsqyOMv/nmG/3L6Mcee4yLFy+ydetW5s6dy969e3nxxRf15LgnVKkwGo188cUX7g5DOKB82fyVK1delryHsmT7nDlz2LVrl95369SpQ1JSktWy+ZUxGAzEx8dzww03kJiYyMiRI4GyvuTqJHr55L2166smU1X1soS2IwwGA8HBwZw8eZJGjRrp5fRjYmIoKioiNDTUYvLeVtdffz3Hjx/njz/+YNiwYXz33Xc8++yzjB8/njfeeIN77723QkxaEl+r5LB8+XK9f1ZnYt5ezjovtm5LVVWHt2M0GvXpJDSBgdVeIMpptLL5OTk5BAcHk52dXaX2zB2fqsTmTFoytjYmZTMyMti/fz8hISHcddddpKam0rt3bz7//HMWLFjALbfcUuOnRxk7dqzT2yx/TKpy3xBCCCGEEEIIIYSoKRxN4P+hquodAIqiNAeuA2r8ZK1FRUV6ubzVq1dz4cIFnnzySU6ePAmgJ/AVRWHKlCkAehJ/9uzZtfbLpICAAEpLS6XcbzX466+/HE5KXiokJISbbrqJffv2AXDTTTfRqFEjiw8HlE/ex8TE0K5dOwBuvvlmfvnlF3766Scee+wxWrZsCTj/S3930JIowcHB1brdkydP8v3332u/OiVjm56ervcfVVXJzc21Wo3AXZ588kk2btyI0Whk0qRJHD58mD///BMoOydr165l586d5ObmAmUPtdx555289NJL9O3bt8rbvzQJC65/IKV88t6W66s6nDp1irfeegsoG5nZsWNHp7SrzfGek5ODr69vla8vo9FIfHw8UVFRZGVl8fbbbwNlDyo5U1hYGFu3buWPP/7gwQcfZPfu3Xoi/9FHH6V9+/b6sqNHj2bkyJEkJibSp08fvv32W6c8fOVKhYWFpKWl0axZM5cnw8+ePcvcuXMxGAy0bNmSO+64w6Xb82Qmk4n7779fT94vX778spH37jR06FCntKPdrwMDA/Hx8XFKm+acPXuWTz/9FIC6desyYMAApz8skJGRQePGje1eb8KECUDZ/XTPnj1kZGRw+vRpunTpwvLly9m6davN5778Z3ptUlxc7NL+I4QQQgghhBBCCOEJHE3gByuK0hlIVFX1T+BPJ8bkNsePH+f+++/Xf+/evTtt2rRhw4YNQFmJfY2WxL948SLvv/8+AwcO5M4776z2mD2BwWCQkffV4KeffiIpKYmePXs67QvbBQsWEBkZqf/b2shQLXk/ePBgPbkIZaXFb731ViZPnszy5cv15NnBgwedEqc7bdq0CYB//etf1brds2fPlp/OwFjV9i7tP4WFhXqZZk8btZqens7GjRuBssTW008/bXY5Hx8fOnfuzJNPPsmjjz7q9Di0JH737t1JS0tz+WhRLXlv6foaNmwYP/zwAwDnzp1zaTwAZ86cYdasWUBZhY4ff/zRKfcfLZG9efNmFEVxyvWlJfHbtWtHXl4e3t7eThl9b05YWBhLly4lPT2dl156id27d+v3PXPS0tJYtmwZw4YNs2s71f1wja+vL9999x3h4eHcc889Lt3WuXPnWLx4cYXfy/8NVpu8//77+v144MCBGI1VvuU71YoVK5zSjnbvcnXfysrK4vPPP9d/379/P5MmTXJa+wcPHiQlJYXbbrvN7iT+kSNHgLJjau64Tpw4kU8//dSmeO+++24SEhLs2n5Npt0Pa2PlBiGEEEIIIYQQQtQ+jibwA4FRQDtFUXwpK6F/SFXVl50WmRtcffXVeqJIURRuueUWAFJSUjAajbRo0aLC8oqicPbsWerVq0dUVFS1xytql06dOhEQEODU0VbBwcEcPXoUsK2s8zXXXMPx48f58ssvadWq1WWjZn18fHjwwQe57777aN26NYmJiWRnZ1f76HVnuv3226t9m1u2bGHhwoVA2ajvRYsWVbmUwaX9x9fXl7p163rkwzfNmvNc0u8AACAASURBVDVj/vz5bNq0CS+vso+pgoICvY8aDAbuuusuunfv7vJYDAYD33//PUVFRS7flqXra8uWLbz66qt6HKGhoYwfP97lMRmNRurXr4/RaOSBBx5w2v1Hm+O9a9euTmlPYzQaiYmJYfbs2dVy32nWrBlLly7l7NmzbNmyhUOHDl22jKqq+Pn5MXDgQLvb/+2335wRps0URaFXr15cddVVLt+W0Wikbt26QFkFGFfMhV5TPPHEE/z888+kp6czb948Fi1a5O6QKhg5cqRTEuA333yzE6KxTutbqqoSFhZW6UNgjoqMjMTPz8+hEfhz585l1apVetWuCxcuEBQUBEBOTg47d+7k1KlTxMTEWG3L0kNDVyLtgeraWvFMCCGEEEIIIYQQtYujCfzbVFU9DqAoih/QFmhneRXPFxwcbHZUUHJyMqGhoZeVvj1w4ADr169nzJgxNTpBKWoGg8HADTfc4PR27ZmP+emnn2bOnDkkJycTFxdXad/38/Ojf//+rF69mscee4yVK1c6M2SXKz8PdNOmTat9+61atSIuLk7/fdGiRaVVbfPS/qMoiseNvC9/3O+8884KVU0yMzNp0KCBW+LSkgWuLn9u7vrau3cvmzdvpqSkBChL3M+bN89lI8sv1bZtW9atW+ey9l1xfZVP7hQUFFTLfO4NGzZk8ODBTmmr/HVgz/3ZWa655ppq285HH31ULdvydP7+/nz++eekpKTw+uuv61M3eYqJEyc6JYFfHQ+GgOv7lsFgqHAPtmdKmhYtWvDiiy/qv6emphIREVFhmUWLFrFo0SKKi4stttWnTx/7g6/BpGy+EEIIIYQQQgghahOHarNqyfu//12gquo+VVU9a7iQEyUnJ182+h5gypQp1KtXj//85z9uiEoI9xgxYgQtW7aktLSUuLg4fY74S7333nsoikJ8fHyly3gqbX7uwsJCd4dSq7jzuH/77bdcf/31pKenuzWu8tfX+PHj2bBhAyUlJYSEhLB582Z27dpVbcl7d5s8eTKdO3fGZHKsAIWqqjXyOpb7z5XJlv7cokULFi9ezLx586q8vaysLLp3786gQYOq3JawrLi4mJycHPLy8pzS3pAhQ/Tpe1zp0KFDREZGVnhgUAghhBBCCCGEEEJ4BkdH4F+RioqK+PPPPy977cSJE5d96Xrw4EHWr1/P66+/7nGjWIVwtREjRpgdib927doKy0VFRfHLL7/Qv39/Xn75ZZ566imz7Z04caLSbVkbeR0aGurYTligjbQ2N+I6MzPT4rquiMcdLJ0TcGw/rbVp6bi7wvTp0wFITEzUE2ZhYWF6f9bmZXdmXJaOQX5+Pv7+/owYMYIPPviA9PR0/P39iYmJoWnTprUicb927Vry8/NZu3Yt3333HVBWHWfs2LEYjUZGjhxZ6bratZmfnw/8/0h2k8nExYsXK+2zjt5/XFUVorqvA+E65io/aNOCdO/enTfffNPseuYeGr3U9u3bzb5+xx13XPbal19+qf9bVVWrbQv7eHt7c+jQIby9vc2ec3Oj7F2tsv4Bl/eRQ4cO8b///U//3ZE+Yml7AD169LC7TSGEEEIIIYQQQojaTBL45fj4+NC8efMKr/3++++UlpZyww03VEjUv/POO9SvX58XX3xREvj8/xfSwrlclQx2tN3yybORI0fSrVs3fvjhByZNmkRqairLli2rsPy///1v4uPjSUlJISsrq0oxV6ewsLBq36YrznVNe5jA0nF31b6UT97XrVuXnJwc/aGU6j5+Q4cO1bdpKVFdnXx8fJx+HCy1d2ny3s/Pj4sXLzJu3DjGjh1rsV0tme7v7w+Ulblu0qSJk6I2vz1X9JEr5f5jTVBQUK1O6n3//fcW999SEtVcsjQ7O5vXXnvNCZHZH48l7jjHruhb1tqzlMCOiIhwKB5nP2yRkpLi0j7iCrX5HiGEEEIIIYQQQojazaES+rXJ8eNlswWUnxN23759fPPNN7zwwgtm5/8WorbYsWMHXbt2paSkhIiIiMtK5RuNRm688UYAPvnkE3eEKESlyifv77zzTsaOHUuLFi306SHMldMXrlU+eR8TE8P48eOpU6eOnsR3tJy+EJ7IGf05OzubESNGMGDAAA4fPuyEqMSVJiUlhQcffJCYmBhOnTrl7nCEEEIIIYQQQgghhA0kgV9OUlISXbt2pWvXrnTr1o2lS5eSlpYGUGFk/rvvvku9evUYNmyYlCIVtV75JP60adMue3/w4MEoiqJfS9ZER0cTFham/9x4440Vfo+MjHT2Ljhs1KhRHhWPq7z88sts2LDBqW0eOHCAF154gYyMDKe2a6tnn322QvI+OjoagGeeeUZP4l9//fUu2XZCQgL/+c9/iIiI4IYbbnDJNmqiPXv2VEje5+Tk8MEHHzBmzBg9id+2bVtKS0sttnPVVVcB0LJlS7tjGDBgQI25/wjP9sorr1hdpnPnzlXezv3338/hw4dRFIWePXtaXX78+PFV3qao3M6dO7njjjt4/vnn3R0KUJa81xL3Xl5ePP7441bXOXr0aJW2OW3aNHr16qV/vquqSm5urtV7t6dSFOVJRVF+URTll6q0Ex4ejqIoZn8sTbEQERFR6Xrh4eFVCanaWToGNWlfLJ2T6p4uQwghhBBCCCHElUsS+OXUq1eP++67j/vuu49rr72W9957Tx9h//PPP+vL/fXXX1x//fUYDAZ9rl0harPevXsDEBAQcNl7RqOROnXq2NxWamoqAJGRkURGRnLdddfp/wYuG+XvTl9++aVHxeMqffr0oUuXLk5ts1WrVnTu3Nklc4hbkpKSQsOGDZk9ezYAPXv21JP3Gm2u+fr16zttu/v27eOBBx6gbdu2REdHs2HDBkpLS8nJyUFVVQoKCmr9A2Fz5swB4LbbbqNdu3bs3LmTlJQU9u/fz9ixYzEajRw9epRffrGcQ3nkkUfYuHEjM2bMsDuGSZMmYTQaK32/T58+cq6EVa+88gpTp061uty1115b5W2VlpaiKAqqqtr0N2mfPn2qvE1ROe28//rrrx6RxP/rr78AUBQFgDNnzlhdpyoJyLfeeosNGzZQUlKi/z1XXFxMTk4OeXl5DrfrTqqqfqyq6s2qqt5clXZSU1NRVdXsj6WHXNPS0ipdTzvGNYWlY1CT9sXSObH1gWUhhBBCCCGEEMIambi8nMaNG+vzDp89e5aBAweydetWGjZsyFdffcUzzzyjL2swGAgKCtLn2hWiNouLiwPKRs06Q1BQEOvWrQMgMzNTT/JGR0eTkJDglG04U0FBAb6+vvoX5Feanj176klmZ+1nQEAA//73v50QnWUmk4m1a9eycuVK9u7dq5eYbtiwIU8++aTZBwi2bNkCwJo1a6q87b59+/LDDz/oiTUfHx86d+5M+/bt+eCDD7jnnnsoLCyUh8GAvXv3AhAVFUVGRganTp3CaDSyZcsWbr75Znr16sXGjRsZPHgwycnJlbbj5eVF27ZtHYrhuuuu48iRI3o/L3//gbJrXTtXfn5+Dm1DXNlsTd4DLFy40CnbbNmyJd26deOrr76yuuwtt9zilG2Ky+3YsYPc3FwCAgIoLCzk119/5dlnn2XmzJnuDo1evXrh5+fH+vXrrS7r4+Pj0Dbeeusts+17e3tTt25dsw95CiGEEEIIIYQQQgjzZAR+JRo2bMhzzz3Hvn37uP7669m9eze///57hWUCAgKu2ISduLK88cYbDiUj16xZw6uvvmpxnt64uDgKCwtp0aIFTZs2tdheTS2fak1+fj6FhYXuDsOltCSzs/fT2aPPp02bRrt27QgODsZoNOLl5cWAAQNYsGCBnrx/7rnnOHPmjNnk/ebNmykpKSEkJKRKJfTXr19PQEAAmzZtIj8/n+uuu45169Zx7Ngxli5dyoEDB4Cykv2+vr74+/vj6+vr8PbcyWQy8dxzz1V5buX09HQAWrRowcGDB1EUhYEDB5KVlcUvv/xCr1698PX1JSUlhUOHDllsy9F+pSgKfn5+lX62V3au/vrrL4YOHcq5c+fs2p5wj1OnTjFgwAB69epl9mfAgAEO9efyyftvvvnG6vKWqj3Yw2g0MnToUJYsWWJ1WU/7HC4tLXVbefVFixaxaNEip7X31ltvAfDaa6+xZMkSjEYjhw4d4rnnnqty244eJ62PBQQE8OKLL/L5559XORZztOR9UFAQd999d4X3FEUhMDAQg0H+t1MIIYQQQgghhBDCVjICv5wTJ07w4osv6r+rqkrdunXZuXMnAB9++CHTpk3TEwLlk5peXnIoHVFSUmLxfTmujps+fToAs2fPJiUlBQB/f38GDRpEp06d6Nevn9n1Fi5cyO+//86XX36pjzSdOnUqHTp0ICYmhnvvvbfC8hMmTADg448/5uuvvzbbpnae8/LyCAwMvOz9zMxMAL38ZPnXypd71drR3gMIDQ2t9Bi4QvltawoLCzGZTFy8eLHa46kuWsLS2UlmW0efnzhxotL3Fi5cyM6dO9myZUuFe0plyYKZM2cyc+ZMoqOjue222yq8t3nzZgAefvhhh+IxmUy0aNHistePHDlCdHQ0t956K19++SXx8fEEBQXRrl07oGaO5p4+fTomk4lx48Zx8eJF5syZw5gxY/SpZ7SKNrbKzc0F4KuvvuLgwYMEBgaSlpZGnTp1WL16NRcuXODZZ5/l7bffpm/fvuzatavStsr3K2ceWy3BD7B27Vry8/PJzs4mLi6O0tJSFi1aRHh4OMOGDWPYsGGVPghw6cj+S1X3fcTS9QXVH48l27dvt/h+jx49zL5u7wOXq1evrvB7ZQ+DVNbuP//5T7u2Z49LS00XFhbaXH66ss/h8sdVVVWKi4vx9vbW96+y41oV27dvp6ioiMLCQnx9fS8b+e2KbZo7X0OHDtX/7ejDZCNGjCA3NxcvLy82b97M5s2biYqKYu/evRw6dIj27dtXOq1HZftZ/pyYO06Wjo/WH06fPg3AhQsXbO4jl15jWn/466+/zJbX15L3derUYdKkSaxatQqAjIwMm7bp6DUthBBCCCGEEEIIcSWT7Gg5ubm57Nixw+x7RqORhQsXMmHCBP3LP2eNnBLCVbTkvcFgwNfXl/z8fObPn8+yZcvw8vK6bJTUhg0biIuLo6CgAChL+Ddo0IA///yT/fv389xzz7Flyxbee+89jEYjM2fOpKioiLCwMFq3bk2rVq3MxqE9iFFZ+VQtkaVtV1GUCskt7d9aO9U9b3p55rbdpEkTN0TiWq5I2Jlrs7S0lLy8PIdL686cOZN3331Xf6AqJCSEQYMG6XNLv/TSS5Wum5mZWSFxM2vWLEwmE6Ghobz88st2x7Jt2zaGDx9ucZmffvqJgwcPUlRURP/+/T0qMWqv8sl7g8FAaWkpcXFxFZL49rSljSz96aef9Nd//vln/d9JSUl89NFHzJw5kxMnTpCUlESrVq30pFZYWJi+bPl+ZW3Up6VzYOm9S5P3wcHB5OTkkJaWxptvvsmqVatYtGiR3cdCXDm6d+/Om2++qf8+YsQIDh8+zF133cWYMWMcbldLohYVFQFlD1ZFRESwZcsW6tevz7lz51AUhR49ejB//nzCwsLsutcWFxfr1VYcLaduK29v7wr/ram0Ci8lJSV8//33Fd5TFIVff/2V559/vtIkvjX2Hietj2RkZABlUxOFhYWxcOFC/Pz8KCgowMvLi4ceeogPPvgAPz8/8vLy9KlMytP6g7lqTOWT94sXL6Zu3bps3boVKJuazFzCXwghhBBCCCGEEEJYd0Um8BVFUVRn1WP+m8lk4vz58yxdutSZzQrhMuWT91pCLSEhgWXLlpGfn8+TTz5J3bp19ZKvo0ePJjs7G/j/kfqRkZFA2Yi9uXPnkpaWxurVq1mzZg39+/dnw4YNAHz66ac2xWQtkXYlzyMvzDMYDGZHg1qjjaLXElghISHExMTQtGlTSkpKOHz4MAcPHrTYxqUj/7XEyrx58+yKxWQyMWjQIPbs2WPT8trDAa+//rpd2/Ek5ZP3derUYezYsXz44YckJyfrSXx7rFu3zuoy6enpFBcX8/zzz/PWW28RExPD1q1bzVZwcLRf2aN88r5ly5aMGDECk8nE0qVL2b9/PwcOHCAyMpKbbrqJBQsWSCK/lsvOzubw4cMoisKrr77qlDa1ZO5ff/3F/fffr0/hcOedd/LZZ59VeKjFnmuiOpPqiqK4/CEBV1uxYoXF9zt27Eh8fHyVkvhVPU4///wzGzdupKCgAKPRyKOPPsr7779f4YGOwMBAs3+Daf3g0geXy5fNnzRpEnXr1nU4PiGEEEIIIYQQQghR0RWVwFcUJUBV1TxnJ++h7ItPLy8vPvroIwIDAz1uDlEhyhs0aNBlyXuAyMhIIiMjSUpKYtmyZWRnZ/Of//xHXy84OJjo6GiioqIqtBcQEMBzzz2HqqosWbKE+Ph4vbzwVVddVenIe421qRI02hfHFy5c0EuLq6pa4XXtNW3UrTspiuK0uduFddp5j4qK0vtCWFgY9957rz7Kb/fu3axbt46CggKrpdMTEhLYtWsXXbp0YdiwYRQVFREaGkrr1q3tiqtdu3bk5eVhNBqJjY1l0qRJFpf/7bff8Pf3p0OHDnZtx5O0bt26QvLeaDQyYsQI5syZQ3JyMpMmTWLcuHE2t2ctAQZlZcJXr17Ns88+y1tvvcWJEyc4f/489erVc8u9YNKkSRWS91CW4Hr44YcZPHgwu3fvZvXq1ezbt09/GKoyr7/+eoV7sTuNGjWKAQMGcPvtt7s7FKu0hyoHDx7slu3b+vAawAsvvACUJdedVcFJ+2zUpp+48cYbiY2NZdCgQVVq9+DBg0ydOpVPPvnE5Q/CaOLj49myZQuxsbEu24Yt890vWrSIIUOG2NXuk08+afF9f39/lixZwr///W9+/fVXhx5yqurxOXnyJEajkT59+vD000/Tr18/qw9VPv744/z55596Ar+0tFRf5+LFi0DZ34eff/45WVlZDsV1qalTp9KzZ8/L/g4VQgghhBBCCCGEqG0sf3NTgyiKEg18qCjKMkVRuiiK4tRhQ6WlpRQVFdGoUSPatWvHzz//bHXOWCHc5dSpUwBcf/31Zkd9dujQgQMHDlRIcPr5+XHgwAHatm1babsBAQGsXLmywpfgZ86coX///mzbts1sMnv27Nl6qVZbTJgwgaCgILPvBQUFERkZqc9vrZX4dQdVVXnvvfeYPHmy22KobbTzro26v+6669i5cyeNGzd2uM2UlBTatGnD1q1bURSFzz77zOZ1VVWloKBALyt800030bdvX5vW7datm0PxXqmio6OtLmMwGMjNzaVNmzZAWfJSm5NeKnc4T+/evbn11lvdHYZNOnfuTOfOnatlW+Ye3NSq1ljz/PPPk5qaipeXl8VpPapi6dKlTJ8+vUr3Q82sWbM4deoUK1eudEJktmnfvn2NeGjEnMr+ZtGkpaXx8MMP67878sCRo8enXbt2PPXUU/Tt25e1a9cycuRIFEUhLy/P4no7duwgOTmZoqKiy/q+Kx9ivv3222nfvr3L2hdCCCGEEEIIIYSoKa6IBL6iKHcDbwNzgSTgBcCmOo6KojypKMoviqL8Ym3ZVq1a8fnnnzNq1CigbJSIEJUp37fOnDlTrdvWvnRPSEgwO2epyWQiKiqKgoIC6tevT/369SkoKCAqKsrs8uXFx8fz1FNPERERwa5du5g2bRpZWVk89thjzJgxgyNHjuiJ/PJl/F977TWbYr///vtJTEzUf3744YcKv69btw5fX1/8/f3dOgK/sLCQHj16MHDgQLds3539y120875jxw68vLw4cuQIDzzwQIVlOnfuzLhx43j88ce5/vrrLbYXFBTEa6+9Rl5eHldffTX79++3Wk2iPO2Bgs2bN+Pl5cXevXsZOXKk1fV8fHxsKhnvLrb0raSkJOrUqcPFixcZN24cJpNJH31vz/Wu+de//sXo0aMtLhMUFMQbb7xR4Xw5I1npqNdeew2DwUBycjJz5swByu6tX3zxBbGxsaxatQpVVbnpppvYu3cvaWlp/PHHH/zxxx/s379f//cff/zhMaPvoSyBb+sDV/Zy9n0rLCysQpl4VzKX8LTlen/++ef59ddfMRqNzJ8/32plEEc581rQSvFrD0tVBy8vL7p06eLw+rb0LVtG1ts7+h7g2LFjFt9PTU2luLiYJk2aMG/ePH0aFXs4enwCAwP597//zcsvv4yfnx/e3t74+vpWKJ1vjja9ktFopFevXqxdu5b333+ftWvX0rVrVwCaN29OXl4ejzzyiF4Foqq6dOnisvuPEEIIIYQQQgghRE1S4xP4iqL4A/8CJqiqukNV1TeAImCoLeurqvqxqqo3q6p6s5XtsHHjRoKDgwkLC2PYsGHMmzdPRuE7gaqq5OXlXXGlyMv3rauuuqpatx0SEkJ4eDiqquolhjUmk4lXX32VrKwsQkJC2LdvH/v27SMkJISsrCymTZtWaRI/OTmZIUOG0LBhQ5YtW0ZoaCiDBw9m+/btTJs2jYsXLzJ37lxmzJjBxIkTzZbxdwZPGHXr7ocI3Nm/nOXw4cN2La+d96ZNm7J79268vLzYs2cPc+fOrbCcl5cXbdu25cEHH7TYXnZ2Noqi8PLLL/PTTz8REhJiVzxaHwgPD68QjzVr1qxxWgltV7ClbxmNRsaOHasn8UePHq0n7x293q09FKedr9GjRzt0vpwtODiYMWPG6En8V155hdjYWPbt24eqqkRFRZGQkMCqVato3LhxpfcrrZKDJ30GuiomV923VFWlqKjIpcfQWsLTnP379+vJ+yVLltCsWTOpFuEizupbjowut3Y/9/Pz46OPPmLx4sW0aNHC0dCcQlEUfHx8LJbP37FjB7m5uQQFBREdHc369es5ffo0UPYgy9atW/Hz82PBggX07duXCxcu8Morr5CTk3NZW9q1ae9xrY5rWgghhBBCCCGEEMKT1fghDqqq5iuKEgdkKopiVFXVBCQCevag3OsOCwkJISQkRJ/z8dlnn+Wzzz5j4sSJvPPOO05NTtY2+fn5+nzWjnxBLswbPHgwU6dOZf/+/dx7770YjUZMJhNTp04lLy+PkJAQ4uPj9S+e4+PjiYqKIisri3HjxjF69OgKX0r/8ccfLFiwgEaNGvHhhx/i4+NDZmam/n6vXr0AWL58OXv27EFVVZck7+1h7QGb0NBQh9vWksnCdtOnTwfKHiIZN24cFy9erDB/uC2jWTVNmjRh9+7ddO7cmdTUVGbNmsUTTzxhVzw+Pj5s2bKFJk2a2LWepnwfKB9PSUmJxfX69Onj0PY8jZbE186lwWBg1KhR1KlTxyXb8/HxYc+ePU5P3Fu6T2RmZtKgQQOz7+Xn5+tJ/Li4OIqLiwEIDw9n+PDhDB1q03OEeiUHKEv0lb+v2hMPVO2eZikmT1dcXOzyKVWszRduTk5Ojp68vzSpnJqayvbt2ytdt0ePHpW+l5qaatNr9ii/vvYQX3Z2dpXbrWny8vIIDAx0apu33HKLXdVdbGGt/zjqzTffZNeuXUDZ/SQjIwOTycSLL75Ir169OHnyJCaTiSFDhmAwGPRqAuvXr+ehhx5iypQp+t/0GRkZJCcnYzKZ7D6u1XFNCyGEEEIIIYQQQniyGp/A/9sflyTojwPtARRFuQ+4qCjKZtXKMI4GDRrQr18/AH7//Xd2796NoiisWLGC2267rcKXt+Hh4QwdOpSFCxfy0ksvSQLfQV5eXgQGBmIwGAgICHDoC3Jh3tNPP823337LgQMH2L9/P++++y5RUVF68v706dOXjRo7ffo0jRo1IisrixkzZugJ/vj4eKZMmUKjRo34+uuvadq06WXbW7lyJdOnT+fUqVNA2Tymy5cvp1GjRlZjtZR0clZCylk8LZ6apnzyHtDLj2tJ/MqYO+6hoaGkpqYSERFBamoqa9as4euvv66wzNChQzl8+DCxsbEcOnQIk8mEoihMnDiR2NhY8vLyHLr3WIunpKSETp06sWTJElauXMmoUaPw9vbm6NGjdm3Hk2kPXIwcOZL8/HyKi4vx9vau0r1c+5iOjY1l2rRpAPr5evXVV50TuJMMHTpU7wcjR44kKSmJ1q1b2/T3QPn+U1pa6nA/dJZL+7MnxFQZc4nt8vFWpvyfgNnZ2UybNo2ff/6Z0tJSDAZDhZHxAQEBvPPOO7Rs2dLq/n/33XcsWrSIefPm0bRpUxYvXlyhbH5aWhrNmjW7bL2qJF8jIiJses3RNrW/DYKDg6vcriWWHlJwlUv7AZTtpy19yJZ2TSYTx44do7i42Oo0LtZYOj7W+o+jx/b777/X/12+Ss5ff/3FggUL8PLyok6dOnz66af6tdGjRw99pP5rr72ml/pv3LgxLVu2pLi42OJxdfSaFsKa8PBwi1VPwsPDqzEaIYQQQgghhBDCPldEAt/M6HoDYFAU5V9AHNDXWvIeyub8/Oqrr4D/H300e/Zs7rrrrkrnPl24cCHvvPPOZSWche0MBoPTRzuJsqTX/Pnz6dChA6tXr2bHjh162fzyI+/L05L12kj8qKgoPvnkEx599FEaNmzIhx9+eFnyfuXKlcTFxXHmzBkUReHOO+/ks88+q7Z5iUXNUT55X6dOHV544QUmT56sJ/HtGYGvadasmT7yfc+ePTzwwAN8/fXXbN++ncmTJ5OUlKSX7lUUhTZt2rBr1y59FLez7z2XxjN48GDi4+MB+PTTTz26dL6jjEaj04/j1KlT6dKlC8eOHeOxxx5ze7l8a4KDg+nUqZND63riZ6AnxmSJvfEGBwczceJEp21/yJAhLFq0iJMnT/LEE09w/PjxCmXzhWcq/7CNs/q80WikdevWVW7HU5WUlPC///3vsgdbyo/E37hxo/66LSX7zalp9yDhmWpbBREhhBBCCCGEEFcWzxpWZQPFtslDzwKPAyOA+1RVPW5j2/j5+eHn50dQbFjsTQAAIABJREFUUBDjxo1jyJAhlS4fGhqqj8K3VqpbCHcICQnhpptuQlVVq8l7jdFo5JdffqF+/fpkZWUxcOBAfc77xo0b68ulp6cTFRXF888/z5kzZ/RS5lu3bvW45H1JSQmxsbFkZWW5O5RaLS4uTk/ejx07lpCQkApziN99990OtauVr9fmoA8LC2Po0KEcOXIEVVVp0aIFH374IaWlpRw5csTlyeDy8ezdu5fS0lJuueUWt4w2rcn69+/PyJEjqzV5/9FHHxEdHa3/PPTQQ/q/e/ToQWxsbLXFosUTFham/9x4440Vfh81alS1xiMqKi0t1efp1v5eLJ+8t3Uu9hMnTjBmzBir029UFx8fH8CxaQNE9Tt//jxvv/12lfvP6tWrrS7j7+/PmDFjzL738ssv07dv3yrFIIQQQgghhBBCCCHK1Khv5hRFiQZeVBTlsiEZlyT2U4AMYISqqocvXbYyN9xwA6mpqaSmppKcnMyLL75ocfn8/HySk5MpKSnRy4YL4WkWLFiAj48PV199tdXkvaakpIStW7fq5e99fHwqJO8B4uPj9VH3GzduZOnSpR6XuFdVlYKCAs6ePUvXrl05ffq0u0Oq1bR5cTt16lShRLM2QnXPnj0Ot924cWO2bdtG8+bN8fX1JTQ0lEmTJpGWlkZycjL/+c9/qr4DDsSjWbp0abVuXzhm1qxZJCQk6D9HjhzR/52cnMzKlSurNZ709HSL73/77bfA/9/rtGoTonrk5eVRWFhIcXExQ4YMoU2bNjRq1Miu5D3A9OnT2bVrF998843dMdxyyy088sgjqKqqP0xQVTExMbRv35477rjDKe0J19IqJp05c6ZK50urFmNJTEyMxQc7Xn75Ze655x68vLxcOv2CEEIIIYQQQgghxJWuxpTQVxSlI/AlcBLIVRRlsaqqudr7Wol8RVEiVFU9pijKbaqqXnBVPPn5+QwePJjt27fz/vvv07FjR1dtSogqCQ4O5tixY3at4+vrC8DPP/9MdHQ0hw8fJjo6moULF+rL9O/fn507d7J06VIGDx7Mjh07PG5++MLCQvLz86lXrx79+vVzdzi13rBhw5g3bx7fffcdiqIQHR3NnDlzOHHiBAaDgYSEBIfbLiwsJDg4mG3btuHn5+fEqKsWj+ZKLJ1/JVJVlaCgIBITEwHIzMxk06ZNxMbG4uXlxZdfflmt8YwfP57x48ejqiqFhYXk5ubSsGHDy5bT7nV5eXlSdroaBQQE4Ovri7e3NwAffPCBQ+2kpaUBOFQlZsqUKQAUFRVRWFjo0PYv1bt3b3r06KE/nKCNyBeeqWXLljRv3rzK52v8+PFMmDDB4jKzZ8+22s7o0aMZPXq0QzEIIYQQQgghhBBCiDI1aQS+P3Af8ADwIPBo+ZH4iqIYFEUJA2YqihJUncn7hx9+2FWbEqLKtJGZ9ozK0qaTMBqNrF+/nrZt25KYmMjDDz9cYYTntGnTGDx4MOfPn6dbt24eV6Le19cXf39//YEE4V7t2rUjJiYGgG3btjFmzBiSk5MxGAyMGTOmSnNFe9q51uIRNduKFSv05P3SpUtp3769W+LQ7smVzSKk9beAgIBqjqx2MxgM+Pj4VHperHHmqHlvb+8KDxN4WnvCtTz1fGl9XKqDCCGEEEIIIYQQQtjH40fgK4ryTyAU+ACor6pqlqIoscCUsreV+X+PxPdTVfUPRVEecTR5bzKZyMvLM/teQUEBAQEBFZL3M2bMkOS98HjayEzAoZHJBoOB9evX07dvXw4fPszdd9/NF198oZdQjY2NpbCwkJUrV3LNNdewY8cO6tWrZ7at6h6hryW9hOfQkvjz5s0jPz9fT96XH63uCEfO9YkTJyy+72h/zczMtPiap1WqcJSrjl91K39utERqZmYmK1asYMKECXry/h//+AeFhYUeeU/R+v+VMmf59u3bLb7fo0ePaonDlVJTUzGZTPoPQHZ2NqmpqQ61pyiKU0fKO7s9T3Gl9i1PPV/FxcUUFha6pDrIlXouhRBCCCGEEEIIIcDDE/iKovQGJgCj/y6RnwWgquoeRVHGAHHAWUVRGgK3KIoyDHB45L3RaKx09FpAQABeXl48/PDDbN++nQ8++IDhw4dfMV+WiyuPljwrLS0lLy+PgIAAm/prZUm3hIQEIiMjOXz4MEOHDmXdunV6ezNmzMDX15elS5fSrVs3i0n86lRTEoi1xciRI/V/P/LII1y4cIEbb7yxyufJ085zgwYNbHpNeIby50YbSb1p0yY9eb97926ioqLsuo9WhaX+7Gl9XTieJIyIiEBVVYqLi/UpNoKDg22aN9wViUlJdtYsrjpf5atBrFmzBiibMsnReMr/DSqEEEIIIYQQQgghbOexCXxFUToDi4B//p2wDwbqUZbEL1RVdfffCfufgBIgWlXVElfFk5+fz8MPP8zWrVv57LPPePTRR121KSGcymAwOGXUU/mR+ImJiURHR1dI4k+bNg3A45L4wjPdcccd7g5BCLMuXLigl81fsWIFHTt2BJC55YXTaaOmHS3BL4Qr2ZK4t8ZZf4MKIYQQQgghhBBC1DaePHw8EygGmiqK0gBYRVkZ/U+BR/5epjngC9ytquqvrgqkoKCAwYMHS/Je1HpaEr9t27YkJiYSGRnJ//73P/3H19eX+vXrc/78eTp27Eh2dra7QxbCJnl5eSxYsMDdYdRYCxYsqHQKmprkwoWyIj5a8r5Dhw5ujkhs27aNU6dOuTsMl5IEvnskJCSQkJDg7jCEE5w8eZJt27a5OwwhhBBCCCGEEEIIp/HYBL6qqklANPAucBBYDPQDNgK9FEVpAqhAJ1VVE10Zy86dO/nuu+947733JHkvaj0tiX/DDTeQm5vLggULKvycO3cOgMLCQlasWOHmaIWwzdGjR7nnnntIT093SftLlixxSbueID09nXvuuYejR4+6O5Qqa926Nf7+/pK89yAdO3akoKDA3WG4VL9+/fDx8aFTp07uDqVWady4MY0bN3Z3GMIJCgsL5foRQgghhBBCCCHEFcVjS+gDqKp6UFGUfsAdqqp+8vfL8xRF+TfQUFXV3dURR5MmTQBo1KhRdWxOCI9nMBhYu3Ythw8f5tSpUxQXF+Pt7V1hFGFgYKBeeloIT+eqZK2XlxclJSXExsYC8OCDD7pkO+7UrFkzoGZ/RqqqSmFhIZs2bZLR0B4mKCiIoKAgd4fhEqqqUlxczGOPPcawYcPcHU6tU5PvWaKi8PBwiouLUVVV7uFCCCGEEEIIIYS4Inh0Ah9AVdXDwGHtd0VRBgJXAWerK4Zrr70Wg8FAYqJLB/oLUeO0bduWli1bkp+fj7+/P35+fu4OSQiP4u/vT35+PoCexB89erQ7QxJmFBYW6udJ7mOiuhQXF1NYWAiAj4+Pm6MRouZy5bWkKMqTwJNObfQS4eHhlT54EB4e7spNi0o4ek4srSeEEEIIIYQQQtjDY0voX0opEwNMAIaqqlptE6L6+fnRsmVLDh8+bH1hIWoZX19f/P398fX1BcpGFBYUFKCqqpsjqzqTyUSLFi1o2LAhK1eudHc4wsVc1Xe1kuxeXl7ExsYyd+5cp7bvabTjWFpa6u5QbHbpfUx4BlVVKSoquiI+T8zx9vbG19cXb29vd4dSq13p/aw2cOW1pKrqx6qq3qyq6s1Ob/xvqampqKpq9ic1NdVVmxUWOHpOLK0nhBBCCCGEEELYw+NH4F8iGbhfVdXfXNF4SUkJ58+fN/vetddeW2NG4JeUlFh838urpp322uvEiRMW3w8NDa2mSGzfXm5uLjk5OdStW5fAwMBqiMr5pk+fjslkYty4cVy8eBGA+++/H39/f4YMGcKYMWMqXbe6z4mwzJ5ryJV9t0OHDqxYsYL777+f4cOHk5WVdVk5/czMTBo0aGBTrJ6gsnhyc3NJTk7m+PHjlY5m96R9cUcslvqlO/qBp33W9OjRA/Ccz5Pt27dX+l5qaioRERGVvq/ti62vVzWeqrbtCE+LxxJzsZTvZ9XN0WNXlWNek85XTYpVCCGEEEIIIYQQwplqzAh8tcx2VyXvrfnHP/7BsWPH9PKMQlSHmjiaPSAggLp16xIQEODuUBxWPnlfp04dhg4dqpdC//jjj4mMjGTjxo3uDlM4mav7bocOHfjss8/0kfiLFy+ucde3LQICAmQ0uw1q4v29ul0Jnye1TU0czX6l9LOaeOyFEEIIIYQQQgghhHkyFLucwsJCkpOTAVAUhbCwMIxGIwCtWrXCZDKRlJTEDTfc4M4wRS1y6bzM6enpNGvWzM1RWWYwGGrsyHu4PHk/duxYjEYj7du3JyEhgWXLlpGdnc2TTz5J3bp1eeedd+jTp4+7wxY2KCkpITMzk8aNG5t931V99+LFi3z//fcA5OTkEBsby8SJE3nllVfYtGkTbdq0wWg0kp+fj7+/v75ejx496Nixo9PjcTWDwVBh5H1GRgYNGjSQ6i+X0O7vR48e5dtvv9VfL98P/Pz8GDp0KMHBwdUWlyedL0/8PMnIyKhQPjkjI4OMjAz993bt2lVrzGfPnqVevXoecb4ATp06hZ+fH3Xq1HH6XOSu4in9LDc3F8ChWDIyMqhfv77dDxp7Wv+xpCrHRwghhBBCCCGEEKKm8fxva6rR0aNHK5RifOqpp3j11VcBaN26NQD79u2TBL6oNtoIVl9fX3766SeSkpLo2bOnxyfxa7IXX3yRixcvYjAY9OS9JjIykk6dOlFUVMQLL7xATk4Ow4cP548//nBjxMJWW7ZsIT09nccff7zatlmvXj0uXLjAkCFDzL6/bds2tm3bZva9WbNm8eOPP/4fe3ceHkWV7g/8ezpLZycr/AADYRmcYREwyBIWyYjsbiggiCg46h1l8XIFEVEuyqgoOKK4AAKCEUQv4gKIyjARGXEUFUVkGSDBiIBkIwlJOp30+f0RquyEpNNLdVd19/fzPHmepKurztvVp05V6q1zjt8f73379kVkZCS++OILxMfH6x2OYSjt+4033uhw6pu33noL//rXv3wVFj788ENcdtllGD58uM/K9Bdbt27F0qVLHb4nOTkZ77zzjo8iAsaNG4euXbvihRde8FmZjuzZswfJyckc2twNn3/+OQBgxIgRTq9js9kwdepUnDx5Eq+99hpSU1Ndmgc+OzsbLVq0wMCBA12O19fc2T9ERERERERERP6KCXw7qampmD17NgBg/fr1eO+99/DQQw/BZDKhU6dOaN26NbZs2YI777xT30DdIKW8pHcnGZ8QQu3J2rt3b0RFRfl9Ms/o5s2bh5deegk2mw2vvvoq7r//fnVZRUUFli9fjpycHAC138/EiRP1CpVclJGRUaenrC/84x//wKJFiwDUbYeFEDh37hz27dunDndss9lgMtXObBMSEoJbbrkFrVu3hpQSFoulznJ/UlNTg7KyMgwaNAi7d+9mEv8ipX3funUr7r77bnW0FfvvOTk5GQsXLkRlZSXMZjOEEF6PKzMzEykpKV4vx98oyfuQkBAMHTpUfQCjtLQUsbGxAID33nsPFRUVkFLCarW6lEh1l5QSBw4c8Ho5zurbty8SEhJ8UlcDTa9evdRh8MPCwprchzabDffeey9OnjwJoLY3fYcOHVwqs0+fPkhISHA7Zl/q1asXAPj0+CIiIiIiIiIi0gsT+Hbi4+Nx4403AqhNOPz3f/83vvvuO6Snp8NkMuGWW27BK6+8gpKSEsTFxekcrWsqKipQWloKALzh5adMJhNHf/CB//f//h/mz5+PRYsW4cSJE3jppZcwZcoUvPbaa+pNciEERowYgaVLlyI6OlrniMlZcXFxPm+7IyIi1AR+ZWUlfvvtNzRv3rzOEPOKgoICJCUlXfK6MtR6eXm53w4dLIRAcXGxmsRPTU3VOyTD6Ny5c50e9vXrQWVlZZ2pVLzN1QRgMLBP3r/00kvqqEwAkJubi7S0NADAp59+CgCwWq0uD2UeKHhsuy8lJQVVVVVq3XE0BYGSvD927BiEEG7Pe+9P35fyYJH9PiIiIiIiIiIiClT+15XPR6699lqEh4dj27Zt6mvjxo1DVVUVPvjgAx0jc09kZCRiY2PZA58uMXHiRNx2220+Kctms6GsrAw2m80n5bmrWbNmmD9/PkwmE06cOIFHH30UJ0+ehBACV111FY4fP47nn38eUVFReodKTZBSorKy0u3kRlN+/PFHdOvWDYsWLWqybpvNZoSHh6s9d51lNpsRGRnp1/Wta9euuPXWW9UkfmFhod4hac5b7Zvy/btab7SgHD9Gb7O1VP97XLVqVaPJ+8aEhYXBbDb79IFJpee2t9o6quXt6xhn6o598r5jx464/vrrXSrD3+uKHscXEREREREREZGvsQe+naqqKnVobKB2qMb3338ft912G0JCQtCnTx+0bt0ab7/9Nm699dY664aGGntXCiH8OvlDDcvLy3O4vLGeVc899xwA1BkOfu/evZg2bRoAYNasWZrHU1BQgOjoaHUI8fo9SY3WC0xJ4r/44osoLS1F165dMXHiRMTExCA0NNTwx7yn3K1b3uJuPErvdcD13suOynz22WeRlZWFoqIiALWJ/E8//RSjRo1CbGwsRo8efck6QginhkVuaL2IiAi/Gj6/oKCgzt/V1dV46KGHYLFYsGXLFnTo0KHR4fQb+y6NXieVnvINtW/1NTbaQkPsp1LxNSOO/pCdne1wubtzryvbVXr3ms1mfPLJJ1i6dClMJhMeeeQRmM1m5Obm1lnvzJkz6u9KUlcZrcVb6scAACdOnEBNTQ1CQkKQmZnp1fL9mbv1p6H6Yd9D3t16V58QQt1ubm7uJfHaJ+/btGmDhx9+GBs2bAAAnD17tsG6UZ/9CBGOevkblf0+cldT9YCIiIiIiIiISG+BnYFykclkqnODesSIEfjiiy+Qm5uLHj16wGQyYcyYMVi5cqWhh9EP9MRiMGkqIdVUQssRJXmvJAVzcnKwfPlyNYnvDUoPUj16krrC/gGGBQsWoLy8HFFRUX6VQKVaHTp00PT7O3LkCKZMmYJffvkFQG172717d3zzzTfYvXs3QkNDMWrUqEaPXUfHtNEeYvFE/eR0aGgokpKSsGzZMgDAli1b1OH0G0riO0tKqSbT9OZK+5aUlORWHfGWxsq02Wzq8RMslF69H3/8MZ577jmEhITgkUcecZgUV4bQV9oY5W9vaWj77du3121ecK2S1/5A2b9a7WdH+66p5P3atWthMpkQGxsLAGjRooVTdW/IkCF+c13j7bolpVSPG1cfriMiIiIiIiIi8iZj37XR2cCBAxEWFoadO3eqr91yyy2wWCzYunWrjpERecY+eT9//nx1uHglie8tSk9Sf7pJqjzYY/Sb3NQwrb6/I0eOICMjA9deey1++eUXhISEYMSIEVi8eDEmTpyIqVOnAgB27dpVZ+oVutRjjz1WZzj94uJit7el9BA3wnzI/ti+NSUY2z8hBD755BM1ef/SSy+hXbt2eofVJKVXciDVPyPSaz/XHzZ/wYIFbh+XwXhcN0YZjcBqteodChERERERERFRHbxz40BsbCz69euHf/7zn+prffv2RatWrfDhhx/qGBlRXWfPnsUDDzyA/fv3N/nexx9/HDk5ORBCYP78+WjWrJk6XLwQAjk5OXj88cc9iueXX35Bu3bt0KZNG/WnZ8+edf5++OGHPSqDfENKiVmzZmH79u16hwJAn3iOHz+uJu6FEJgzZw4WLlyIIUOGqO/p0qVLnST+0aNHfRafP3rmmWdw/fXXo7i4GGPGjHF5Lub9+/fjgQceQHFxsW7zw9vbsmVLnfatoZ8tW7boGmMgysrKQlZWFoDf5/X2dG7y/Px8LF26FACcnvMeAEpKSlBRUaFLAj08PNyv5zTXi1J/XJ0T/vDhw3jyySeRn5/v5Qhr1U/er1ixok7y/dixYwDAhLwbzp8/j+uvvx7Dhg1DZmYmp58gIiIiIiIiIsPgnZ4mJCQk1OmVIaVEWVkZEhISdIyKqK6kpCRkZGSgU6dOTb536NChAGrr8p49e9TX9+zZo968HjZsmEfx/Oc//0FNTQ3Cw8PRrVs3dOvWDX/605/QqlUr9T19+/b1qAzyDYvFgkGDBqF37956hwJAn3hat26NFi1aAKg9blasWIGffvrpkvcpwx2bTCavD6Ht74qLi7F7924AwFVXXeVyD/pOnTohIyMDycnJhuj13rt37zoPdNSXlpaGK6+80ocRBYd+/fqhX79+AH7vSVteXu7RNuPj49Upkj744AOn1ikpKcGkSZNgs9lw7bXXelS+q9atW4eXX36ZvYjdoNQfV3thp6WloWfPnh5N/+GsppL3zz77LH788UfExcWhS5cuXo8n0CQkJGDs2LF6h0FEREREREREdAlOlt6EoqKiOsn6/fv3o6SkBFdffbWOURHVFRoainHjxjn13r59+2Lq1KlYs2YNdu3apb6u/D516lT06dNHk7gmTJiAJ554AgDw2WefYcqUKQCAp556CjfccIMmZZB3mc1mDB8+XPcezgo94omIiMDXX3+NHTt2YPbs2Th//jw2bNiALVu2YPz48ejWrRteeuklnDhxQp2WIjw83Gfx+Zvi4mLcdNNNKC4uxvjx47Fw4UKXv8+oqCin2zxfaN26NdasWaN3GEGnQ4cO6u/KnORRUVEebTM0NBTr16/H7bffro704SjBV1ZWhhkzZqC0tBQjR47EjBkzPCrfVW3atKkzjzc5T6k/ysOLzu6/iIgIjBgxwmtxKZxJ3m/fvh2xsbFYvXo1IiMjvR5ToAkNDcV9992H++67T32NvfCJiIiIiIiIyAjYA78J9RP4So/BQYMG6RUSkUpKicrKSpeHza0/3Ld98t4bPbj279+PKVOmoLq6Gk899RRuu+02t7bz5Zdfejy8P7nGaPN66xnP8OHDceDAAaxYsQIRERGoqKjA66+/jv/5n/+pk7xv1qyZz2PzF8XFxbjhhhvU5P2zzz5rqPrlbe622dQ0ZW5yLYYRb9asGd544w3ExsZi+/btWLt2bYPvKykpwdy5c9Xk/ezZswHA5SHZPaXXvOyBwoj7z2az4Z577mk0eb927Vo1eZ+VlYXk5GRDxU9ERERERERERJ5hD3w7VVVV+OWXX+q8du7cOXTq1AmnT59G165d8dlnn+Hyyy9Hy5YtndpmdXW1w+WhofwKgl1eXp7D5ampqY0us1gsqKioAFDbI8wVShJfSUxMmTLF4+R9QUEBAKC0tBQAUFlZqfa8dzd5/9xzzwEADh48qPZwff311zFt2jQAwKxZszyK2Zc8+a6DgaP9U1BQgKSkpEaXubteY8scyczMxJw5c3DixAls3rwZFRUVCAkJwSOPPGLI5H1T9c4b6n8n1dXVOH78OG644QaUlJSoyftgo7TZxcXFDpNtjbUF3mpD3N2uHnXLkdzcXHUqi4YMHjzY6W0pSfzbb78du3fvxoIFC9RRZIDanvdz587FhQsX6iTvgd+H8/cnjvYb4HjfebKuu9t0pLS0tNH1c3NzDTXFSUNxKj3vjx8/jjZt2uDhhx/Gzz//rC5fu3Ytdu/erSbvlSkfjMzR99nUd+JO/SEiIiIiIiIi8nfMHtsJDw/HZZddVue10tJSdf5jIQQ+//xzTJgwgYl38hopJSwWC8xmc5O9qTp06IDy8nJERUW51OvQPum9evVqt2OtT0mGxsbGAqh9AMY+eT937ly3tmufvBdCICcnB8uXL8e0adNQVlbm8uenphntYYKkpCSvxdTYMddYeTabDbNnz0ZUVBTeeOMNHD9+HKmpqX45bP7FHsKaHzz1H4yoqanBTTfdpCbv33rrLZe3abQ66U48NpsN5eXlKCws9EJE7nPlvOPKNuGFutVUItl+OHlXPktj283JyUG7du2we/duxMTEYPbs2SgpKcGMGTPU5P22bdvqrKN8z54O5+9qrNQ4pV60bdvWrf3nq31uP2x+mzZtsHbt2kuGzVeS97m5uUhMTPRJXIGGxxARERERERERGR0zXg5YLBZcuHBBHUJ///79KCkp4U0f8iqlh6YzvfdMJhNiYmIMm7zetWuXx8Pm2yfv//znP+PRRx+FyWRSk/glJSUoLy/XMmwKMq4cc8Clx12HDh38MnkPQPnMId4u5+jRo3WGzQ9WSt0x2lDXrh4Dzm4TPqhb9Sm9361WqybbS0pKqjOc/hNPPIFJkyahtLQUw4YNq9PzXmH0c3Mw0rpeeEP9Oe8XLFjQ6Jz3a9asYfKeiIiIiIiIiCiABWQ3ciGEkBpMPFpUVAQAagJfGf7x6quv9nTTRA1asWIFPvzwQ/zf//0fzGaz3uG4zT6h7kny/rfffquTvB81ahQAYP78+Vi0aBFycnIwc+ZMbNq0yfOgfej8+fMYOXIklixZgn79+ukdjuF4sn9mzpyJnTt3qn9LKRtNltZfFhUVhZ07dxpyGHyt1N8/F9X4ouxgT943ZvTo0bjuuutw7733urSecr7YunWrxzEo5xuz2exRPC+++GL9ed99UrfshYWFAQDeffddZGdn49VXX/V4m/bD6e/atQsAMGzYMDz00EMeb9uI9u/fj8WLF2PVqlWIiYlxad3/+q//QmZmJsaPH69pPAsWLEBNjXPV6dixYxg9ejSA2lF7Jk2ahHHjxgH4vX4Y0Zw5c+rMeW8/bP7rr79eJ3nvzvQvRlBWVoYpU6ao0z8BtQ8uKA8qKN+XlvWHiIiIiIiIiMgfBVTXICFEipbbU3qiRUZGAgB+/fVXREdHo2XLlloWQ6R6+umn8cMPPyAiIsJwPTRd8dNPPwGoHUrf3eQ9AHzwwQcAaoeqVpL3QG0yZf78+QCA3bt3+10vx/Xr1yMvLw8LFizQOxRD8mT/7Ny5E6WlpS6vV1pairNnz+Lbb791eV1/0sj+sfmibCbvG/bDDz/g6aefdnk95XyhBSGEet5xN54PPvgAJSXHA05SAAAgAElEQVQl9V/2Sd2yJ4RAeHg4XnvtNRw5ckSz7SpJfMXcuXP9+jztyIsvvogzZ85gy5YtLq975MgRrFq1StN4srOzUVJSUifp66yysjLs2rVLrRdG/s4OHz6MsLAwrFix4pLrmr179wIAsrKykJycbOjP4cjBgweRn5+PCxcuNLhc+b6IiIiIiIiIiIJdwPTAF0KMBjBTCFEA4GUAu7XqiV+vHC03R1SHs73L/IVWowhERERc8po/95KurKwEAOTn5+sciTF5un9iY2Nx8OBBAEBBQUGjPRXtlz366KNYt26dW+X5G/v9AwBt2rTRMRoC3Gv7vXm+8GTbRqlb3tg//nzecYUyAlVVVZVb63urbj711FPo3bs3ACAzM7PR9yk92Jt6nxGFh4c7fCgxLi7Oh9F4z4033oiZM2cCAHJzc5GWlgbA/74vIiIiIiIiIiJv8a9uq40QQvQBsBTAYwAOA/gvAHAmeS+EuEcIsU8IsU+5YUmkBfu6de7cOb3D8TqbzYbKysr6wydTE9zdZ8FQv6SUrE868LRusS1wXrDto2BotwJNVVWVW/XU3fXcZV+3zp8/77NyqWk2m82t+iClRFVVFWw2nw/kQURERERERESku4BI4APoCeBTKeVeAKsBJAohFgshbhRCtHK0opRypZSyl5SylzLXvbdJKVFeXh50N+6DjX3dSknRdHYHQyovL0dFRYU69QQ1TUrp9j4LhvolpXRp37BN1YandYttgfO02Ef+VO+Dod0KJDabDRaLBVar1eV13V3PBXX+h7GvW/42UoKSqA5U5eXlbtUHq9UKi8WC8vJyL0VGRERERERERGRcwp9u/DZGCHElgDUAdgK4E8CLACoAtARwQEq5xpnh9C8Ov5/j5XCB2puOIQBq0PT8sMkAjDjOthHj0jumtlLKBjMSQohzAE76OB499ocJtXXaW2U3dezoWQfcLVvZZ440WrcAn9UvPfZtcwC/ufB+V9pW5f313+frz6nHfq1fpjfaLmfqtSN6t+e+jMHRvnIUg6v13V2e7AejnRfrM0I9UxgllvpxuHsse9oGNBSL/bbbSikbnB/FD6+53D2WjXD+cJa79cHV6wAt1Gm3hBD3ALjn4p+XAzgC4xyv9owYE2DMuPSKyeH1PBEREREREZG9QEngmwFcefEnQ0p528XX/wJgkJRysp7xeUIIsU9K2UvvOOozYlxGjElPeu4PvcoOxs/sK3p8vmAoMxg+ozuMECNjME4M3mKkz2aUWIwSB2CsWJoSLG15MJwjnWHEuIwYE2DMuIwYExEREREREVF9fj2EvhBCAICU0nJx+Px1F1/+88W3lAGIEkJE6xUjERERERERERERERERERGRM0L1DsBVQohUAGcBhEkpLwghQqSUNReT+VYAPwCYLoSYCiAdwDgp5QUdQyYiIiIiIiIiIiIiIiIiImqSX/XAF0KMAvARaue4XyuEuPxi8j4EqO2JD2ADgCUAvgAwSkp5QLeAtbFS7wAaYcS4jBiTnvTcH3qVHYyf2Vf0+HzBUGYwfEZ3GCFGxlDLCDF4i5E+m1FiMUocgLFiaUqwtOXBcI50hhHjMmJMgDHjMmJMRERERERERHUIKaXeMTTpYu/6ywBsBzAdwCEAkwD8D4BrpZQHhRChAGoApEgpf9MtWCIiIiIiIiIiIiIiIiIiIjf4RQ98WSsPwF4ARwH8JqVcCuBpAJ8IITpJKasB9AbwhBAi5mLSn4iIiIiIiIiIiIiIiIiIyC8Yvge+EOI6AB0BLAfwBoAfpJRP2i2fA6AzgHcBzAcwWUp52J2yEhISZKtWrRpcZrFYcPz4cbRr1w6JiYnubJ4C3DfffJMvpUxpaFlycrJMS0trcL2amhr19/379wMAevToob4WEhKiYZTkDKvVCpvNBpPJhB9++AGAc9+J/Xf5448/orq6Gi1atECLFi0ghEBoaKhb8TiqW4Dj+mUkpaWl6u/Hjx9HTU0NEhMTkZycDACIjY3VK7QGKfHm5+ejsLAQISEh6NChg7rc1/F6Kx532y53VVdXQ0oJIQS+//57AGzz7Lnb/jRFaZ9Onz6Ns2fPIjQ0FF27dvV4u474um41dD694oorIISAEMLjfWe/XW/X2Ya+r86dO6t1IywsTPMy/Ymv61ZVVZX6+6FDh1BdXY3mzZujRYsWkFLCZDIhJCQEJpPxn422WCxQnnM+cOAAIiMj0bFjRwC17bNyrXLw4EEAQJcuXdR1w8PDfRyt7/m6bumhtLQUUkpIKZGTk6P79Zi/XR86Yv9Zjh49CrPZjLZt2yp/B8T1PBlTU/8vEhERERGR/3Evm+QjQoihAJ4A8JCU0iqEmAtgtxCiRkq5+OLb3gawDMBzAKa5m7wHgFatWmHDhg0NLjt58iRuuOEGLFq0CBMnTnS3CApgQoiTjS1LS0vDvn37GlxWXFys/p6QkAAA+Oc//6m+Fh8fr1WI5KTCwkJYLBaYzWYkJSUBcO47sf8uO3XqhHPnzuHWW2/FtGnTEB0djZYtW7oVj6O6BTiuX0aSnZ2t/j5mzBgUFRVh5MiRuOuuuwAAgwcP1iewRijxrl69GllZWYiNjcWKFSvU5b6ONzs7G1VVVVi9ejXefvttxMXFaRKPu22Xu06fPo0LFy4gOjoaykNzbPN+52770xSlfVq0aBGWLl2KhIQEr+93X9eths6nmzdvRnR0NCIjIz3ed/bb9fa+a+z7UupGsD9M6uu6lZeXp/5+5ZVXIj8/H+PHj8fs2bMhpURiYiKioqIMn8AvKyvDiRMnEBkZiYiICLRp0wYdO3bEtm3bAAAFBQVqu6Mk7pVlAJCamur7oH3M13VLD9nZ2ZBSwmq1Yvz48SguLtb1eszfrg8dsf8smZmZaNu2rXqtlpmZGRDX82RMTf2/SERERERE/sewCXwhRAZqe9xfJ6X8SgiRDOAXADcC2CaEsALYCiADQBcAa6WUO4QQrQFcBcAK4HMpZUkT5dwD4B4AbifXiBpiX7fatGnj0rpKDzvSh8lkQmRkpEfbUHq3hYaGIjo6GmazWYvQ7Lfvdv3Si3KzOCwsDP44y4kRYg4LC3N7JAdnebtuKceC1sdEoNCi/XGGHvVZj3bLG+0v4PvztBDCZ3XDH/mybtU/doQQiImJ8WqZWomKikJkZGSdY+LgwYN49NFHAQCVlZWIiIgAUNuT2J96PnuLP15vOUMIgfDwcMP9v2F/fCnXjf78f9GxY8ewbNkyvcMgIiIiIiIiP2Tk/4QLUJuEbymESALwDoCPAEwG8BqAdAD/DeB+1A6v318I0QnAFgCDUNtzf5YQooWjQqSUK6WUvaSUvZReVQ357rvvAADNmjXz8GNRsLCvWykpzo1md8011yAqKgoWi8XL0ZGzOnToUGeYcmfdcccdMJvNuOaaaxAZGan5jUd36pferFYrLBYLrFYrRo8ejfDwcPTu3VvvsPyKEAJ9+/ZFeHg4rrvuOq+U4e26pSQhTSaT28dXsPDG/hk0aBDMZjNuu+02TbfrDF+2W0OHDlV73mvZ/kZHR2Pw4ME+O08PGTIEZrMZd9xxh0/K81e+rFsTJkyA2WzG1Vdf7dVyvMFkMiEiIkJNksbExMBms2HdunVYt24dNm3apP4O1Cb8g50/Xm+5wmjXY/bxKNeN5eXleofllqioKNhsNrz33nt477339A6HiIiIiIiI/Ixhe+BLKY8IIUahNiEfDmAhgNUA/gKgO4C5Uso8IUQCAAGg1cVl70opnxZCtAewBsBPqB1m321nz57FkiVLMHDgQIwYMcKTTRE59Pbbb6vD45IxuDuU5bx58zBv3jyNo/FvypzNYWFhmDJlCqZMmaJzRP6pW7du+Pjjj/UOQxMcKtYxb+yfAQMGICcnJ+DPM5s2bfLKdn/++Wefnqf79u2LM2fO+KQscs6DDz6IBx98UO8wNLF37158++236t8lJSWIiIhQR8q58sordYyOfMFo12P28UgpAfjvgySbNm3CwYMH1b/nzp2rYzRERERERETkbwybwAcAKeX3QojRADKllKsuvrxSCPExgBQAeQCKpZRSCHEMwC0ACoUQSVLKE0KIbADJHsaARYsWobq6GmvWrPHb4fvIP3B4XApkynCtRKQfnmc8w/1HgaRZs2bIzMxU/y4oKEBSUpKOERH9zqjD/DsrJiYGffr00TsMIiIiIiIi8lOGTuADgJTyJ9T2ogcACCGeAtAZwKl671sphKhC7dD6S4QQBwHcCeBaT8r/8MMP8fnnn2P27Nno2LGjJ5siIiIiIiIiIiIiIiIiIiJqlOET+ApRO1njEtTOeT9NSnkWAC72vjdJKW1SyteFEJ8B6AsgFcAwKeV/nC0jIiICf/rTn9S/T506haVLl2LAgAF4/PHH3Yq7qqrK4XL2RqX4+Hi9QzC04uJih8u9sf/c3WZT6+nxWYxk8ODBXtludna2LuX6WqB8Dm/V80A5vhzFWVxc7PBzOlrXXz6/J7z1Gd3drid1Mhi+L0ea2ne+lpqa6pXt5uXluVWuu+t5soyA0tJSh9cc/nKeNlqcnsRjtGtAo+1bIiIiIiIi8l9+k8AH0A/AFAC3SynfEUI0AxAPIB+ABYANAKSUOQBylKS+u4VJKXH//fejqqoKK1as8Nuh+4iIiIiIiIiIiIiIiIiIyD/4UwK/AEA5gCohRBKA/wNQAaAMwEcA1gohrgKQIqXcDkC6WkBlZSWOHj0KANi5cyc++ugjLFmyhEPnExlEdXU1zp07h5YtW+odisfy8vLY080LysrKANTOO0rBKxiOr0BqD4MBvy/PvPnmm8jJydE7DK86f/48gNp56V116tQptG7dWuuQqJ78/HysXr0aQO0oajfddBOvNwwkPz8f8fHxCA31p1scRERERERERA3zm/9upZRHhBCjAGwBEA5gIYDVqJ3nfpgQ4hMA7QB8fvH9Lifwf/rpJ3Tr1k39u3///rj//vs9D56INLFjxw7k5eXhr3/9q96heCQvLw8ff/wxOnfujIyMDL3DCShTpkxBYWEhXnrpJfzxj3/UZJvt27cHAPTo0UOT7ZF3Bcvxdf311+PLL79EYWGh3qGQEwLl/KWHFStWYO7cuXqH4XWffPIJAGDs2LEurffll1/iyJEjGDJkCJP4XlZYWIisrCz17+3bt2Pjxo06RkT2srOz0aJFCwwcOFDvUIiIiIiIiIg85jcJfACQUn4vhBgNIFNKueriy2uEEOMAxEgp3/Zk+2lpaVi4cCEAwGQyYdiwYV4ZOl9KiYqKCkRGRmq+baJANmDAAPz888+w2Wx+Pa1Famoq0tPT0b17d71DCShSShQUFEBKiWnTpmH58uWaJPEzMzPRv39/DSIkXwiW42vv3r0A4PftYbAYNGgQTp8+rXcYfumOO+5AQUEBXn/9dfW1c+fOBUyll1LCYrGgf//+EEK4vH7v3r0RFRXF5L0PhISEIDY2FkIIJCQkYPr06XqHRHb69OmDhIQEvcMgIiIiIiIi0oRfJfABQEr5E4CflL+FEDcDSAFw3tNtx8fHY/z48W7dPHNFRUWFOsyz2Wz2allEgcRsNqNVq1awWCx++QCMzWaDxWKB2WxGz5499Q4n4FitVkRGRqK8vBw1NTVqEn/w4MEebVcZ0CUsLEyDKMkXevbsCZvNhoqKCpjN5oBOcPtrexhsYmJi0KZNGz5w4YaIiAjMmzcP8+bNA1B7Hd2qVasQncPSjMViQUVFBRITExEREeHy+iaTCVdccYX6t5QSZWVliIqKYl3TWLt27fDSSy8hPDxc71DIjpQSVqsVl112mdf/jyciIiIiIiLyFb+9qyNqTQXwBIDJUsoznm6zpqYGFRUVDt9TVVWFdevW4cMPP3S7nMjISMTExPCGO5GLzGYzoqOj/fbBF4vFggsXLsBisegdSkAKCwuDEALR0dF48MEH1ST+119/7dF2rVYrLBYLrFarRpGSLwTL8eav7WGwCZb66AsX63yNp9uZOHEibrvtNs8D8pDZbEZkZKRmx7LFYkFJSQnKy8s12R79TgjBh/kMiNdpwSEtLQ1CiAZ/0tLSNF+PiIiIiIhIb37XA7+eEwDGSCkPa7Exk8mE0NDQBv/5P3v2LN5//308//zz+PnnnyGEwLJly3DrrbcCAFJSUpwuRwiBqKgoLUImalRxcbHD5fHx8ZpvsynulGnPZDL59YMvys15Jty0lZubq/5us9kAAF26dMGdd96J119/Hf369WtwOP3c3FynbtwpN+t5074ub7QxWjLy8ebuvlNG77Fnn6TTe59rRY+65e0ytayPRj/2vO1ir3KbO+s+99xzAIDly5cjJycHQO10FNOmTQMAzJo1S5MYXSGEcKvnfWPMZjPi4uLc+l8jLy/P4fLU1FR3wwoIStJPa9nZ2Y0uc3St0tR1jKcjEPkLXqcFh5MnT6qjYtXn6Lh0dz0iIiIiIiK9+W0CX9b+F5at5TZDQkIuGRKxqqoKWVlZePLJJ5GXl4eePXviiSeewOrVqzFz5kwAUJP4DeEQi0SeCaRERGJiot4hBCT7m9fKcMFpaWnq66+//ro6nH79JL4jwXLjO1AEUlvRmJiYGKdeI2MIhjrpLd7cd0ryXjlf5OTkYPny5WoS35fcTYgHeyJdL7Gxsbw2MBh+H0RERERERBSo/HYIfW+rqqrCmjVr0LVrV/z1r39FUlISNmzYgB07dmDEiBF44403MHDgQMycORNvvfWW3uESXUKZ/1npkUwUjK6++uo6w+kfOnRI75CI6mBbbTz8TgKXffJ+/vz5mD9/Pkwmk5rE53dO/qaqqqrR3sVERERERERE5L/8tge+N+zfvx9JSUkAfp9Lr1evXli2bBl69epVpzd9ZGQk3njjDdxyyy2YOXMmMjIykJ6erlfoRJdQ5tsFgDlz5uDaa6/F9ddfr9n233rrLdx3330ObxquXLkSY8eO1axMoqaEhISgpKQEmZmZlyyrqanBfffd1+i6Qgi8/fbbSE5O9maIAef06dNYuHAh7r77bp4H3XD//fdjwIABGDNmjEtThERERKCystKLkRnD9OnTNT9/OXL69Gk89thjuPXWW5GRkWH4aVt8vX/82eOPP46cnBwIITB//nw0a9YMADB//nw88cQTyMnJwWOPPYZFixbpHKkxLF++HAB0GZkgWOXn53t03Xz55Zfj1Vdf1TAiIiIiIiIiItILE/h2kpOTMWHCBAC1iZzBgwdj+PDhEEIgPz//kvcfPHgQhw4dqjNUM5FR2M+3O2rUKGRkZGi6/X379kFKiebNm6NVq1bq68eOHVPnae7Ro4emZRI1Zfny5XWSLxaLRT0Wfv311wbnEFd07dqVQ167ISUlBQMHDsSf/vQnvUPxS9dffz2uvPJKl+dG3717t5ciMhZvnL8cSUlJwaBBg9CjRw9N5qv3Nl/vH382dOhQLFiwAFJK7NmzB6NGjQIA7NmzR30YUXmNgD//+c96hxB04uPjMXbsWLzzzjsurxsSEtLgw4tERERERERE5J+YwLdz2WWX4ZlnnnHqvfv27cO4ceOQkpKCLVu2qD33iYzCZDKpPQeHDx/utXJefvllXHPNNQCA9evXY+bMmQgNDcWOHTvwhz/8wWvlEjUkNTUVK1asUP/Ozc1t9AErR8vIeaGhobjtttv0DsNvjRgxwq31gqV99eb5qyGhoaG4/fbbfVqmJ3y9f/xZ3759MXXqVKxZswa7du1SX1d+nzp1Kvr166dXeIbTuXNnvUMIOqGhobjvvvvqjBbE6xgiIiIiIiKi4GTSOwB/VD95b9/7mCjQKXMD12efvH///ffRs2dPHaKjYCWl9HgeWC22oZUzZ85gxowZqKmp0TsUl3H+cN8L1H3urc/lz8dXYwK1DmitS5cumDp1KoDaxL2SvL/jjjvQpUsXPUMzJCklKisrDXFeDFQ2m82paw9vXaMEYnvoqi+//BKPP/643mEQERERERER1cEe+HYqKytx+PDhRpe1a9cORUVFuPPOO5GcnIyNGzcyeX9RVVWVw+Xh4eE+iiS4FBcXN7qsrKwMMTExjS5zpLFhxMvKymCxWFBZWanOvVxZWYlVq1Zhzpw5avK+U6dOsFgshp872B3KPrfZbOrw7CbT789CBcoQ7NnZ2Q6XDx482OF6UkpYrVaEhYVBCNHkep6yWq2wWCwA3G9vtNiGJ+z3k+LFF19Uf/eXBIrFYsGFCxdQXl7eaBtkJI7aUcD9Y9rd9tkdzuzz4uLiRtutpuLxRrtWU1PT6D5S4lE+FwCPzyfZ2dmQUuLXX3/FHXfcgZqaGqxfvx6bN29GSEiIz6d80bre2e8rckxJ4q9duxYAMHnyZHTq1AllZWXIy8trdL3U1FS3ynO0TU+26wsWi0V9aDMiIqLR99X/jFJKta0RQgTlvnNWeXm5U9ceWl6jBMr1hica2gcLFixQfw+GfUBERERERETGxgR+PY39s242m5GSkoJZs2ahsLAQW7ZswVVXXVXnBjiRkcTExGiedImJiUFUVBQsFot6I/fTTz/FunXrEBoaii+++ALp6ekoLy9HVFRUQB8fWiaWApEvk+GDBw+GzWbzuN5psY1g0lj7EhcXp+5Hapi77bOn+9xf2i1l/9h/Li2OSfvkfUhICM6fP4+bb74Zmzdv9quHrxqKlcedc2bNmqX+vnr1agC/t/2FhYV6hWUY9RPi7p4XnU38ExAVFYXMzMwm9zGvUYiIiIiIiIiCC//7d8EHH3yArKwsPPLII8jIyODNEwpKJpOpTuJHSd7v2LFDfaglJiYm4I8Ps9mM6OhomM1mvUMxpLCwMJjNZoSFhfmkPC3qndHrrr8Mb2v0/RiInN3n/tZuaVmXzp07pybvr7jiCnz88cdo1qyZmsT3l+OrMTzu3Kfsu4Z65AY7d+uV2WxGZGSk37Q1enJ2H/vyGPf39pCIiIiIiIgoEPAun53c3FzcdddduOuuu/CXv/wFX3zxhbqssrIS9957L7p374558+bpGCXR75Q5bwsLC3HnnXfi+PHjLq9/44034p577nGpPJvNhv/85z/q6zt27EB6erpLZfs7k8mEr776CjNmzNA7FK9bvHgxvvnmG5fmXxVC4MCBA3jmmWd8EGFwuPzyy/UOIWApbdsLL7xQZxhhLRQXF7vVPnuDyWSCxWJB165dkZSUhLZt26Jt27bo3Lmz+ntaWhrmzJnj9Vj279+PhIQEJCQkoEWLFtizZ49Xy5s0aZKavF+2bBlCQkKwefNmNYmv5/F1/Phx3HnnnU0Oq0++s2LFCowePRrA7/PA22w2j7f74IMPer2u623v3r0YMGAALBaLpg9FvPrqq1i+fDmHNveBQL/e+O2335p8z8SJE30QCREREREREVHjOIR+Iw4fPoxNmzYhIyMDQO0N+DNnzuCxxx7jfO5kGMpwyNXV1ejfv79Lw5TabDYMHjwYBw4cgMlkwsqVK50uDwAOHToEALjrrruCLnmv6N+/f1DMOTxgwAB07969zrD4zujevTsqKyu9GBmRNpS2bfDgwV4Z7tnV9tnbzp49C5vNhpKSEsTFxdVZVlZWhlWrVqGiokLzhxmoYREREejfv7/eYZCdp59+Wu2FrAwHX15ejpiYGI+2O3ToUPTt21eLEA1rwYIFyMvLw/r16zF9+nTNtjtw4EBYLJY60zgReQtH5CAiIiIiIiK9sQe+nbS0NKxevRqrV6/GsGHD8M0336g37xISEgAARUVFeoZoSMqcjOwR43vKcMjNmzfH3XffjdatWzu1nn3yHqidb9i+d31T5dkPiepP8wZrLTQ0FCNHjtQ7DK/r378/QkNDXR4WPzQ0lEkpDSkPzZD2lLata9eu6NSpk6bbjo+Px1133YXExERNevBqEc8nn3yC0NDaZzifeOIJ/PTTTzh58iROnjyJo0ePIiEhAVlZWZom3+q74oorUFBQgKKiIpw9exYDBgzwWlkAkJWVhZCQEPzwww+YOXMmampqcPPNN+P8+fNo1qwZjhw54tXyHWndujXuvvtuxMXFNXkeJt+wH0JcGQ4+KirK4+0OHToUISEhqKysDNjr5vz8fADQ/AG+zp07o3PnzhyW3wcC/XqjefPmTb7nzTff9EEkRERERERERI1jAr8RvXr1QllZGY4ePQqg9uZdTEwMzp07p3NkxlNeXo6ysjJUVFToHUrQUeajd2U+TPvkfbdu3dTel0oPVEc9rN0pjwKHEALh4eHslaQTV0Y/INd4u21zpn31pfT0dOzYsQOhoaGYOXMmNm7cqC5LTEzEvn37vJ7EN5lMPj2XpKSkYOPGjWoSf8iQIWryfvPmzQgJCfFZLI0xWj2hWkIIREREaFZflR79/J5do3wPvAbxPtZN3xFC3COE2CeE2Bco9xnS0tIghHD5Jy0tTe/QiYiIiIiIDIVD6NspLy/H/v37AUAdmvH9999Xb2I0b97cqTnzgk1UVBSqq6sRGRnp8rpVVVUOl3O6AveVlZVd8pp98r5Lly7YunUrunbtCgCwWq0QQsBqtTq1TaXnmNVqRUlJCaxWK+Li4ty6wd3UvL/+0su/oX1uz18+h16ys7MbXZabm+vwxt7gwYNd3qaj9RytK6WE1WrFkCFDGqzvnpTpiBa9P43A3ePdfj2bzQaLxQKz2ax+B46OL0dllpWVeTwsdlOUHqNG6jmqJPGHDx+uznk/YcIEALXn3s8++wyDBg1CVlYWADQ6nL6v2zVPzhdKEn/ChAmoqalxOnmvlNlQvWuqTFfY1xN362xT9TkYzkMWiwU///xzo4ne1NTUBl8vKChw+Fpj67lKi/YgLy/P4XJHsXqybmPs95MygkRFRYX6ulb7zsi8de7Xo0xfX29441rNmXXdZV+mck0YFhamtjmulCmlXAlgJQD06tUrIIblOHnypFsjjPDhHCIiIiIiorqYwLdjMpkQHR0NAIiOjkbLli3xn//8BzfffHQwZLQAACAASURBVDOA2hu/gfJkvJZMJpNHN4SllKioqEBkZCT/cXeRs/tdGR5/+PDh+PHHH9GlSxfs3r0bJpNJ3ef150FuiH1SQFkvLCwMYWFhqKqq0mR+WKMLhuQH4P4NT2/cKPUWKSXKysoQFRXl0oMnVqsVFotF8/puf7Pz/PnzMJlMiIqKMkTPYKNReioDcOvhMXsxMTFeOa6N1lY0FM8111yDL774AhkZGZgzZw7MZjMmT54MoHa/fPPNN0hPT28yie+OkJAQzfaRfWK9MfZt09ChQ906vrSsd0199qYeVKDGKfXB1XnSk5KSnHrNVcGQvLbfT8r5NDIyEomJibBYLLDZbG494BkM+84TDSWPnV1PEazXG/X3AQA0a9bM5e0o14QAHzwnIiIiIiIibQXMONhCiCuFEH2FEL212maXLl1w6NAhdR5M9sD3joqKCg7B72UVFRW49tpr8eOPP6Jbt27Yvn27pkMXK/NHa91jR3nwgPMBkzcoo0eUl5e7tF5YWBjMZnOT9V1KiaqqKrd6ITVr1gyxsbFBdTPdFUqbY6Qe7f7qqquuqjOc/vr169VliYmJ2L179yXD6RutbXZ16Hl3jy9/qHdG+270YDKZDP0dGY2UEpWVlW6dq5qiTBfg6nmWnKMkjx2NntWUQLne8PSay53kPfD7NWFYWJhb6xMRERERERE1JiAS+EKIEQCyAIwD8J4Q4lYX1lXnnSspKamzrEuXLigvL8fJkycBsAe+t0RGRiImJsbj3mxGY6Q5DTMyMnDo0CEAtTe2R48ejczMTGRmZkKp9+7e9Fd6VWk1f/SGDRvU+ZiVpIw/3vgtKCjAAw88gOrqaq9s30j1S2vV1dUYO3asWkczMzMxZcoU9ffRo0dj7969Lm/3yy+/xFNPPaXW8bCwMMTFxTWZiK+ursaSJUvUHrFCCISHhzdZ361WK956660684v7A1/WrTfffBPr1q1zud0pKirCww8/7FaS8vHHH8d3333n8nqBTBlOX0nid+3aVT3ebrvtNrRo0QIAkJWVhYceesjtudq1rlvK+cJXiXWTyYRnn30W33//vVfLsVddXY3OnTsjISFB/UlNTa3zt/1P27Zt0apVKyQlJSE5ORnLly/3Wax6sq9bP/74I9q2bYs2bdqgS5cu2LVrl97heVVBQQEefPBBt5K4ixcvxr59+1BRUaHZvOfKyAdCCJjNZkRGRvr1FDDutFuHDx/GihUrvPJQhD375PGmTZuwadMmr5bnC8XFxViyZInL189WqxWrVq3CwYMHvRTZpaqrq7F06VKUl5dzFDkiIiIiIiLSnN8n8IUQVwBYCuBuKeUsAHcBuFUIES2EaPLzSSlXSil7SSl71R9CXHkSXxlWLyIiApWVlRp/AhJCICoqKuBufNjXrZSUFF1jSUhIUH///vvvceDAAezfvx/79+8HALRr187lhEzLli0BAC+88AIKCws1i/W6667D6NGjAXivZ78vnD17FldffbXXHvoxUv3SWnFxMaqqqhpdfuHCBfzrX/9yebuvvPIKPvnkE9x7772w2WwQQiAmJqbJRHxxcTHS09NdrudhYWFYu3YtVq1a5XKsevJl3br22mtx9dVXu5w48uT4uuWWW3DZZZe5vF6gU5L47du3x6lTp9RzxIEDB3D48GH1fV9//bXbCXOt65ZyvtDyIbKm+Lr+nDt3zu1rz5qaGrz77rsaR2RM9nXL/vXS0lLs3LnT5e1Nnz4dmZmZmsXnTadOnUKvXr3w66+/urzuDTfcgLS0NERGRmr2AMyDDz6Ivn37Yty4cRBCICIiwifHpre4024lJiaiX79+HvWMd4byQKEQAq+++ipeffVVr5bnC4WFhUhPT3d5GpGwsDAMGTIErVq18lJkl3L3+pCIiIiIiIjIGaF6B6ABM4D/lVL+62LC/iiABABCSmkTQgjpZveHQ4cOQQiBTp06Aai9iRpoiTIKDtnZ2XX+Lisru2TubqUnq7M3cK+66ir88MMPqKmpQa9evbBv3z5N5jOOjY1Vf/dlUkZrnTt3RufOndWRDTicr/OSkpLwzjvv1JnTNTc3F2lpaXXme3WV8h0cO3YM9957L1asWOHUesnJyW4lcgLtoSRvSE5ObnLu8oYox5c76h+X/ti+eEt6ejq++eabOq81dL4APJ8DXgv25wtfcbfeuatly5Y4duyYepyYTKZLvhNlznez2Yzy8vIGv69g0q1bN2zbts2jbcyePVv9XUrp0Tzu3tatWzd06tTJreuMP/7xj5rHM2bMGIwZM0bz7fqTlJQUxMfHc1h1J9lf27Vv3x7t27d3eRtCCFx++eVeiK5x7l4fEhERERERETnDeHehXCSl/BrAZxd/t0kpjwO4gN8/m9vdpA4ePIh27dohOjoaABP4FNjcTZb37t0bRUVF6NWrF3ugNMDdoaaDmaM5Xe17m7lKWadjx45qEj+Y54k2Ar0e0uFxSf6kqfrqzw+7+QOjz+Ou9HLnQ2PG4cm1SjBydN1HREREREREFKz8uge+0rteSnlW+RtAOIDWAMKFEHcCmCGEuBpAWVM98aurq5Gfnw+g9kbC0aNHMXjwYPW13377zedP9hMZSVlZmfq7cpNtxowZ2LZtGzZu3IiOHTti3759SExMbHB9LXro+xulR5zZbG5yONBg3D8NUXqsadFzLTc3V/1dSX49/PDDWLhwIY4dO4bLL78cK1as0DTxZV+mo9dIW46Or/o9lu2PSyPEUx/bAv9hf15siBbfpVb11Vux+tO5raCgwOGypKSkS15X9rs/TeeTl5fX6LLGPqdeHMUKAKmpqT6KpGmlpaWXjGqlUEYK8iVvXW809hkVgwcP9rgMe1pe9xEREREREREFCr9L4AshrgPQXkq5rH5C/uLfFiHEYQCzAfQHMFlKWerMtmNiYtCvXz8AtXO8VldX4/rrr1dfe+yxxzBw4EANPw2Fh4frHULAcnTD3N2b6fYJJ+UmW0REBF5++WWEhYVh/fr16nD6jSXxtYzHaJr6HPWTHPbDHrPnpPY3hAHUuZmuJGHat2+PtWvXYsqUKXWG06//HbgbT0M38H19U9/I3D3eXT2+7MXExBiynTFKG+CN84W36BGP0co0+veld70ODw93K+mblJRkqGSxI03F6Sgp7o3P6Y39ZtSpC6qqqupM8aNIS0vzynWMI4FyveHJMPS+3ud6lUlERERERETBxzh3Q5wghBgK4AkAPzWwzP4uSjSAsQDullL+6E5Z+/btg8lkQo8ePQAANTU1KCgo4BD6RI1YtmwZJk+ezOH0XcBhvPVjMpmwYMECDqdPumIbQIGI9Zq0YMSpC5SHCjjUOxERERERERF5m9/0wBdCZAB4A8B1UsqvhBDNAMQDyAdgkVJW2739bQBfSCmPuVLG6dOn8eSTTwIAPv/8c3Ts2BFxcXEAgPPnz8NmszGBT1TP888/jx07dgCo7fWWmJiIwsJCdOnSBYcOHTJEb0Ajeu2113DrrbciOjraq8N4U+NMJhNWrFiBe++9V03ir1y5ElarlcO4+rlVq1ZhzJgxSEhIMETPzeeeew6//vqr+rd9Hauursb06dPRoUMHvcIjjezduxcA1JGbjCwnJwf//ve/MW7cOE2PkXfffRfp6elo3ry54c9t//73v2G1WtG/f/+Anqt83bp1GDt2rF9MAfDCCy9g0KBB6NGjhyGnLjhx4gQmT54MAEhMTMT06dPVh70D1XvvvYfhw4fDbDbz+oiIiIiIiIjIh/wmgQ+gAIAVQEshRBKA/wNQAaAMwEcA1goh+gCIklKud6eAoqIivP322+rf9jeMKioqLnmNKJi1adMGQgjs2bMHe/bsuWR5ZWUlNm3ahHvvvVeH6IwtLy8P1113HY4cOYL09HS9wwlqJpMJS5YswY033ohjx47h1KlTaNasmSbbllKidevWmmyLnJeXl4ehQ4di//79yMjIQGRkpK7x7N27F0888YTD9/z222/YsGGDjyIib0lNTVUTwcow8nFxcYZ4iKS+kpIS9OnTBxaLRdNj5M9//jPOnj2r+3HnjObNm8NiscBisSAiIkLvcLzi1KlTGDFiBI4ePYoePXoYdlh6ANixYweWLFmCZcuW4fjx4xBCICIiwlBx1tTUqNO1FBcXY/Hixdi4caPOUdVSrjeklJo9kHL27FkMHDgQubm5aN++PUfVICIiIiIiIvIhv0ngSymPCCFGAdgCIBzAQgCrAdwJYJgQ4hMAbQFcmkl0Ups2bTB37lwAwJYtW/DPf/4TRUVFSEhIQPPmzSGEcDinJFEwmTFjBvr374/c3FxERESoPaVsNhusVisSExP9oheiHpS5Ylu0aKFzJFRSUoLbb78dADBy5Ei0bt1asx5mVqsVr7zyiuF7oQaa1NRU2Gw2w/QAVqYTGTBgAB544AEAtQ84vfDCC/jqq69gNpuxfPlyPUMkjVx22WXq78ow8uXl5YiJidExqoZ169ZNnadeS/Hx8X4z8k5aWppX9oGRKEnd5s2bA6g7LL3R6uXs2bMB1J47ly9fjmnTpukc0aUSExMxcuRIALWjTt100006R/S7NWvWqMP7h4eHa7JN5To1KSkJUkoAYA98IiIiIiIiIh/xmwQ+AEgpvxdCjAaQKaVcdfHlNUKIcQBipJRvO1i9STExMcjIyABQe6Pr008/xdatW3H77bcjLCwMqampOHHihGcfgiiA9OzZE507d4bZbDZUDykiZ5SVlWHGjBkoLS3FyJEj1eSBVje+lZvcvNnteyaTyTA9gJXv/49//COuueYaAMB9992Hr776CgkJCdi3bx8SExP1DJG8wIjDf9sz0jGiF6WHdzAxar3csWMHzp8/j8jISFRUVOD55583ZAI/OTkZd911l95hNMjb1xxCCM2uj4iIiIiIiIioaX6XcZNS/iSlfEn5WwhxM4AUAOe1LKdjx47o3r07Nm/erPY4aN++PRP4RHaUBACT9+RvSkpKMHfu3EuS965atGgRYmJiMGzYsEuWKTe7A3luZWpa/fZx5syZ2LhxI5P3AU6r8+PWrVsRHR2NRx55RKPIKJgZcVh64Pfe9y+++CJSU1NRVVXFkUlcFOzXHKdOnUJiYiJGjBihdygBIy0tDUKIBn/S0tI0L69t27aNlieEQNu2bd1a19F6RERERERERuZXPfDtidq7E1MAPAhgrJTyjKfbLCoqwubNm9W/27Ztiw8++AB///vf0bZtW7Rv3x7bt2/3tBgin1Dm6GxMY0Pcuruet/hTPGVlZQ6HpPWXYYUBIDs72+HywYMH+yQObygpKcGkSZNw4cIF/OUvf8GqVasafJ+jfZCZmVnn708++aTOTXPlwS9yjSfHu6NlxcXFjW7bl8ftzJkzsX79eiQkJODYsWN+kbw3WhvsLk8+hx77IDs7G3v37sW8efMAAE8++SRyc3Nx9913A3CvDfYkzkCpB8oUNr7U1PRbjcXk7npNLfMGT2J97LHH1N7358+fx/jx47FkyRI899xzaNGiBWbNmqV1uG6LjY011PWPt2Jxd7t6XDvWf2Bhx44dTl2POYo1NzfXYYLaSHXAm06ePNno/vPGgyK5ubm6rEtERERERGRUxup+4boTAMZIKQ96Y+OdO3dGREQEvv32WwC1PfDPnDmD8vJybxRHRAHGZrOhoqICNptN71A0I6VEVVWVX3+mSZMmqT3vG0veN+aNN97A0KFDvRQZBbJ3331XTd77e8/7QGzb3OHN/WCfvFemd9qwYYPLbRYZi5QSlZWVfMjLzqZNmwAA48ePBwC0bNkSiYmJqK6uxs6dO/UMjYKQlBI1NTU8RomIiIiIiEh3ftsDX9b+V53tzTLCwsLQrVs3fPvttxg2bBg6d+4MAMjJyUGXLl28WTSRpk6fPo2UlBSEhrp2yFdXV+PcuXNo2bKllyJzjZHisdlsuHDhAl577TVcuHABAGC1WuvMPTpw4EC1rfDnuYbz8/MRHx+P0NBQWK1WWCwWlJeXO+y1bEQWiwUA3Bo2PysrC+vXr4fVavVWeFSPt473vLw8HDlyRP27oqJCPT5tNhuuuOIKNG/eXPMhpgsLC/0+ea/0wjabzWq756/y8vLc6qVsfz61WCy4cOGC5u3h1q1b1eT9xIkTcffdd6sJ/Q0bNgDQtweou/uOgJ9//lmdfz4iIsLp9aqrq1FQUIAWLVp4KzRNnTp1Cq1bt4aUEhaLBTabrcE2dcuWLWob3K1bN/X1qVOnYsmSJfj00099GTZpqKysDAC8eq146tQpTbZTXV2N7777DjabDdXV1Th79izOnDmj/t+UkpKC9u3ba1IWERERERERkbNcyuYJIZy542yTUjoeZ9OP9OzZE19//TUOHz6MW265BUDtEG1M4JM/6datG6KiorB//36XEkc7duxAXl4e/vrXv3oxOucUFhaiR48eKC8vR35+vt7hwGKx4J577sGOHTsafc/SpUvx9ddf+22yTpGdnY0WLVpg4MCB6gMKSgLCn5w8eRJA7YMVriTvf/rpJ6xevRpAbc/Av/3tb5g6darDdVauXIl77rnH/WDJa+1Pr169UFVV1ejyFi1a4LvvvvP4oZuPPvoIL7/8Mvbs2aO+5s/JewDYtm0bAGDChAkAahP5/ujxxx/H3//+d2zfvh39+vVzad2uXbuiT58+2L59u/r5tW4PlZ7IGRkZ6pD5/fr1w9y5c/H0009jw4YNePPNNzUt01l5eXn4+OOP0blzZ3VkAHLeoEGDkJ6eXmfKLmfceeed2L17NxYvXqwef0b15Zdf4siRIxgyZAiSkpJQUVHR6EMuc+bMAQB06NChzuvNmzdHSEgIqqur8dVXX6F3794+iZ20cfjwYdx///1ITEzEO++847Vyrrnmmibf40z9+d///V/861//cvgeVx/8JCIiIiIiIvKUqz3wf73442jSsxAAbdyOyGCUXnjFxcWIi4sD8HuPAiJ/UVNTg9LSUvTq1avJBJLNZoPFYoHZbMagQYNw+vRpH0basMLCQvTq1QulpaV6h6Iym814+eWXMX36dHz11VcAaofdVOaEDAkJwYQJE9CxY0c9w9REnz59kJCQAKB2zsvw8HDNeyd72+eff67+fuzYsSbfb7PZUFVVhbCwsDr1LiMjw+G8qIrHHnuMCXwPadn+2LdrY8eOVZOfEydORFhYmPpgymuvvYaKigq3E9Nbt27F0qVLsXfvXnXEB8W2bdsQHx/v0fb1pvT6NplMfj2qyMaNGwEA//jHP9CjRw+Xvg+bzYa9e/cC+H0/aN0ePvDAA3jyySfxxRdf4Msvv0Tfvn1x7tw5PPvsswCA7t27a1qeK1JTU5Genq5rDP5MSol9+/a5PH/0L7/8AgB46KGHAMDQSfzevXsjKipK7YEPNP6Qy7JlyzBq1Cj8+OOP2LZtG0aNGoWamhosXLgQNTU1iI6OZvLezxw+fBjTpk2DzWZDYWGhV8uaNGkSHn30UYfvSU9Pb3I7t99+u5rA79ChA9LS0hAbGwugts3fuXMntm/fDgBM4hMREREREZHPuJrAPySl7OnoDUKI7zyIx3CEEIiJiUFZWZl6s7qyslLnqIicoyStgNq6XFRUpCbx4+PjG1xHGRIYAOLi4tQHV/SiJO+LiooghDDMnJQmkwkJCQnIyspSXysrK/O7YeWdEQhDJT/zzDMAao+D06dPIycnB+3atWv0/eXl5ZckYNu3b+90r8mzZ89i48aNhk6yGJnNZkNYWBj+8Ic/aLI9+3Zt+fLlEEIgKysLH330ET777DO1jr/99tsA4HJCdt68eVi8eLE6F3pcXByGDRuGWbNmYejQoTCbzcjIyEBFRYVfDz3funVrvUPQRE1NDYDaYZON+H387W9/w/Hjx7Fp0yY8/PDDmDt3Lp599lnU1NTgiiuuwPPPP69rfN27d1cfiPG3h7n8VXR0NAAgNDRUTeIrvdeNxmQy4YorrgBQe86NiIhotJ6MHDkSU6dOxZo1a7Br1y5IKfHVV1/hwoULiI6OxiOPPOLL0MlDSvJeaWMjIyPVhyFdfWjFGfPnz28ygR8SEtLkdi6//HK88sormDZtGo4fP46BAwfijjvuUJffdddduP3229Ukvp5TmBAREREREVHwcPWuWz8AEEI4yua4NhapH4iJiUFpaak6V2VFRYXOERE5xz5p1b17d0yePFlN4jfWK8ZsNiM6OtqjHqKnTp1C165d8fHHH7u9DaBu8n7y5Mns8Udu+fzzz1FWVobY2Fh16PumkgJRUVEwm81qz2ygdiqKm2++2akkvhACs2bN8izwIKa0XfUfolB8/PHH6Nq1q9Pz39Zv11588UVMmjQJRUVF/5+98w6Pomr78D3ZbJaQhIQSqpAo3VBFUBBBUD96EVQINUSKryAohhoRVDoBXkR5QbqhKUWQIop0BSVSDB0pCYiUkEBIZ7M73x9xxt1kd7O72RTg3Ne1F9mdmXPOtDOH+Z3n99CiRYs8RQmOGzeOadOmYTQa8fLyYseOHSQmJrJy5Upu3LjBgwcPaNWqlcV2CAoXd3f3Ins+hgwZolrpT58+XRXv582bV8gty/3+dIZp06bRrFkzVfgTWGbz5s2qiL9kyZLCbo5LCAoKUp/Ne/fuNRPv8/ve3LRpE4GBgZQrV079CJwjKipKFe/DwsLUSScZGRno9fpCbl3u1KpVi88//xyNRsOKFSvUlDGQNSkvMjKSEiVKsGPHDjW1iUAgEAgEAoFAIBAIBPmJQxH4siwroeebAYt+dCbrPHSkpKSoVtimZGZmcvv2baci8G3l2QXw8PBwrJEPIfl1DMSxtU1ycjJGo1GNeDEYDEyZMgW9Xs/atWupVq2aRTt9a3lK7WHfvn3ExcURHByMwWCgbdu2TJ06Vc0xbC1i5d69ezl+MxXvg4ODmTJlCu3bt1f3TcGak4C1chVsRcs7u6ywSEpKYt++fRaX5UeUUExMjNX6YmJibFrM22qPtTLt2dYapnlNK1euzMWLF9Uo/LCwMH7//XeL27m5ufH3338DWdH0kHXue/fuzf3799m1a5fNehs0aMDx48eZMGFCjhytInIrdxTRxlS8OXHiBACHDx9m/PjxAAQEBLB27Vr8/f1tHldLlu/z588HYNWqVTRq1IgDBw6oDh/29DHvv/8+P//8s3oNvfDCC0RFRdGrVy+6d+9OREQEX3zxBYA6mUNpR3Jyss3IZVv9Wn6Ql76yKLUHrB8707Yq51mv12MwGEhNTbWZWsbSftr7HHIWSZJ4++230Wg07N69m0qVKjF79mwgaxxq6xhZa09ejqsplu5PZ1D6/EWLFrFu3ToASpcuzcaNG9FoNI9MXxkfH2/zN2suN6brZGZmAlkuGCtXrqRfv34MGjSIhIQEi04vtpxzrl27ZrO9heG6o4j4mzZtwsPDg7CwMDQaDWlpaVbbGx8fT+nSpR1eBjBhwgS++eYbl07KtjWGycvYyNk686tcS/tiGnkfEhJCUFCQ6khz+/Ztu6LgiwKKiD906FAiIiK4c+cOLVu2VJdPmTKFsWPHsmTJEv7++2+rdvqPSt8lEAgEAoFAIBAIBILCxVELfYVfJUlqLMtylEtbU8jIsqy+IDNFq9WSkZEhIvAFDxXZX8RrNBq8vb1ZsGABkJUD+Nlnn+XIkSOUKVPGbDtnxQhT8b506dLEx8czfvx4MxHfHrKL90qblReAhSmg2zo+BS265Sd5EdqLEvv371f/PnPmjNmyo0eP2txWeUGtCPg+Pj48+eSTjBs3DoBdu3bRvXt3hgwZQr9+/fDz82PBggXExsbi6elJz549WbBgQQ4BX2Cd3O4hU/Fe6WOCg4NZs2aNU+VGRkYCWSJ+y5YtMRgMuLu729XHmIr3nTt35qmnnqJSpUps3ryZjRs3MmnSJKKioihRooSZAPCwkZdnQlHC9JwqE9u0Wq1d59rb29ssJU328vIDpQ+21BfbEuLzi/y6BkzFey8vLxITE+12OnlYsCQk2xKXLa3j7u6u/vbiiy/y1Vdf0b9/f9VOv7DTteRF9Dd1q1m6dKnZstwmGzjK999/z+jRo0lMTASyLN579OhB3bp11XU++OADl9Uny/JDEX2eF7KL94r1vDJJrWrVqvla/969e4mMjGTZsmX4+/sTFxeHJEns2rXL5sQBa+Nc5fdhw4axYsUKypQpQ4cOHdTla9asMbPTtybiCwQCgUAgEAgEAoFAkFecTVzZCjgsSdIlSZKiJUk6KUlStCsbVpTQ6XRmL18cicAXCIoiM2fOVO30mzRpkif7aIXr16+r4n29evXYsGEDvXr1ArLyQx8+fNiucrLb5iu5ywWC/ODUqVMObyNJEsHBwarI1LlzZ27evEn//v1VYbBcuXI0bNiQhIQEdu/e7epmP5aYive9evViw4YN1KtXD4PBQK9evey208+OqZ1+amqqxYl82Rk3blwO8R6gYsWKdO3aldTUVJo0aUJGRgb/93//51S7BEUL05Q0AtdgKt5PnTqVLVu24Ovrq4r4wk7fOk8//bSZnf7atWsLu0lFmu+//566desyZMgQEhMT8fT0JCQkhMmTJ5uJ965Gr9eTkZHxyF7LpuJ9WFhYoU1W69u3L1qtlri4OABat26dp6h/Uzv9iIgIm3b6s2bNynP7BQKBQCAQCAQCgUAgsISzEfjtXNqKIo5iERoTE4Onp6dLxM7HGVmWSUtLw9PTUxW7BAXPvHnzSElJYePGjbRv355ff/01T+XVqVMnR45eJUfkmjVrCA8PVyOXbdG5c2fu3r0LwFdffcVXX32Vp3YB3Lhxg6efftrp7Rs2bMiePXvy3I784sKFC2qObW9vb7Zu3VpgdQ8ZMoQLFy5YXe7j48N3333nUJl37tzhyy+/pFu3btSqVcvptimW67YIDg7m5MmTNtdRXgJfvHhR/U2SJIYOHQrAxo0b8ff357nnnjPbbujQoQwcOJBlxt0mBgAAIABJREFUy5aJKPw8kJiYSLt27dRJQL169VL7lnnz5vH2229z/vx56tat6/Tz2dROPzU11ea6Fy5cYPr06YC5eK9QsWJFunTpwvr16wEIDw+3WpbRaOSpp56iQ4cOqt1+YfPuu+/y6quv0rlzZ4e2e//991mxYoXL21O2bFmbEazO9M/Vq1cnLi6OsmXL2r2NTqfj+PHjDtVTEOTX+XJzc+PUqVNUqFAhjy20zIULF8zEe8WlZ+PGjXTp0oXExERefPFFDh06lC/1P2wo4+UTJ07QoEEDAOrVq8fmzZvp2rUrY8aMYcuWLcyePZtKlSrlWl5iYiL9+/fn+PHj1K5dm507d+Zr+11B165dOXbsWJ7K8PT0ZP78+WoEfn4xZ84cm2MxNzc31qxZQ7ly5VxW55AhQ7hz5w7Lly+nRIkSLinzzp07vPHGG3atGxERkeO3gnTM6tu3L8uWLQOw6/8buaGI+MOGDSMiIsLi/gHs2LGD+vXri8l6AoFAIBAIBAKBQCBwOc5G4HcCEmVZjjX9uLJhRYlSpUohSRKfffYZr776KqtWrcr3Fz+PMmlpaSQnJ4tUBIVMQkKCKnq4ImImKSkJNzc3VbxXGDRoEL6+vmrO4dxYvnw51apVo379+tSvX5+6detSr149goKCqFevnmrN6Qj+/v6q2OooGo2GTp06qbk8izovvvhigdanRD3XqFGDGjVqEBAQQPXq1dXl9ggJ2fHz86Nhw4Y288XaQ82aNXNdp0ePHrmu06BBA3x8fDh16pRZpJUi4n/zzTesXr3abELS/fv3ef/99wFo3LixE60XJCYm0qxZM/z8/Dh8+DCSJBESEqKK95CVtkOZWJF9AoWjzJ8/n127dnHkyBGb6wUGBqp21pbSMBgMBrZt2wZA+fLlVbHNEhkZGSQmJuaaAqAg6dChg2ohbDQaSUtLs6v/e+edd3jiiSdc3h5lcoUlNBoN3bp1Axxr68KFCzl48CChoaF2t+P48eN06dIFKFrpUpTz5cj+Q+7n67nnnsPf399VzcxBYGCgOjlKEfIBjhw5ojodKMdb8O+EyG7duplNTlNEfH9/fw4dOkTTpk3p2bMnV69etVhOYmIiXbp0oW7duhw7dgxZljlz5gznz58vkP1wFlmWmTp1ap5zqaelpfHxxx9z48YNF7XMMqb9ftmyZQkICFDHSVqtFqPRSExMjEvrvHjxIgkJCfTp04f79+/nqSxZlnnw4AG+vr65Cvje3t5mY0Dl7xo1atCnT588tcMR+vbty//+9z8WLlyY5+tEoVatWixatIguXbqY7Ve1atWoWrUqAQEB1KpVi6CgIJfUJxAIBAKBQCAQCAQCgSnORuCXB36XJOkYsAz4QbZXnXsIKVasGBUrVmTJkiVs3ryZ7777jtmzZ/PJJ58UdtMeSjw9Pc3+FRQ8d+/epWXLlty9e5c+ffowY8aMfK1PyYNpD9WrVycqKkr9npycTPHixcnIyECn0zlUloK7uzuTJ08mPDyclJQUvLy8MBgMViODkpOT1WVpaWmkpKSQkZFRZK/ZGjVqsGjRokKr38vLS63/8uXLTJs2DYBq1ao5FVXs7u5Ou3Z5N3qx53x9+OGHdrVn6dKlvPXWW2rOU+WFtiRJOUSu5ORkhg8fTlJSEm3atGHEiBFOtP7x5vr16wQGBpKZmYmbmxu9evUiJCTE7KV8XFycmrajbt26fP/993mu99lnn811HQ8PD2JiYqhSpQrXr19n/fr16vVgMBhYsmQJaWlp+Pv789dff9ksS3H4KUq0bdtW/VuxjU9NTc01krJ69eo53CxKliyZ5/b06NHDbKKNaf9siiNtrVy5skM5u48ePUrbtm3V9AoBAQF2b5vfKOdLeVbZS/bzdf/+fbRardPPWUfx8PBg7dq1BAcHEx0dzYgRI+jZs6dZmgwlv7sgy+3j3r17TJgwgW7durF8+XJ18mW9evU4evQo3377LZMnT+bQoUMEBgbSqlUrli9fTpUqVXI4mbi5udGlSxeeeuopZs+eTWhoKL/88kth7qJNMjIyqFChAmfPnqVYsWIAxMfHU6pUKXV8aDqJLj4+ntKlS5uV8dlnn/HZZ59x7do1IiIiKFWqFKGhofniMtG6dWtSUlKYM2cO8fHxjB8/ntatWwNZzjGbN292eZ2enp6kpKSQlJREnz59iIyMVMfQjt7TivW/TqfjnXfe4Z133lGXxcTEWJ1gaWtZQZAX1yZrVK1alffee8/sN1mW0ev1aLVa4SYnEAgEAoFAIBAIBIJ8w6k3dLIsfwhUB5YCIcCfkiRNlSSpqgvbVqRQXkZs27aNHj16MHnyZLutYmVZJjU11e4I5EcdSZIoXry4S154iGNrHWvReAkJCbRo0UIV721FNxYktqIH3dzc8PT0zLOooNPp8PLyUkUzeyIWs29TFJFluVDugex1Go1GPv74Yy5evEi1atVYtGiRes6UaC5HnQyU7Qr7Hi9TpgxLly7Fx8eHHTt2sHz5covr3b9/n7Fjx5KUlET79u0ZO3aseLnrIKbifdOmTXnw4AGRkZFm4n1CQoKZeJ/d+SMv2NMvVKpUidDQUNzc3FQR31S89/T05MaNG7lGARaEUJoXlP6vePHiua7raAS4q8txpK2O1BUVFaWK9668zlyNo8+q7PvuquesI/j7+7Ny5Uo0Gg3R0dFm4r2p08ajiizLpKen23WtZ2Rk0LlzZz799FMyMzMZMGBAjjQxr732GkePHmXevHmUK1eOPXv2EBAQwBNPPKE6mbi5ufHaa69x6dIl5s2bx4gRI/Dw8ODatWtFOgpfp9Ph6emZ4/qWJIlixYpZfM4qx1cZPwwfPpyLFy8SFhaGu7s7CQkJREREMGnSJBYuXKh+cN6hzoxOnToxcuRIDAYDU6dO5dy5c64o1iZeXl60b9+epKQk+vbtS2xsbK5pYSyhTObRarW5rmvPOC37GPDXX3912UT4/BwnWitbkiQ8PDzE+E4gEAgEAoFAIBAIBPmKsxH4yLIsS5J0E7gJZAIlgQ2SJO2SZXm0qxpYkBiNRpKTk60u69q1K4sXL2bjxo3ExMQQGhrK1atX6dKlC/Xr17darmIZDzj0YlmQO4/6sU1ISLAZeW7Lxvfu3bukp6erkUoGg4Fr167RokUL7t27Z1W8t3YP2FMnYNESVIlatIUSPQn5586gCBSO1Jl9m7weH2vcu3fPqe3g30ggDw8Ps99jYmLYt2+f1e0Um2xHUc6xwWBQX8ZevnyZjz/+mKtXr+YQ7yErmismJoaffvopRzttoUSBXbt2zeaLUmf3xdbxMUWJtI+MjKRv374cOHCAiRMnMmDAAHWd5ORkxo4dS0pKCu3bt2fUqFE5yjE9J5YiuJzdj/zCYDBYvTbzw0Y8+zk+fPiwalffsmVLJk2aBMCwYcMwGAzUq1fP5aKqvX2Rt7c3/fv3Z+XKlVy/fl3tT4sVK8aAAQNsivfJyckYjUaz3O6mfYu1Y5tbP+Hqc+KIqOuqPjw1NdWpcpwRoE3bbOnYmkbez5w5k27dujFixIgc40Vnjrurz6Wy/8nJyVaPgal7gaPny1Z7Tcs1Go1m4xZrjgkA6enpVKxYkZUrVxIaGoper+fNN9/Ms3j/4MEDrl27ZnW5I+4LriA+Pt7ib3q9ngcPHlChQoVcXSMU4bpfv364u7szbtw4NRK/Tp06Zuu2aNGCjIwMNmzYQFRUFNevX0eSJBo2bEjPnj1JSkoycyxp06YNW7dupWfPnnz66af85z//ccFeuxZFqHeEjIwMNV2X6bbDhw+nQoUK7Nq1i59++omkpCSSkpJMN3WN/zpZIj7AnDlzGDZsGOPHj1frunXrFpcuXcqT3bvpmFsZj73xxhskJSVx8OBBmjZtSmRkJL6+vjm2sxUprwjU9qCM03JbZ+rUqbRp08bs94kTJ6p/2xLgbY3VLl++TNmyZQEcGl/ag+m+ubpsBUmSBgODAapUqZIvdVgjMDCQ2FjrWRCLktuMQCAQCAQCgUAgEDyOOCXgS5I0HOgP3AGWAKNkWdZLkuQG/Ak8lAJ+uXLlCAsLs7gsJSWFcuXK8e2337Jq1So1akURE6wJ+B4eHri7u+Pu7u6UheGjQH698Hgcjm1eBJGSJUuqL9Eh6yVUy5YtVfE+MjLS5e0FLL4QVAQ4a/j5+VGiRAlSU1NznMu8CFK2tvXz88NoNLq8zsLAx8eHV155Jcc9YK847SjKOZZlWa1z2rRpqnh//vz5HG0xGo389NNPNqO5LInXyjkyTavgCM6+ELbWHoArV67w5JNPcuDAAby9vRk1ahT3799n+PDhqni/ffv2XOssiBfDDxPXr1+3uXz//v289NJLnDp1ihs3bqDT6fjjjz/yXG/2+91aX5SduXPnYjQaGTt2LEFBQWRmZuLv78+ff/6Jj4+PzTq9vb1JS0vjwYMHZr8VFs72eabb2XvccqN48eKUL1/eajmuaKuCaZuz54zOLt6bispubm4P5fny9vZWt81+vnIr095JZo6MW55//nm13uDgYJdcP0WR7Fbuym+yLJORkWF1Aqq1iQZjx44FYNy4cQwYMIBNmzapOdf1ej0bNmxgxowZJCQkUKVKFZo1a8YzzzyjCsW3b982O98vvfQS33//PfHx8Vy+fDlP++pqbE22yG2ZtTEewMiRIxk5ciQAe/fu5dKlS0DWmGHw4MEGZ9pqbcyg/D5nzhymTp2qpmopXbo0ZcuWzZPDk+mYW9nHwMBAPvnkEz766CMOHjxI3759WbVqFSVKlLC7XEcmE9o6zqbrZBfvXcVTTz1F48aNXdp3KPtvz77lFVmWvwS+BHj22WcL1G4qNja20B2uBAKBQCAQCAQCgUBgHYcEfEmSmgK/AqWBbrIsm03ZlmXZKElSRxe2z5G2NQMqAomyLO/KjzoqVKjAa6+9xrfffstbb71lJuJXqVKFkJAQi9sV9oveR5lH/dgqL/WcebmXPXJcse4sSrb5phTGuXxUrh83N7dCETyUaOmUlBSLtvmmuLm5OSVSK+eoKNmUli5dWo3E37FjB+np6URFRam2+ZYi7y2hTGawx6L2UUexzbeHzp07A+aRe67EkX7Bzc2NGjVqcOfOHTQaDZ6ennZHUxbltBzO4Kr+tCD7ZWt1mYr38+bNo1u3bgXSnoIkv46zs+OWR+V57AhKVLkzz+/evXsDqJH433zzDX/++Seff/45165do0qVKnTr1o1atWrZ9fx85ZVX2LlzJ8uWLWPWrFkOt6coYu811apVK1q1aqV+Hzx4cN7ygFjANBL/t99+A0Cj0dhtU+8MoaGhatqfPn36OCzi24s9xzk/x6iSJOVb3/E49ksCgUAgEAgEAoFAICg6OPq/6f7AUaAm0EqSpPLZV5Bl+awrGuYIkiT9H7ACCCLLxr+FA9sOliTpd0mSfs8efWWJ0NBQAL766iuKFSvGvHnzaNKkCaGhoWzbts25HRA8kpheW3FxcU6VYWoJfOnSJUJCQvJktR4cHOyQ3fSYMWN45plnWL9+vc31jEajGsFhKZLDNMr0UWL//v0MGzbM5eXWrl2bkiVLqh9LOHp9Xbt2jUmTJuWaAsBelLygSqSlLfHe1e2ZMWMGR48edXg7W2zfvp3g4GC72+Pr60tkZCTe3t7s2bPHYfEe4NixY8ydO7dITU4A82vrxIkT6nVYvXr1PPU/tqhatapdqTb+/PNPrly5gk6nY9y4cfnSFmfw9fXF29vbIStk00lWzlwD+dX/5CeueC7mN/fu3aNdu3aqeN+vXz91WUJCQr7U6YrnuyWef/55nn/+eZeWee/ePUqXLm32jKpcubL6d+nSpalYsaK6jumykiVLMnjwYIxGI2lpaXblfrcX02vr5MmTVKlSRf0sWrTIZfW4Alf1+b1792batGlkZmbSrVs3xowZQ6lSpVi5ciXDhw+ndu3adtf16quvotFoSEhI4OrVqy5p36OCq/qtTp06qVH//5Sb73nUR40aRfv27UlKSqJLly60a9eOjh078s4779CxY0f18/rrr6sTffOD27dv57pOr169cl0nOTmZSZMm2UyRIRAIBAKBQCAQCAQCwaOCQwK+LMtvy7L8DDCJrJz3KyRJOixJ0lRJklpIkuSynIH2IkmSP/AJ8J4syx8DnwJukiRVt2d7WZa/lGX5WVmWn7UnKsHHxwd3d3c1b22xYsVo3rw5siyTmprq/I4IHjlMry1/f/88l1esWDFeeOEFp7adO3cu4eHhfPLJJ7nmqYQsQf6dd97hyy+/5MqVKwwePJhatWqxYcMGi+s2atQIo9GI0WhkwYIFZiL+iBEjSElJeSQtwl944QXat2/v8nLbtWuX/accfbWj11exYsVUi91/tlfzcDuDYv8+evRoQkND7RLvFdFfluUc7bEXWZZ5/vnnqVevnlPttsTWrVuJiIjg5s2bnD592u7tfH19adSokfr9r7/+cqje+vXr07x5c4e2KQhMr62CqtPe63DIkCEA1K1bNz+bU6DMnTuXZcuW2bWuqfCZX/1PfuLq52J+8Pvvv6PX6+nYsWMO8V6xvnalFbTRaESSJJo1a+ayMiFLDDt//jznz5+nT58+Li37ueeey9P2is2+PeMReymMfssZpk2bxoIFC/K1Dmcssbdv347BkOUcn5ec7I8iruy3OnXqxNixY/nPf/5DUFCQi1poP+np6ep5NiU+Pp5hw4Zx9myBz8NXyczMtGss0KBBA4oVKwb8O6505WQggUAgEAgEAoFAIBAIigoOWegryLJ8DjgHzJUkyRNoBbwBzAEK+sXZPSAKeCBJUh1gPLAdeFmSpMmyLLv0LZlil9ylSxcgK3fcF198QYcOHXjjjTdcWZVAYEalSpXMcvA6QkhICEajkYyMDLtsbYcNG8batWspWbIk3333HeHh4Rw4cIBBgwYxYcIE5syZQ3BwsCrenzhxggYNGvDUU0+pIv8777zDe++9R3R0NBqNxm6B6mHBaDSi1+tp27aty8ueM2cOc+bMASAtLY2KFSvm+W26v78/Xbt2Vb/r9Xo157Mz9qCK5Wvbtm3tjh4zzfmevT32otfreeaZZ1yWs3Pr1q3qsQbHhI/MzEwOHDgAZEVTR0dHM2LECLtdLtzd3Z2elFNQ1KlThx9//DHXXNZ5ZevWrXbdS3v37kWr1XLx4sV8bU9BYi39jiWy5xd/2AT8h4ny5f81mbp79y4tW7bk7t279OnTx6XuDxkZGZQoUYK+ffu67D7bsGED33//vfp9+/btbNq0ySWpAPz8/NixYweQ9XxKSUlBkiSLed4hK2I2+zNGEdvyK41E3bp12b59O+np6aSlpeV7/5UbSq57nU6nWt+7gtWrVzNu3Djc3d355ptvuHjxIvPnzyckJITKlSvTpk0buyz0t2/fzp49e4Asp7FKlSq5rI2CnORHLnhrY5dZs2axY8cOfHx8aNSoEfv27UOr1TJ16lTq1Kmjrrd9+3YiIiJ49913+fzzz9Uc8K6ibNmyua7z3//+l9TUVJtjUm9v7xxj2YyMjFy3EwgEAoFAIBAIBAKB4GHEqYR0kiS9IUmSzz9fPwAGAssLI+pFlmU9kAwEA98A82RZ7gt0BiZLkuSy8EZZltmwYQO1atUiKCgIg8HAxIkT0Wq1fPnll0XOBlnweHHmzBmby03t+G3x7rvvquL977//Tp06ddiyZQvR0dG0aNGCW7du0atXL8qXL0+NGjU4ceIEDRs25OjRowwbNozu3buzYcMG2rRpo4r3K1eupGLFiq7c3UInPyIILfGPwJEzXCqPaLVaSpQoQfHixZ3a3hnrV61Wm+d8r7mVcfXqVbvtfxXxXqPRqBGlliLTrDFlyhRkWSYoKIh169ah0WhUEf9Rwc3NrUBytbdp04YBAwbkut6bb75J3bp1uXfvnk278SNHjjjVDkeuH1MMBoPTdTqCTqfDy8urQM6JIIuEhARatGjB3bt36d27N/Pnz3dp+a4+p3FxcapThbe3Nz4+WcP1QYMGuTwFgNJ2R/t0e8cjeUWn0+Hp6Vno90tGRgZpaWkuHS+YivebNm3i2WefpWfPnuzbt4+ZM2eSkpLCkiVLmDdvHrt37+a3335TP2fPnlX/XrNmjZl4b29UeGJiIqdOnXKq7bmNVwWOo9frc4j4y5YtU8X7ZcuWMXLkSNq0aUNSUhJjx47FNHVchw4dCAsLw2AwMGzYMKKiogp6F5wakypjQmW7U6dOkZiYmB/NEwgEAoFAIBAIBAKBoMBxKgIfmCDL8vp/xPE2QATwPyBvnpoOIkmSuyzLmbIsj5MkyQMYApwGkGX5d0mSVuHAPt67d49vv/3W4rLKlSsjSRIXLlxg3LhxGI1G1qxZw4kTJ5g0aVK+iJO55Q0vSpbkpm2VZVmNeFLEvaLU1keJffv2AVk29dHR0fj5+bF+/XqMRiNarZaGDRta3M5anu93332XVatW4efnx/79+/Hw8FDXLVmyJOHh4SQkJBAeHs7ly5e5desWZcuWJSIiggMHDiBJEkOHDuXo0aPExMSg0WhYs2YNZcuWJT093abg5ufn5/D+WyrP1GkgN3HAmToVFEEgv4WBf/bB5d6gkiQVeLSSIvpbQ7meLRETE0NgYKDFMiZNmsT+/fstbteyZUsmTZqU43dT8X78+PEcOnQIyLKRjYmJwWAw0KJFC6vX0IQJE/j555+BrJfOX3zxBY0aNSIqKoro6Gjq169vMRJf2Q9nsHV8AJdHzEHW9ZffIpvCsmXLWL58uc11Zs2axWeffcaxY8dYuHAhb7/9trrsxIkTREZGEhkZiV6vx8/Pjw0bNqh20NaOj3JcDx8+zPjx4wGoUKECU6ZM4cknn6RBgwYW+5Vff/0VrVbLtGnT2LNnD7IsU69ePfW859f5KOxo4qJMbjnkbfX5yrMuLS0NyBLErl27RosWLbh37x69e/fm888/t7qdtTKt9bPKMmvn1Nl9qV27NkajEY1Go6Z20mg0GAwGatSoQWZmps1yHUFpuyMTnwoSSZJUq+28kpec28q5dnS8YK1OU/F++fLlVK5cmfj4eHX5q6++CsDGjRs5cuSIXW1XxPu0tDSr63/11VcYDAaWLVtGbGwsAK1bt6ZNmza4u7ub5XfPzpw5c8jMzGThwoVcuXIFLy8vJk6cqPbPtrZ9WLBnDONqYmJi1L9lWUaWZWJiYli2bBkHDx7Ex8eHVatW4ePjg16vZ8yYMWg0Gnbs2EGvXr2YPn262kcFBQUREhLCihUraNq0KZ9//jm1atVyeF+cffY5MyaVJImpU6dadTWwNgaEf/dDlmX0ej1ardZsUmp+PMMFAoFAIBAIBAKBQCBwBGcFfOVNXQfgf7Isb5EkaZJrmmSbfyYNPCnLcqQsy5kmIv4DKet/3W9JkvQX8CLwCjDX3rL1ej23bt2yuMxoNHL79m28vLwYOXIkt27dYsGCBbRr146xY8e6YtceGdLS0tQX2s5G9wqysEdgVsR7yHrh//rrr7NixQqKFy/ukEA9bNgwVq9ejZ+fH0ePHqVUqVJmy2VZ5tdff2XNmjVcvnwZf39/3NzcuH37Nj/++CNt27blpZdeYuDAgcTExFCyZEnOnj1LuXLl1LYVBNktpl1NXkT/gi43v14+OltubtvZevkdGBhodXtr4j3Ab7/9xpUrV3jyySfV30zFe+UF9cmTJwEoV64cFStWzNWSVRHvIUv4NUWSJKt2+rb2oyii0Wjy7Zq3xLVr1wgMDMRgMBAREcGAAQPo2bMn+/fvZ8uWLZQoUYJ+/foxe/Zstm/frgr4ERERzJw5E71eD2SlJ7h37x7du3dn48aNueZ0NhXv3d3duXHjBqGhoVSoUIENGzbw5JNPmvUrBoOBGTNmsH//fjXq0dZ5z46zx7Qgz8Wjgr3pY5R7XXlu6PV6WrZsyb179+jTpw+RkZEubZe3t7fN8+nMM7Nr166qmG5JVDcYDLz22mtWJ6vawlZbnV2WX3h4eFC5cuUCr9caZcqUcVl7skfeN2jQIMc63377LXPmzOHmzZtAVs7wMmXKWCxPo9Hw8ccfqy401sT7hIQEFi1apC6XJAlZltmzZw+ZmZl06NDBZrszMzNZsGCBKvynpKTw8ccfm4n4jzL59ew3FdKVyWXr169XxfuYmJgc4/lWrVrRoUMHduzYwfjx41m1ahUlSpRQyytTpgwREREMGzbMqohvCUUINxqNFif+mToEKFHyvr6+dpVt69jZGgMeO3bM5kQqME/vJCacCwQCgUAgEAgEAoGgKOFsWN11SZIWAW8COyRJ0uWhLLuQJMlNkiRvYBEwTpKktwH+EfG1//z9GSAB44ABwOuyLF9xRf0PHjzg66+/pkePHnh5eTF48GB0Oh0LFiwQ1vnZ8PT0xNvbW0QJFgCKeK/RaPjmm2/w9fUlMTGRkJAQh6Jm3333XVavXk3JkiU5cOCA2cs+WZb54YcfePnll5k4cSKJiYmEhYWxZs0aVq5cyTPPPMPMmTPZuXMnAwcOZOnSpZQqVYqLFy+q4n1BYsuO2Gg0kpaWpubfFTz6pKenExoaSq9evbhy5UqOyHtLL6azW7JmJ7do08aNG+ebnb4syzx48MBqvtuHHW9vb77++msARo0axaRJk9i1a5dZvt4qVarg6enJyZMniYiIoFy5ckyZMgW9Xk+FChVYtmwZO3fuVPvD7t272zxnpuJ9r1692LVrF6GhoWi1Wm7cuMELL7xA06ZN+euvv3B3d2fgwIGULVuWffv2qSkUtm7dytdff/1IplF42HE23cmaNWvUnPeuts3PD9asWcOWLVtyXW/z5s3qPSZ4uMgeeZ9dvP/2229p1KgRI0aM4NatW7Ru3ZrY2FiOHz/Orl27LH527typivdGo5H09HSz50tCQgJdu3alQYMGXLt2DUmSeOaZZ5gxYwahoaEAHDhwgB9++MFm2xcuXEhsbCxC6yG8AAAgAElEQVRubm6Eh4fj5eWlivhF1cHhYSQlJUW1zV+1alUO8V5h1KhRtG/fnqSkJPr06WPTTv/s2bN2jTtM89Hnhq+vr93ifV5ISkqiU6dODB061KpbiivSOwkEAoFAIBAIBAKBQJAfOBuB/ybQFoiQZfmeJEkVgFGua1ZOZFk2AsmSJK0kywGgmSRJnrIsz5VlWW+yXi9JktwAL1mWk1xVf2xsLKmpqbz11lv873//49ChQyxduvSRy+vtCiRJEpH3BUDbtm1V8X7t2rX4+/uzceNGunfvTmJiIj179uTOnTu5ljNmzBhWrVoFZEUf9+7dW42GSktL4+bNmyQmJlKlShXee+89OnTogLt7Vtfh7u7OlClTCA8PZ8aMGQCUKlWKP//80+pLQ4BPPvmETp06WbX4d4affvqJsLAwfH19c0yqyczMRKfT8dlnn6mTCsQEk6JLZmYm//3vfxk4cGCu0Zvbtm2zuTwwMJDr16+rEdWAGnlvzVpZsem3NgmmX79+Nuv09PRk7dq1BAcHEx0dzciRI5kzZ47NbexFr9eTkpLC4sWLGTx48CMZkf3yyy/Tq1cv1qxZw/z58/Hz8yMyMpKVK1ea9U1paWlMmTIFgICAACZOnGjmtGDaH/bo0cNif/jrr7+aifeDBg0CoG/fvvTt25fIyEhWr15NbGwsrVq1UqNOIcuqfObMmWpkn7e3t9l5b9OmTa6iliD/OH78ONu2bSM8PBxwLt2Jo+L9O++8w08//aR+l2XZ7HlUpUoVfvjhB4cijjMzMwkLC2PChAmULl3a4jppaWn07dvX7jJ79epF586dxXPQSa5cuULbtm3VdAvZCQwMZOXKlWb9UV7JHnlvGtEfHR3NgAEDiIuLA6BZs2asXbuWKlWqOFRHamqquk/FihXjvffeY9OmTUBWdHfdunXNxohBQUGEhoaybNky9uzZw5gxY9SxoCmtWrXiypUruLm58eGHH+Lr68vEiRP5+OOPSUlJYfLkyYwala//jSxwzp8/z8GDBxk4cGCB1amcO0W8V6LqraEc8x07dtC3b182btyoju8VR4WIiAiGDh1KlSpV0Gq1uLm5mTmaSJJESEgIzz//vCqAF+T/AadNm2ZzedmyZYmLi+PMmTN06tTJ5rrt2rVj9OjRrmyeQCAQCAQCgUAgEAgEecKpqHlZllOBvUBJSZJaANWBdFc2zAaZQGVgJdBEkqQ5kiRNA5Ak6QVJkhrIsmx0pXgPcPv2bQIDA2nUqBErV66kadOm9OrVy5VVCAQOceTIEQCqVauGv78/kCVMtmvXDsiKmnKUc+fOcfLkSU6cOMGJEyc4f/68anMJULNmTfXlnoJOpyM9PV3925Z4r0TAd+vWjSeeeMLh9llj586dvPHGG8TGxhIdHc0ff/xh9jl9+jTHjh3jyJEjVqPzBYWPEl1+9+5dGjVqlOs1vG3btlxfyAYEBKgpHiDrZbMjlrCWuHjxos3lRqORI0eOqGLb8ePHmTVrltP1maLVaklPT6dx48ZO3eMPC1988QXPPfccbm5u3Lt3jz/++MOsbzKlePHiTJ06NYdYZk9/+OOPPwJZ4lTXrl1zLO/bty83b94kPDxc7TeaNGlCTEwMc+bMyWHL6+/vz8yZMwH45ZdfnNhzgat44okn6Natm5qn3V5Xmho1atC8eXP69evnkHh/6tQp1q5dS1xcnPq5c+eO2fejR49Ss2ZNhyKOb926RdOmTblx44bVdS5duoTRaLTLEUqSJIxGI5cuXbK7DYJ/kWWZ48eP8+DBA6vrxMTE5Oin8oIt2/zo6Gi6du1KXFwczZo14/Dhw6xbt85h8R6y+lJPT0+1r9u9e7f6+6VLl3jjjTdyTD5RRHyAmTNnMm7cOLPlAwcOVNPjdOzYUY261mg0NGnSBMiKkn7UKFu2LK1atVK/y7JMcnJyvjpAVatWjVKlStkl3ittatOmDZIkcf/+/RxpO1555RUCAgKQZZnY2FguXrzIhQsXiI2N5cKFC1y4cIHz58+zYsUKIPfJj/nB1q1bbS6vWrWq3eO9gwcPuqJJAoFAIBAIBAKBQCAQuAynIvAlSRoIjACeAE4AzwOHgdaua5pVtgBvyLK8W5KkBsBkYMU/y54F8sUXNC0tjTp16mA0Gjl//jwhISGkp6cXaJSBLMukpaXh6ekpbPsFnDx5koCAAM6fP6/mXF68eDHr1q0DUCNTc2PGjBlmEVP3799X7STd3NyIiIhg1qxZXL16lf/85z9UqFCBKVOmqGLZiBEjOH36NBqNhsOHD9uMCFasjKtWreqyyL+dO3cSHBwMZL0wLVasGL///rsaCZScnExgYCA6nY7+/fsX6ItFgWMo9qu+vr5mL74tYY94r3DmzBkOHDhApUqVmDt3rjrhxVkOHTqUYyKLKVFRURw8eJBatWoxZMgQ5s6dy44dOwDyHGUoSRIVKlSgQoUKeSrnYWDnzp1m37Pnsd22bRvDhg0jMTGR3r174+3tzejRo3nxxRcB7OoPP/roIzZu3Eh0dDTBwcGqm0l2wsLCCAsLs6vdymQNJfJbUDj4+/s7da/7+/uzfPlyvLy8HNqud+/eAEyYMIGRI0cC5teswWCgVq1a3Llzh5o1a3L+/Hm7yi1VqhQvv/yyzfbUqVOHli1b2swFrSDLMq1bt1ZTUggcIyMjg1atWnH27FkzFxdZltXIZFeO0e0R7zMzM5kxY4Y6FnIWNzc3s33atWsXzZo1IzU1lZ49e1p95ppG4k+fPh3IioxW0iqVLFmSUqVKsXXrVooXL07jxo3Zvn07e/fuBWDAgAF5andRpGTJkpQsWVL9rtfrVZt6W/nY88KiRYuAfydD5mYJf/LkSUaOHIksy4SFhVGmTBl1WUZGBuHh4Vy9epVevXqxefNmSpYsydy5c0lJSSEwMBDIclcozJQ+Bw8etDkeO3z4MJA1dmrdujXjxo1TJ6HExMSo+yEQCAQCgUAgEAgEAkFRxFklawTQGIiVZbkV0BCIc1mrbJMG1JQkaRDwNjANqCxJUi/gM1mWb+ZLpWlpVKhQgUuXLpGRkUHdunUL3Ho0LS2N5ORkq5adgseLSpUqsXbtWjXncqdOnVizZg2QJVY1atTIqUgfxaJbyRccFhbGrVu3CA8PV3NCKznFBw8erNr4L1myBH9/f5u5L23lp3cGU/H+/fffZ/78+Vy9elUV7SBLMDUYDIwYMUKI90Uce/OQmor3Y8eOtbnu/fv3GTVqlPriOa/iPZCr/bVWq2XatGksWLCA1q1bs3r1anx8fNixY4fLIvEFWdGcZ8+eZcGCBfj6+pKcnMxHH31Ep06dCA8PN+sPmzZtarWcefPmUbduXQwGA8HBwaoNtTNcunSJmzdvotVqc0SiCh4OnHlOnTp1iqtXr6LT6VTxPjsajYZz585RpkwZ4uPj7Y7Et7c9+/btsyvqtkSJEmpktcBxdDqdWZS6QkZGBmlpaerYyRXYEu/PnDnjUvHeEuXLl1cnrP32228sWbLE6rpBQUFqNPT06dOpW7cuS5cupVSpUly8eJFBgwZRrVo1vv76a7744gv27NkDQGhoKEFBQS5ve1FDq9VSokSJApn4rUyG1Ov1Vtc5d+4cI0eOxGAwEBYWplrmw7/i/bFjxxg9ejSDBg1i1qxZ3L17l/fff79Iuf/Yk46kdevWbNq0idGjRzuUvkQgEAgEAoFAIBAIBILCxqkIfCBdluV0SZKQJEkny/I5SZJqurRlVpBl+W9Jkq4BE4ChsixvlSSpFXBRzmMIgF6v5/r165bqJC0tjfLly3P27FkAGjRoUOBR8MqEgdwmDtiy9QTw8PBwWZsE+Ut2O0uj0ahGeLm5ueHv76/mXE5OTgZg6tSpNGrUiIyMDFJTUx2O9NFqtaqQakpYWBjNmzdn/fr1REZGqna+Go2GtWvXUqZMGfz8/Gy+nFSsjLOjtN0S2aNuFUzFeyWfryzL1KpVi6lTp1K7dm1q1arF+vXrKV68uN3Rs5DzuGcnP/KO51bn44Biv2qJSZMmWYwuVaL9rBEdHU3p0qUZOXIkKSkppKSkqMtu3vx3vpdi4Xvr1i1iYmKcaP2/NGzYkPLlyxMbG6v+NnXqVMaOHcuOHTvo0KGD1Uj8l156KU91PwzYutat3e/W0Ol0dO3alR49evDFF18wc+ZMkpOTOXToEJB13G2J9wrz5s1jxIgRnDx5kt69e/P999+j0Wg4cuQIP//8s8VtPDw8qFevntlvStR9z549MRqNTk0aUuym4+Li6NOnDwCrVq1SJ588DtdIYWLtOWWNEydOqM+ivn37mlmnJyQk5Egps27dOrp37058fDzlypXj/PnzNkUlR9qjOPPktk5BYul+Nx3LWEu5U1SRJMksSl1BGTM5OkHx2rVrFn83Fe+XL19O5cqViY+PB7LE+379+mEwGKyK93PmzAFg+/bt7Nmzh6pVq/LOO++oy61NNMmOIuI3a9aMmJgY5s+fbzGvu/LcVCLxT506hU6n4/3332fFihVotVreeust5syZw+XLl9V1HwfxHiA2Ntbm/xtd2a8rkyD//vtv9Xliyrlz5xg6dChGo5GQkBCCgoLU8/fgwQPmzZvHmTNnqFmzJr/++iu//vorkJVGKzo6mk8++YSPPvpIvXczMjLsGjdZaosp+fFsa968OR9++CF6vT7XyaGCx5OAgACr92ZAQIDNazswMNBsrO/ItgKBQCAQCAQCgUBgD84K+H9JkuQHbAZ2SZJ0F/jbdc3KlcXAFlmWj/7zfb8sy3lOKqjVaqlUqVKO3/V6PefPn6dy5cpcuHABgPr16+e7EG6p/KKau1tMCigYFAt6yJrIobzsatasGWfOnEGr1fLSSy9hNBpJTU21KqbbEqBtLWvbti1t27Zl6dKlTJ48mR9++IF169ZZvG8cKddRsov3gwYNArJerPfv359x48bxww8/EBkZicFgYMyYMQ+dSPA4YuvlrS1r6JYtWzJp0iSz386cOcOoUaPw9vbm888/txp5r9in+vj4AFCuXDm7LFWV+WIGg4FXX31VtQIuX748LVq0sFjGmjVr6NWrl9N2+o+DcOvt7W21r8itD5kwYQITJkzg22+/ZdasWUycOJE2bdrkWqdyXKOjo3n66ac5e/Ysn376Kfv27WPLli1WtytdujTPP/+8+v306dPcunULnU7HRx995NQEKoW4uDiCg4PVCG1b9v6Cf8nLc8bZba9cuaK6Lig2+gr379/P8ezRaDRs3LhRFfEVO/3sIr4z7alSpQoRERGEhYXh5uamuvAof8+ePdup3OiuxnQs87BQuXLlAqsrN9v8/v37YzAYWLx4sUUxXUER7yHLHeSLL75g6NChNuu2tJ+VK1dW7cZjYmLYunUr69evN1vnq6++ArIi8QcOHKh+j4uLIyAggJEjR7JkyRJu376Nu7s7W7dupW3btvYdkIcEW8/o3MTrgqrz3LlzDBs2DKPRaDXyXpmsfv78eYupPpKTk5kzZw5z584Fsv5vWphW9AaDgdTUVHQ6Hd999x07duzgyy+/FNH2AruwJbLnFqwRGxtrNYWESHcoEAgEAoFAIBAIXIFTftKyLL8my/I9WZYnkRUJvxTo6sqG5VL/NVmWj0r//M/IFeK9LRQ7zAoVKnD69GkCAgLyLX9hfiHLMqmpqYWap1CQd6xZ6VaqVIlXX31VfZHn5uaGt7d3vlrGf/jhhxw8eNAu8d5ZlCg901QApuL9G2+8oYr3Cs899xy1atUiMjKS1atX4+XlxYcffpjndqSlpTmVkkBQ8CjifcmSJRkzZky+ip4ajYY9e/YQGxtL69atuXXrFpMnT6Z79+45bKpLlCjB9OnThZ1+PvPaa69x6NAhu8T77Jw4cQKNRsP+/fvZuXOnQ9sq4u2oUaPw8vJy2irZVLyvV68e9erVc4m9vyB/UFwX+vfvb/c2iohvaqev1+td8px56623aN68OUajEX9/f/z9/TEajTRv3pzQ0NA8le0qXJ1O51Eie+S9rZz39or3PXv2xM3NjcuXL/PFF1841a5KlSqZ2em/8cYbVtetXbs2Y8aMwcfHh0WLFhEbG8uSJUsYNGgQWq2WQ4cOPXLivb0o+ekL4/9jinhvMBgICQmxaZtvi3r16ql2+o6SH/uv/J9Hq9XSvXt3li5dKsR7gUAgEAgEAoFAIBA8EuRZ3ZNleb8sy9/Jsmzbtz0fyKtlfnb0ej03b95UP0ruQMWSvmLFipw+fZqnn37aldUWCGlpaSQnJ5OWllbYTRE4SWpqKsuWLcPT0/ORzuX+888/U7NmTWrUqEHNmjVp0qQJNWvWpHr16jz11FNmOe8tiRFKFP6tW7cwGAyMHj06T8fr8OHDHDhwgJSUFJfmtrXFnDlz1H2uUaNGgdRZlFEi1u3BVLyfO3dugTkvVKlShd27dxMTE0PDhg1JSEhQhfyoqCh1PW9vb1atWqWK+BEREYX6Qr+wOXz4MIcPHy7sZqh4eHioeZ67dOliV45yyIq+j42NRafT8cEHHzjdT9+4ccNMvJ83bx7z5s0zE/FNUz8ICpeTJ09y48YNi9H3uaHRaDh37pwq4teuXdtlz5mtW7fi7e1NXFwccXFx+Pj4qPnJCxPlflfSAjzKYxlnWLt2rVnkfZ06ddRlJ0+etDvnfXh4uCrev/XWWzRu3JgPP/xQFfEXLFjgVPsUO31FxG/Tpo3VPtLPz4///Oc/+Pj4sGDBAlW8/+WXX2jcuLFT9T8K6PV6EhMT2bhxY4HVKcsy0dHRqngfFhZGy5Yt1eUJCQm89dZbqnif2+SKEiVKMGvWLO7evQtAZmam3W3R6/VkZGRw9epV9RoVCAQCgUAgEAgEAoFAYBmn3pxJkvSsJEnfSpJ0TJKkaOXj6sYVNOnp6Zw+fVr9XLlyBUAV8kuVKkVsbCxVq1YtzGY6haenJ97e3g7ldRUULc6ePUvHjh2t5kt9VJg7dy63b98mLi6OO3fukJCQwJ07d7hz5476shDgr7/+svriODo6qzvSaDR5jr6vXLky1apVK9Bowc8//5zbt29z584dEXELjBgxwq71sov3hWE3XqVKFebMmcO6desoW7YsCQkJ/Pe//zVbp0SJEkycOBGAH374QX2hrTxrHicqV65cJCy9TQkJCaFSpUo8ePCA3bt35zqx4pdffqF9+/YADBkyJE91t2vXDoPBQNWqVZk3b576+7x58/D398dgMKgR34LCp1+/fgBORxOfP39edWqIj4/n77//dtlzxtRB4vvvv3dJmXmlKN7vRYn58+cDWbnhTSPvIasPyMzM5JlnnrEp3gPqMycoKEiddOzr68ubb74JZNnpO4si4nt4eHD27FmqVq3K8OHDLY7H/Pz8qF69OpmZmUiS9NiL95CVru3GjRu89NJL3Lp1q0DqPHnyJCNHjlTFe9PI+/v379O3b1+uX7+OLMts27aN5ORkm+UZDAY2bdqkTgp3ZOyi1WrR6XQYjUaaNGni3A4JBAKBQCAQCAQCgUDwmODu5HargVHASeCR8ZT28vKiXr16QJYAmJqaCoC7e9Zhun///kNrySdJktN2voKiQaNGjQq7CXZz/fp12rRpw+zZsx22sd64cSOzZ882ezGo1WrVF8A//fQTp06dYv369WzYsIGXX36ZsWPHqvfml19+ydq1awHYvHlzniP8nnjiiTxt7wxRUVEsXLgQvV6Pu7s7s2fPLvA2FCVmzpxJt27dbK7jKvE+MzMTWZbznLsyKiqK27dvo9FomDBhgtmyc+fOMWbMGCBrcoJWqwVQ/32cqFixopomoyhF4yrP+zNnzuDh4UHLli1zXBMPHjxg9OjRLF68GB8fHwBefPFFp+uMjY3ljz/+wM3NDa1Wa3YdGgwG7ty5A2Q5dAgKn9jYWE6cOIGbmxt//vmnQ/3GlStXGD9+vOqmoNPpGD16tDoGdQWm9tYjR47k+++/JyMjgxIlShTavVYYz9OHiQULFtCtWze+/PJLqlatyv/93/+pyyIiImjRooUaJT1z5kyr5Xz99dd06tSJ06dPs337djp06MDp06dZt24dAK1bt85TO8uVK8fhw4cZNGgQx44dY/PmzWzZsoWGDRvSs2dPdTy2fft21WHlu+++e+zFe8j6/5gr7/PcOHfuXK7ifWpqKgEBAVy9epXTp0/TqVMnm2X+/PPP6t9BQUFMnz7d7vZIkoSHhwdPPvmk4zsjEAgEAoFAIBAIBALBY4azAn6cLMvfubQlRQA3NzdV5Pby8iIpKQn4V1SJj4/Hw8NDtdQXCB5lDAYDlStX5tatW2zZsoWOHTvatd3169cJDAwkMzOTtm3bsnXrVru3Vfjggw/Uv5OTk/H29la/T5w4kbt379KjRw+ioqL46aef2L17Ny+//DJlypRRX1B//PHHDtdbVChdurRZlO3jLuC/9tprNpffv3/fZZH3er0evV6Ph4eH02Vs27aN2bNno9Fo+Pzzz6lVq5a67PLly0ydOhWDwcAHH3ygXqN5qe9hJiMjg5SUFIAi4xDz+++/k5SURKtWrbh79y4nTpwAMBPx//rrL3bv3s3du3cZMmQI6enprFy5Mk/1DhgwAMiKwt++fTu//fYbzz//PADTpk1DlmWCgoLw9fXNUz0C12DrfFnDmnA/cuRIl7YtISGBqKgoVag/cuQIt2/fxt3dndTUVLNnqqDo0KBBAzZt2kS3bt0YM2YMycnJDBo0CMiKZj9w4AAtWrRQxznKZMXsdOzYkdDQUJYtW8aePXu4desWp0+fBrLEe1MR1xkyMjJwd3dn3bp1pKenExISwrFjxzh27BjHjx+nYcOG+Pr6snfvXiDLUeBhHY89zJjmvM8u3icnJzNixAju379P+/btGTVqFAaDgWnTprFnz55cnWdq1arFlClTCixNkUAgEAgEAoFAIBAIBI8jzobgTJQkaYkkScGSJHVTPi5tWSFTvHhx0tPTMRqNqoCfkJAgBHzBY4Fer6d8+fLcuHEDo9FIp06d2LZtW67bmYr3ihhn77aOULJkSX788UfWrVtH7dq1kWWZn376yUy8z0skrCD/CQ8Px8vLyyXXRnR0tMts87VabZ4i4RcvXmxVvD937pxF8f5RwWg0kpycjNFovzGPTqcr0PQU9jBt2jQANU9wgwYNOHHiBPv37+fBgwfs3buXDRs2AFmTNaZPn55n94TY2Fj27dtH+fLlGTFiBOXLl2flypXIsozBYFBzBTsS6SiwzL1792jWrBnFixdn69atDl+zYPt8WeLKlSsEBwcTGhrKzZs30Wq1hISE8Pfff7tcvAfo2bMnAN27d6d79+5Alt2/l5eXcGMq4igivru7O59++qmZSK+I+H5+fqxbt46BAwdaLScoKIjQ0FAAl4r3kNVve3p6otPp8PPzY/PmzYwfP56AgABkWebYsWNm4n1QUJDDdTjzPHkcsXacoqKirIr39+/fZ+zYsWbiPfybdmrXrl0262zatCnz5s2jZMmSrt8hssaHHh4euLu7W/xotVqaNWtGYmJivtQvEAgEAoFAIBAIBAJBUcHZCPwBQC1Ay78W+jKwyRWNKiySkpLYvXu32W/KCyh4eAT8xzWSsyAo6HPv5+dXoPUBDB8+nMWLF5Oeno5Op6N8+fLExsbSqVMnOnfuzJYtWyxud/36dTN7XMUCH1DtOK2JG7b209ayHj160KNHDxITE2nfvj3nz59nxYoVeRZGnT3u9+7dc7rcwjjXBY0le2lTq1ZbEV979+6lU6dOJCcn8+mnn9K8eXPVNt/b29tlOe/d3d3tssHet29fjt9sRd6bRsJ9+eWXalTlw0z26z0tLY2UlBS8vLzw9PS0ek3n17Vu6/7L7uRha9muXbvQ6XQ0a9aMZs2a4evry8CBA1m2bJkajT98+HBGjx6Nl5eXS9rat29fZFnm008/pXbt2owbN44RI0YQFxfHhg0bkGWZJk2a0Lx5c6fqywt56dcKGltt3bVrF5MmTeLMmTPqb507d+bDDz/kxRdfNLMrz61cW+fLtBwPDw969+5NTEwMkCV8fvTRR4wfP97JPcyd/fv3ExUVhSRJDBkyBIANGzYQFRXF0aNHnX4+OnsdFKXro7C4du2azeWVK1fO8f3QoUM0a9ZMTbei5L1XRPwXX3yRpUuXkpKSYtFOX5kY8tprr7Ft2zYqVKjAxIkT1fZYa1N8fDylS5e2u60KU6ZMYcqUKVbHY7aOgaU609PTSUtLw9PTk+rVq1vcztHjWpi89NJLTm9rabyhcOnSJcqWLYtOp1P//2cr8l6xzU9JSWHgwIEsXrzYYrnK5LF+/fqxY8cOnn76aXbs2JEnBxhbx8DRtEWHDx9W+5amTZsydepUp+oVCAQCgUAgEAgEAoGgKONsBH59WZaflWW5vyzLA/75hLq0ZUWQhIQEdDpdkRfwBQJnMRgMqnjv4eGB0WgkNjaWsmXLAlk5TC1FTCuR97mxdetWVzcZAF9fX3755Rfu3LnzyEU1C/5l9OjRAMycOdMs5/2YMWNcIt7nBVPxPjw83Kp4/8EHHzwS4r0lilI0vdFoJC0tzeHozT/++IOkpCSee+45rl27xvvvv0+FChVYtmyZ2XqLFi0iODiYnTt35rmt165d4+DBg5QrV47XX38dyIqgrlKlCtOnT2fjxo0AfPPNN3mu63Hk3r17vPrqq7z55pucOXMGSZJ49dVX1Sj1yZMn8/vvv9tdnq3zNWPGDGRZ5syZM9SvX58XXniBmJgYdDodU6dOJT09PV/Fe0At/+WXX0aj0aDRaNSc52PGjBERzQ8JjRs3ViPxx4wZkyMSf/PmzWokvvJstETHjh1ZuHChKt5bQ5Zl0tPTc7VOzw1XjcdMo/wF1tFoNOh0OtUFxnS8ERISYlG8VyLvrYn3pmWvXr2au3fv8ssvvxTZ9C2HDx9m6NChauo7gUAgEAgEAoFAIBAIHhWcjf8jw4kAACAASURBVMD/VZKkp2VZPpP7qo8O8fHxD0UEvkDgDAaDgfLly6vivSzLeHl58cQTT3Dq1CnKli3L7du36dSpk1lee1Pb/Nzo3Lmz2baPOteuXStSEWBFnW3bttm8Nl588UW8vb1JSkpi6NChVKpUiblz56o51CErNy9g8aV/ZmYmSUlJLrd9Xb9+PQsWLABg8ODBJCcnc+TIEQBu3LjB/PnzH1nbfAXlWi8qeez/+OMPLl++TLFixdDpdGokJ8CdO3fw8/PD3T1rCGS6TLHPP3z4MPXq1QOyRIyGDRvy9ttv88wzzzB9+nR27drFwYMHOXjwoNpfOotig921a1d2795Neno6xYoVo3379ixcuBCAJk2aFAnxRInCfhiiqhMTE3n99ddVcV6SJF555RXGjBmDRqNRf1u7di3h4eHUq1fPrvtz6NChQJbwr+Dh4cEHH3zAiBEjCAgIUIUknU7HxIkTGTdunKt3zyIJCQnqJIWxY8eqv48bN449e/Zw5swZbty4QaVKlfJUz9WrV/H390en0+Hm5uxc4MeTW7du4evri06nIyMjw6ZArdjpd+vWjTFjxvDHH3/Qrl07IEuMnTp1Ku+++y7r1v0/e/cdHkW5PXD8O7vphFADCkKiKCpSBS6dhI4KUkRMAAtoLFeKIBelikq5V0GN4E+KAiIQkKZSpChdOhcMRVDQIAJCCCYhpGfn90eYubsh2WySrcn5PA8Pye6Ud2ZnZyZz3nPe5aSlpfHxxx8Xusy8Tp8+zbp168jJySErK4ucnBy9soifnx/PPPOM3c89O3fu1K+RYHkODg4OZtCgQXh5eeHn52fzMrOzs0lISKB69ep2bau7uXLlil7RQ/v9ypUrQO4577333tMz782HLsgbvNfK5pcWp06d4vHHH+fBBx/kvffeK7DijhBCCCGEEEII4UmKG8BvCzyrKMrvQAagAKqqqg3t1jI3lJCQgK+vL6mpqa5uihB216RJE65du6ZnPCUnJ9O7d28qVKhAcnIyf/zxB3feeSeXL18mIiKClJQUALp37052djZVq1bl2rVrha6nb9++ZaITzN69ezl16hTdunWTIL6NevfuTWZmptWA0JgxY5g0aRKAXjZfC+Crqsrrr7+Ooih8/PHHt5VkfeWVVzh79uxtJWUBPVCwZcsWWrRoUaR2z507V//5008/zXea0hy8P3XqFG3atKFu3brs27fP5QG9U6dO6RnHxZWVlcU999zDsGHDGDp0qB7sh9xy5JAbhHr//ffZtWuXHrAtTtDgyJEjQO5xZH4smdMCdK7ORt2wYQMAAwcOdGk7bPHoo4/q5fL79++vjwFv7sUXX0RVVZYvX07//v1tur/bu3cvlStX1rPvNZGRkfzrX//ixo0beHl5MXbsWEaNGuXUzg6jR48GoGrVqnonBcjthFK1alXi4+OZOHHibRUlimLfvn08+uijvPzyy0yaNMltOu14itatW5OVlUWtWrX0/Vi7du18p01JSWHbtm0EBQVx/fp1li1bxrJly/Kd9ptvvmHkyJFF7qD26KOPWu2AuXz5cn788cciLdOaixcv8vTTT1udZs+ePXz22WdFWu7333/PxYsXef7550vSPLc3YMCAQqtoaPc4WqA/OTmZQYMGcePGjVIZvG/bti3x8fGcOXOGn3/+mWHDhrFw4UJXN0sIIYQQQgghhCix4gbwu9u1FR7iypUr1K5dm//+97+ubopwM7eyLz02DW3RokUcP34cHx8fXnjhBc6cOcOWLVvYtm0b9957r55td/nyZQBGjBihz1ujRg1OnDhBmzZt+Oabb6yuR8vi/+uvv7jjjjscuk2uZDKZaNSoEb6+vhK8L4KcnBymTJmiB+jz07ZtW2rXrs0ff/xBfHy8Ren8AwcOcPLkSQAOHjxoEYg/efIkZ8+eBWDGjBkAFtlpAwcOZOPGjWzbtg0/Pz+bHnCrqkpWVhbz589nzZo1esDsxo0blCtXTg9kt2vXjqZNm9q6GzzOpUuXAPjll18IDw9nx44dLg3ia+2544479E4TWVlZHDlyhBMnTlhMO2DAALy9vfXywz///DOHDx8mIyOD3377Tc9+zS/A1qhRIxYvXkxGRganT5/mwIEDtGzZssjt3bVrF3PnztXbkJWVpf8MuZVL/Pz8LCpNuEr79u3JysrCZDK5vKNGYSZPnkz//v0BqFmzpkVA21x8fDyQ24nNFjk5Ofme1729vZk5cybDhg0DICwsrDjNLpFp06axePFi4uPjGTFiBNHR0UDuNTs+Ph6j0Wh1rGhb/PDDDwCsXbuWqVOnlrjNZY3WsezChQt6p506deowcOBAvQPGjBkzWLp0KefOnbtt/qeffhpFUfRKHZCbfV6rVi3uvvvuImfgr1+/nqioKNLS0oDc41tRFBRFITg4mLfffrukm2yhZs2azJo1i3fffVcPRJufT+69914mTpxY5OW2bt2aK1euoKpqkfeBJzGZTHh7e+udEG/cuEH58uX199u1a8fDDz+s/17ag/cA+/fv1zuhBAQEMGrUKBe3SAghhBBCCCGEsI9iBfBVVT1v74Z4gsuXL9O2bVtWr1592wN2UbbdevCZf3TAzWVmZuolnL/99ls2bdpEvXr1UFWVrVu36sF7Lcjx5ptvWjy0HzVqFFu2bOGXX34pdF0dOnRgxYoVTJ06lVmzZjlmg9xARkYGaWlp1KtXz9VN8ShGo5H33nuPCRMmFBgczMrK4tVXX+WNN97g/fff17OsVFXliy++0DuGLFq0iH/84x/6fO+//z6Qe7xGR0czY8YMnnvuOUJDQ4HczOkvv/ySQYMGsXHjRgDCw8OttjcrK4uMjAxq1qzJ66+/rr8eFxenL7csMRgMHD9+XA/iu1qPHj30z33+/Pl88cUXeHl5sWnTJj7//HNiYmL47rvv2Llz520B2VWrVjFhwgR2795NaGgo4eHhLFq06LZAvsFgwN/fnyZNmtgcAM7r7rvvZuLEiZQrVw5/f39SUlJuy+TXAl2uDkpVrVqVmzdvkpGR4faZ1126dCEmJobIyEg+/PBD/vzzT/75z39aTJOTk8O2bdsA9O+9LfJW99AMGjQIk8nEiBEj6N69O5s2baJTp07F34giuuOOO/Rtjo2N1TvbxcbGYjQaiYmJsVvnOU/oxOGO+vfvz5IlS5g8eTKJiYmsXbuWc+fO8c477/DOO+9YTBsSEkLfvn0pX74877zzDk8++SQTJ07Ez8+PhIQEqlSpctvyi1J2HqBevXoWGfbXrl0jMDAQX1/fAo/zkurWrRvt27fH39/f6rYURVBQEEFBQaSnp+udEUqru+++W/9uW7vfSElJYfjw4aU6eA+5HVjKlSvH66+/TocOHVzdHCGEEEIIIYQQwm6K9ORNUZRCU89tmcZT/fXXX9x7773k5ORw/nyZ7MMgCnArkJHj6nYUVVJSEnXq1CEnJ4ewsDC6deumv/fQQw/Rt29fWrZsqQfvmzVrpo8RrdHmyS9TLK9x48YBuRlfpZmvry/lypVzebDN0wwcOJCbN29ajC2dl7e3N40bNyYkJIS4uDi9RPaBAwc4ffo0gwYNYtCgQZw+fVofY/fkyZOcP3+e0NBQevbsyezZszEajSxatEgvCQ65AYAlS5ZQvnx5Nm7cSFRUlNX2ent74+vrK525bhk8eDANGzbUg/iFlfl1lsWLFzNmzBg9eN+0aVNmz55NZGQkf//9N+3bt+f69esW8/Tr14/Tp08zf/58qlevzvbt2wkJCaFBgwbk5Nj3VG/L+ULrKODqgKm7ndsGDBhgtZx/9+7dWbp0KQArV65k/vz5Fu9Pnz4dVVV56KGH7DbO9zPPPEN0dDTZ2dl0796dQ4cO2WW5tgoODiYmJgaj0UhsbKxF8N68YklZd/36dcLCwnjqqaecut5XX30VyO0kNGrUKHbv3k1ycrJFxZgWLVqQnJzM7t27GTlyJKtXrwZg2LBhDv/uKYqCn5+fw4L3kHse0YZr8qRle5Lk5GTefPPNUh+8h9xOKGvWrCm006UQQgghhBBCCOFpipqB/6CiKLFW3lcA+zwBdUPJycl65tKpU6csMvF8fHxc1SzhBm496CwwWpWTk0NiYmKB8ztijFxr69u6dSuTJk3i9OnTQO4Dz4kTJ7Jjxw4SExP19mRkZLB//34gN3jftm3bfJdXsWJFq+vT1K5dG0VRuHDhwm3TF7QPCluuM8cXtpUWbPNkWga1Vibe29vb4oG+Ix6UPvXUUyxdupTp06fTtm1bi2CllmWmKAo+Pj6MHj2aYcOG8f7779O+fXvWrl2Ln58fBw4cAHKzEKdOnUqfPn3YuXMn8L/xoR944AFmz57Nq6++yowZM7h27ZpFuetp06bx5ptv8tlnn3Hp0qV8H3xr7XHmub+wrHZnP7xOSUkB0Eu7Z2dns27dOh599FGOHz9O48aNLcrpm0wmMjIyyMrKIigoqMDlFvc7rbVHy77UhjfIG7yH3O/o//3f/2E0GlmyZAlNmzZl165dt40fXatWLYYPH86sWbO4fPkyJ06coEqVKsTExODn51fsrHtznnS+yNtWbZ87k/Y9GDFiBLGxubekx48f56OPPiInJ4emTZtanDseffRRPSt92bJlZGVlMWTIEIvs+wkTJljNKM+7nTk5Ofpr+V2j+vbtS0ZGBmPGjKF169YWx575MvNWWjBXkmubFsTXyvnPmjWrxMF7bXuzsrKA3GuD+X5xp2txZmYmFy5cyPe9Tz/9lGXLlll0xD106BAvv/wyXl5exS6/nXd95qXcr1+/rmeY16xZk+DgYE6dOkV2djaRkZH6dUtz4MABgoKCaNGiBTExMfz8888EBwe7dWWXgvZ3frROAo7gyGVDbsn6gq7F5tnw+d07FfcarY1lr8nIyNBf++uvv26bPiUlhTfffJObN28WGLyPi4srVqUcbbs6d+6c7/nSFfcpwcHBxboXc5d7KkVRXgReBPIdrscWoaGhBSYXaB1e7S0kJKTAjj4hISF2X5+nKWz/OOIzEUIIIYQQQpQ+RQ3gP2DDNB6XhWyLypUrc/36dX2cQVuyjUXpU9xgnclkcotys0lJSTz55JN6RqCiKHTq1Ik333xTHx/42WefpV27dnTs2JFdu3YBuWXz82bem/vHP/7Bli1bGDJkCJUrV2bGjBmMHDmSWbNm8eijjzJy5Eh92qpVqxIfH8+VK1eoXr16ibbHZDKRkpJCQECAy/ctuFcAw160MvFQ8o5K27dvB6Bnz56kpKQQERHB8uXLGT16tD6ea6dOndiyZQtLlizhmWee0R8Wh4SEWDxMDQ8P59NPP+XUqVMWD8F2796t/5yens7ixYuB3AwtLfNRmx9g6NChLFq0iKpVq+ptAFi2bJlFOf28D8C1suplmRZ89PLKvZXw9vYmKCiIXbt20b59e4ty+gaDgYyMDG7evOmwzE6tPVqA+ciRI3rZ/I0bN+ZbyvzLL78EYMmSJYSFhXH48GEqV66Mqqps2bKFiRMn8uuvv3LHHXfw+uuv89lnn5GUlKQfu8X9zlubz93OI8Vtz60KDA45MWvBe+26dfz4cYYPH8706dPx8fG5LTAeEREBQGRkJCtXruSuu+7izz//RFVVmjVrRrNmzUhNTS0woJ73daPRaPFafvNpFTzGjBmjl9PPG8R3BPPz0pNPPmm35WrbqFUcURTFagcEd5OQkMDgwYM5duwYkNv+Bg0acOLECX7//Xc+/fRToqKi7Havpg2lA1ClShWLYTqeeOIJ5syZw5YtW24L3ps7cOAAmzdvxmQy0a9fP4tl5B32oyiszVuS5Tp7nY5qa1Fp9ynm7HnvlLfjhq+vr8Vr5j8nJyczfPhwPXhvXmXIXHGHudG2y9r5Mi/zzgzWpimrVFWdB8wDaNasWbF2xPnz5wvch46655IAtHXW9o8jK5wIIYQQQgghSpciPaFSVfW8Df/+dFRjrVEUpbOiKOGKojhkHHLtIXFmZibly5fn7NmzjliNKKW0zFNXSUpKomvXroSGhnLo0CEURaFz585s3bqV8ePH68c3wP79+wkICGDXrl0YjUYWLlxoNXgP6Blr27Zto2vXrtxxxx18+OGHALeVN9ay+GfOnFni7crIyCA5OZnU1NQSL0vkzxFl4seMGQPA8uXLueOOOyyGbhgxYoRe7tlkMukPi/M+HAduK4dtzeeff37ba1omvtFoZMaMGVbL6WtjqYvb5T02DAYDGzduvK2cvlZ+3VlDDpw4cQIvLy+WL19O/fr1C5xu1qxZDBo0iL///pumTZuyevVqOnXqREREBMnJyYwePZovv/ySHj16sHr1aipUqEBycjKRkZF2L6dfmty65tn9nsw8eB8TE6OXiz958iTjx48nICAg3/m6d+9OTEwMAB9++CErV64EYMWKFZQrV67A+UoiMjLSopz+kSNH7L4OYd3169fp1asXTZo04dixYyiKwsMPP8x//vMfnn32WSZMmIDBYCAuLo758+fb7X7CWin3sWPHAjBx4sRClzNp0iTgf0MQCfej3aeYXw9cMcROcnIygwYNcmjZfG27inK+tHYfJ4QQQgghhBBCiIIVNQPfLSmK4g1MBzKB0YqiHFJVNdvGefWyddZo2TjXrl3j7rvv5tdff0VVVelBLQqU99iqUaOG/l6TJk300r2OZjKZuOeeezCZTCiKQr9+/Xj22WcpV67cbdPOnz+fZcuWAdCgQQMOHz5sU+aQFoA9f/48iYmJDBgwgA8++IBWrVpRrVo1fbqkpCR9zPLibP/QoUNZv369ntXg6+uLj4+PQwIv7s4eJTdtXA8fffQRLVu2pH379nZZZrt27fD39yctLY1HHnlEz+AGCAgI4M477+TPP/9kw4YN9OjRA7g9SAzQunVrQkJCCiwbqgkJCaFly5b5vvfAAw8wa9Yshg0bxowZMwD0THwtiK9l4jdo0IDu3bsXa5vt6dq1a8ybN4++ffvywAO2FMYpmqIeW/llqxoMBrZv306DBg04fvy4Xj46P/Y+H5p3SNq4cSP169cvdDzkWbNmAbmZ+C+88AI+Pj589NFH1KlTxyLL0Gg0snr1anr16kVSUhLt2rVj7969dmu7Jxs5ciSLFi3K+7JFD4eSnrfeeecdYmNjMRgMFmO6x8TEEBERwfHjx5kyZYoe9MxLC+JHRkYC0Lx5cypXrgzkfxwX5NixY7cNt6C54447+PHHH/XlPvPMM0Bux4POnTsXuEyj0cjx48e58847bW6HK2jX9Pvuu8/FLbGU954rv+Ord+/eNGnSxOI7XaFCBSZMmMC7775LXFwcM2fO5K233ip2O/7880/CwsLo06ePfk3Jq3bt2gQGBhIfH1/o8uLj4ylfvjx33XVXsdvkbMeOHWPRokWMHTuWatWqkZGR4RZVqIor77HVoUMHm+YLDAxk3bp1JV5/3gz2K1eu5Ls/hw0bVqzg/ffff8/UqVOtTjN+/Hg6d+6sD2Nky2e5ZMkS4H8deZ3ZmaGodu3axf79+/UOpkIIIYQQQgghhDvwzCcpt8sG9t/6fzzQFkCxIbququo8VVWbqarazNp0aWlpKIpC/fr1iYuLo3r16nppTCHyU9CxZTQa6du3r9PaoT04VRQFVVW5efMmv//++23TmQfvFy5cSGxsbJHKfnbu3BlVVYmMjKR58+Z8//33enZZSkoKr776KqGhoZw5cwZFUXj++eeLvC1Lly4lKSlJ/91gMBAYGOixD4VLwvz4KunYxoVp164dDz/8sF2X2bFjR+D2INCGDRv4888/MRgMNG7cWH9YXNDp/Isvvih0XYVN8+CDD1rNxNcqTJw+fbrQdTlDxYoVadKkicPGQ7bXsXX06FGuXr1qdRpHnA/btWvH7t272b17N82bN8ff39+mc8SsWbP0DiOZmZmMGjWKmTNn3pZlf/DgQW7evAlAr1697Np2T/bPf/4zvyCjyfyXkh5bXbt2zV2oycTXX3+tv/71119rJfstKnrkp3v37nzzzTds2bKFVatWFbkNzzzzDI0aNdL/NWjQQP/5vvvu46+//qJZs2Zcv37dYp7PP/+cJk2a0LhxYxo3bkyDBg30cxzkdl5y9LncHoYMGcLu3buZM2eOq5tiwZb7+Y0bN1oMs6LZs2ePXn66pJ20fv31V7Kysvjqq6+sBlGLUpUpPT29RG1ytrp169K6dWuqVKmiDyXgyZWSbP1bMa927drZZf3mGewPPvggSUlJvPTSS/o5T5OQkEC5cuWKnHnfoEEDWrVqVeD7NWvW5MEHHyxyu1u1akWrVq0KvY9zBw8//LDdPi8hhBBCCCGEEMJeSpyBryhKuKqqO+zQlmJTVVVVFGUjsBYIAUYqitIQMCqK8rGqqiWucZuSkkL37t1JSkoiOTmZ8PBwfZxdIQrTuHFjffxvZ9MyT+vXr0/Pnj355JNP2LhxI23atOHZZ5/lvvvuswjeT5s2jeeee67I69m6dSuNGjUiNjaWQYMGERMTg7+/P6+99pqedW8wGHjiiSf49NNPLbJkhXuz9mC3uLSse/PjYMOGDcyYMQOj0cjs2bNtGt82LCzMLtNo5fSHDh16Wya+u1V48PLy4pFHHnF1M6w6duwYffr0ITs7m+joaD0LGXKvp44cO9vLy8tqyXxrvvzyS65fv05ERASHDh1ix44d7Ny5k44dOzJ27FgOHjyol7IeMGAAb7zxhj2b7tHuu+8+jh8/bvFaQVnqxdWyZUumTZvGuHHj9GsWYHH9atGiRaHLKUk1kejoaIvf8x7Pw4YNY8mSJTRr1oydO3fq7/Xt29eis0pKSgrjx4/Xs/kPHz5sUY3EXZXk++UsDRo0sOiIdebMGYYMGcKFCxf4/vvv2bFjB126dKFz585s2LBBrwAyZMgQm44fW61YsQLgtiFY1q9fT1ZWFh06dCj03jA8PJwdO3awceNGHn30Ubu1zZECAgLo378/8L9rvLtdR4urbt26zJ07N9/34uLiHNKxTstc9/b2Zvbs2bz00kucPXuWl156SR+OoSSqV6/OtGnTSrycvOrUqWP3ZTpKYGCgQ+51hRBCCCGEEEKIkrBH2urjiqL8oCjKS4qiLLHD8opLBYaqqroQuAh8CATYI3gPudleL730Ejt37gTQywgK4e60zFOj0ci//vUvfvrpJ55++ml++uknXnzxRXr06GER/CjJA6zo6GgaNmxITk4O/fv3p2fPnpw6dQpFUejSpQtXr15l3rx5KIpCWlrabdlDouzKG7x3RGn4wmhB/Pwy8d2BqqpkZmbqmaLu6siRIwUG7zUmk8ktzwEmkwl/f382bdrEuXPneOCBB1BVlR9++IHOnTtbBO+joqJc3NqyqVWrVnqwadmyZXa7ftnLrFmzGDRoEH///Tft27e3yMQ3N2bMGBYvXqwH77WS++7OXb+71tx///38+OOPbN26lUqVKpGdnc13333H6NGjLYL3Dz30kN3W+eSTT1KxYkVWrFhxW0b0Bx98YPG/NTNnzrT439MoioKfn1+ZrJRkL+YZ7AaDgblz53Lvvfdy9uxZ3n77bbt9Fz3lHsNRyvr2CyGEEEIIIYRwP/ZI9Qkgd1zAJuQGzp1GURSDqqraU4vvgRaKorQCOgGfAx0VRdmuqmqJB6j18vKiW7duzJs3j7p167r9GKXCc6SkpFh9z1qmasWKFW1ebk5ODikpKRiNRvr160e1atX45JNP9FLQ9gp+REdHM3z4cI4fP46iKHTu3Jk33ngDo9GoZ2JlZGTo6y2skkV++8f8NWv7QLiXuLg4/ecbN24AuWO5fvHFFyxatMhq8D4uLo4dO3Y4vI15M/GvXbumB9aSk5M5d+5codUjCmtneHh4sdqmldEFijS8haNo30Ptu5yVlcWePXsKDd5DwecAa+dDcPz33bxdlStX5sMPPyQjI4Nx48bplUS04H16ejqJiYnFXpecu4pPC+JPmDABgClTptCqVSurn4mjKz+YmzVrFpA7BnTTpk3ZtWuXRTWCMWPGEBMT4/TgfX77xmQykZGRga+vr03tKMr1u6B1mnPm9+D+++/n9ddfJzExkQULFuidK+wRvE9ISAD+d20zGAysXbuWXr166Zn47733HhkZGfz444+UL1+eKlWqFLrc4OBgAgMD2bNnDxcuXLB4z5YqNfaUd/3mEhISbNoeUXJaEF/LxB88eDBvvfWWHsg3v9cqClfeY+R336SqKllZWXh7e9OhQwe7LVeTt2JCUbbfUfd5QgghhBBCCCGEOXsE8JOBWuSWr/+HHZZnlaIobYG7VVX9UlVVkxbEV1U1W1GUFsBbQC9VVdcpivIq8Kety77nnnv4z3/+Y/Ha+fPnGT16NJGRkXh7e7Nnzx4iIyPdIngiPIfRaHR6sCZvoMJoNBIYGMjKlSuZMGECV69eRVEUOnTowKJFi6hdu3aJ16k9sDp27BiJiYmUL19eL/1pLigoiNTUVAICAgrNysov4OKsIExZ5oiHj+YPSsuXLw/kljbesGEDRqORffv20bx583zntfawdPv27Xp7k5KSAKhQoUKh7SloG8PDw2natCmtWrVi0aJFein9wMBAqlWrhq+vr0uuAZ07d7b5e+MM2vdQK/t96dIli+D98OHD852vYsWKmEwmu29Lcc+x5vPlPTdp42H36tWLlJQUrl+/rp8rSxK8Ly1c0QlB+96Gh4ffVj7a2mcSGBhol2PE1ve+/PJLIDeIHxYWpgfqR4wYoQfvz5496/LMe/OAvDXadhbl+u0qPj4+BQa3x48fD+SWtb969SpeXl52+Qy04LV2bfPz86NOnTrs2bOHtm3bsmLFCnJycmjfvj2ZmZl06dIFgAMHDrBw4UK++uorvUNB5cqV6d+/P4MHDwZyx1L/7rvv2LZtGx07dixxWx2hSpUqTu9Q4Arly5d3enC2oPWdOXOG+++/n7NnzzJ9+nT9+2hLGf/8lmmP67I99MZxRgAAIABJREFU9415QN0RQkNDLdrriPsSIYQQQgghhBCiJOwRwH8LeAV4HnDYIN+KohjIzfafm/urUk5V1Tm3gvg+qqpmAv2B+1VVPQKgquonJV3v5s2b9Z7/x44dIzk5WXrVC4/0+++/c//993P16lUAOnbsyMKFC+0SuM/LYDBYfSBuMBgkCC8A9OD97NmzCwzeF4UtgXtbNG/eXM/E10rpGwwGfH198+2U4gzu+r3R9sfWrVsBrGbea9x1W6y1KzAw0C3bLNyXeSZ+s2bN6NixI6tXr3arsvm+vr4W/xfGXb+7xVGtWjWHr6NixYp888039OnTh1WrVvHdd98BkJaWRtOmTYmPjwdyO1k2btwYgOPHjzNnzhzmzJlDcHAw9evXB2DevHluG8AXzpc3Ex+gXLlyJVqeO323tXsLZ91zudv2CyGEEEIIIYQQxeperijKcUVRliqK8gYQDnwFnFZVdYE9G2fuVpZ9CvAFueXxWyuKMvLWe5m3/k/Rgve3Av4lkp6ezq5du2jTpg3ly5dn586dAISFhZV00ULka/bs2YSGhhISEkJISAj16tXTf65SpQr16tUrdtZnUlISV69epX379sTGxvLDDz84JHjvSIqiuLoJwk6ysrL0n4s65v1//vMfjhw54ohmWdDK6Wv++OMPfRxaW02dOpWpU6c6onluwzxTzZbgva1efPFF6tSpQ05Ojl2W50h79uwhJCSE4OBg/Zxt/k/LxBXOM3v2bLcIds6aNYtBgwbx999/u1XwfufOnQwdOhSDwYC/v79TMk5nzZqld2ooSypWrMiuXbsIDAzUqx1s27aNhIQEHnroIebOnUt6ejpHjx7l6NGjpKenM3fuXB566CESEhLYvj23f/TevXvd5ny4Z88eRo8e7epmlHlaEP/ee+8FsKmahru7cOECkydP5ubNm0W+57Jm+fLlLF++3C7L0qSkpDB58mSrw0sIIYQQQgghhBDFVdwM/DCg4a1/EUAMcApwRpQiG6hNbiD/BUVRPgAyVFUdqyhKSyBdVdVjqqqaSroiVVUxmUw2jfEphD2sWrWKpKQkgoKCLF5PTk4GcscLL44PP/yQvXv3MnHiRI8ucbpgwQISExMtxuwVnql79+7Url2bRo0a2Ry818ZDbdOmDY0aNXJwC+3j+++/B/5Xtrk0atasGe+++y5Vq1YlIiLCLsu8fv06K1euBCAqKorPPvvMrUva5uTk6OdprQSv5ubNm+Tk5PD111/Ttm1bVzWxzJk8ebLbBDvNHTx40OXBe4A2bdo4PdjXrVs3p67PXfn4+PD222/z1FNP4eXlddt9mZeXFy+++CKPPPII2dnZtGnThsuXLwMwcuRIPv74Y1c020KLFi1ISkpCVVXpXOliWhB/yZIlBAcHe/xn4ufnp1ejsKfWrVvbfZkAjRs3xs/PzyHLFkIIIYQQQghRthXrabiqqtdVVd2hqurHqqo+CzQHfrVv0wr0DfCXqqo/AIfJLd+vDUDaAvjLXivy9/fn4Ycf1jNetMx7LRNfCEc5f/4858+f59SpU7z77rtA7gPdLVu2FGsM3+eee4558+Z5dPAeoHfv3jz33HP6mL2OHBtTOFaDBg146qmnipR5r42H+o9//EMfd92RTp8+zdChQ/XfPa1ihbNUrFiRoUOH2i14D1gs65tvviE1NdVuy3aEsLAwPvroI/33tWvX6ufxFStWuLBlZZe7BO+HDRvGkiVL9N9LUuLanry8vHj00Uedus66detSt25dp67THSQmJtK+fXtSUlJ46qmnOHv2LAMHDrTpOhYREcHly5cxGo1A7vnQHY7tnJwcWrduLfdhbsJgMBAREUHbtm0tKhx5ouDgYHr37m33cva1a9e2+31cYGAgvXv3Jjg42K7LFUIIIYQQQgghoPgl9O8z/11V1V/JzcZ3hjTgfkVRooCXgelALUVRBgAfq6pqtwA+QNu2bUlKSuLEiRM0btyYoKAgduzYYc9ViDLOZDKRlpaGyXR70YiYmBhGjBiBl5cXmzZtomnTpi5ooXNdvXqVq1evWp3G19eXcuXKSQZ+GePt7e20MegPHTrE0KFDycnJ4bHHHivSvKqqkpmZiaqqDmpd6Xb9+nUOHTqEwWCgWbNmmEwmRo4c6ZR123L+Kcizzz7LRx99RHZ2Nt26deO///3vbdMUdK4XpZMWvK9UqZLeWUmuW9bve0qbxMREevXqRWJiIk899RTvv/++zfP269ePgwcP4uXlxb59+3j44YdRVZXhw4e7/Pri6+uLv7+/HM9uxNo9UmZmJr/88kuxlnvq1KmSNs2l5J5MCCGEEEIIIYSnKm4K4zxFUeoAF4FYwA84oShKgKqqDk2TU1X1kqIoF4CJwKuqqq5TFKUDcFYt4V/miYmJrF271uK17OxsvL29WbFiBRMnTqRt27Zs376dzMxMi+l8fHxKsmpRhv3999+kp6fj5+enP8xOSUkhJiaGMWPG5Bu810rIm0ymAstKp6SkFJi9kpKSYrVNxcnyLwmtU8y+ffsYN24cANOmTaNVq1YAt5XS1MbsLUxiYqLV94uznY5YpjsqrKNSeHh4keeLi4sjNDQU+F85fG9vb5tLvSqKku+5Ni4uzup6i9pWLfM+JyeH5557jsqVK7NhwwZu3LhBXFxcoe387bffyMnJ0TMmtTa6iid1Ojt27BivvvoqAB07dmTo0KH07t2b1atX8/LLL9OpU6cC5y3ud7Ow809Bx4857Zz89NNPA/Daa6/RrVs31q5dS3p6OgDp6elcv34dPz8/fH193epcUVrOa/ld21JSUjCZTGRlZREUFGT3oRgK2nda8L5ixYrs3LmTgQMHAlhUk7C2X619Jtau74Utt7jseYxoVXRKsj5rMjMzrY5J7YhqRAkJCQDcuHEDyP2+nzt3jl69epGcnFxg8F6bLy8teG8wGHj77bc5fPgwERER/Pe//2X9+vV06tSJESNGFNiewsbkLuk+UBTFomx4Qdthr/W5ixs3bhR4TTW/x8mPLdeSksh7jzR58mSrVeOs/dlc2H2ZJwXDtepN4Li/183vac+fP++Q+67Q0FDOnz+f73shISF2X5/I3a/WvgvF3e/WlhsSElLg3wzWjgEhhBBCCCFE6VSsAL6qqh0AFEWpDTQGGt36/ydFUXJUVbW9JnLxzAe+UVX1yK3fd9pjzPusrKx8xxivWrUqcXFxpKen0759ezZu3Mjly5e58847S7pKIahUqZI+nrsWWFizZo0evN+7dy/Nmze3mCclJYX09HTS0tIwGAwW82oCAwM9JugCsHfvXotxwseNG8fUqVNp1qyZQ4IuwvlCQ0P1B9gpKSkkJycTFBRkU5lUaw++zR+UFqdjgPk8Z86c0YP3o0eP5rHHHuPgwYMAlC9fntDQUH36gjrQ3HPPPfryzLe9tHHE+SUpKYlTp06hKApvvvkmRqORevXqcerUKaZPn241gK/Rgun5nRcLYh68h9zzj3kQPz/m26+dk318fBgxYgQBAQG8+OKL9OnTh7feegvIHddXm8eWDkii6PI7lwQGBpKWlkZmZiapqal2L8ucn6FDh7J06VIqVqzIkSNHqFy5st6hx5Hr1479gq6ZjvjOFmedQUFBpKamEhAQYPf2uEqVKlWA3OsE5O6XPn36kJycTJ8+ffjss89s/uzNg/cTJkzAz8+PtLQ0jEYjISEhnD9/nsWLF1sN4Oelqqp+Xizu+OjFDcKrqkpKSgoBAQGl/l4uMzOzSPcfJWXt3siThnxzVOeG8PBwTCaTfr6x1/GXt73m97SO+uzPnz/vUR0nSgNHdb61tlxrx09hx4CzzjtCCCGEEEII5ynRX7Gqqv6hquq3qqq+q6rqE6qq3gc0s1PbrK33gqqqR5Rbf6XYI3hvTfXq1cnKymLz5s2EhYUBsHv3bkeuUpQhWja5+UMl87L5eYP3AAEBAQQFBQGUirHg9+3bpwfvBwwYwIABAwAYP348u3fvduvxr8tKKWB7lyDVjmF7B3C0TKuijAGrzXP8+PHbgvfWpi/ouNSy4ORBWtFpQfROnTrpAc9p06YBsG3bNpvGftaye209L5oH783PP+PGjWPfvn02LSPv8RwVFaWX0584caI+ncFgIC0tzePP2Z5GG3bFGQHjYcOGsXTpUipVqsSuXbuoXLmyxfuOvFZox74zr5nFWafBYCAwMLBUB3NXrlxJYmIi/fr149///rfNx5552fzXX3+dChUqWLw/ZMgQAI4ePWrT+VCTkZHhsnNPRkYGycnJbn0vZw85OTlFvv8QjueM842j7mmFEEIIIYQQQpRtdv9LVlVV67W57bsup3RDr1SpEr6+vsTExNCoUSOCgoI8KqtBeI74+HgAvLy82LhxY4Fj3msPo/z9/SlXrhxGo5HXXnut0BKm+Vm6dClffPGFywLQP/74o0XwLCoqiqioKD2INmXKFI4ePVqidWRnZxd7/1hz9OhR3n777VLRicKa+fPnc/LkySI/mD5z5gyfffZZvu856oHqmjVrWLduXb5jwBbE29ubq1evMmrUqEKD99r0vr6+RXpQ6y5jsK5YsYIOHTpY/MMB9wLFkTf7XlOhQgXq1auHqqo89dRThS7HaDQyefLkQocKAdi/f7/V88+4ceM4cOBAocvJ73h+9tln+eijj/Tfs7Ky9ECyu40bbd4R6Z133inxOdeVtG0xl19HOUd444039DHvDx8+TKVKlfT3tKEUinqtyM7Opm/fvjRv3pzw8HDCwsJ45JFHCA8PJzw8nI4dO7Jq1SrAOR0V8l5PnbHOc+fOUaNGDSpVqqT/s+bs2bM89thjPPbYY/To0YNvvvnGYW2zpl+/fkycOBFFUQo99lRVZeDAgRw8eBCj0cjevXtvC95DbgWHkJAQVFXlmWeeKbQNSUlJdO7cmdjYWKeNWf/777/z/PPP68Mg+Pr6lprg5i+//HLbNVT798ILL/D444/TrVs3OnTowHvvveeyduYd6i0/06dPz/f17t2727s5pV5B97SjR4/Oe78lhBBCCCGEEELYzC0e2rs7g8FAQEAAly5dwmg0UqVKFT3QKoQ9DRo0iBYtWrB8+XLq169f6PRaUCIhIYGwsLB8h4AoTJcuXQgLC3NZAHrlypUA1KhRg6ioKP31qKgoatSoAcDq1atLtI74+Phi7x9r7rrrLvr16+eWATl76tSpEzVq1MDX17dIgfFq1ao5/YHl3LlzmT9/fpGy3xVFYcOGDeTk5BAZGWk1eK9N7+PjU2hA5rffftN//vXXX90iM6+A74DR2e3Iz5o1awB48MEH9ex7zX/+8x8g91wwduxYq8tJSEigU6dONl2nt2zZAuSeS3v37q2/3rt3b/3z3bx5s+0bkcezzz7LzJkzadOmDe3atXNaILmozKsW9OvXj7vuusvVTSo2bVtGjBhBly5dnLruFStWYDQaOXz4sEXm/eLFizl9+nSxAqjx8fFs376ds2fP8tNPPxEbG8uJEyf46aef+Omnnzh69ChRUVEsWrTIKcdX3uupM9YZGxtrU0BSk5aWxvHjxzl+/DixsbF6VQRnqFu3Li1btiQyMpKZM2fa/JlnZGRw4sQJIDeT+5VXXrmtI4r23rVr14DcjgqFeeaZZ/jll1947rnn8PPzc0plmM8++4ytW7fSvHlzEhMTURSl1FdcyI8rq7XZUvp73bp1+b6uDRskSi4pKcnVTRBCCCGEEEII4cG8XN0AT5Camsrff//N448/zsWLF/n99995+eWXXd0sUQqNHTuWN954Qx+n1FZ33nknffr0KdY6q1atWuT12dPMmTP5+OOPuXTpEikpKfoYsUlJSVy6dAlFUZg5c2aJ1lGS/WNNcHAwwcHBdl+uu7nnnnuKNZ8tmZLuQqtA0bhxY7stUxsWAmDy5MksWrSoSB0gHGH48OEMHz5c/11VVTp27Gh7HWYH0spB5zc+fGBgINOmTWPcuHH8+9//BgrOHizK933SpEmsXr2a2NhYIiMjiYmJASAyMhKTyUTDhg2ZNGlScTZHN2TIEL3stbvSzv++vr7Uq1fPxa0pGW1bJk2a5PSAoaqqlCtX7rbgvTYszrp164rcpjvvvJOPPvqI1157DS8vL7Zs2cJ9992nXyuPHDlC9+7dGTlyJADPPfec3banoPY44npqTZ8+fW5bp7VrS4MGDdiwYQMAx44do2/fvnrHn4EDBzquoUDNmjX56quv9N/9/Pxsms/X15e9e/fy5ptv8u2333LkyBGOHDlCSEgIUVFR+Pv7k5OTo1f9KVeuHHv37rW6zOvXr+vVNFJSUti8eTPdunUr/sbZSOskkJGRQfv27dm1axe1atVy+HqdoW7dusydO9fiNVVVycrK4tKlS4SGhrqmYXnUrVu30GkK6mBw/Phxj+7E5U7mz59v8btk4QshhBBCCCGEKIqylQpRTFqWUf/+/fWHHWFhYa5skijFnJ2h6eqMUKPRSMeOHQEsymbnNxZ2SZWV8erdhbuUjXeF3377jb/++gtvb2+8vb25fPkyFy9edEr2Y1Hcao9HfCFatWqlZwz++9//LjQT31bR0dE0bNiQnJwcIiIiiIiIICcnh4YNGxIdHW2Xdbg7V18H7MmdtiUmJkYP3m/atKnAYXEKow3HkJ2dTdeuXfnpp5/095o2bcqmTZvw8vJi5MiRLFq0yE6tdw8lvW43btyYNWvW4OXlxdixY52WiV9UiqJQrlw5Zs2axW+//Ubv3r1RFIXz588zYcIEPv74YyZPnqwH7996661C740GDx4MQMOGDYHcct7O1LRpUxITE2nfvj3Xr1936rqdSavK42kKOn5q1qzp5JaUDbfuhV1/YRJCCCGEEEII4TEkA9+MyWS6bcxcVVW5dOkSlStXpnbt2kyfPp0KFSroD8MAqyWRs7KyrGZceuIDHyEKoo13WpCKFSvm+/rIkSPZtm0bJ0+e5Nq1a5hMJn0s7Ndee81u7dNKK0Pu+OwA+/btY/z48VSuXFkvfwwQHh5e5OXbMua2NQXtH0+VlZWlD81gy7lux44dVt8v6DPJr1SsLeVjzae5ceMGkNthK++8WieuGzdu2LTcyZMns3//fuB/D8Lj4uL45z//SYsWLQrdzrIuLS0t3/2cmJhI48aNLTLx//jjD33ojZJUT4iOjmbEiBHExsYCODx4X9i5wp3OBZ7UVlcw3z9aZ6WUlBRiYmIYM2ZMgcH7ol4vnn32WQBee+01evfuzddff02jRo0AuP/++1m7di19+vQpNBPfEZ9XcY8Ra/cMWkUe8+t2ftU58pOdnU1CQoL+e61atVi4cCGDBw8uNBPfHTLFjUYjH3/8MU2aNOGbb77h6NGjnD9/HsDm4P3y5cs5evQoiqIQFRXFmDFjSEpKYsqUKTRu3JhXXnnFrm0239/p6elAbvWR2rVrs3btWurUqcOuXbsKPBbcYb97Ine7nyisk2JxO3QWd7nFva90hFvPC9xiyCIhhBBCCCGEEJ5BAvhmqlevflt2SlxcHAcPHmTQoEH4+Piwe/du2rdvb/NDRCEKU5KH6cWd190CLm3atOGJJ55g1apVzJgxQ8+069evH23atCn2cvNuZ1BQEKmpqQQEBHDmzBn27dunZ/onJCTwxBNPsHr1aqsPxouz70wmkz5MgTtkhdqiuA81zeczmUz6/nbkdudXstaWMrbm05QvXx7IvQ7knffq1av6NLYsd+fOnfrP5oHo9PR0i/ecxZkPqO3B398/3/2s7ctWrVoxffp0xo4dy7JlywCIiooq9nlN2z8//fQT3377LQCPP/54sZZlzt3Os9Z4UlutccV2aKXs4X9BpjVr1ujB+71799K8efMiLze/bRkxYgQBAQG8+OKL9O7dmy1bttCkSRMA2rZty6ZNmxxWTt9R+7ag62NgYCAVK1a0uG7beh3x8vKiSpUqFq+FhYWxZs0ah5XTL24A2tp8kyZNYtKkSeTk5DB48GCSk5MLvUfRfPLJJwA0adKEzMxMnnrqKRYtWsSXX37J/fffX6y2WmO+v7VhA4KCgoiOjsbX15fly5fr5fQ9+XxTvnx5j7mmbt++XW/rt99+i8Fg4JFHHrHp+NEC4hcvXuTUqVN4e3t7zHa7WkH76dbfNm4xZJEQQgghhBBCCM/gGZEkF9qzZw9Go5FWrVpx8eJFfv311xI/wFBVldTU1DJZVlqUTbaUwJ0zZw4Gg4EDBw5w6NAhDAYDn376qV3bYTAYCAwMxGAwWATvIyIiqFChAklJSTzxxBN2L7OvZRBq2ehlhfn+FsKeWrZsyfTp0wFYtmzZbePMFtfjjz9ul+B9ccgQH54p7+eWnJxsUTa/qMH7wo6DqKgoi3L62hjnkFuyfO3atR5VTr+w66M9ryONGzdm4cKFbl9OPy+j0cjixYv5+uuvbQq+Xr9+nfPnz6MoChEREQA0aNAAf39/0tLSOH78uKObbOG9994jIiJCL6evVV5QVZX09HT5e8gJHn/8cXr06FHkIalq1qxJly5dJHhvB7fOYXKBF0IIIYQQQghhM8nAt8JkMvHjjz/SsGFDgoKC9MzJkj7ESEtL08uN+vr6lrSZQrilzz77jAEDBhAQEKA/oE9NTbXIVjRnNBrp27cvq1atAuCJJ54o8oNGW23evFkP3g8YMICoqCheeOEFnnjiCZKSkoiMjOTPP/8ssK22SE5Opl+/fnrWsKqqFiVAw8LCmDlzJkFBQSXaltLq66+/pnv37nomn6NpwbKYmBj27dtn8Z72GdoSWLUlMHLixAnq169f9EYKC1oQX8vEDw0NZerUqa5uVpGtWbOGZs2aERwcrJcKd1fad6NVq1Yubon7MC/xnpycDFDkMe9TU1NZtmwZL7zwgk3XS/Ny+l27duX777/Xy+k3btzYIhPfYDDwzDPPlHQzbaYdz7Vr17Zpeu0++K+//uLo0aP07du3xG24dOkSEydOzPe99PR02rdvz7Zt2xg7diwGg4HIyMgSr9Od9OjRA8jNvje/j9Ky8FesWMHChQsd3o5PPvmE77//Hsj9nCtVqsTff/9N8+bNOXz4ML6+vqSlpTm8HWWFdv/RoEEDl6z/r7/+smmaO+64o0jLHT9+fHGbZMHV+0cIIYQQQgghhCgqCeBbsXXrVq5du8bAgQPJysrigw8+IDg4WH9Iak5VVdLS0vD39y90nD6t/L6U4Rel1YULF+jZsyc///wzTZs21R/QBwQEWJ1vzpw5rFu3DsDu2ffmXn/9dSC35Ks2frbRaGTu3LlERESQlJREXFxciYKsK1eu5NChQwW+v2rVKpo1a8ZLL71U7HWURqqqcvHiRdq2bUtcXBwPPPBAkebXxpwvqho1aqAoCseOHePYsWP5TlOtWrVCl6OVLbZm9uzZzJkzp8htLO3uu+8+AI4dO0Z8fDzBwcGFztOyZUtat27N3r17iY6O9sgAfseOHbly5Yp+nnTXjn0mk4lq1aq5bftcxfxze/DBB4mLi2PdunU2B+8Bfv75Z3r06MGFCxf0c1hh10vzIP4bb7zBpk2b9PeaNm3Kyy+/zOzZs5k5cyZPPvmk04Zw0Y5nWxkMBvz9/cnMzKRTp052aUNCQgJffPGFTdPOnj271AXwtWtYhQoVLF7XPn9HB83vuusuFEVh//797N+//7b3MzIyWLNmjT7Eg5xT7KN69eouXf+0adMKnWb69OlER0cXabkfffRRcZuEqqpkZWXh7e3t8v0jhBBCCCGEEEIUlQTwC/Dbb7+xaNEimjRpQuvWrVm0aBFHjhxhzZo1+WYFm2fVF/bQVVGUQqcRwpNpY7pqD8u0B/SFBQ+MRqNNGTwltXnzZkJCQkhISGDEiBFER0cTHx+vj4fbsGHDEmdIP//889SqVYuDBw/m+/5DDz1Er169SEtLc1pgxRNkZWVRoUIFfH19qVq1apHnX7Jkif6z9uDWZDIVun8jIiJo3rw5165dy/f9gIAAm7K2PvnkE+bOnVvoNOJ2YWFhNGzYkNjYWCIjI4mJiSk0iD9//nz27t0LwPLly53RTLurWLGiPia0O3fsy8jIoEKFCpQrV87VTXEr2vUN0I/Fosob7Lflegm5QfzXXnvttvLzixcvZvbs2Xh5efHpp5/qFQKccXxpx7P52Pa2sOe47KGhoYwfP57MzEx8fHzw8fHR37tx4wbly5fXf3/44Yfttl538dVXX9GzZ0+2b9+Ooig89thjnDx5kgULFgC5nSwc6eWXX6Z9+/YFduQIDAzUh5ZwVpWdssCWToaO9OGHHzJr1iyr08yYMaPIy12xYgU9e/YsVpuysrL086Or948QQgghhBBCCFFUEsA38/vvv/P0008DuX/wV6xYkaFDh3Lo0CG+++47RowYQZ8+ffKdV7LqhSg58wf+jgxo16xZk2XLljFgwABiY2N56aWXOHfuHDk5OTRs2LDI2UEF6dq1K127di3w/bS0NKcGVjyBt7e3xf8loT24tVaK2lydOnWoU6dOidZpy7APhVVpKcuio6MZMWKETUH8+fPns2zZMiA3808rGy0cw90rBJRF+Q3rERMTw5gxY/Qy/k2aNClSIN1ezIcWcLby5cvTtWtXfbvNz7kJCQlUqVIFyO3klZGRcdsQN56uR48eDBkyhAULFrBt2zauXLnCyZMngdzg/WOPPebwNtSrV4969eo5fD0if0XpwGgvttz/ZGRkFPn+riTXdnveUwohhBBCCCGEEM4mAXwzQUFBtGvXDsgNsHTo0IG0tDT+7//+jzp16vDee+8VOK9k1QtRcuYP/B0d0K5WrRoxMTFERkbyyy+/ANg1eG8LCYjdTlEUi2zJktAe2LrbudnWDgVllXkQv3///gUGH7Tg5bRp02RMdicwzzQX7iG/zHvz4L2W2e+Kz83V1zdFUQrN7s7IyNDLyZe2TPCHHnpID+I7O3gvXK+oHRidxdn3Y/a8pxRCCCGEEEIIIZxNAvjftD8bAAAgAElEQVRm6tSpw+rVq/XfMzMz6dChA97e3mzYsKHABwDWHgzIQwNRmiQmJlp9XysDXVTafEFBQaSmphIQEODwjKHw8HAAWrduzaRJkzAajcybN69Eyyzu9otc2mfi7vMB7Nixgx07duT73vbt2wkPDycnJ4chQ4YAsGDBAhRF0Y9vkT/tM/npp5+IiopixYoVpKam5jutn58fK1eudFnmfUnOh550rvCktrpCSa97JWEeHF+8eDEjRozAy8uLvXv36iXKncGV+yA/Pj4++lA+eZm/bjKZnHbP4WyjRo0CoE+fPqxfv54777yTt956q0TLvHDhgtX3C9rnwnEKuo8xP7btraB7Hyj4/seW7HxrVFUFYP369UU6nktyn+csiqK8CLwIuVUMCqoGEhIS4sxmCRcJCQmRY0AIIYQQQgihkwC+FWPHjuXw4cN89dVX3H333a5ujhClnsFgcHqmUM2aNfn888+duk5RNhiNRr744guL19wpE87dzZ8/n/nz57u6GUK4LS3ofPbsWT14v2nTJqcG7z2ZK+45nK1Hjx4yvEgZ5OpjO7/7H3sojcezqqrzgHkAiqKoWmcFUTbFxcW5uglCCCGEEEIIN1JqAviKojQGMgBUVf25OMtITk5my5YtAMTGxjJ79myGDRtGr1697NdQIUqRCxcuSMaVKPOuXbtGxYoV8fIqNZdUUQxyPhSukpKSclvZfCEcKTs7m4SEBKpXr+7qpggXkvsfIYQQQgghhBDCcUpFvUhFUR4B1gH/BFYqijK4CPO+qCjKYUVRDp89e5aePXvSs2dPxo8fT+XKlZk6darD2i1KN/NjKz4+3tXNsbu9e/eyefPmQkuqCsco7ceXJ9mxYwf79u1zdTPsRo6tonvnnXdo2LBhqToOHEGOLccp68F7Obac6/vvv2f9+vWuboZTyLFVsNJ2/yOEEEIIIYQQQrgTj+4ur+QOEFYOGAa8qqrqt4qitASWKIriq6rqnMKWYV62rlq1auoTTzwBwLlz59i6dSuLFi3ipZdectxGiFLL/Nhq1qxZqauH2LJlS/z9/SXj1EVK+/HlSVq0aEGlSpVc3Qy7kWOr6GJiYgD44YcfaNWqlYtb477k2LK/y5cvYzKZHDLWtSeRY8u5WrduzZUrV1zdDKeQY6tgpe3+RwghhBBCCCGEcCceHcC/NUhciqIoh4EgRVG8VVXdryhKBLmZ+Gmqqto8AF+tWrWIjo4GwGQy0bt3b0aPHk2LFi1o3LixYzZCCA9kMpnIyMigUaNGrm6KEC5Xq1YtVFUlMzMTb29vcvuWibIkJydH/1k7PwYFBeljlAvhKH5+fsD/jjtfX18Xt0iUBUFBQZQvX5709HR8fX3luleGqKpKVlYW3t7e0olXCCGEEEIIIYRwoNLyZPkvoBPgD6Cq6mHgaWCYoih3F2eBBoOBBQsWEBwcTGRkJMnJyfZrrRAeLiMjg5s3b5KRkeHqpgjhFrKyssjIyCArK8vVTREupp0fU1NTXd0UUYbY87q8efNm6tevz8WLF+3QMuForvq8MjIySEtLk3vBMkbud4QQQgghhBBCCOfw6Ax8RVGMqqrmqKr6f4qirADmKIryCpCqquoeRVFiAZtLHV68eJGxY8dqy+bhhx9m6NChjB8/nt69e7N7927JMBEC9Ay/vJl+iYmJVuerWLGiXduhrc8887AoGa/FaU9iYqLV9dl7G8uSHTt2WGR25T3fhoeH23191hRlfd7e3vr/cXFxVpdd0HILmkfbJ507d/aYjG7zc0F+3xd3+p4U97yVkpKi/5xbECg3sJGVlYWiKB5V0jzvPsj7mbnT51VcJTkmC7vWuMP+Kei6bCvt/LNv3z7GjRsHQEhICDExMQQHB9v9/CtK5oMPPgDg5MmTLFiwAIDatWszYcIEKlSowKhRo4q13AsXLhT4XkJCAlWqVNF/L+kxV9z2qKqqfw9r167tsHXbk/b9Kugex9r3y9r9RFxcHKGhoQW+74jvrfn9TllVks9TCCGEEEIIIYSwlccF8BVFaQvcrarql6qq5iiK4qOqaqaqqk8pirIc+AjYryiKFxAGZNu67CtXrugPxADq1KnDu+++S2RkJEuXLmXOnDm88sor9t4kITxGYUGKwgJhjqJlHgL4+/uXuvWVJVpmF4CPj4+LW1Ow4j5sLw5tn6SmphIYGGjXZTtDaf2+mH8W2oN7b29vgoKCADyms0V+Sutnpinu9rnLfnFUhwHz4H2VKlVISEggMjKSmJgYh6xPlIx58D4oKIjk5GSmTJnChAkTHLK+KlWquEXJdC3z3xN5yj2ONR06dHB1E9xGafg8hRBCCCGEEEK4L495uqwoikFRlEBgLjBWUZSXAVRVzVQUxe/WzxHAbiAYCAceV1X1T1vXUatWLaKjo4mOjubVV1/l3LlzLF26lMcff5wmTZrw2muvcfToUbtvmxCiZHx9fSlXrpzTxv519vrKEm9vb3x9fct0Zlde2j7xpIxuc/J98Tyl/TMr7vaV5v1iHrwfMGAAq1atomHDhuTk5BAZGSnl9N2MefC+Y8eOvPXWW9x9992YTCamTJlSqj8vX19f/P39PfJ7KPc4pYt8nkIIIYQQQgghHMljAviqqppUVU0BvgA+B1orijLy1nvpZtMtUFV1CjBIVdWTRVmHt7c3NWrUoEaNGoSHh/PII4+wYcMGfv/9d4YOHUpwcDCDBw+252YJUSp9/vnnVKtWjeXLlztlfQaDgfXr11OlShUqVapU4L+VK1fabX3+/v6sX7+eYcOG2WWZIpeiKMTHx9O1a1e+++47p6339OnTTJs2jWvXrtl1uVFRUURFRZWoPYqi4OPj45EZ3devXyc4OJiuXbt6RPvDwsIICwsr8nz33XcfANWqVbN3k5xu2LBhrF+/Hn9/f4/4zIojJiaG0NBQzp8/X6T5DAYDY8aMYf369Q5qmeuMHz8eyA3ea+es6OhoPYhfv359VzZP5LFw4UIgNxv6scceA2Do0KHUqlULk8lEgwYNSryO2bNnM3v27BIvx1609iiKgp+fn0cOa6YoCr/99hvTp08v1v1Gly5d6NChg/5v8ODBFr+//PLLDmi1KEhCQgIzZszgzJkzrm6KEEIIIYQQQohSyBOfzGYDtcgN5P9DUZQPFEWZDqAoSmtFUR6+NV1mSVekPZBXFIWgoCC6detGfHx8SRcrRKllMpmYP38+o0ePJisriwMHDjht3S1btqR79+4Fvn/PPffQrFkzu64zPDxcf3Au7GfLli1kZ2fz5ZdfOm2dISEhNGjQgAoVKth1uWfPnuXs2bNFni80NJQmTZq4xdjaJREREYHJZOLEiROcOnXK1c0pVGxsLLGxsUWeb86cOezevZshQ4ZgMplIS0vDZDI5oIWO99hjj5X68Xvff/99MjMzi1UavrTuHy+v3FG1OnfubPG6dt2sVKmS09skCla+fHkADh48SE5ODgBJSUl65n2LFi1KvI6OHTvSsWNHVFUlPT0dVVVLvEx7tMfTleT6/q9//avA94xGo17eXlVVMjMzPfY65CkqVqxIkyZNCA0NdXVThBBCCCGEEEKUQl6ubkAxfAM8qarqD4qiNAamAItuvdccWAGg2uEp08mTJwkICCAkJASA+Ph4goODS7pYIUqtzz//nDFjxui/G41Gp627Vq1atwVjTCYTGRkZ+Pr6OiSTNCgoyGqnAVE82gPn9PT0Qqa0H6PRSHh4uN0CFKqqkpWVVez5/fz8eOSRR+zSFle5fv06hw4d0n8fMGAAx44dc2GLbGd+7rBFrVq19LGh09LSuHnzJqmpqQQGBjqymQ5RFs5pqampAMUKbpXW/fP000+zYMECxo8fz7Jly/TXtY5U3377rauaJvIxYcIE3n77bW7evMnbb7/NqFGjmDp1KiaTiXvuuccuFWzq1asH5F6L3WHMea09nq6413dVVQkPD6dLly569YG4uLh8g8fa2Oyeeh3yFF5eXh5/ryaEEEIIIYQQwn15YgZ+GnC/oihRwMvAdKCWoigDgI9VVf3LXis6deoUDz74oB6EvHr1aqkojyuEI8ybN48xY8bg5eXFlClTXN0cADIyMrh58yYZGRmubopwc/Yex1R7eF6WRUREAPDkk0/i4+PD+f9n777Doji3P4B/Z3dhaYIFo1godkWMXWMn9qixRI3EbiIx6o0lJmjsih3xWhNbjCXGXE1MVIwxKpafMYnlGgkoXEXAglGQzrJsmd8fZCa7sJ0ts3A+z+PzyM7szJnZ2Xln58x73tRUp+iFD5Tv3MGNk+7h4WGDyAixjfHjx8PFxQXp6el4+PAhgJLkvUKhgJ+fH5XQFxixWIylS5fC09MTBQUFWLlyJdRqNYKCgjBjxgyrrsuZx5yvSLjrClMeDuSuaagdIoQQQgghhBBCnJfT9cBnWfYpwzCPACwGMINl2ZMMw4QCuF/eXvdKpZIfjzA7Oxvp6eno0qUL/9qLFy/QsGHDcm4BIdaTnZ1tcLq1y2/rW9+XX36JOXPmQCKR4Pvvv+fnUygUyM/Pt1k8xnA3m+mms3NISUkBUFIGGABUKhX/mq1x48xbAxczV9ZY87XyuHjxosHpQirrfenSJVy/fh0Mw+D999+Ht7c39u7di5EjR+Lw4cOCilXzHMVRKBRgGMaiKgoikahCjx/vrDQ/Z+5yUbONsnf7ZO/225iioiKEhYXhwIED+PTTT7Fv3z6+9/2SJUvsGosQPXr0yOB0rgKHPXFJ/JUrVyIvLw9BQUGYOXOm1dfDjTlfHrbYf5mZmVZfpjF5eXkG22JL2zZDy+R62XMPGJryoCF3TVMZ2iFnujZyhICAAL5ig65phBBCCCGEEEKEy+kS+H/bDeAHlmVv/v33JZZlyz3In5eXF1577TUAwOnTpwEAI0eORPPmzQGUJPCpBz4h2jST92fPnkWbNm1w/vx5ACU3GW1ZutMR44M7+5jkQsaVgeXGoReLxTYdV9RWN3V1xWzKdhiLx9hNaiH59NNPAQC9e/eGWCzGuHHjcODAAb53r5BuqOs6R3l7ext9X0U6F1SkbdFH83PmkhmmtlGVYf907twZnTt3xpEjR/Ds2TN8++23UCgUCAgI4KtpEOGYO3cu/39D46KbyxEPIhgitHgsVZ72PTAwUFBtJnGuhwLs9SAsIYQQQgghhBDrc8rH8lmWfcSy7E3m7zuw1kjel3bjxg14eXmhSZMmAErK6ebl5aFmzZrWXhUhTktX8p4QUlY5C8Q4lZcvXyIhIQEMw2D+/Pn86xMmTAAALFy40FGh6aVWqwUxxjOpXLjjTq22+mWsxbhk8J49ewAAhw8fdmQ4hJiEZVkUFRU5dVvLsiyKi4udehsIIYQQQgghhBBiPU6ZwOeUt2R+aSkpKXj33Xfx7rvv4uzZs2jXrh3EYjEAICsrCwAogU8EKTs7G5MmTcKDBw/sts5Lly5hzpw5/N/Dhg1DQEAAAgIC8Pbbb9stDlLxcKXsuZ74FYElpdj1yc/Px7Jly4yWJHaU4cOHAwC6d+/Ot6EAMG7cOEgkEqSnpyMtLc1R4enEjXlPKgdfX18AgLu7u0Pj4I67u3fvYtKkSUbL6tvDvHnz+O+tv78/WrRo4eCIhOfhw4f44IMP+OFeiOlycnLwwQcf4OHDh1Zd7o4dOzB8+HDI5XKrLre0pKQkhIaG8v9WrVpltWUrFApkZmZi6dKlgm3fhW7dunW4efOm8RkJIYQQQgghhBAn4Kwl9G2uWbNmWknIx48fAyi5mUmI0KjVanTs2NFqY3ibQiqVomXLlrh37x48PDy0pnl6ekIikWDYsGF2i4dUHMOHD4erqyuaNGkClmX1jt3pDBYsWACVSmXSmLXmaN26NT8mMcuyUCgUUKvVghjvtlatWgCAq1ev4sWLF/yDb7t374ZSqQQArcS+EEilUgDAZ5995tTHGzFMrVZDLpdj48aNuHnzJsaNG+fQeLjjztvbG127dnVoLJp27NiBe/fuYdSoUZDJZHycpISbmxs6deoEuVzu9G2UPajVahQVFfHHUadOnfj2y1qioqKgUqmc+lh1cXGBVCpFmzZtrL5/KouuXbuiefPm9L0khBBCCCGEEFIhUAJfQ2BgIPbu3atzGtezOTg42J4hEWISd3d3jB49Gp6ennZbZ+fOnXHlyhX+b5lMhoKCAnh6ejq8VyNxbl5eXnxPOoVCYdcHU6ytX79+Vl+ml5eX1sMxCoUCcrkchYWFJo3nbWtffPEFEhISEB8fj7CwMHz99df4/vvv+VLcq1evRt26dR0cpTaRSAR3d3ca67uC43q8t27dGq+99pqjw+GPu/r162Pq1KmODoc3evRoAP+060Sbn58fxowZA5lMBrlcTslWIwoLC/khSnx8fDBp0iSrr0OlUgGAzZO2jRs3xsaNGyGVSq1+bcIwDKpXr85XsSHm69ixY4W4diSEEEIIIYQQQgBK4JssOTkZ3t7egks6EAL804vPkT2PhBADqTi4HuvW7rleEXH7qHQlDEfx8PBAdHQ05s2bh7i4OD4ZCJQk74WQOCWVE7VT5qH9pR/tG9N5eHjA3d29QuwrhmEglUrp2kSg6NqREEIIIYQQQkhFQgl8DSqVCvn5+TqnJSUlITg4mMrxEUHievFV9hhKMzaecNWqVa36PmI9DMNo9Z5KSUnBxYsX9c7fq1cv2wdlBbbYDm5f2aJ8vkql0vt90Pc9EIlEcHV1xZYtWzBr1izcuXMHgHMm7/VdE3DoXGA5Q8cWYJt9K8R2Ssgcub+MtcOGFBcXGxxDvH79+hYvm8MwDPW8N5FIJLLJvsrMzDT4mjU+Z10qe89uQ9cwgP7rGEvfZ47S146EEEIIIYQQQogzowS+Bjc3NzRp0kTntEePHmHo0KF2jogQw+ydPKJkFbElQzdvjd34FRJbbYezPKQA/BPrH3/8gZycHAAlpZOFiM5rlYPQPmeKx7nYKhlcWdhi/9WoUcOk16ypSpUqNmmLnal9Fxrad4QQQgghhBBCKipK4JsgIyMDGRkZCA4OdnQohBBCiFMRauKeEEIIIYQQQgghhBBCCBEi69fbrYCSkpIAgBL4hDgppVKJsWPH4sGDB2a/d9u2bdi2bZsNoiKWio6Oxq+//uroMMrt119/xaZNmxwdhkGJiYno1asXevXqhREjRkCpVDo6JIc5e/Ys5s6d6+gwKgzNY6t///4WnZ9J5fDgwQP079+fP16M9bi9f/8+Bg0ahEGDBmHw4MG4cOGCfQIlpJKx9HrMGa5/CCGEEEIIIYQQR6Me+CZIT08HAPj7+zs4EkKIJb744gucPn0aubm5OHnypFnvXbx4MQBg5syZtgiNWODkyZO4cOECTp065ehQyiUyMhIFBQWYM2eOo0PRSyaT4Y8//uD/vnLlCkJDQx0YkeNMnToVubm5iI6OdnQoFULpY2vXrl1Yt26dAyMiQrVr1y78/vvvJs8vk8kQFxfH/x0dHY3XX3/dFqERUqlZej3mDNc/hBBCCCGEEEKIo1EPfDOIRLS7CHFGz58/B1DS45NUDAUFBY4OodycYRtat26NrKwsvPfeewAAlUrl4IgcJzc319EhVCjcsXXs2DEAlfvYIoZxx8axY8eQlZWFrKwsg/OHhIQgLS0NaWlpAACWZW0eIyGVlSXXMs5w/UMIIYQQQgghhDgaZaQJIZWKWq2GTCaDWq12dCjECliWRXFxMX2exG7oHGI7tF8JIUTYuOsuejCGEEIIIYQQQgixLUrgE0IqFblcjoKCAsjlcoPzcUk6ImwKhQJyuRyFhYWODsVidDPcuZh6DiHmUSqVtF9JGWq1Gkql0tFhECdRVFREbamNcdddCoWi3Muiax9CCCGEEEIIIUQ/hn40/4NhmEwAjwAI6U6hL4AMRwehgxDjcnRMASzL1tQ1gWGYFwBS7RyPI/eHo9Zt6npFAIx18xQBEANQmTCvOeu2hN5jC7Db8eWIz9San6e112ktvgBewrxjzRrr1NxGQ+euTJQcW/buFu3o87mxGKx5zFkag72UJwZz20V77VeOEPYvRyixCCUOwPD50dCxlQEgxebRaRNyG+nM6zRnfeZet+ljynlLSN8Tjj1jMudcrS8ua31elnDU51fm2GIYJhxA+N9/NgVg6/G+KsN5w1HrdNR6uXUa/L1ICCGEEEIIcT6UwBc4hmFusCzb3tFxlCbEuIQYkyM5cn84at2VcZvtxRHbVxnWWRm20RJCiJFiEE4MtiKkbRNKLEKJAxBWLMZUlnN5ZWgjTSHEuIQYEyDMuIQYk71UhvOGo9bpqPVW5uOZEEIIIYSQio5K6BNCCCGEEEIIIYQQQgghhBBCCCECQAl8QgghhBBCCCGEEEIIIYQQQgghRAAogS98uxwdgB5CjEuIMTmSI/eHo9ZdGbfZXhyxfZVhnZVhGy0hhBgphhJCiMFWhLRtQolFKHEAworFmMpyLq8MbaQphBiXEGMChBmXEGOyl8pw3nDUOh213sp8PBNCCCGEEFKhMSzLOjoGQgghhBBCCCGEEEIIIYQQQgghpNKjHviEEEIIIYQQQgghhBBCCCGEEEKIAEgcHYCQVKtWja1bt67e6RkZGXjx4gXatGljx6gqHpVKBbVaDZFIBLFY7OhwrObmzZsZLMvW1DXN19eXDQwM1Pm+4uJi/v9xcXEAgJCQEP41V1dXK0bpXDIyMpCamgqpVIqaNcvu2sePH0MikeDVV1+16nq5z4RlWSQkJAAAgoODAQBKpRISScmp8/79+5DJZDb/vAwdW4Dh40tINI/1u3fvQqlU4pVXXkGtWrUAGN53xcXFYFkWarWa/0yE+j0x9fgpTXPa06dPkZmZicDAQFSpUgWA7bbR0PFVo0YN1t/fH48fP0ZGRgYaNGgAb29vADB4/lapVPz/b9++DQBo3bo1/5q+9+p6X8uWLSESiSpUm8Ftp1qtxp07dwCYtn+ssc709HT89ddfkEgkaNmypU3XaWm7KCR//PEHlEqlwXkCAgLg6+tb5vW8vDz+/0lJSQCAxo0bg2EYAOC/20KQm5sLlmXBMAySk5OhUqlQvXp1frvsHavmvvvrr7+Qk5ODunXrwtPTEwCQlJTk9MeWEGm20/Hx8QAMX/+0bNmSP55t0UYZukbOzMyESKT7WfTyXB/a4rxVnusfU5fL7R9bfyaW0oy19PWzo65/LCWXy6FWq/HixQu8ePECEokEzZs356fri9fY9byPjw9bu3ZtpKamQi6Xo0mTJvw0Q+dg7nyZkZGBly9fQiwWo2HDhia91xKa5+cHDx44vL0wRtf+adCggSDbYkM09/v9+/cBAI0aNeJfo3aR2IqxcxchhBBCCLEdKqGvoWXLluzRo0f1Tt+zZw927dql9eOJGKeZkAFKEhYymQzu7u4VKiHDMMxNlmXb65rWvn179saNGzrf9+jRI/7//v7+AIC0tDT+tfr161szTKeyZ88eTJ06FY0bN8a0adPKTP/oo4/wyiuv4K+//rLqeh89eoSioiLIZDJ069YNwD83sjMzM1GjRg0AwKBBgxAXF2fzz8vQsQUYPr6ERPNYb9u2LTIyMvCvf/0LH3/8MQDD++7Ro0dgWVbrhqZQvyfcdrIsyydIdR0/pWlOW7x4Mfbv34/9+/cjNDQUgO220dDx1aZNGzY2NhYff/wx9uzZg6NHj6JPnz4AgKpVq+pdZnZ2Nv//atWqAQCysrL41/S9V9f7nj59CqlUCpFIZHCdzoTbTrVazX/mpuwfa6wzMjISGzduRM2aNfmksq3WaWm7KCS1atXC8+fPDc6ze/duvPfee2Vev3jxIv9/7nt84cIFPmnQq1cvq8VZXrGxsVAoFHBxccFbb72FrKwsjBs3Du+++y4A+8fK7bvi4mJs3rwZp0+fxrp169CxY0cAQGhoqNMfW0Kk2U5ziXtD1z+pqan88WyLNkoznqCgIADAw4cPAQAHDhyAu7u7zveV5/rQFuet8lz/mLpc7jeErT8TS2nGWvr62VHXP5ZKS0uDXC7H1q1bsXXrVvj6+uLWrVv8dH3xGrueb9q0Kbtz5068//77SEpKQmxsLD/N0DmYO1/u3bsXhw4dQrVq1fDdd9+Z9F5LaLZtw4cPR3Z2tkPbC2NK75+qVaviu+++E2RbbIjmfh88eDAA4NSpU/xrpdtFhmHCAYQDgL+/f7vU1FQ7RUoqGmPnLkIIIYQQYjvUA5/YnUgk4ntQEd24XnDEcaRSKf//goICXLp0CUBJL0WuB3J6erpDYnNWXAJec9+ag2EYuLm5WTkq2+G+w/qOn9I0pyUmJtonSCNyc3Nx/vx53Lt3z2Ex6EvQVAT6eo+SikuobTvDMILr5QoALi4u/IOeXCKZ2I657bRQj+fKzJk+E13XRprXP9zxyFVuEwpbXY8WFBTg999/x4sXL6y+bFtxpuONwzCMU8ZdWmFhIX7//Xe901mW3QVgF1Dy8JG94iKEEEIIIYRYDyXwTcSyLO7evSvIm5uk4qhTpw6ePn0KuVzuVIlKW6levTqAkl47KpVKq1pDTEwMgJKb+7bA3ZyrWrUq8vLyMH78eL3zEdPI5XLIZDIAQJcuXXDixAmtkqPmMDTciZAYO36M8fLycugN7OTkZIwcOVIrHkvUrVvX7Pjr1auHx48fW7Q+Z1OvXj27ratx48YASr6DxDhT2hiuraooWrdujdjYWDRo0MDRoYBhGHh4eAAo6XFNbEuznZZIJMjKysIff/xh9aGKLCEWi1FcXIyuXbviiy++0Dufra8Py4NlWXTq1AkxMTEWX//oI6QEtzHcd9rQtZGXlxd/PBYWFlp8/WFL3Gdorfb0yZMniIiIAGDZ7wvunN26dWuwLMtXVbElIbUXxmjuH2fn5eWFgoIC/nghhBBCCCGEVEyUwDfRkSNH8OOPP2Lt2rWODoVUYLGxseXqoVzRjBgxAp6enigoKMDy5cuxdOlSiMVixL1kaz0AACAASURBVMTE4MKFCwBKyiHa0vnz5xEZGcn/XVRUBBcXF368znbt2tl0/RUJd1xLpVJERUUhKirKogdVNMt+C52u40ffNpee5ufnhw4dOvDDOTjiBravry+GDh0KoOQBo86dO5u9jOTkZBQUFEAul5vVm/769etmr8sZ2buSx6hRo9CvXz9qZ0y0d+9eDBgwwOA8I0aMsFM09jF//nzMnz9fMA+tTpkyBfXr18f//vc//rUffvjBgRFVXJrt9Pz58xEREYHhw4fj+PHjdn3QSJeoqCjMmzcPjx49Qt++fVGtWjW8++678PPz4+ex5/WhJeRyOZYsWYI1a9ZYfdgSR1bKMdfBgwfx+eefIyMjA4D+6x9uqD8u4S80gwcP5ocVsgYfHx++nHuLFi3Mfn9oaCi6du0KAFAoFJDL5VaLTR+htReGaO4fZ7d//35s375d68EdahcJIYQQQgipeCiBb4KEhASsXbsWb7zxBj9WISG24O7uXqHLRVti6dKlWL58OZ/E79ixIz8m5JQpU9C/f3+brt/NzU0rAZuZmYnq1avzD1pQD3zTaZYcLU+FCWeqTqHr+OHGeS1N3zQuoeKIG9j16tVDVFRUuZbh4+MDNzc3sxPGzvQ5l4e9t1MkEqFatWp2Xaczs3UbI0RCS8S4urpi0KBBWq9RosI2NNvpsLAwqNVqLFiwAMOHD8eXX36JHj16OCy2YcOGYdiwYdi8eTO2bt2KrKwsREVFoXr16pgyZQpu3brFJ+/tcX1oCalUimrVqtnkASpnajPd3Nwwe/Zs/m991z/c8Sjk6gLW3O+1atXS2i+W4M7f3MMPtu6BL7T2whhni1cfqVSKuXPnar1G7SIhhBBCCCEVj3B/DQtEXl4e5syZgxo1amD//v2CvoFASEUkFouxdOlSvie+ZvI+ODjYITFxNxQpeU/swRluYBsiEong7u7utPETQkhlNXbsWKxZswZKpRKTJk3CH3/84eiQMGvWLNy/fx99+vSBRCLBy5cvERUVpZW8d9T1oTF0/UjshWEYuLq60rFGCCGEEEIIIU6MeuBrYFkWarVa6+8lS5bg6dOn2LdvH3x9fR0YHSFlPXr0yOD0+vXr2ykS2+KS+FFRUSguLsaIESMEe3OWCEtl+Y4Qy2VnZxucbu0yx6TySElJMek1QoRs7NixAKDVE1+pVAIo6TnNsXd72qtXLwwcOBA///wzzp07B7VajUmTJtH1YSVD13mVw8WLFw1O54YeIIQQQgghhJCKhBL4Gtzd3dGsWTP+788++ww//fQT1qxZg3feeceBkTk3sVjs6BAEjW4sGaZZHtBeQ1gY+kzo87JcefadM+13S48fIW6jWCy2KIFtadK7siTLHbGdlWXf2gJXithcgYGBJr0mBEJLfggtnspCXzs0f/58ACVJ/EmTJuGVV14BAL1Dwtg6HgBYuHAhAJQpIy1EtmrfhXjdoI+zXf8YYqt4q1SpYtG5z97nS2c7PztbvPpUlO0ghBBCCCGEmI4S+HrcunULH330EQYOHIiPPvrI0eEQQgghhBBCiENo9sR/+vSpg6MhhBBCCCGEEEIIqdhoQFoNN2/ehEQigUQiQceOHeHm5oZ9+/bRuL1E8FJTU9GwYUP85z//AVDSW7CoqEhrSAhCKrsff/wRH3/8Mf/9sLRXLam4Nm7ciI0bNwIA1Go1ZDIZnUeJVUilUgAl7XNxcTGdf4hTGjt2LNasWVPmdZZlkZ+fT+dLYncsyyIzMxOzZ89Go0aNEBER4eiQiA1otp2XL1/G+vXrHR0SIYQQQgghhNgc9cDX4OHhwZfQz8zMRGpqKi5fvowRI0Y4ODJCDDt69CgUCgU2b96M0aNHQy6XQyaTobCwEF5eXo4OjxBB6Nq1K1xcXPjvByGl9e/fn/+/XC5HQUEBnUeJVezevRsAoFAoIJfLHRwNIZYbO3YsWrRoAW9vb/41uVyO3NxcAKDzJbGbgoICzJo1CydPnoRKpQIA3Lhxw8FREVvQbDvbtm0LFxcXB0dECCGEEEIIIbZHCXwNzZs3x2+//Qag5EbU66+/jsmTJ6NJkyZo2bKlg6MjRD+uJx+XlOR6+nl4eDgsJkKExtvbG3369OG/L9z3hBCOZltP51FiTdyYydz5h5IPxJm1adNG62+pVApvb286XxK7KCgowPTp03H48GEolUp4eHhg2rRpiI6Ohpubm6PDIzbAtZkuLi5wdXXFa6+95uCICCGEEEIIIcT2qDa8HlKpFEePHkWVKlXw1ltvISsry9EhEWIyhmHg5ubmsOEfsrOzMWXKFDx79swh6yfEEO77wTAM/9qzZ88wbNgw9O3bV+e/YcOG0fEsIM+ePcOUKVOQk5Njs3WIRCK4u7vTMDrEZNHR0di7d6/BeRiGgaurq9b5hxBnxzAMvLy8IBKJ7HJ+JvahUqnw4YcfCub6R6VSYcCAAfDx8cGBAwcglUoxd+5cJCQkYPbs2Y4Oz6kdPHgQBw8edHQYelHbSWwpMDAQDMPo/BcYGOjo8LQ4U6yEEEIIIaT8qAe+hvz8fPzyyy9ary1evBizZs3C4MGDcfXqVYjFYrOWyZXz08fc5RGiKTMzE8A/Pe/VajX/GvBPjz9refTokcHp+/fvx549e5Camsr/vWjRIvj4+AAA5s6da9V4ysPYtlh73xljLB6in6F9l5mZiRo1auicdurUKchkMuTk5CAyMtLo2L0nT5506PEstGPWkOzsbIPTq1atavYyL168CAB48eIFwsLCoFKpsG/fPgQHB2Pt2rXo1q0bP69arYZcLodUKuUT8Jas01YM7Z/8/HyDJaiFtB3OhDt+9OnVq5dF7w0NDS3z2nvvvQcA6NmzJ5YtW6bzfSkpKQaXaygeS2muj2VZKBQKuLi48AkRW6zTEYqLi/WeLzXbBJZl+fMEtw/0nUed6fzrCLra03379iEgIABTp07FhAkTDL6/su8/oYmOjoZKpcLy5ctRUFCA7du3Y9GiRfD09IREIrH79U/peACgUaNGmDBhAurUqaP1oL1SqbTpbyHA/ueD8rRfhuhKhmt+V7mKMfZiaDtTUlLsnpw01GYai6eitKeVRWpqqt7jXWgPjThTrIQQQgghpPwqTAKfYZjBALoAqAJgOYAclmUV5izj+fPn2Lp1K4CSnnf9+/dHixYt8K9//QubNm3CkiVLsGrVKqvHToiluJvQ7u7uAEqOW33JSlvKysrCxIkTcfv2bQAlPx69vb35G7maSU9C7KlGjRp6b6SWTjbUr19fb0nOa9eu4dGjR/zx7OnpCbVaTb2z7UwzeV+zZk1kZGQgPj4eQ4YMQYcOHXD06FH4+Pjw49cD/5wf9aGEODFV6Rv4xnorXrp0Se9NfGMJGVvTHE/Y1dXVobFYG8uyYFnW6I1suVzOPwBJZbeNM5SULN2e+vj4IDc3F6mpqVi0aBG+++477N+/n64FnYRmslwkEkGtViMyMhLz5s1zyO8MzXg8PDwQFBSE+Ph4rFmzBr1790bnzp3h7e0NAJBIJHaNUdeDQMT6AgMDHZoUN6fNZFkW+fn58PDwoN8JhBBCCCGEkHKpEAl8hmHaAfgcwHQAwwBsA3CEYZhYlmUN1m9kGCYcQPjf/8epU6cAlPTe+fnnn7Fz504MGTIESUlJWL16Ndq2bYu33nrLpttDKgbNY8vf39/B0dhGdnY2Jk2ahFu3bgEo+Q61adMGY8aMgVgsxrZt2/Dw4UM+6UmspzIcX7ammWxo0KABZsyYoXfeTp06Yfv27UhOTuZvYhcWFhrsKe2shHpsaSbvW7Vqhc2bN0OlUmHt2rU4f/48rl+/jsDAQHTo0AHffPMNPD09+XHsiTAI9dgyFXcD//Dhwzh8+DAUCrOeExUUzfGEKwLNY8vPzw9yudxoUp47P9B5ovx0tacqlQpHjhzBf//7X9y6dQshISFo27at0yXynf28ZS7NZLmnpyeWLl2Kzz//HMnJyYiKirL79byueMRiMR4/foyzZ8/i1KlTuHz5MqZOnWrXuDjlfRCosh1fzsqcNlOhUCA3NxcAKuTvBEIIIYQQQoj9VJRHgpsAOMuy7AmWZacAiAUwCEAPhmEkjIHH4VmW3cWybHuWZds3btwYp0+fxunTp7F7924UFhbypU8//PBDdO7cGRMnTkRKSoodNok4O81jq2bNmjZdF3fDyJ49To4fP45WrVrh1q1bEIlEGDZsGNatW4exY8fyQ0PMnDkTQUFBUKvVWL16td1iM9e8efPwf//3f44Og9ehQwf4+/vz/3Sx5/HlLG7cuIEBAwZgwIABuHnzJliWRVFRkc7S+E+ePDE5ec+ZMWMGGjRoALVajejoaHh4eNhiM4zKycnBBx98gIcPH9pk+dY8tl6+fInOnTtj+PDh5R4mYty4cVrJe6BkGJqFCxfi559/xqhRoyASiXD9+nU0aNAAn332meB7Pr18+RKdOnVCQEAA/69FixYICAiAv78/atSogfDwcEeHaTVCOW/dvn0bYWFhyM/PN+t9Li4uCAsLw/79+6FQKODn52f0PZ999pnReR49eoRly5aZHU953Lp1C5s2baowPUY1j62//voL7dq1Q3BwcJl/3bt35//fsmVLREREmL0PHj58iA8++IDGeP+bWq3GqlWryrSnYrEYY8eOxbp16zBs2DCIRCI+kf/DDz84OGrTCeW8ZS9NmzYtkyzXvP6x9/V8o0aNysQDAPXq1cOUKVMwf/58dO7cGRs3bgQAu55Hc3JyMHv2bPz1118WPwhk7vFlaftVminj3Zsyjy2o1WrMmzcPq1atQnFxsd1L+euyevVqDBo0CEOGDMHgwYMxffp0DB48GIMHD8aAAQMwdOhQfuhEFxcXeHt7O+x3AiGEEEIIIaTiEPadbdP9CqA2wzBdAIBl2Z0AbgEYD8CTteBXX1BQEKZPn474+Hj88ccfcHV1xa5du1BQUCCoRB8hADB+/HjMnz/frjfVuDGcJRIJHjx4gC1btvA31TTNnDkTbm5uUCqVdovNXP369UPnzp0dHQavb9++jg7Bqdy4cQO9e/fGiBEjkJCQgISEBAwfPhy9e/fGr7/+isLCQq35nzx5gsDAQLOS97o4MjncqVMn/sEdQw8qONLLly/Rvn17JCYm4uLFi2jVqhWGDh1a7kS+LiKRCCNHjsSrr77Kv7Zy5UocOHDA6uuyFm7/JCUl6Tw/5uXlQa1W4/nz5w6IrmJiWRbFxcXYsmULnj17huPHj5v1foZh+KEZJk2ahMOHDxt9z+LFi43O4+bmhtatW5sVS3m9+uqr6Natm13XKTR5eXk4d+6c2e9zc3NDp06dIJfLBZFYcrQVK1ZApVJBIpFg2rRpZaaLxWJs2bIFV69e5UtPx8bG2jtM4qTy8vIAAKNGjdL5O8Pf3x+RkZH8tJYtW9r1e9m5c2f4+PjY5WEolmUtbr+chVqtxvvvv4+bN2/iwoULkMvlgqh2k5KSAqVSiaKiIq3XuSEUcnNzsWbNGgAl1wpeXl6Cf4iUEEIIIYQQInwV5VdFBkoS9t0YhmkGACzLfgagGMDHli60X79+8PLywsmTJwGUJPUB4OnTp+WNlxCrcnNzQ1hYGEJCQuy2zsmTJ8PV1RVKpRL37983OK9EUjJah9ASjJx+/frxMQrB6tWrkZqaiqSkJKSmpjo6HMH65ZdfEBwcjBEjRuB///sfmjRpguPHj+P48eNo0qQJ7t+/jwkTJqBTp064du0agH+S90ql0uzkPVdCXyQS4dNPP7XVZhnl4+ODSZMm8b1/ufKtpR9UcCQuOZ2VlYUJEyZg165dqFWrFi5fvoxWrVqhd+/eSEtLM2uZhw4dglgsxp07dzBr1iwAJTdOf/31V0yfPh1vv/02MjMzsWXLFpw5cwYSiQSzZs0SZBK/9P558uQJUlNTkZqaij///BMBAQEAShIR3333nYOjrTi4EvhZWVkASoZLsoSHhwf279+PM2fOGJ03MzMTX3/9tcF5atasiWHDhtm11K5EIkHXrl3ttj57Cg4ORnx8vM5/V65c4f9fpUoVi5bv5+eHMWPGwMXFhR8TubJSq9XYsGEDGIaBUqnEjRs3dM6Xnp6OsLAwPqFFZaWt79ChQzh06FC5l5OYmAhPT08UFBRg+fLlUKlUDr3+2bVrFwDgm2++0Tk9KysLXbp0gUqlQvv27REZGWm372Xp6zFbUygUePnyJQDL2y/O+PHjrTKPNXHJe+53pbu7O6RSqSCGepk9ezYAoH79+jh16hR27NiBU6dOYfr06fw8Fy5c4HvhE0IIIYQQQog1CCdjZSaGYcQsy6oAgGXZPIZhvgUwDcCbDMO8wrLsZQC/AzD5DlFycjLCwsK45WPChAno27cvTp06hZycHHh5eaFKlSqUwCeCU55xXLkkmiXjLn744YeIiorCu+++a1Jlioo6ZrgtMAxj0ViaFcXFixf1PhiSl5eH3bt34+7duwCAJk2aYN26dWjXrh0/z7lz53Dz5k1EREQgISEBXbp0QbNmzXD//n0olUr06NEDQ4cONTkezZvXixYtEtT4vdz3XiilOksnp7ly96NGjcLRo0exePFiXLhwAYGBgejRowd27dqFJk2aGF1uzZo18fXXXyMsLAx37tzBO++8Ax8fH9y7dw+1a9fGli1b+KQaAJw5cwYDBgzgk/0ffvih7TbaDPr2D1By8/qNN95AfHw8QkJCcPHiRerBZUXWSgLUqVMHPj4+WL9+vdF5GYbB3Llz+etLUjGU57rLEsXFxTh8+LDeakaNGzdGz5497RKLphUrVqCwsBDt2rXD8+fPce7cObRv316rp3R2djbefvttZGRkICIiAsuXL7d7nBVdREQEfz6Kj4/newJbQiwWY+nSpfy485988gkAOOz6Z8SIEXB3d4dMJkNcXJzWw8o5OTn8cEgdO3bE0aNHIZfL7fa9tDcXFxenG/bkzz//RPPmzXVWT9Ckmbxv1KgR0tPTAYCv2uFowcHBCAgIQEpKChISEuDh4QGFQoFDhw6hWbNmEIlESEhIwJo1a7Bo0SJHh0sIIYQQQgipIJwugc8wTDDLsvEsy6pKJfH/yzDM5wCGAFjKMMwLAF0ADDJn+VzJvZycHERHR6Nly5ZQKBSYO3cuhg4dijp16vA/KC2lVqshk8ng7u5u9MdsRWfsKfWKsn+Ki4v1lo3OzMzUO3a9oWmadCV7MzMz9c5/4MABZGdnY+/evXxPxClTpiA4OBgAMHfuXKPrBEoSYlu2bEFaWhoSExORlJSkcz7uhrO1E4zmluLmyhxKpVK8fPlS577l5lGr1WYnzozFU79+fbOW54w094Hm/uZuOBraB9HR0QCAbdu2mTS+u7e3N8aNG4e2bdsiMDCwzDEfGBiI6dOnIykpCQcPHsS9e/cAAA0aNMDQoUPx4MED1KlTR+/y3d3d8fPPP+PcuXNQKpUm37w2dBwY+05bcoxw3397J3q5YTQ0aSanw8LCsGrVKq1xWgcOHIiAgACcPXsWO3bswKVLl9C0aVP4+flh1apVCAoKQqtWrfjjRnObioqK4Ovri/3792PixIlIT0/HX3/9hUGDBmH27Nlo1qwZ5HI53/OuadOmOH78OIYPH84n8SdMmKBzW6pWrVqu7Ver1TpjNmf/ODJ5r+uz1GTJ/rGVixcvGpzeq1cvna+npKTw/+eqweTk5Gi9rk/peRQKBcLDw7F582YkJCQYfO+rr76K27dvY/Hixejdu7fWMgMDA8vMz7IsFAqFwTbI0n1gSEpKisHlGlqmoffp205uWkBAABQKRZnEFPc+bn+Yk7hSKpV6r4FevHjB/5+75tec19RzcOnrLlu0/1ybqJmkNESzqoyp13HmKL2NarUa69evh1gsRp8+ffD06VMcPHgQv/zyC9q3b8/H/sUXX6CoqAg7duzgz3dFRUXIyMiAUqmERCKxaP844prLVtfzlsaq6zuxdu1arF27FkDJA48eHh5mtyWlk/ia1z8ymcyifQBYvp3Dhg3D119/jW+++QaNGjUCUHJsbdy4kU/eHzt2DAC0vpeGfguVJx5D9K3z7/ONRY16edqv8jh79qzOc6+h8zoAhIaG6p3Ws2dPLFu2TOs1zeS9v78/FixYgJkzZ/LrMsZYmwjAYFtiapv58ccfY+bMmdiwYQN69uyJa9eu4dmzZ/D19eUrupw/fx5yuRxXrlwxaZmEEEIIIYQQYohTJfAZhmkMII5hmEMsy07QTOIzDMP8ncRPBPAFgLYAPmFZ1uQavUqlEn/99ZfWa//9738BlPTOZ1kWfn5+ZvXA15WAlslkyM/Ph0gkEkRJOOK8LLnxlJiYiKioKD5hIxaLoVKp8MUXX2gl8U1d3+LFi7F48WKEh4fzN1tK48rTO7onKVdqHABq1Kihc3vy8/ORm5tr92oBFTG5r7m/Ta0mwCXvRSIRGjZsyL9eWFjIPwCiVquRl5eH58+f48iRI8jJyUFoaGiZ86lCocDFixdx+fJl5OXloVatWmjWrBnefPNNACXlyQcPHqwzji1btmDlypV8MjgoKAhXr161W5lUXYR6jHDJ64KCAnTs2JFPTu/YsaPMvDk5OTh48CC+//57yGQyNGnSBA8fPkR6ejqmTJkCPz8/HD58GPXq1QNQ8hAFp3PnzpBIJMjNzUVSUhImTpyI//u//0NMTAxu3ryJlStXYuTIkVrr69atm1ZPfJZlMXHiRKvvA277S8esqXTyXnP/qNVq9OrVi0/e37592+Hny4pGM9nAXZv5+PjwCWRDCfPSiQqpVIomTZogOjoac+fOxd27d/HJJ59gwIAB2L9/P7788kvs2rULLi4u/BA3O3bs0ErgBwYG6kwa2LINMjcJr5nwsBVuWANAd09LY9N1kUgkBpOI3DQuiWPKg5LGzr+lE5q6HmCzhGbyvkaNGqhevToA7TYRAB48eIDk5GRs377drKFhyuPf//43ZDIZRo4ciTFjxqB69eq4c+cObt68iY0bNyIjIwNvv/025HI5vvrqK7Rt2xaXLl0CUHJN4OXlxT/Q7EyKiorK/bnaS25uLgDzhyzgHgCZO3cuZDIZVCoV//CiuQ/PWsO6detw+vRp5OTkoHbt2mjVqhW6dOnCJ+9/++03u8ZjyfXY3+cxi55M59oglmX5dsrHx8dgEt0U3ENMQMm5BihpH3Nzc3Hr1i2zz70AcPDgQYPT7969yz+4A5RN3u/btw8ikYjfzvJuI8eStqR0m9mrVy/s2LEDCQkJWg8W/Pnnn1rzmVKVjhBCCCGEEEJM4VQJfACFAE4C6M4wzA8syw7leuCj5AexEoAHy7KPATy29sovX76MOnXq4Ndffy3XcrgbbkIpd0wqh8TEREyePBmPH5d8NSQSCfr27Ys+ffogJiYGFy5c4JP45li0aBEiIyP5JJw9E5zm3iA3peQtfT+tx9wSw5rJ+9I93ZOSkrTKrLMsi3v37uGnn37CV199hcuXL+Nf//oX3nrrLQDAsWPHsG3bNjx69Aj+/v4YMWIEmjVrZvQ42bJlC7Zs2cKPLRoUFIQTJ06gZcuWZm17ZSKXy/HkyRP069ePLwu/atUqrXlycnKwc+dO7NixAzk5OejatSsmTpyIxo0bAyi54Xvw4EGkp6cjNDQU/v7+OHz4cJkHirjvZe3atXHlyhWkpaVh8uTJiI2NxdSpU/nzkWYiv127dnxPfG4MU2sn8Y0d66XL5mvuHy55z5UGprL59sXd1LckYS6VSjFr1izs2rUL69evR0FBAY4dO4auXbuicePGSElJQe3atdG6dWvcvn0b58+fR+/evQ32shdSG6SZ8LAV7uEAfQ8JGJsuVJY8wFaaZvJes3c9ULZN5Oblkvi26IHPYVkWMpkMO3fuhFgsRmRkJGQyGRiGwZw5czBp0iRs27YNx48fR0ZGBg4dOoS2bduWWY69hyGwBm7bAcs/V2uJiIgwOs/GjRuxYcMGi9chFovLnBet9XCKudavX4/3338fs2fPRlFREZRKpVbPe6H7+zgv1wDpCoVCK+luTdw1N9fD38PDA0ql0uRzL3cdp1AoDM73/Plz9OvXD6+//joWLFiAadOm8WXzFyxYYLPrH2u1JXv27EGXLl2MzqdSqSpMJUFCCCGEEEKI4zhVAp9l2ScMw1wDMBbASYZhDgFYAyCPZdk0hmGCAYxmGGYtgCLWyr9wd+7ciTp16uDp06dgWdbimxYikYjGAa9k4uLiLBpjvrSOHTviyJEjfK8FU/Xv358fL9zV1RU9evTAwIED+emDBpWMNMEl8cPDw9GpUyeTl79o0SIsXrwYe/bsweLFi8tMt9XNJs0b5Onp6RgwYAD/d2mBgYHYv38/goKCDC7TGt9PlmXxyy+/YNGiRYiIiMCAAQPKtTxnFRcXhzNnzvDjpxrSp08fvcl7XRiGQfPmzdGsWTMkJyfj6tWr+OSTT7B161YAJT3EWrdujdDQULRq1cro+frChQsIDw/nE/f+/v6IiYkpd+J+586dZZLZmt566y1ER0c7RU8+fcRiMV5//XXk5eWBYRjcuXMHb7zxBn/jMiMjAy9fvkRhYSHeeOMNDBw4sMx+HT9+PMaPH4+DBw/iq6++QlpaGrp164ZmzZrh6tWr/A3d0t9Pf39/nD9/HmlpaRg/fjwuX76MqVOnYs6cOThx4gTatGkDAGjdujXfE3/27Nnw9PTEoEGDjJa8N9XDhw/RvXt3vecfjq79k5aWhpcvXwomeb9ixQoMGTKE33dCdubMGTAMg/79+5v1Pq73nWYlJHMS5tx5glvWqlWrsHDhQmzbtg1A2QdEIiIiEBYWhm3btiE0NBRKpVLvQwPmtkG7d+9Gjx490LRpU5PfY0x2djb27NmDWbNmQSqVmpzwUKvVWLNmDVJSUvjj2NB41JrTnj59qjXcRnncv3+fv64pTbPnZ15eHl/22FqUSiUWLlyITz75BJ6enhYnp2UyszYI3gAAIABJREFUmd7kvS4+Pj78A0zJycno0KEDfv31V5skkORyObZt28af70aNGsXvV5Zl4ebmhk2bNkEkEiEoKEjrulBzGDJdwz9Z6s6dOzhz5gw+/vhjm46B/ueff+LVV18t93I6duyIr7/+GiqVyqJYIyMj+THvDYmOjoavry8WLFhgSZg6aV57L126FL/99hs8PT0BaH+/ACAkJARLliwp1wNJarUaRUVFGDBgAHx8fPie4uYm748ePQqGYcpU6rGliIiI0r2zDY+DYQRX1SUnJ8dm1wpcGyQSifi28vz58zh69Cj/e07zO1ZQUMDfGwEAPz8/g8MNent7Izc3F+fPn8f58+cBAI0aNcLOnTuRlmZy4US9EhMTsXXrVq0HCbiH5YqLi+Hm5oZPP/3U4qpWr732Gpo3b87/rtZnwoQJ+OqrryxaByGEEEIIIYRwBJ/AZximM4DGAO6zLHsNQE0Ag1iWDWUY5i6AOAC9AKQBKAKwlWVZw3fQLfT7779j+vTpKCoqQnZ2NqpVq2aL1VQ6arWaL6Hp6MSF0F2/fh2ZmZmoVauWWe/jbjLUqFEDGzdu1Fn+slu3boiNjQXLsvjpp5/MTuCvXr0a2dnZZcq3xsTEoKCgwCYJSs3eW/Hx8VpJldJSUlJw+/Ztowl8a5DL5QgPD0deXh7Cw8Ph4+ODDRs2YOrUqTZft5DUqVMHQ4YMMTrfnTt3cP78eTAMY1LyXhPDMGjZsiUiIiIQGxuL7du3Ayi5ud2rVy8cPHjQpOT9pEmTAJSURd27dy+aNWtmlZL1T548MTj97NmzkMvlDu/JVx6ZmZkoLCwEUPLwyu3bt3XON2rUKOzatctgFZvx48dj48aNmDFjBg4fPox79+4hNDQUsbGxBtsHf39//PDDD7h58yb69OmD/Px8jBkzBhcuXEDdunUBlPTEP3PmDPr06YNt27bxpVGtUb75zp07Bs8/HH37p127djh79qwg2sCRI0eiRo0akMlkVnvAwVa6d+8OwPxS71OmTMGPP/6I/v37g2EYuLq6mrydUqkUKSkpiImJ4ZPEUqkUq1atwsGDB9GgQQO+sgSndu3a6NSpE3777Te8//77+PzzzyGVSq3Sy753795Wvx59+fIl2rVrh5ycHPj6+pr0Hs0yyI4mk8kQFxdn0rzWKs/MyczMRPfu3fHixQuTSvPrk5iYCLVaDYlEYnJJfC6Jv2rVKty4cQMeHh44ceKE2Q+4GCOVSrWStPr2tVqtxoMHD8q8zjAMWrdubdWYuOsNzeSykF2/fh1Pnz6Ft7e3Re83JXnPOXnypFUT+Ny1t6urK44fP46ioiK988bFxeGbb77BsGHDDD7MaEhhYSH/mW7cuBErV65EvXr18PXXX5u1HEc8TGtujMYwDKPVftnDyZMnER0dbdK87u7umD59us6HuTkhISHw9/fn942fnx927txZpg2uUaMG0tLSsGHDBnz88ccmrf/evXuYOXMmVCrDhQ7u3r1brmv8bdu2aQ2Jo0tCQoLFy7cWhmHCAYQDsEpHAkIIIYQQQoj9CTqBzzDMmwAiAfwXwAiGYeYAOAegNsMwdQBIASQAmAfgMsuyZe8SWZFUKkWdOnUAlPQgoQS+dchkMr7XFdeDo6IJCQlBTEyMzmkZGRnw8vLSWYrS0DRz1a1bFyKRCJMmTULdunUxcOBAvqQ4V3qVZVkEBQVhyZIlZi//f//7H/z9/bXGYOVK8wPA5MmTyxW/Lpq9twYPHqx3PHN7u3DhAvLy8uDq6gp3d3fk5OQgPDwcERER2Lt3L4YPH+7oEO3C19fXpOTP0KFDAYDvXWUJhmHw+uuv4/XXXzfrfZrJ++nTp2P+/PkWrV+TZnnZFStWYMWKFfy0zMxMPqmjOZ8z8/PzQ0ZGhtZr+fn5fC/iM2fOICwsDEePHkW9evXQr18/g8u7fv06Tp48iQYNGsDV1RV37tzhk/iGPH36lL9B37JlS6SmpuLNN9/EiRMn+OOqXbt2/Pzl6R1b2vDhw41+r9VqNf95c+NXc38LKUneokULyGQyFBQUALDOAw62wl0zFBcXm1XqvV+/fkaPQ33+/e9/Y+bMmYiKigIAfpgHqVSK9957T+/7Vq9ezSe4p02bpjNhYYkGDRqUexm6lmnOcjWT91xPSm7bUlJS9CbJU1JSEB8fj6ioKIjFYmzbtg3NmjUz+j4ACA0N1TvN0DWX5jnYFmrVqmWVa5HWrVvD3d2dfxghJCTEpPf5+PggMjIShw8fRlxcHAYMGIDu3bvj22+/Rc2aNcsdF1DS3s6dO1erTL++/VpUVMQ/pGvLB9W46w2uF7Ct2lVLjy1d0yy9BkhLS0NeXh5q1qyJFy9eGJzX19cXV65cMWv5xmhee//nP//BiBEjoFQqsW7dOvTr14/fTrVajS1btuDzzz/Ht99+i++//x5jx47FZ599ZtbDSx4eHnB3d4dUKrXo3M3tZy8vL4dUO9I8ZqyRRC1P+2UuLnkvFouxfft2vtJLSkoK5HI5ZsyYAZVKhSFDhiA2Nhb5+fkGk/cA8Ntvv+Hq1avo2rUrJkyYoDUUiKatW7di3LhxOH36NAAYTeJrJu/nzZunVYUlNzcX48aNQ15eHt54441y7z9TfmscPHiwXOuwBpZldwHYBQDt27e3TTk8QgghhBBCiE0J545xKQzD1AAwA8A7LMtOBJAFoBWAZABLAPwKYAbLsi0BeDAMU/6ukkZIpVJ+fG9DpeGIedzd3eHl5SXoJEF5sSyrt4y8UqmETCbTmXzgbpJZ44ZT9erVERsbi3Xr1qGgoAB79uzB5s2bcf36db5Ma1BQEGbOnGnR8uvWrYtFixZBJBIhOTkZixYt4pP3U6ZMKTOWdUXGlYzfsWMH4uLisGvXLvj4+CArKwsjRoxA9erVcfz4cQdHKQx37txBSkoKpFIp+vTpY9d1x8XFWT15D/xTXtZYQtGa328hGzBgAN/TatOmTfjiiy/0zpuQkIC33noLNWvWxIkTJ3D16lW0atWKT+JzY7OW9uTJE7z66qtQKpXo0qULrly5gmPHjuHFixd48803dbbZ9q76IpfLUVBQwB8XIpFIsJVnpFKpVR9wsDUXFxezSr2XR7NmzbBt2zaIxWJERUXh0qVLJr1PJBJh586daNSoEe7fv4/3339f7/FsLpZlUVxcbLPhagwxlLw35tKlSzqT947AsiyKioqs9plYw9tvvw0A+Oabb8x6H/fg0759+yAWi3HlyhW88sorfJtTv3599O/fHxs3bsSzZ89sETpPKpXyyVd7EEq7yh1Phr6Tlsa6Zs0aAMDKlSuNzvvs2TObjsPdunVrfPfdd5BIJIiIiMB3333HTxOJRJg9ezYSEhIwd+5cSKVSHDhwAD4+Ppg4cSJfuccYkUhUrs/U1Gsyok1f8h4oGTaIS97Pnj0bc+fOxcmTJ7FixQqjQ8D4+Phg586diIyM1Ju8B0pK7R86dAhVqlTB6dOnsWHDBr3zmpO8N7U3f3mVdwguQgghhBBCCAGE3QNfCcAdQDOGYdIAhAKoDeAxADcA4SzL/ggALMvaJevj6urKly5//PixVnk2W94cqehEIlGF7XnP4Xpe6up9JJFIbHJzMzMzU+tvpVKJvLw89OvXDzk5OUhKSkJMTAyOHDkCAAgKCsJ7772H/Px8nSX2uWUa6rmmOQYrV+7SlOQ9V5oxJycHq1evBgB8+umnfK9ZzV5eQnbq1Cncvn0bubm58PDwQHFxMU6dOgWg5Ibr77//jm+++YZP5Dds2BDTp0/n3+8s26nv+ACM90ArjbvJNmvWLCQlJeldLlelIz4+Hvv27UOVKlWwaNEiiMVipKen8/u5tGfPnqF27dplXk9MTOR7x+hL3hvaTgB6y29qDu1gTZbGIwRcEp/riQ+UnBs03b17FwsXLkStWrVw5MgR+Pj4oLCwECdPnsQbb7yBO3fuoE2bNmXK6T99+pRP3gcEBGDgwIH8WORjxozBgQMHMHjwYJw6dYp/CE+tVmuNt121alWdcWdnZ+vdJs0qA6bQPC4MJS6MjQOuL1Zr4h4ucBZcGfyUlBRcvHhR5zzGenSbg0viz5w5E19++SUAoGfPnmXm05UcXbBgAZYvX4779++jadOmehPehnqY9+zZE8uWLeP/VigUfHKKG7PY2nTtV83kvb+/PxYsWFBmDGN9CeJLly7hyy+/FETyHihJ8j1//hwA9PYUt/c5tlGjRnwv/Js3b6JFixb8NIVCYbBUvL5kp1wux+PHj/H48WOcPXsW8+bNg0QiQZ8+fdC3b1+4u7vrrSBgSfUCa45z70w0S/mXd/tLt/3Hjh2DSCQyqRexvt+nxq4nDCl9HHBJ/BEjRvAPFYwYMULrPePHj0e9evXw008/4fz58zhw4AAOHDiAgIAATJ06FdWrV7e4coWua0vNadWrVwdgu6oMxuJRKpUGY3Qkfe2lZvJ+4cKF/NAxQEnynnvwe/bs2XjzzTf593Xv3h3du3c32H61bNmSb69L09VerF69GvPnz8fp06cxaNCgMgn4e/fuYcaMGVCr1Zg0aRKCg4P5Zefn52P+/PkoKCiwa/K+PPR9JoB1r2MIIYQQQgghzkGwCXyWZXMYhtkCYAFKSuR/wbLsSoZhegDwRknpfDAMI2JZ1irdZapXr4433niD//vPP//E7du38fbbb+Py5ctwc3Pjb/4/ffrUGqus9CrLgw9SqRQNGzbUeZPe0A3h8twsLn2TVSKRoEaNGlCr1ZDJZPjxxx8hk8kgEokwdepU7NixA4WFhXj58qXF6+QS0OHh4UhISICLiws/zrQxXBl/rvdbZGSk0fHQhZawlMlkfFJ49OjRZW6uh4SEICQkBHFxcThw4AAePHjADzdQUdSoUcPkz+Xu3bt4/PgxXF1dMXPmTD6xq0+TJk3w0UcfASjpUbN+/Xo8e/YMmzdv1pvIaNGiRZmbwhcuXMCiRYsAAPPnz+d7s5Vm6Q1uQyVShXbMloehRLKuaWPGjIGXlxeGDBnCl9Pnhuu4fv06li5dilq1auHUqVP8uPWcy5cvo0ePHlrl9EUikVbyvk6dOhg+fLjWjXJPT08MHToUP/zwA8aMGYMTJ04AKElQm5N818XLy8viZDqXUBAKezwUYC2G2hRDN74DAwNNbo9MWWevXr3Qrl07vPbaa/jyyy/h6+ur1etPc72l7du3D5MnT+Z74pdO4j98+NBgPJcuXdKKSa1W88MyWFrRwdi+Kb1vSyfv9+3bp3fdpfdBTEwMn7y/du0aOnToYFHM+ri6uuo91+p7nbv2sDTJZ4tz+4QJE/DKK68gPDwcMTExWLt2LT/NWDKda+N0adu2LerVq4fExEQ8ffoUeXl5OHPmDM6dO4eBAwfqTaQaat8d0bY5Yp2mHlulv5PWivXJkyfIyMhAcHAwJBIJ0tLSULVqVfTt2xe//fYbgJKy+bbsea/rOKhfvz5++eUXdOnSBStXroSXlxfCwsK05rl//z4eP34MpVIJiUQClUqF1NRULFq0CEFBQejevbvea35L958516TWou/3V3lY2nZZwlDP+8TERKxatQpqtRq7d+/WO2wMV3ni+PHjmDNnDlJTUwGUDDkzevRog0loXdMOHz6Md955p0w5fa7nvVqt1tnz/sMPP0RBQQHee+897N6926z9YExsbCyuXLmCJUuWoEqVKhg9ejT27t0LPz8/HD582KrrIoQQQgghhFRewqvbqoFl2WMA+gC4AuC/f792GYArgOC//7ZZrcucnBx4eHjAxcUFKpUKUqkUXl5eqFKlis1LTpKKRSQSObxMMsuy2LRpE5o3b45NmzZBLpdj4sSJyMvLw+eff84ntKxRdrRu3bro27evRcl7buxdtVqNyMhI5OTklDsee4mLi+PHejU0Xm1ISIjWcAPbt2+3Y5TWYUp5WGO4G3+zZ882Om98fDyGDBkCoGSIAl9fX2RkZKB27dpa1VCMKT3mvb7kPbGNwYMHa5XTX7FiBa5fv86Xzf/Pf/5TJnkPlJxDT58+rVVOv3TZ/NGjR+tcZ506dTBhwgS+nD4h1tKhQwetcvr6xsYuTSQSYenSpWXK6T98+BDvvPNOmeoUpizPy8vLbtcZpcvmL1261OR1x8TE8GXzt27davXkvaXKW6bbVgYMGAAfHx/k5OTg7NmzVlnm8+fP0axZM4SHh2PZsmWYN28eqlevDqVSiZMnT6JRo0bYunWrVdZVWdnqO8ldL44aNQrR0dHo1q0bvL29+eR9SEiIzcvm69OhQwetcvpcWx8XF4d3330XO3bsQHJyMgYMGIBly5Zh3bp1aNu2LRiGwcOHDxESEoJhw4Y51XV/RVO6533p5D1XNn/evHl6k/eahg8fjpSUFPzyyy9o0aIF4uPjMWPGDEyePBkJCQkmx+Xt7Y21a9dqldPXLJs/adIkg2XzrZ2853Tv3h1eXl7Iy8vjh4datWqVTdZFCCGEEEIIqZwE2wOfw7JsFsMwFwCMZhimGCXl8wMB3LH1unNycvieAFwCHyhJBlAPfOJs/vzzT/z5558Qi8UYOXIk9u/fDw8PD4PvefjwIfbs2cPf0C4qKtIqBerr64vw8HCjyzHk2bNnWsl7rjf69u3bkZycjMjISHzwwQc6y6ALDTdOLTdurSGaww0kJydjx44dTlNCH/inPOyNGzfg6uqKjh07mvX+xMREPHr0CC4uLpg5c6bBeePj4/kbY1yP+dWrV6N27drIyMjA8uXLsXTpUqM3rM+ePcvfcDRnzHuWZbF3716EhYUJYrgPtVqNL7/8EiNHjoS3t7ejwzGbZjn9TZs2YdOmTWjQoAFOnDhhsOKGSCRCbGwsQkNDcefOHX580S5duiAmJgbLly/X+15/f38cO3YMI0eOBFBSftpcqampuHnzZpnSwLZ07do1AMBrr71mt3VWFOnp6bh79y5ef/11m65Hs5x+VFQUfvvtN763ZV5eHqpUqaLzfXl5eQgODsaDBw9w//599O7dm5/m4uJi0TFqD7rGvNcsm3/mzBkkJibyf2vug8zMTFy5cgVisRjr1q1Dw4YN7R6/qdLS0nD79m1BPPSzYcMGhIeHY9q0afy5QKFQwMXFhZ+ndu3aWL9+PcRisdb+1+Xx48dYv349ateujVatWqF79+5YuHAh0tPTsW/fPmRmZmLDhg3YvHkzFi1axD/0Rhzvq6++AgCtITQaNmyI8ePH46OPPrKoskxubi62bt2qs5IRy7LIzc3FihUrUK1aNaPL0iynHxERgf379yMhIQHe3t7o3bs3QkNDtYZnGTt2LMaMGYNjx47hxo0buHXrFkJCQtCxY0ccO3bM5G1gWRZyuRw//fQT2rZtK6hqR/Hx8Vi8eLGjwzAqJiZGq+e9ZjWSpKQkreS9rmozhrz22muIj4/HtWvXEBYWhpSUFMyYMQOBgYFYtmwZAgICyrzn1q1bAEoqhgAlVY8OHTqEcePG4fTp0/jxxx/BsizmzZunNVSbvce8/+STT7BkyRKwLAs/Pz8EBQWVa3ksy/Ln98OHD+Pbb7/lp6lUqkpTvZAQQgghhBBSQvAJ/L9dA9AYwEIARQAmsyybYssVsiyLvLw81KxZEwBQXFzM3xSpUqUK9Q4gTsXb2xuFhYUYMmQIVq9eDU9PT4NJd+5G2MqVK3Hu3DmDy968eTOGDRtmcY+D1atXQ61WQyQSYdq0afzr06ZNw/z586FWq7FmzRps3rzZouXby7Vr1yCTyeDi4mKw970mHx8fjB49GkeOHMGDBw9sHKF1cTf2goKCLOphxt2EVigUGD58OD+OdGm6kvdAyfAb3Pj2xpL4T548wfbt2/l1Nm3a1OTkPVDyIEuPHj0QHx9v9oMK1qZWq9GzZ0+kpqbiyZMnTnFTWBfNJD4ATJw4EXXr1jU6/rtI9P/snXd4FFXbh+/ZTe+ANDEQCE0QpQoEKYIgSAdBQBGI5sWXDh/SpQjSBSGgIiF0iHQRooAUkRBFURSDUiUERCANSE925/sj74y7KZvdzSbZwLmvi8u4M+ecZ2bOzjl7fud5Hg179+41Ev4GDx5sVptOTk5kZGQAqP+1hLS0NCORtTjw9fVFkiT0ej3p6enFlsP3USA9Pb3Iv696vZ6MjAzq1KmjivjfffddoeoMDAxk8ODBJnMIlxR5ifeG7/8lS5aoIY7zQ/G89/f3NxKg7Y309PRiDVttis6dO+Pj40NiYqLJ/nX06FHOnj3LJ598YrK+xo0bk5qayh9//ME///yDi4sLbdu2pXLlysydO5datWoRGBhITEwMM2fOpHfv3iY3VwmKjzJlyhAfH0+1atXo3bs3//nPf3j66acLVWdwcDBr1qwxec7PP/9MRESEWfUpIn6PHj24cOEC7u7urF27lsuXLxuJ9wparZahQ4eydu1aunXrRkxMDGfOnFE37JmDsqm0ZcuWdvUb3cPDg6SkJDZu3FjSpphEr9fz2WefAbBq1Srq1KljlKM+ODjYavHeECXlTFRUFEuWLOH69essXrw4VyQyJVILYNSml5cXW7ZsYfDgwTx48EA9ptha3OI9ZHvhlytXjvj4eJt432dmZpKeng5kbwx/+PBhoesUCAQCgUAgEAgEpZdSIeDLspwIrJQkaT0gybL8oKjbTEtLIzMzE09PT3Q6HUlJSeqO6uvXr1O/fn1VdBQI7J3ff//dov6qLITNnz+f7777jvT0dJo0aUJgYKDq8avX6zl9+jSbNm1i9+7d7Nu3j0GDBvHpp59a5JG/fPlyQkNDSU5OVkVYgDlz5qDX63F3d2fZsmWWX3Qxo3h2Z2ZmcvPmTZ566qkCy0RFRREWFgZQ5F6itkaSJFxcXPIMd24Os2fPJi4ujgMHDnD27FkaNGhAtWrVCAoKUhd4DcX79u3b5wp3r4j43t7eRv1HEfETEhLYt28fY8eOBbJDzireoZMmTWLx4sVm2Vq9enXS09OpVauWVddqK/R6Pa+88oqaSzQtLa1E7bEWRYzu1KkT33zzDZ07d2bWrFn4+PgU6N0eHx9P06ZNAdQ0Cv/9738JDg6mQ4cO+XomhYWFqZsdnnrqKQ4dOmSx3YahZIsL5T2SmppKcnJysbdfmvHz80OWZTIyMnB0dCyS0OgpKSnqQnvdunXZt28fUVFR6vE7d+5QsWJFIHtjnOI9J0lSrmPz5s0jOTmZ3bt3M2jQIJvbWljMFe89PT2ZOnWqeszwOiE7B7I1XsLFTUm/73Ny5swZ9u/fr24UTE5ONrqPCxcuJD4+niZNmnDgwAH27NmTb10XL14kOTmZsmXL8tJLL6nvVIU6deoQERHB6NGj+eKLLxg6dCh79+4tsmsTmM/333+vRogzjIhlDcpm3ZSUFADGjBmjprSQZZmtW7dy6NAhJEkiJiaGP//8Ez8/P7M2kjVs2BAPDw8yMjLQarW89tpr1K1bly5duuSaH6empnL8+HGmTJnCgwcP8PX1JSYmxqJrUWzy8fGhQoUKFpUtSiIjIzl79qzqUW3P0Sx0Oh3u7u7UrVs31zFl02PXrl1VD/HCrIPUr1+fzz77jJdffpmsrCyjY4ZpVgBVyFe87L28vNi9ezeJiYk88cQTarmSEO8VLIkWURDKxjZHR0c2bdrE3r170euzM0YaRoc0RHkWW7ZssZkdAoFAIBAIBAKBwD4oFQK+gizLxbYFWdnt7OnpSXJyMrIsU7NmTRITE4mNjcXX15fU1FS7CKcsEJiDJYsshgthP/74I23atOHs2bNUrVrVyBP+xRdfZOrUqaxYsYJPP/2UzZs3s337dgYNGsQnn3xilpCv1WqZNWsWs2fPVkVYgOTkZNzd3Zk+fbrd5aTNSWRkJBcuXKB8+fIkJSVx+PDhAnMY5xSnC+PRUhrRaDSsWrWKxYsXM2XKFPbv3090dDQzZsygWrVqtGnThs2bNwOm74/Sf+bMmaP2n7Fjx3L8+HHOnDkDwKBBgxgxYgRVqlRhxowZtGnTRt04oeRoNYWyWaEkUcT7CxcuUK5cOeLi4uz+e5Ef6enpqhjdpEkTvv76azp37szYsWNJT08nKCgoz3IJCQm0bduWhIQE3njjDYKDgzl8+DBvvPEGFy5c4I8//qBjx47Uq1dPLXPnzh127dpFZmYmkiTx3nvvMX78ePR6PampqTg7O5t8Nxp6vpfkhj3lnSw88C3D0JPNycnJ5vW7ubnh7OysLrh7eHjQvHlz9fj169fx8/PLs2zOY/v27aNv377cv3+fvn372tzWwlCQeL9+/XpOnjyJp6cnW7ZswcvLSxV5/v7773zvQWlBETpLcuOui4sLPXr0IDU1FVdXV5KTk9VUDQD9+/enSZMmxMfH061bN5N1ZWVl0b9/f5o2bWoyHPNHH33E/v37OXv2bL7CkaB4cXZ2xtvb2yZjgbJZVxEHmzVrRtu2bZFlmffff59Dhw4RGBhIuXLlWLJkCYGBgRw8eNDs+iVJwtnZmdOnT7N+/XpWr17N8uXLqV+/Pp06daJcuXJ89913nDx5ktTUVDp16sS4ceP4/PPPLfZYt4d5Wl54e3sTEBCgfm/tFUvmk8q4mpKSUqjNWHlFYPn222/ZsGEDWq2WVatWIcsyo0ePZunSpQwdOlQdSxwcHIzE+6SkJMaMGVMi4r1hyHtbzMslSVLnKz4+PgwbNkw9ltecIiMjQ52nCgFfIBAIBAKBQCB49BDu4/lgKOArf9esWZMrV64A2Z5W9vxDXCAoDMpCmCRJ+Pj4cPLkSXx8fNi7dy+TJk0yOlej0TB+/Hj++OMPZs+ejZOTE5s2bcLDw4Np06aZ1Z5Wq2X27Nm4ubmRnJxsJN7Lsqx6B9krivf9gAEDaNu2LVFRUdy8eTPPc3U6HVu3blXF+zZt2vDyyy8Xm632hCRJuLu7ExwczLVr12jcuDGSJBEdHW2WeK+giPju7u4kJyczf/58fvjhB5o3b86cOXP44IMP1EgBhv3pQORIAAAgAElEQVQ5LCxMFYv1ej1JSUnqQrYt0Ol01KxZk5o1a6LT6ayuR6/X06RJEy5cuED9+vVLRUQKUzg7O+Pu7q4KEIqI7+DgwKRJk9i0aVOuMvHx8bRp04aEhAT69++vRk/o1KkTt2/fplWrVsiyzOHDh9m8eTM6nY6DBw+yfft2MjMz8fb25sqVK4wfPx74dxOBIu5C3s8rr/PyYvr06bi7u3PgwIEi6UsajQZXV1cR9cdCHB0djQR2W6PRaHBycrLJor1er2fjxo14eXmVeAhowz6svH9Med7nFO/hX5GnMO8+e0EROkt6LuLs7Iyrq2ue4q1Wq+Xs2bOULVuW+Ph4k/U899xzNG/enGPHjjF16tR8w6drtVp69uwJwJtvvoksy4W/CEGhMJyfm8KccUjpT4bfZ0W8X7duHYGBgcyaNYvRo0fj5OTEzZs3iYmJsXjzgJeXF2PHjmXixIl07tyZq1evsnz5cmbMmMGhQ4eoUaMGU6dOJSQkhGeeecaiuksDpr63tqQwc4/MzEyzv9/KuGpJtLW8yNmHDx48aCTe161bF39/fxYtWoRWq2XDhg15biB58OABU6ZMKRHxHv4d6zIzM/M8bjg/LAqKep4jEAgEAoFAIBAISpZS5YFf1Li4uKghM6Ojo9FoNDRs2FD14qxTpw7Hjh0Dshe/xA8lgT3j6+ub77GYmBiT4SlzlvX19eXq1av4+/urnss5w49LksTNmzcpV64cKSkpyLLMggUL+OGHH1QBdsKECXm2p3w+YcIE1XM9NDQUSZJISUmxepGooBCcpu5RQXUqHnnnz5/nwoUL1K5dm8DAQBwdHTl9+jRRUVGqWAjZ4uD06dMJCwtTF9cmT57MjBkzcHNzK1XCnDl9S7k/zs7ORot0psqePXsWnU7Hm2++SXh4OCNHjmTevHkF2mPYf2rUqMGNGzfQ6/UkJiaqITcNUUT81q1bExISQlJSEu+//77qIaV4cVnTPwCWLVuGTqdTowJAtheWEt4/v+9BXv3V0PO+fv36HDx4sNA5tkuasmXL5vqsQ4cOnD59moCAADXlwZtvvgn8GzY/MTGRt956i48++ijXd+bUqVOEh4fTu3dv4uLiCA4OBrLfSwsWLGDy5MlG7Xl5eanvlpMnT6LT6VTvZ4By5cqxe/duNBoNzZo1y/M7euLECQDWrl3Ltm3bAOjevTtz5syhUaNGvPjii1Z5p/n4+FhcxhwSExPzjSiQlJRk0taisOnhw4fqPcwLa/KPmypz4sQJjh8/nq+nnLX5zm2VJ12v15OSkkJsbCxVqlTh3r17eHt7s3v3brRaLZ06dSIzM5PQ0FA1pVNemLqnpuw1LKd49Dk6OjJ69GizwuZfv37d6LutXI+p8e3EiRM27wOFIb93vuG1WIOpuUhcXJyRJ725NlWtWjXPz+/evUvlypW5d+8eZcuW5cCBA5w7d46kpCT69u2Lo6MjK1euZNq0aerGpEuXLvHFF1/w7bffsmzZMnbu3KnWFxAQwBdffMEvv/zC+vXr1TRHBV1jzjmAteNpUczjShvWzOfT0tJITU2lRo0a+b7bc24GMBTvW7duTb169dTQ4B06dOCrr77izTffZPr06fnOY0zRtWtXIiIicqX/iYuL48knn7S4PgVb9i3Dfpvfd6yo7CkMJ06cMPLEzhlxpqB3qSXe44qHuC1/txiGzY+MjFRTOej1egICAnjhhRdo1aqVGk5f+V2phM1PTk7mrbfeIiQkxGY2FYRyT/Ma6/K6l927d1f/fvjwYb5jY3GPewKBQCAQCAQCgcC+KT2KUTETHx+Pj48PWq2W+Ph4nJ2dKV++PJcvXwbA39+/hC0UCIqXsmXL8u2336qey4onvizLHDt2jB49ehASEkJycjL9+/dX8zweO3aML7/80qw2tFotGzduZOPGjWi1WjQaDR4eHnYpbiseeYowuGTJEiBbGAwKCuLw4cP8/vvv6HQ6xowZQ40aNdi2bZu6GJWYmMjChQvt9voKi3J/CvJczolWq2Xr1q0kJCSYJd7nLBsdHc3p06epV68eFy5coHfv3nTo0IGzZ88anevj48O+ffvU/jxz5kybeUgZivfu7u5qZIA5c+aY7Y2qRJ7IKd4/in1FoVmzZqon/tixY9m0aZMq3ickJPDmm28SEhKS73fmlVdeISUlhbZt2yJJEtWqVSM2NjaXeA8YvVsMxXtvb2+8vb3VMOZ6vd7kd9RQvA8ICABg1qxZ/PLLL4X2TisKCooooKQWsGX0gPyQZbnYPXoL8pQrSZQ+6ejoyO3bt4364ebNm8nMzKRy5comxXtb4ejoiKOjI6NGjTJLvN+yZUuujTn2PH5bSlFciyzLpKWl2fw7oNVquX37tuqJ361bN7p06cKAAQP45JNPqFmzJkuXLiU9PZ3q1atz9OhRHBwcOHnyJG3bts2zvkaNGgHZqRLMxdo5gCmK6p49iihe35aMQ1u3blU973v27GkkQr700ks4ODgQHx/P7du3LbLl1q1bvPbaa7Rs2ZLjx49TqVIltm3bRnR0NO3bt+fOnTuMHj2aJk2a8MUXX6jlSuJ5F0W/LS4K44ldkimZ7t+/r4r3q1atUsV7+Pfd27x5c1atWoVWq2Xp0qUcPHgwV8774hTvDbFmfHjw4EGJR3QR2Dd+fn5IkpTnv2rVqpW0eQKBQCAQCASCYkR44BuQlZVFbGwsgOq5Atlifrly5ZAkiStXrvDUU0+J8PmCRwbF49Sc3Kaurq588cUX9OzZk7CwMP7++2/u37/Pr7/+iq+vb66cqoGBgYSGhqoedtZ47NiKW7duqWHUbYGzszM///wzV65cwdvbmwcPHnD69Gm8vLyoXbs2bm5udOvWzUikCggIIDw8/LHII+vs7ExWVhaJiYlUqlSpWNtu2bIlUVFRREZGMmTIEC5fvkzv3r2pVasWS5cuVcUIxRO/TZs2amQExbvHWnKK94q3ovLZnDlzmDBhgsm8wwCpqan07NmTixcvPhbivYISTr9z586MHTvWyBt/xYoVBZbXarUFeiAbklO83717N4BRLvK4uLg8n5eheL9gwQJatGihfjZr1iwaN25cYC7q4kbZoBIREcH333+vfq54pWdlZeHt7c3bb7+Np6dnkdoSGxtLSEgIGo2GGjVq8OKLLxZpe/Bvzl1HR0fu3LlDxYoVi7xNa9BqtezevVvth0rKlQ8++MCieuLj49FoNBZHUJBlmSFDhnD37l21P/z000/q8S+//JJTp07lCptfGJTxwjCv8aPI5cuXiYmJITMzk4yMDDIzMylTpox6vHHjxoWeIyjh9Js0aUJ8fDy1a9dGkiQyMjKAbA/h8PBwNVy5klf55MmT3Lx5k5EjRxrVN2DAAH755Reio6PVd2VBxMbG8sQTT9g0bPi9e/dITU2lYsWKdpnvvKQxnM8r3vXmzBuUOaqS837WrFmq570hHTt25KuvviI0NFTdtGqKzMxM0tLSaNmyJQDly5dnxYoVDBw4UD3n6NGj3Lhxg4EDB3L69GlGjx5tVD41NbXAdmxBVlYWcXFxVKhQAaDIw90XBYpnvD2PbXlx584dtFoty5Yto27duvmeV7duXVatWsWoUaNYunSpOl8vibD5hSUiIoK+ffuWtBkCOyY6OlpsVhMIBAKBQCAQAMID34i7d+8SHBxMcHAwd+/epXz58kB2aD9FzI+OjrY6pJ5AYG+cO3eORo0a0ahRI86dO1fg+c7OzlSuXJnjx48jSRInT57kr7/+YvHixZw4cYLmzZsbCV3169dXQ+KfOHGCGzduFNm1mOLWrVt88803RoJVYZEkSfVGu3//PoMHD2bkyJEMHjyY4cOHk5KSgl6vR5ZlmjRpwvnz54mIiHgsxHvIvj+nTp3KM19lcdGyZUuOHj3K3r17qVWrFpcvX6Znz55s375dPUcR8X18fNixYwc1a9bktdde45tvvrGqzbZt2xqJ91qtFq1Wy6xZs1RP/LfeeqvAekJCQrh48SI1a9bMJd5v2bIF4JHdSKaI+IpHmLnivTW0bdvWSLxXntfu3btVD+j8nldO8R4gKCiIQYMGAdnhUosq56m1aDQaYmNj6devHx9++KH6b+XKlXz44YesWLGC999/n+HDhxe5LQkJCWzbto0tW7bw/vvvs2fPniJvUxE4QkJCGDBgAOfPny/yNq3FsB8CVKpUCT8/PzIyMsxa1NXpdPTr14/evXsTGRlpUdt79uzh7t27QPb4NmXKFCZPnqz+U8T7zZs320S8B4iMjLRo801p5OLFi3To0IGhQ4cSFBTEyJEjGTduHEOGDFH/mTsfKwhFxC9btqy6WcDX15cjR44QERFhlGu8SpUqXL9+HQcHB65du8bq1atz1aU8Z3M2Yn7//fccPXqUuLg4m3r2njhxglOnTpVKcbU4OHz4MIcPH7a43L179wDw9PSkT58++T4zxTM6Pj7erHqVDVPly5cnODiYs2fPGon3ClWrViUsLIzIyEg1kg1kb5IrjtzxAEOHDqVZs2aEhYUZpRUobdy5c4fIyEh+/fVXi8tqtVqSk5P5888/cx1TQvKbG1HNHAznR8uWLaNBgwYFllFEfIXSKN4DDBky5LHYlCsQCAQCgUAgEAgKj/DAN8DHx4cOHToA2Yu8/v7+pKenk5CQoHpsVqxYMVcoZoGgNHLu3Dn69OlDVlYWAH369GHPnj00bNgw3zKK+NGrVy9kWcbd3Z2HDx+i1WrzDdn45JNPotFo0Ov1DBs2jKNHjxbJ9ZiiSpUqNGrUyGjB2hYEBwfzySefEBcXB2TnHDX0CnN3d2fEiBF4eXmRnp6OXq9/rBZsAgICuHPnTkmbQZMmTTh69CgREREMHjxYDaneqVMnIPvd/9133zFlyhROnjxJZGQkkZGR/Pe//yUgIIAJEyaY5UkdHx9PREQEkiSp4r2CVqula9eu7Nixg1u3bhVYlyKevffee0Z9ZtKkSRw6dAgfHx9GjRpl0X0oTTRp0oQbN26Qnp5u5J1qSwyflyLeK2i1WoKCgli6dGm+z8vDw4OkpKRcaRGCgoKAbIG/e/fufPnll3blie/r68u6deuYPn26arssy6pgUadOHYs9va3BUBRs3Lix+n0sDg4dOgTAmTNnzBINSgpFxM/IyECr1aopAMxhwYIFaiqEadOmMX/+fNUTtiB69OiBi4sLly9fzlPIcnFx4Y033sg3t7YlyLJMZmYmDRs2NFsYLK0MGzZM/bty5cq0b9+erKwsdd5w584dvv76a7PmY+ag0WjUaBs1atQwmX5BEfGrVq2qiviKJ/7q1au5f/8+Go3GrHfD888/j5ubm02jHgG0bt0aKNlw3/bMCy+8YFU5JeqFTqejW7dudOzYkWeeeYannnpKPef+/ftqWiNTaeQMc8iHhISQlJREx44dzbKjSpUqhIWFMWHCBHbt2sWZM2eYOXMmixcvtuq6LOHmzZsA6vwwr40GpYGKFSvy9NNPU6tWLYvL/uc//2Hp0qWMGjWKVatWGf2eGT16NCNGjGDZsmVoNBo1B721HDhwgA8//BDI3sDx7LPPml3W0Eu/NIr3gLquJBAIBAKBQCAQCAQFIQR8A9zc3HL9gIyJiQFQQ9HVqlWL3bt3q+FmBYLSiKF4v2jRIiB70UpZNPb19c2znF6vN8rJvXv3bt5++20mTpyYb1tHjx5FkiTc3d05fvw4N27cKJEoFpYsDpmLi4sL48ePV/8/Li6OcuXK5TovLS2N1NRUUlJSbCJ4lBa8vLxs5p1pC1q1asWePXvo06cPkydPJikpSRVbvb29+eSTTwA4f/48q1atIiIiguPHj3P8+HE0Gg19+vRh586d+daviLSNGjUqMES+ueQU78PCwtSoAY96NAetVquKAUURbUB5Xi+99JJVz2vSpEnMnDmTRYsWsX//fqNjQUFBVK1alYULF9qliN+nTx/69Omj/n9SUlKxv5v8/f1Zs2ZNsbapoAjbpQGtVqv2f8XzvqD5p06n49ixY0B2Oojdu3erIn67du0KbNPJyanY+quyKcHZ2fmRzut64cIFbt68iZOTEwsWLGDixIlER0ezZMkSI6F7+/btZs3HzCE9PZ2MjAxatWplVsj5KlWqMGPGDObNm2fkiX/t2jU0Gg0zZswwKyWORqMpkjlX5cqVbV7no4S190eZZyxfvpxLly6xdu1ajhw5Qv369enUqROenp7MmzcPvV5PjRo1GDFiRL51KTnkAbM3DOXEzc0NyH73hYWFARhFTioK3N3dAXBwcFBF/EmTJhVpm0VFnTp1rCrXtWtX9Ho9y5YtY9SoUUybNg0/Pz8AateurW7qUULXmzOW5IUi3mu1WnQ63WOZDiM8PLykTRAIBAKBQCAQCASlhMfHFdRKFO9RRcCvWbMmOp2O69evl6BV9s3BgwfFD1M75scffzQS7wcOHMjAgQNZtGgRWVlZ9OnThx9//DFXuZzi/cGDB3FzcyM0NJRWrVoxceLEXOUSEhI4c+YMzZs3p2fPnsiybOSBVtzIskxaWlqx55RzdnbG1dVVXZQUlBwNGzZkz549ODg4MHfu3DwXhRs0aMCaNWu4d+8eQUFBSJKEXq9n165deHh45BmFJT4+nsjISDQaDQMGDLC53Ybi/eHDhx958R6yvzfu7u5FEj7X8Hkpi/WW0rp1azw8PHj48CERERG5ji9YsIApU6YA9hlOX2A/zJs3j7p16xYYnUOJgmPKA1mWZT744ANkWaZ+/fqMGjVKTeswbdo0u+uHjo6OODs7P/KbYt9++20Axo0bR79+/Vi6dCkRERGMGzeOtLQ09Txz5mPmosw9zH2H6vV63N3dmTFjBhqNhmvXrhmJ94/DuPM44+bmxtixYzl9+jSdO3fm2rVrLF++nPfff18V75WoDPlhaZ8zRXBwMD4+PoSFhanfn6JGmR9OnjyZkJCQYmnTnujevTsTJkxAp9Mxf/58o3D6derUYfXq1Wi1WpYuXWrV/Vm7dq0q3udM1WEN5qaUsTfEu1QgEAgEAoFAIBCYi/DANyArK0sNha0QHR2No6Mjer0enU5HjRo1gOw8lsrfgM28LUsrycnJQHZu5v/+978AfPrpp7z++uvAv54NAtuiRIjIi7y8wQ0979977z06deqk9vlOnTqRlJTE3LlzCQgIMArfaije161bl02bNpGQkKDWu2TJEsaNG8fnn39ORkYGjRs3BlBzcQYEBODq6kr58uU5duwY33//fa7QqtZ4mZm6/rww9AwqTo8PSZJwcXF5rMLn2zOKiN+7d2/VE9/QGxngzz//zDOEanJyMk2bNqVs2bJGeYp79eoFQM+ePbl06VKeY8I///xj0i7D8UcRdB48eMDYsWPZu3evKt47OzuTnp5e4l5LiYmJJo/7+PgUqn6NRmOR570pe3J6mHfu3BmAV199lb/++gsHh9zToZzzgZykpaUxfvx45s6dy8KFC3NFZzhx4gQvv/wyN27cUMPpG4Yxt9Z7TWAdhhsvldQB9+/fL/SGTFN5269fv656MObkxRdfzPWZYcjq48ePW2XPzJkzOXXqFJAdBWX27NlA9hgbExOTqx+aY2tRomxKeJT59NNPuXnzJg4ODvj5+XHgwAFcXV1544032LJlC4MHD+ajjz5S3+mm5mMK+UX8MUSZe5hLSkoKWVlZqoi/cOFCAKZMmVJowcnS+aq5x0xRmOgF1lDQnNSUPYUpaw35zTeUz2vVqsXZs2fVOXONGjUYPnx4gfVa2udM2SPLMnv37qVXr16sW7eO5OTkPMPpF/RdyO/eGbappBPz9fVl/fr1DB06lKCgIOLj4/OcCxZ33zI1ztia7t27Axh54itrHs7OzkyfPp158+YRFBTExYsXzQ6nr3jeazQapk+frm7ySE9PN2sczuuc69evo9VqC7UOU9C9FXM1gUAgEAgEAoFAUJIIAd8AHx8fevfubfTZiRMnqF27Nq+++iqQ7YEPcOXKlWK3z95RxHvlh+4777wDoIr4gpIlp3ivhA43RPls7ty5avjWZ5991ki8//rrr/MUojdv3kxgYCB79+6lVatWBAQEMGfOHAYNGsSYMWOIi4ujfPnyjBkzhv/7v/9Tw2LaGsP8mzlD9ev1elJSUnBzc7NaTDe1aFfcC3r2iL3dg/zs8fX1Ze/evfTp04e5c+fi4eHBwIEDycjIIDg4uEDPoPj4eOrWrcvOnTupUqUKP//8MxqNhmXLlrF169Y8hWfDTS95YbgArSyAh4aGcvbsWXx8fLh69So+Pj6F7sP2TGFFf8j+nivvgLzuUXx8PD/++CMajYaPP/6YH3/8MU/BISoqymQ7LVq0oEWLFqxcuZL79+8THx/PK6+8oh5XNngo79Vt27ZZnIvclpi6t7a475bi6elZrAvjhuK0stjv7e1dIqL15s2bCzzH2nujiPcAkZGRRscUET+vfujn51fsQsXjIowo6Vk6duyoCqKAKspv2bKFd999l9DQUPVdlNd8LKeIbwprxmI3NzfGjBmjji9z5syxWXs3btxQ38uW5LAvV66c3c0r7Alr701e8w0vLy+uX7/OpEmTuHz5MgD169dnzZo1PPfcc2bNO2xtj7+/P9999x1t2rRRfzfkJeIrGP4GKKifGbapbOIrV64cbdu2ZcOGDQwbNkyN0JOXiG9PWPsuza+c8vmyZcuYP38+q1atUnPPK2PmBx98oIbTL0jENwybP336dKMNbM7OzmaNw3md4+fnh4ODA1lZWej1eruZFysb8Lp3705SUhJ16tTh4sWL1K9fn1WrVpWwdQKBQCAQCAQCgaA0YR+/cuwUWZa5du2akad9hQoV8PT05OrVqyVomX2h1+sJDQ1VxfsdO3awY8cO2rVrxzvvvMPWrVtL2sRHFnNDwufMeZ/T29iQPn36GIVv7dChgxo2f+vWrfkujri4uBiF01cWZwzDbfbq1Yvy5ctz+vTpAkMFW4viZZ+enp7rmEajwcPDw24WeAQli2E4/cmTJ7N06VK6d+/OihUrCsz/7OjoSEpKCl27dqV169ZAtve9raOxKOL94cOH8fHxEX3YDNLT00lOTs7zHQCoKQ5effVVmzyvlStXApgMLRwUFGQUxvz06dOFbldgv8iyTEZGRq7PN2/eTKdOnQgNDS2wDmvGSCWyQH7UqFHDqB/mFPgFtue3334jISEBBwcHXnrppVzHW7ZsqYbTDwwMNAqnn3M+Zhj1pSgoyvHF1NzsUaGk0jTZilGjRtG7d28uX75MvXr1OH36NL///jutWrUq0XmHj48PJ0+eVMPpm8pNb6t+9swzzxjND/NKt/SoYxhOf9SoUUbh9KtXr24UTv/gwYP51mMo3q9evZrq1avbzEYnJyeysrJIT08nJSXFZvXaAlmWGT9+PJAduRGyUysJBAKBQCAQCAQCgSVY5IEvSVJZM07Ty7JsOq5uKSEiIoKkpCSjH5r37t3D1dWV6OjoErTMvoiIiGDs2LE0b96cHTt2qJ6nO3bsoHv37rzzzjs0adKEJk2alLCljx7KQtWdO3dUEbEgJk+ebHbO56ysLHWzSlRUlEXPUFmEbtGiRZ7HZ8+ezWeffWaRJ5Ypzp07x4YNG5gyZQo+Pj5Fkjdb8OhhGE5/5cqVaLVa1q5dyw8//GCynIuLC+PHj2fx4sU8fPgQAH9/f5NllO+SOaKxEs7V2dlZDZufkpJiFAbeXrh9+zZz5swhKCjILt7z8fHxPPPMMwWeV6tWLZPHf/vtN6Dg59WjRw+8vb1JTEykYcOGbNu2jXr16uU6LygoCL1eT1hYGDNmzGDatGkF2igoGnx9fUlISKBMmTJkZGTYLP/6yJEjuXDhQoHnVahQgbt375o8p0GDBsTHx1vU/v/93/8VeE5QUBA//vgjly9fZvr06Rw7dsyiNgSWoUSheu655/I9p0+fPqxfv55Tp05Ru3btPM/JysqiR48e+dYhSRJnzpyhYsWKhTO4iFDmZImJiTz//PMmz3399dctFrrCw8P55ptv+PDDD202r7QUwzRNx48f59ixYyxZssTs8rIsc+PGDZYvX87QoUMtirhQGPR6PZCdUqRmzZrMnDmT3r17l9h8Q9koMHjw4DyPh4WFmYziNWDAABYtWmRRm0qfyRm5S2Hy5Mm0b9/eLr5ff/75J3v27CEoKAhvb2+bjV95YRhOX0mRlxdLly5VvfHzQ6fTqdH5DLHm++ru7q6m71Ou383NzeJ6FGRZJjMzk48++ogWLVrQpk0bq+tSyMzMpFmzZmraq6effhpPT89C1ysQCAQCgUAgEAgeLywNof/3//6Z+qWlBfL+9VtMSJIkyVa4P8TGxqpeUfHx8YSHh1OzZk3at28PwE8//US/fv148OABgYGBtjW6FFOnTh1q1KhBVFQU58+fVxfmzp8/T1RUFDVq1CiRELWPA8qCqIeHB0FBQaxduzbfc729vdWFqaysrFw5n2VZRpZldDodkiSh0Wi4efMm9+/f55lnnkGSpDzL6fV6NWyhsuimfCZJkvpPp9OpZdPS0ujevbtN83jXrl2bgIAAnnjiiTzzWQsE+dGwYUN27NhB//790el0jBgxgjFjxpgs4+npmev7tnTpUlauXEmbNm3o0qWL0bGDBw9y9uxZALPCEo8ePZrBgwdTpUoVvL29SU9PL9TiZFFSvnx5WrduzdNPP13SpgBQsWJFRo4cWWAaBCX864ABAxg6dKjRsbVr13L48GHA9PNSwvXv3LmTXr16ER0dTatWrahWrRqzZs0y2gCo0+n46quvAChb1pz9kIKiYtq0aSQlJVG5cmWbegRPmTKFYcOGFegJX5B4D9C8eXOL2+/Xrx8rVqzI93h0dDSdOnUiMzMTKHjTkaDwvPbaa/z++++cPXuW5557jvr166vHdDod69evZ+TIkarXdrVq1fDy8gKy52oajQZJkoiJieH+/fv5ttOsWTPKli1LWkUl+pUAACAASURBVFqaXW5gVHKjP/HEEybnqx4eHrRt29bi+p9//nkyMjJsOq+0FOW+Ozs706pVK4uFVWWcb9q0ab4bOYqCkSNHMmDAADIzM2ncuHGJzzeGDx+OXq/nl19+UT9TfqNkZmZy6dKlfMt6enrSuXNni0XhFStWMG/ePP7++280Go3Rb6HU1FSeeuopo5D7JYmfnx+NGjXC3d29WCJadO/eHX9/f7Zt28a9e/eA7N9xyvcsLS2N+/fvG0UPgexnpvwGrFChgnq+kuIAst8Lr7/+unquucyYMUONICNJEk5OToWKEJGZmUl6ejotW7akUaNGVtdjiPL9//jjj8nKyqJKlSo2qVcgEAgEAoFAIBA8XkiW6NySJP0iy7LJXzXmnFNUSJJURpblhP/9bbGIL0mSbPjjr2PHjowbNw4XFxeOHDnChx9+SMWKFdm1axeNGzc2KmvrsMmljUuXLvHKK69w9+5dvvjiCyA7nHSFChUIDw8v1oWokkKSpLOyLDfN61jTpk3ln376yeZtxsTE5HssLi7OaLHJMC9kfHx8vgtRsbGxeHh45Jk/MmedOevNeX5aWhqpqam4urqSnJysls2rjDV5M01dv7V12iOm+hYUXf961MnZf1JTU+nRo4ca6tIcypQpw5dffklqaiqBgYFqnQ4ODnTs2JGXXnqJgwcPql6ugYGBrFu3zix7clJU/dnad1diYnawnfxyzhd3XnXFnrx48OABjo6Oqo0XLlxg0KBBajQdR0dHhgwZwuuvv87atWvZtm0bAPPnz2fq1Kn5tpeamkpycjLu7u64urqqXmjKonrlypX54IMPqFq1Kn379uX+/ft4e3uze/duOnToYOM7YH+UxLiYHydOnMj1mSIIOTo6GuXkLWy9CtevX1c3MCrhtT/88EOOHTtWYJhta8NwmyOCKP2yevXqNrkHJYE99a2CaN++vZoTOTAwkLp16xIWFsYvv/yiPudGjRqxceNGo/dmXnMuU8cM51wFRRgpbsyZr+Y3n8xv7DOs01bzSrC+bxVmDI+JiTE5n7b1+G9v8+e87DG8H0p0A1dX11wbNEx9T8C8/pOzvbi4uHx/C5mqsyCsnc8X1fhlCnPHtrxsUvLSOzo65rp/hmWVTTfOzs44OTkB0K5dO4vtMVWuIE6cOGF0L3Paa029RWVrQZSmcdHekCQp33mXqWMlYU9RlDOjXpPvLoFAIBAIBAJB0WGpm2pLAEmSfGVZzu+Xf8vCmWQdkiS9BMySJGmJLMv7ZVmWLRXxa9euzZo1a4w+y8rKYuXKlezdu5e2bdsSFhZG+fLlbW1+qadKlSqEh4fzyiuvqBEL/P39CQ8PFzvO7QTD0J6mULykzMXU+YbeSEqoQ2vaEAiKA1dXV44cOcLOnTt599131bCy+TFs2DAj7+yIiAguXrxIv379SExM5KuvvuLrr79WF1ICAwONvC8fFZSc84CaQsXe0Gg0RrbVq1ePc+fOceHCBfr27cs///xDSEgI69atU5/X/PnzadnS9JTG8B0HMHHiRCZOnMjSpUtZvHgxt2/fNorYo4j3j/umP3tB8dwrrrZcXV2ZMWMGU6dOzTMfelHj4uLCxx9/bBQZQvE8FBQd3bp1A7LDqiuRvhSqV6/O/v378fb2LnQ7Od9HpY3CzA0fhXnlo3ANtsTwd0tx9G3D+18ankVxjl/mYjiemGOb4qVelGkAzMEe76UtkCTpP8B/IP/0EPaIn59fvukqq1WrxvXr14vXICsxdR1Quq5FIBAIBAKBQFByWBRrTJZlJTbaPjPOKQk8gMaSJPX9ny0FiveSJP1HkqSfJEn6KWdoyoSEBCZOnMjevXvp168fhw4dEuK9CRQRv2XLlrRs2fKxF+8N+5YScrAkcXZ2xtXVtVgXdpUFsJLKR/ooY2/961GiX79+JkO0QnY+47xCq9epU0cVccuWLVsqxXtL+5azszPu7u6lUjSqV68e69evJzQ0lMqVK1sk3sO/GwNyhm6dOHEihw8fJjAwUF2Y9vHxeezFe/Heyqak+kDz5s2NxHtAjUxR0gJKYbH3vtWtWzdefPFFdT5UrVo15s2bx7vvvmsT8R7EnKuosPe+9ahi+LvlUe7bj1L/snQ8UYTzR/G52gOyLH8my3JTWZablqY1rOjoaDVtRs5/pgRxe8PUdZS2axEIBAKBQCAQlBwWhdBXC0nSamCDLMs/2t4k65AkqRmwEDgOPAHsBa4CKbIsx5tTR7169eStW7cCcOfOHf7zn/9w7949PvvsMwYPHlxElgseFUTYOkFRIULolxwbNmzg7bffVnNajxkzxmSO6ZzcvXsXBwcHu855Lt5d/1JUz+vixYvUqVPHpnWWBkTfMg+dTseVK1eKpI9kZGQ8qp6FpbZvParP5FGhNPctgX0j5vOCouRReXeVRDj7omizoHIl0aa1iBD6AoFAIBAIBCWHpSH0FV4EhkuSFA0kAxLZDu/P2swyC5Fl+UdJko4AG4HOwFigOtAfiDcnnP4ff/xhlNu+atWqRERE5Mp3LxAIBILHg6FDhzJo0CAWLFjAm2++mct7tSAqVKhQRJYJioKiel6Po3gvMB+tVltkfUQIxfaHeCYCgUAgEAgEAoFAIBAIBIKCsFbA72JTK2zH82R73v8DtAa+J1vEv2xOOH1/f38+/PBDIHv3auvWrSlTpkwRmisQCAQCe8fJyYlZs2aVtBkCgUAgEAgEAoFAIBAIBAKBQCAQCB4DrBXwuwNbZFlOtKUx1mLgXb8JGA70AMYDZYB2kiRFyrL8sKB6fHx86NmzZ9EaKxAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBAJBHlgr4FcCfpIk6WcgFDhkjoe7LZAk6UmyPeydZVlOhezY/f87fA9oA4yTZfmAJEllAI054r1AIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBCWJxppCsizPAGoB64ChwGVJkuZLkuRvQ9tyIUlSZ2AXEAxMkiTJ3eCYJMtyBPDy/8R7B1mWE2RZjitKmwQCgUAgEAgEAoFAIBAIBAKBQCAQCAQCgUAgsAXWeuAjy7IsSdI/ZHvDZ5Edrn6XJElHZFmeZCsDFSRJ6ggsBsYCXmSH8c8wOEX7Pzs0/7Mvy5p2dDpdvse0Wq01VQoEpYqYmBiTx319fYvJEoGgdCK+Q0VDYqLprD0+Pj7FZIlA8C8nTpwwebxdu3bFYoegZBHvfUFJIPqd4HFBjLUCgUAgEAgEAoHgccQqD3xJksZIknSWbEE9Amggy/J/gSZAXxvaZ0g7YLQsy8eB34AXgDmSJE2QJMlXluUsSZIaAKMkSXIpIhsEAoFAIBAIBAKBQCAQCAQCgUAgEAgEAoFAICgSLPLAlySpJfA9UA7oI8tytOFxWZb1kiR1s6F9SpsVgMOyLH8rSZIH8AmwCThP9qaBWZIkjQCSgGBZltNsaYNAIBAIBAKBQCAQCAQCgUAgEAgEAoFAIBAIBEWNpR74Q4CzQB3gRUmSKuU8QZblP2xhGIAkST2ANWR79Y+RJKmWLMtJwERZlufLsvwlcCS7WTlDluW/ZFmOtba9mJgYJk6cyMSJE5k0aRLnzp2zzYUIBKWU3377jcWLF5e0GQJBqSQ+Pp7XXnuNUaNGlbQpjxxxcXGMGzeOrCyrsuUIBEXChg0b2LBhQ0mbIShBsrKymDx5MvHx8SVtiuAxY82aNSxbtqykzRAIihS9Xs/mzZtZsGABer2+pM0RCAQCgUAgEAgEgiLFIg98WZbfAZAkqS7QBdggSZI3cBz4GoiQZTn/JPIWIElSOWAkMEiW5d8lSQoFmkiSFA9cNTi1BvCUJEmeQJIsy7K1bcbGxhISEgJAeno6a9eu5auvvqJFixbWX4hAUIp58skn6d69e0mbIRCUKuLj4wkMDOTnn39WP7tz5w47d+4sQaseLe7cuUPbtm25d+8elStXLmlzBAKWLFlCeHg4APfu3ePdd98tYYsEJUFcXBytW7fm7t27lC1btqTNETxGLFq0iKysLP755x+x+VbwyKHX69m4cSM7duwgLS072OK1a9dYs2YNGo1VWSEFjxl+fn5ER0fneaxatWrFbE12m5Ik5XtMIBAIBAKBQCAAyz3wAZBl+U9ZlpfLstwZaA+cAvoBP9jQtizAFagrSZIX0A54HVgJTJckqYwkSaOAcWR75D8sjHgP8PTTT3PmzBnOnDnDkSNHqFChAl26dOH7778v5KUIBKWTJ554gqefftricqmpqURERBSBRQKB/RIfH09AQAANGzbk559/RqPR8PLLL+Pg4MAPP/xAv379StrER4Z69erRu3dvId4L7AJFvHdzc8PNzY3w8HCWLFlS0mYJSoCKFSvSrVs36tatW9KmqJw7dw6dzib7qwV2jJOTEwBhYWFMmjSphK0RCGyDXq9n9uzZdO3alU2bNpGZmUmnTp2oXr06V65cYfjw4cITX2AW0dHRyLKc57/r168Xuz3Xr1+3K3sEAoFAIBAIBPaJVQK+JEn9/ufxDvB/wNvAelmWm9rKMFmW75Mt1k8FDv+v/u7AOqAK0AAIAIbKshxlizajoqKoV68e9erVo127djz55JOUL19eiPiCxwpZlklLS8Oc/TCpqamsW7eO3r17U7NmTdzd3dFoNLi5ufHCCy9QsWJFsWgseORRhPty5coRGRmJRqOhV69eXL16lbVr13L69Gkh4hcRer2e1NRUsXgrKDEU8d7T05Pt27ezfft2PD09hYj/mGHJ3Kk4adu2LY0aNcLNzY1Dhw6VtDmCIkSr1eLm5oaPjw9hYWEiCoigVKMI956ensyZM4fMzExefvllDhw4wNSpUwkJCaFmzZpCxBcIBAKBQCAQCASPNBaF0DfgPVmWd0qS9ALwMrAU+ARobjPLAFmWd0mSdBSYBvzyv8+OSZI0OvtPeZAt29NoNHh4eACg0+n47rvvcHR0RKfT0aZNG06ePJlvOH2tVmtLUwQCAGJiYkwe37lzJ7dv32bdunUkJCTg7+/PiBEj1OMTJkywuM309HRSU1MBcHFxMTp24MAB9djHH3/M1atXc5U35O7duzg4/PuayW9h29R1xsXFUbZsWdLT03F2ds4Vas7X19ekDfZEQc/Tnq6lKGwtTJ3Wli2ob5UrV84qe5Q8s1FRUYSGhgIgSRKNGjWic+fOPPXUU3z11Vfq+XPmzOG9997jhx9+oEWLFkbh9GVZVvt31apV823T3vpPYmKiyeM+Pj42LZcX6enpJCcnm32+pfZ8//33uLi4sHnzZjZv3kxmZqbJuipXrswHH3xA9erVadiwYb7nJSUlqfONvCiOe2cuJdHmiRMnTB5v165dsdaZX1lFvHd3d2f+/Plq3vP58+czZcoUwsPD6dq1qyqkybJMZmYmjo6OSJJk1XWYsgfgxRdfNFnWWoHZVJvXr1/Hz8/P4mNg3bMsDEU1JpiaO5WEPTnnShkZGXTu3BmAZs2asXv3bovrVcY9nU7HvHnzePjwIcOGDaN+/fqAdXNOsL+xzRQZGRkm7bXWVmvvQVxcnPq3LMtoNBr27t1Lz549+fzzz5EkiUWLFuWaQ2/atAlXV1fOnz/P559/TmpqKu3bt6dr166A6WdZEs+rKL4nRdWf7Y2iGE+Lqs38wokDDBgwgJdeeol//vlH/Wzq1KnMmTOHK1euUKdOnXzD6Vt7jabsadu2LbNnz87zWEHjXkEU97goEAgEAoFAIBAI7BdrBXzFpbYr8Iksy19IkjTbNiYZI8tygiRJx4D+kiRlAC5ANeCmrdvS6/U8ePDA6DNlsV6j0dClSxe++uqrfEV8gaA4uXjxIvPmzSMhIUH97OrVq6xevZqRI0daXa+/vz8pKSm4ubnlWgRRFqdXr17NtWvXkCQJPz8//P39adKkCYsWLbK6XVNYuzAusC2GQrPAWLxv0KABgwcPRqvVcunSpVyLyS4uLsyYMYN58+apnviKiG/YvwX5k5dQ7OXlpb6vCoNer1f7tuF7T/GoVuYCHh4eODo6ApCVlWW0Qenhw4fcvn2bwMBAKleuzK5du6hXr16h7BLYlpwCemEwFO+3bduGl5eX0fFt27YxaNAgwsPDAXj33XfJzMwkPT0d+DfctS0REW+KBmXs0+v1+eZaNjV3sjd++uknTpw4YZVIpNPpmDNnjrpxKjQ0lMDAQFX0FBQvhnMN5Z3m7+/PqVOneOGFFwgLC0On0zFjxgzg3zl0VFQU+/btM5p7HDt2DEAV8R8H8urPQ4YM4dlnny1hywQ5+fXXX3nrrbdyjd3r169n2LBhqid+fiK+rfnjjz/Q6XRmOXHYcu4hEAgEAoFAIBAIHi+s/XVzS5KkNUB/IFySJOdC1GUOkWR74E8HRgLDZFn+qwjby4VWqxXh9AV2wcWLF2nVqhUdO3YkISEBBwcHunTpwsyZM9FoNFy7do1Vq1ZZXb8SiSK/xQ9FvNdoNLz33nuMGjWKgIAALl68WGDdlooLyoKHk5MTrq6uQjguYRShWRGgHmcMxfv27dszdOjQAhfxvL29mTt3bq5w+s7OzqJ/W0lB7ytzUTz5lb69dOlSKlasqOZbrVy5MqGhoXz55Zfs2bOHPXv2sHLlSvXvPXv2cOTIEQIDA3F0dOT27du0atWKhg0bcuHCBVtcql1RWlMXKAJ6QZEUCsIwbP7ChQtzifeQvblk4cKFRuH0HR0dcXZ2VjeB2AqdTsfcuXPp2LGjTesVZKOMfSkpKfmeY6t3kS1o27atyeOyLPPmm2/Sr18/dDqd2eH/DcVOd3d3NdpDaGgoUVE2yWYmsBE+Pj588cUX+Pj4sHPnTubNm4ezszNfffUVDRo0YPv27aSmpuLq6srQoUMJDAwEskX8gwcPmqzbXtNFWGpXfv1548aN/Pbbb0VparEjyzIZGRl298ws4ffff2fEiBF8//33Rteh0WiYNWtWsYfTv3v3Lh07dmTevHnqezS/e2yruYdAIBAIBAKBQCB4/LDWA78/0BlYKstyoiRJlYEiS7Qny3IisFKSpPWAJMvyg4LK2JrMzEyqVKmCJEl06dKFffv20bp1a7tYqBM8HsTFxdGpUyfu3bsHZHvvdejQgZdeekk9R/Hw/euvv1i9erXNwz9+/PHHqng/bdo0zp8/z7lz57h+/bpZi0JPPvkkd+7cMXlOZGSkunio0+lUjzatVktWVhZNmzbl1Vdftcn1lCQbN26kX79+hfYcLg72799Po0aNeOqppwCsFpoNPfhTU1PZuXMnQ4YMsdoeS8O0nj9/np07d6oLe2lpaao3WlZWFr6+vmZFrzhw4ICReG+Jt1qZMmU4ffo0AQEB/PDDD/Tv358dO3ZYHFnC3vpPSEgIgwYNstieU6dOERUVxWuvvVYkodjNRenTW7duZfr06WRkZABQqVIl5s+fT/Xq1c2qZ/DgwQwePJjNmzezdetWoqOjadWqFQ4ODvj4+KieV7Isq3/XqVOHlStXmtWGYaSAmJgYzp49S58+fay5ZKuIjIwEoGHDhoVOXWAux44do169elSqVKnQdSnCuU6nY9++ffTq1cuscobeczNnzuTUqVMAtGrVin379nH06NE8yz18+JBWrVrx9ddfEx4ejizLTJo0qdDXYcjSpUvVus3hn3/+KfS93Lp1qzoXgezr9PT0BLI3NxmG9Tb0UCxTpgyjR482mV6iODGcb0DuMUGZbyjvh6J+3546dYqvv/46T3sAnnvuOXXjV360a9eOkydPmjynUqVK3L17lx9++IHatWuzYcMGnnnmGcB0lCNDsXPWrFlotVokSeLYsWOEhobSv39/Xn75ZXMuNV+sHd+Liz/++IPGjRsD8MQTTzBnzhxatmxp0zasHd9zipY+Pj6cPHmSNm3asHPnTnbt2qW+J1xdXXnttddo0KCBen5gYCChoaEcO3aMqVOnsmDBgjzbUTa06PV69uzZQ8uWLfH397fwKq1n5MiRRiKu8o6RZZnq1auzYMEC6tSpU2A9pvrzxo0bGThwYKH7s72gCMgnTpzg2Weftcl4ai579uyhU6dOJtMGAUah8fOidu3aJCYmMnXqVOrWrcvw4cPVsUSj0bBmzRqGDx/OlStXCAoK4rPPPitUisOC7PHy8uLBgwccPXqUo0eP4uLioqap0Ov1Rm0bjs85PfAbN27MuHHjCrw/AoFAIBAIBAKB4PHEKgFfluUUYI/B/98GbtvKKBPtPizqNvLDw8OD7777jq1btzJmzBiWLFlC06ZNcXd3LymTBI8Zq1evVhfMfXx8+O677zh8+LDROd7e3vTv35+wsDCuXbtmcxuUnPf9+/cnISGBvXv3AtkLJx06dOCbb74xWf7u3btcuHDBZFjpd955xygtQE527txZ6gX8W7du0aVLFy5dukTdunWN8pLaI+3atePOnTtIklSoFAaGoeIvXbpEly5duHXrFlWqVLHKHnM5e/YskyZN4vLlywWe26tXL5P2HDhwgO7duwOWi/cKlSpVYvHixUyYMMGiiC7KBojY2Fi1/9iDEBYTE0P37t35448/aNKkiVllFCF62LBhxMbGMmXKFLy8vGjQoAGvvvoqQ4cOLVZBX6PR4OrqyqxZs8jIyMDJyYnjx4/z4MEDq/r84MGDee+992jUqBGJiYlkZWURGxub57n37t1j+vTpbNu2rcB6lUgBkC3udejQwWLbCoOvry+SJKmCZnFEjWjWrJmRIFwYJEnCycmJP//8k9atW3Pnzh0qVqxYYDnD0Pe//vqr+rmh2GoOR44csamAr0QCgGxBbtWqVbz11lsmyyxYsIAVK1ZY3eZvv/1GSEiIVWUTEhJYtGgR27dvt7p9W2LufEMZ+4py0+62bduYMmVKgef9+OOPLF68OM9jN2/e5Ntvvy2wjgcPHrBnzx569epFZmYmc+fOZf/+/Sa/zxcuXFDfPePGjVPFqa5du/LTTz/x4MEDJk6cWGjB03B8Nyd1QXFj+C6PjY1l4sSJRERE2Kx+w/mhJeN7fHw8ycnJaDQadbMR/CviP/vss6qIGBISwj///IOrq6tRHfXr11dF/IULFwLkKeI7OjoSHBxMSEgIqampaLVa9u7dWyzzkVu3bnHw4MF8Pazj4uJYvHgx69atM1lPcfVne0HpDy1atCA+Pr5I29Lr9WRkZODo6MiJEycIDg7mwoULahqH/Jg/f77J45UrV2bmzJlMmjSJP//8k2XLlrFp0yb1eE4Rf/jw4Xz22WdWvzsKsqdRo0YEBASo35G0tDTS0tIsbufo0aPUq1evWDdjCgQCgUAgEAgEgtKDtR74SJJUBqhFdk56AGRZNu3y8QjQqlUrJEmiUqVKuRY+BIKiZObMmcTFxbFv3z4SExNp0KAB1apVIygoSO2LUVFRhIWFAdnioq1p3749x44dIywsjMDAQMaMGcO5c+f49ddfCxTvAdq0aVNgTuisrCy0Wi0bNmwAshea//77bz744AMg22OmtKMIxF5eXqqgXRhhvKjx8vLKM0S0pRiKfoVZ6DXXnsjISIYMGaIK97Vr12b48OFUqFAByO5bkiQxevRodDodPXv2pFy5ckbe0YbYQrwH+Oabb9ToGCNGjDC7nLIB4oknnsDFxUW9jpJG8ZRUhFBFnPfy8sp34VQRoqtUqUJsbCw1a9bk1q1bREREEBERwfjx4/Hw8KBGjRpEREQUm2fSunXrGDhwIBkZGezatYtOnTpZXMfDhw+ZMmWKGjpfo9HQvHlzAgIC1HMUgSUrKwtvb2/efvtts+o2/A6Z42Foa5QoHECxzIFkWcbZ2Zlq1arZtN66detadL4ifjg6OrJt2zajcOH5bQKQZVn1dlfeJ35+ftYbnQNFvPfw8KB169YcOXKE4cOHF1hu2bJlhWr34cPsvbQNGzZk4MCBQPY9OHToEFFRUWg0Gvr164csyzg4OPDw4UO8vb2B7MhBvXv3LlT7tsRe5huKeO/g4MCcOXOoWrWqao8y1iUlJTFlyhR1jpeXiK/Y7eLiYlJIcnBwUKNPVKlShbCwsALnIPXq1aN69er89ddfLFiwgBkzZuDt7c2qVat48OABGo3G4g0teWE4vhumLrAX79Ty5cvTq1cvHB0dcXd358033yx0nXq9nrS0NJydndX5oaXjuxICX6/Xs3v3bgYMGKAeO378uNG5a9euVecyOTEl4uv1eubOncuiRYtU4b5GjRpcu3aNPn36sGfPniIX8atUqUJ4eLhR5AzFix6yn88bb7xRYD3F1Z/tBWXzmpOTk03m86ZISUlRN7wpm8l//vnnAsstX76c4ODgfI9funSJoUOHAtCjRw9ef/31XOfkJeKvWbPGiqso2J6IiAh1w5S7uztt27albNmyANy/f18d9/JD2ZhUo0YNNX2DQCAQCAQCgUAgEOTEKgFfkqS3gbHAU8A5oAXZeeptrxjaCZmZmfj5+eHh4UFsbCx169a1G28QwePDRx99xPz585kyZQr79+8nOjqaGTNmUK1aNdq0acPmzZuBwomLplDqVMKlBgYG0rNnT7p37050dDSrVq0yWd4czzDIDlOr5HD99ttvGTt2LACLFi1SBYNHgeL0YrUHCuvBnxPDkPyGREZG8vbbb6sCau3atVm0aFEu7/CrV6/Su3dvdDodAwYM4P333893Q4WheD9lyhTKly9vlc3nz5/nk08+AbLFe3M8LhVKS39RxHlTootyDf369ePXX3+ld+/eTJs2jRs3brBr1y527NjBxYsX+e233/Dx8eHgwYPF4gnXuXNntm/fzsCBA1m+fDk3b940e5NFXsJ93759WbZsGWlpabi7u6uid1JSEh4eHkYh8c1BiRTwuGDo+e7k5FRidijiB2RHZGrevLl67Pr163kK8xkZGeoxW9uuiPdeXl5s3rwZLy8vhgwZwrZt29i/f7/JsoUJKWxY3s/Pj+effx6AWbNmERUVhaenJ1u2bMHT01PdpBIdHZ3r1W7XXAAAIABJREFU/himJChpSnq+YSje7927l+eee049FhcXR7ly5dT/b9WqFW3atFFF/JyRDPbt24dWq+XIkSO0bt063zaVzWuTJk0yK22MwqhRo1i1ahV//fUX8+bN48knn+TmzZtoNBpmzJhhcTSdgiiu1AWWUKlSJd59912bRk5KSUkp1GbO+Ph4fv75ZzQaDQ0aNCA4OJi+ff+fvfOOj6J4//h7L72QRIo0Q2gCJqIUFemCBelIUeAnUsSCgEoXDYZgQBEEaSodFASkioqgiIAUxS9FQ4IggQCCICSGcCmX3N3+/jh2vUvuLrmWXGDer1deSbbMzO7OzszOZ57n6aXuT0hIAODLL7+kV69e/PLLL1y5coWRI0daTS8mJoavvvqKrl278t577yHLMkFBQcyYMYOsrCx8fHzo3bs3CQkJBAcHs2bNGiZMmKCK+J4OfxAdHW2xGLjge1JcSro+3y4EBwcTEBDgcPteVN90+fJlunbtSv/+/e16zrEm4p88edLheZuiyqPX6wkNDWX8+PGF2ltb4wKFvLw8dexXmmMbgUAgEAgEAoFA4P04q0C/BjwInJNluR3QGLhq/5SyTV5eHq1ateL06dMA3H333aVcIsHtiE6nIy8vjxkzZnDmzBmaNGmCJEmcO3fOKfF+06ZNVKxYkVq1amEwGIp1TufOnVXr/mXLljFp0iTmzJnD0aNHnbsoOxw7dozBgwej1+tvOfEe/hO0vdl9vjejWOcpAp/BYCAqKooWLVqQnJxMTEwMmzdvZufOnYXE+4yMDHr06EFGRgZ9+/bl/fffJyAggKCgoEJiakHx3lZc2KJISkpyWryHslNfAgICCAkJsSu6KEK0YkH1/fffA1CjRg06duzIpUuXqFu3Ls2bN8dgMPDkk0+qFoaeRhHxweRCe/HixXaP12q1DB8+nG7dupGcnIwkSbRt25Zz586xaNEigoODCQkJsSrSK/dBLAi0jp+fn00hwGAwUKtWLSpWrKiGc/Em/Pz88PHxcbtIPXTo0ELiPZg8YIwaNcqteVmjYPszY8YM9u7dq4r3YWFh6oIHW22VsjAjPz/f4+UtLqUx3li8eLFN8d4aijv0iIgI1q5dywsvvKDuO3/+PJcvX+a+++6jVatWdtPx9/fnyJEjDon3CiNGjKBWrVoYjUYLsbMoa1NnKInQBc7g7n44ODjY6tijuCh9Y7du3Rg1ahQXLlxg48aNAGzevJmrV6/SokULGjduzIEDB/D19SU1NZUFCxbYTLNLly589dVXgGkxy+TJk8nNzWXgwIEkJSUxa9YstY/v168f06dPR6/X07NnT3799VenrqM0KMn6fLug0Wjstv/O8tBDDzFq1Khihb1RRPy6dety+vRpmjZtajPsgrNER0fz1Vdf2V0sZQt7YxuBQCAQCAQCgUAgMMdZF/q5siznSpKEJEkBsiz/IUlSyftydTPVqlVT3Y/q9XpmzJhBgwYNaN26NfPmzaNNmzaqK7h69eq5bMUkEBRFQSsWo9FIdnY2wcHBaDQaDh8+jMFg4LnnnuPbb79l+PDhvPPOO4ApLvX58+fVFf7mEykTJkxgy5YtqsVPWloa4eHhxMXF4ePjo7r3LoiyffTo0cTHxzNr1iwyMzPJzs7mr7/+Uo/z9fXFaDRiNBpp06ZNsS3vzTl27Bg9e/ZEr9ezePHiYruYNufChQt299uyErJ136BoSx97lkeetkpyJ54oqytpWjtXeR8WLVqEwWAgPj5ejWmq0WgICwsjKSnJqnjfpk0brl+/zvPPP28znvOsWbNISkpi2bJlgGlxTKVKlZg1axZBQUF06dLF6nnW6sjOnTvVdJxdBOBt9cfZGPXm50VERBAeHs6pU6eIiIiweN9u3LihLpoDWL58Od999x0///yzVct+d5RHoW/fvoSGhtK1a1c+//xzKleuzNtvv21xTK1atejXrx8HDx4ETHWub9++rFixAp1Op7bTxc1TIT09nb///puAgACr5zt7nc5S0vmBKQ62LayJAkrs2OjoaLuilL10d+/e7XSZbOGKW1xr5VEs70NCQizEe3Pmz5/PRx99pHqCiImJ4bfffvPImFUpT7ly5UhNTVXdBxeF+VjGGyjOeOPChQs2xxSyLFO+fHmb77y18+xZ3ttDEfFbt27NkiVL0Gq1vP/++7z11lsAPP3001y4cAFZltm3bx+PP/646k5fkiTeffddJkyYUKy8CmI+BnzhhRcwGo1MmTLFZUtle32bvfte1LmewN/f3+15ajQapxeGL1++nCNHjiBJEi1atODatWtERkaq7u9nzZqFJEmsWbOGyMhIIiMjVevgM2fO8MUXX7B+/fpC6SqhNoYMGcLKlSsxGAyEhYWRnZ3N999/T/fu3S2OVxa8TJgwgRYtWqju9M09JUmS5PS988TY2lP12dsoqt+z1/c50++5gizLgGmB3v3336+Gq4mOjmbAgAEOpWVuiX/s2DHq16/PwoULC7XRqampVKtWDT8/v0Ljix9//JFHHnkEg8HAkCFD+PXXX5k6dWqphYKx96xu3jvvWu0kEAgEAoFAIBAIXMbZQf5fkiRFAFuA7yVJ+hK45L5ilT5nzpwhNzeXmJgYzp07B0Dr1q1VMaFOnTqlWTzBbYpGoyE0NNRi8sHHx4fVq1eTnp6uivcKBS2Uv/32Wxo2bMiaNWvIyckhKCiIgQMHEhISQlZWFvHx8cW2xI+Li+P69evo9Xq2bt3KwIEDiYmJISwsTBXv27Zt65R4n5OTo06mT58+3Snx3hUK3jd7yLKsTjgJShblfTAX70NCQnjzzTdp1qwZhw4dIi4ujjfffJOLFy8C/4n3iuW9LfEeKCTeuxLzXrGQe+WVV5y24L9VadSoEdnZ2WzatMnucRqNhosXL1KzZk1++OEHj5erS5cuqiX+7NmzmTJlCmCKbfrEE09Qs2ZNDh48iEaj4dlnnyUvL4/Vq1fj5+dXqJ12BCUEQXHaH4ElycnJdO3alZ9++qm0i+J2zN3mv/fee4XE+6SkJAYNGsSIESNITk4mOjqaAwcOcPz4cY+I97t27VLF+1WrVhVbvAfrY5nSwh3jDZ1Opy5mLA7m4v2KFSuKLd4rREREsGXLFtUSf/z48Wzfvh2NRkOfPn1YtWoVjRs3pm3btqp4HxUVxbVr15wW7wuyePFili5desuJnWUNZYzSuHFjfHx8kCSJDh06kJ6ezsaNG7l8+TLt2rWjRo0a6jnVq1dXLfF/+eUX+vTpYzP9mJgY9b0IDQ1l/fr1TJ48mTVr1hTyoNGvXz8mTZqkWuIfO3bMofF0aSLqs3fh4+PD8ePHOXDgANHR0SQnJzNixAgGDRqkivrFoaAl/ksvvVTIEt9gMBTpEcbHx4eVK1eSnJxcauJ9Udwsv0VnL0nSi5Ik/U+SpP9dvXpLO8sU3CQqKoqbRlaFfuyFdRAIBAKBQCAQeC9OWeDLsqx8uUyWJOlHIAzY7rZSlRJ6vZ5r164BJmucwMBAateuzVdffUVwcDD169fnzz//JDIy8raKQSsouyjuOPfs2cPYsWO5fv06AEFBQTzzzDM0bNgQME3QKQJofHw8o0ePLvaEv4+PD127dlVdjLtKTk4Oer0ecG8M2osXLxZ7Ys481vj169c5cuSIuu/GjRuUK1dO/f/uu+/mrrvucksZBY5TULxXvEj07t2bRx99lD179rBu3TrWrVtHjx492LFjB5mZmarbfFt8/fXXxRbvjx07xh9//KH+r8Q3B5Nlz0cffQQ45zb/dqBHjx7s2bOnyHf93nvvJSwsjH379tG7d2/69+9v19raHSju9Pv168fs2bNZunQpmZmZgGliuH///qxYscKtAql5+5ORkQGUjhW8N1LUAjNfX1+0Wi1vv/02oaGhTJgwoUh34ta4cuVKsdz0lhQFY96np6er+44cOcKcOXM4f/48YJq8XbNmDc2bN/domTIzMy3c5pdFXBlvmI8pAgICCAsLK5ZHgYKW9+bjh8zMTItwRJmZmTbvbWZmJtOmTWPkyJGsXbtW3V6vXj1VoKpSpQpPPfUUb7755i0xTlHGsMK9uYn09HTOnTuHJEn07dtX3d6gQQMiIyM5dOgQYLLSL0iVKlXYv38/LVu2VEV8a5b4YPLccM8999CgQQP++OMPvv/+eyZMmMD8+fMZMWIEvXv3Vl2B9+zZU217e/bsyaZNm2jQoIHT4QEEJYdWqwWw6uGotGjevDlJSUkcPHiQfv36ce7cOUaMGEFUVBTjx48nOjra6nnp6enqojJzS/zTp0/z/PPP8/LLL6vHXrlyhcuXL+Pj44Ovry+NGjXC19dZJ5Ulh1arZd26dQU3WwySZFleBCwCeOCBB8Rq89uA1NRUm/u8PQSbQCAQCAQCgcA6Tn2dSJL0APAWEHUzDQmYCtznvqKVPP/88w/z5s1T/2/UqBGSJHHmzBl1NWtKSoqwvheUGZT4oUqcVD8/P+bOnUtaWprFIhQfHx/i4uJ44403yMrKYvTo0cyZM6fEyyvLssfE+507d1K/fn0efvjhIo9X7hvAY489xpUrV2we6+fnR0pKilvKKXCczp07k5WVRXBwsCreK9xxxx3069eP999/n1mzZqmT002aNLEr3gM888wzgGlxiy3xfvv27YwbN04VFezxyiuvMGHCBHJzczEajV5heeotDBo0iFGjRpGXl2f3uOzsbPbs2cOUKVOYPXs2n3/+Oa+++ir163sugo9Wq+Xo0aNERESQkZFBZmYmGo2GXr168fHHH9sNp+EsGo1GbZ+/+eYbAP7v//7P7fmURYqK8d6yZUtatGjBu+++i1arZdKkSfz4448O5XHlyhUOHjxIrVq1HLaM9gRXrlxh27ZtAKrbfEXA12q1jBkzBjD1W9OnT+fBBx/0qHiviNT+/v5lWrwH09hHr9fz3nvvOTTe+Pnnnzl58iSPPfYY1atXR5KkYoteb731FhqNRnWbn5aWBli68XeFChUq8OSTTzJt2rRbQrQ357vvvgOwazF+OzF27FgAwsLCLMY+kiRhMBiQZZn777/fwvrenKpVq3LgwAFatGhRpIivpHvPPffQuHFjQkNDmTJlChMmTCA/P5/nnntOPa5fv36kpKSwaNEihg8fzv79+910xQJPIMsy+fn5queajh07ui3t2rVrA6Y5FVdo3rw5K1asICkpiXfffZdz584xatQoduzYYXGc0Wjk5Zdf5s8//yQ2NpZHH30U+E/EHzRoEKmpqXYX07Zs2ZKEhASXylsSjBo1yiLM1E2M1o4VCAQCgUAgEAgEZRdnlxevBsYBidxCHwoRERHqh54kSdSuXZtTp06RmZlJp06dAFMsRldimgoEpUVgYCC5ublMmzaNpk2b0qJFC4sJv48//lgVFidOnFgqZTR3seku8R5M7kIbN27Mvffe6/C5ikvcgQMHAqgCrDLJqcReFpQ8Wq2WnTt3AqZ45LasoCtUqMDff/+tuhA8cuSIalVti9dff51p06aRlJSkuqNWSExMZN26deTk5AAma0DFmwWY3Fgq1mgAvXr1olevXuTm5pKTk0N2drZXWTiVNhEREcUKtxEUFMTMmTOZPXs2YPJ+4QnxXqvVMnPmTFatWmV1cc7ly5fR6/UlYslS0vFnvZ0333zTYqFlQY4cOaLWI0mS6NKli8N5VK5cmXvuucfpmNTuplKlSgQGBpKXl4e/v7/Fvo0bNwKma5VlmfHjxxMTE8P+/fs9ZqXcsGFDduzYgdFoVBe6lVV+/fVXsrOzHXL/D/DQQw8RHBzslLttg8HAvffea7E4xFy87969u/rscnNzbd5j8325ubmcP3+eOXPmULVqVYBbTrwHnPKmcSszbdo0Vq5cyfXr11mwYAHDhw8HYMGCBVy6dAmNRmNXkAeTJb4jIj6Y2pvw8HCuXLlCzZo1eeKJJyz2Hzt2TPVgNHLkSBeuUFAS5Ofno9PpuO+++wr1Ma7Srl07WrZsCfy3UMB8fOwokZGRqhekxx9/3GKf0WhUrewBPvroI3VeB0wifmRkJBcuXCA4OJjHHnsMjUajelb7+uuv0ev1ZWaeZ8GCBQwbNox///1X3Wb+t0AgEAgEAoFAILg1cFbAvyrL8la3lsQLCA4O5r77LJ0I/Pzzz0RERFC/fn0MBgN///33LTkpJrj1qVu3LmPHjmX27Nls2bKFvXv38uijj/Lggw/y8ccfc/bsWTQaDbGxsVSpUqVUyuhJF5sF321HKFeuHO+88w4AKSkpavzDPn36FGnJLfAcw4cPx2AwULduXZKSkvjrr78Ktc95eXkMGTKE/fv3M3PmTOrVq8dTTz2lxgEeP3681bSnTp3Kzz//zK5du1i6dCnPP/88BoOhkHA/bdo0unTpYiHmpqWlWbXMVup3cdws327s3r2bNm3a2I1d/ueffzJ16lTA9OzdbSFlMBioU6cO586dU7fVqlWLPn36MHLkSLp27cqxY8fQ6/VkZWW5NW9biHi8lhTVN924cQNJkmjfvj0TJ07Ex8fHKdHAfGGIcn5pec7QaDQ8/fTTfPrpp3z44Yeq5aBWq2XDhg20bNmS+Ph43n33XXbt2kVSUhIRERE0b96cb7/91iNCvrtFntIiPDycwMBAh8ceGo3GoTGFLMvodDo1H/P+4vjx4wwePBi9Xs+7775r4W3DVl9ibZ+ShyzLt6ybXGVxgsBElSpViI2NJSEhgTNnzqghZc6cOYNGo+GNN94oltc4ayL+008/bfP4s2fPMn78eCpWrMi6dess2mXz+jx9+nQL1/4C70TpG6tVq+aRtkPpL/Ly8iwWajtKZmYmzz77LDdu3KBTp06qBwqwFO/r1KlDuXLlOHbsGD/88IMq4p86dYoDBw7QuHFjjh49Sr169ejcuTOpqakEBgayZcsWypcvbyH6ezP+/v4sXbrUYltZWXwgEAgEAoFAIBAIio+zM5FxkiQtkSSpnyRJPZUft5bMC7h8+TKpqak8+OCDaDQa/vnnH/R6vZhQF5RJFFFj69atDBgwgJCQENavX8/48eNV8X7s2LGEhISUahk9iSzL5ObmIsvOhQHMyMige/fuZGRk0KdPH2JjY12ajBI4j1ar5fPPPyckJITnnnuOoKAg1b2uQn5+Pp988okq3vfp04f777+fzZs34+vry4QJE1iyZInNPDp37kz79u0BWLp0KStWrCAnJ4egoCBefPFFfv31V1q1alXsOqCEZhDu862zd+9eu/tzc3Px8/Pju+++U8V7o9FITk6OGvPZWQwGA1WqVFHF+zvuuINvv/2WI0eOMHHiRAuPCQEBAYSEhIiYvl7InXfeyXfffUdsbKzqkUOxLszPz3cqTeV8xRtLaTBw4EACAwPZuXMnubm5gMn6XqvVMnDgQHx8fIiNjeX777/n0UcfRaPRcPDgQSIiIujevXupldvbUdpkT489dDodOTk5hfqKY8eO2RTv3ZVHabBt2zbuvvtuNm/e7LY0XR2/3aqEh4cTGxuLRqPhzJkzqngfGxtLhQoVij3eUER8X19ffvnlF3UxQEHOnTvHvHnzVPHefFGFeX12ZxgsgWeRJAl/f3+Pt4N+fn4EBAQ4ZYGfnp5uId6PGzdO3Wc0GomPj+f06dPUqlWL+fPnq4t0P/roI/W4lStXqqEfGjRowKpVq9SQJcpi7FdeecWVSxQIBAKBQCAQCAQCt+OsBf5goAHgx38u9GVgkzsKVVoYDAa0Wq36//79+/H19aV+/fpotVouXrwIlJxFnMFgsLvflrtogQBQ46oq6PV6dVu1atWoVKkSf/31F7Is4+fnx8SJEwkJCcHX13azcOHCBbt5RkZGuqWsBbfZSreo8hREmeAG7Lr+Nc9bmSxOSUmhe/fuZGZm0rdvX6ZPn25hUXc74al64Eieo0aNQq/X8+qrr5Kfn0/z5s3ZtWsXKSkpVKtWjfz8fFatWsWZM2eYPHky7du3V5/rXXfdxYoVKxg4cCAvvPAC6enpNieaO3fuDMAvv/yC0WikV69eNG7cmKCgIPXZ3451oDTw9/fn3LlzFu+uTqdz2Rr+1VdfZfHixapL6k6dOvHDDz/QsWNH2rRpw+LFiwkODlb7ZEXIdcb1treSkZFhd39EREQJlcQ17rnnnkKLORSxwFm3vcp5pek5o6AVfvny5Vm/fj0VKlRg9erVhY43vwdbt261EGa8SQDdvXu33f23SggJrVaLXq9X2xC9Xs+ePXvcJt4DDvVHnujDZ82aBUBSUpLqPr1nz54EBQXxzDPPMGXKFJfyLO74zVvx5LhJEfHfe+89AN544w3Cw8PJycmxma817w7mlvhnzpxh3rx5DB061OIaVqxYQbly5fjkk0/w9/dXx1Xmlvfvvfee14j3pTFevVVITU2120Y72j4rCwXsYS0/c8v7Nm3a0KdPH1JTU4H/xPvz589Tp04d5s+fT0BAAFWqVKFRo0aqFf62bds4cuQINWvWZObMmfj6+nL58mWGDx9Ow4YNOXr0aJmyvhcIBAKBQCAQCAS3D84K+PfLstyw6MNKB0mSJNmJGcqKFSsyePBgwDSZPW/ePJ566il1NfbJkyeBWzOupODWo+DEnK+vL4GBgcTGxrJlyxYMBgMhISGMGzeOSZMmlapVsDUXsbbcxjpCwYk5o9FIdnY2wcHBdq/XPG9JkjAYDDz11FOqeL9mzRqXyyZwHq1Wy5YtWwgODubVV1/l33//5emnn6Zly5acPn2a119/nSFDhqjivdKum9OmTRtWrlzJoEGDVEudghPOo0ePVn8Xt+6AmBB2BaXrLuhOf8yYMcycObPQ8WFhYepzcQaDwWAh3r/wwgv4+Pjw7LPPsn//fvbu3UuHDh2YP3++umjO3BrfE5QVsby0sDW8c+QdtYa3icUFy9OmTRs2bNjADz/8oFoNpqWlsWfPnlIpT1nF2fbZlXa9YsWKFv9fv37dQrxXwiI4kqc39jPm4v29995LSkoKOTk5rFixgs2bNzNjxgyefPJJh9JUrtPV9/tWRRmnAMTHx1vssydeV6hQwWodioyMJDU1lZo1a5KamspXX33F+vXrOXLkCO+99x5Vq1blk08+ITo6Wj2noOW9rdBEAu/DXrte1AIrZ9N1hILivXkdV9zmnz9/nrp163Ly5EmLtmHLli3UqlWLJUuWcPnyZcC0KEER/8HkVv/UqVMAzJ8/3+v7OW8vn0AgEAgEAoFAIHA/zs6A/CxJUnTRh5UskiRVcldaGzduJDc318IipqQt8AUCVyjobjQxMZF7772XjRs34u/vz+TJk8nMzCQuLu62mQzVaDSEhoY6dL0Gg4Hs7GwyMjLo27eviHlvRmm5tJ00aRIGg4GXX35ZfZbh4eEMHTqU7777jmbNmqlu87t162YznZiYGAt3+vYWZjhTdwTOs3fvXoYOHUr37t05ePCgVfEeXHsuitv8guI9mKyuH3nkEYYMGQJAly5d+Ouvv5y/IIHHudXfUY1Gw7hx41Tx/lZDlmXy8vK8ykOAp7h06ZIq3vfq1cvlECDegLl43759ewYPHkxCQgKDBg0iKCiI69ev8+KLL9KwYUO2b9/ucPq3+vvtTVSvXt3CnX779u159tlnVbf5lStXVo89duwYPXv29DrLe0HZp2DMe/PFuOYx7+vWrcvChQsLtQ1RUVE88sgjqnhvjypVqoi6KxAIBAKBQCAQCLwSZ2dBWgHHJEk6KUnS75IkJUqS9Ls7C+YokiR1AT6XJGkt0PrmNoeCuZ04cYIHHniABx54gA8//JBmzZpRr149df+lS5eQJIlKldy2TkAg8BjW4qH6+/szatQoTpw44bJwP3bsWOrUqeM1otaxY8d4/fXXuXLlilvTVdxlC/G+MDqdjrlz5/Lhhx+WaL5fffUVYHJ9bo4yuffvv/+qMe8VjEYj3bt3p0aNGupP48aN6dq1qyqITZgwwe31R+A8ixcvZsuWLTz88MMeSb9169Zcu3YNf39/C/HenFq1arFv3z66du3KtWvXPFIOb2PkyJFs3boVML03OTk5t4TAeCvw9ttvOx0KQKEoV+alxY8//siMGTPIz88v7aKUCIp4n5OTo44zSgrzxXfjxo3j22+/dTnN5cuXA9CuXTs19AxAw4YNSUhIYNGiRZQrV04V8mfPnu1ynmUJ83v+xRdfUKdOHc6dO1di+X/77bcWccOLQnGn7+vry+nTp9FqtaSmptKsWTMaN26sjqO6deuGXq8nLi6Onj17evAKXGf+/PnMnz+/tItRJtm7d2+JfgMVFO8LxrwvSrxXUNqlolBCgAgEAoFAIBAIBAKBt+GsC33H/B96GEmSmgEfAIOADsDLwN7iuNGXJOlF4EWAkJAQevfurWznqaeesjg2KioKWZZJSUmxEPYFAmuY160aNWqUeP7m8VB37drF77//To8ePdxivTRu3Di++OILAP7880+3hpX48ccfnTqvXr16tGjRgvLly5Obm+v2uOTeJnqUdv0CU9164oknXBaUHCUmJoajR4/SuXNnvvnmG3V7eHg4f/75J2lpaVSrVk3dbjQa6dSpE8nJydx5552q9Zher8fX19QNZmVlcdddd7kldENZxxvqVknQtWtXDh48SF5eHufOnaN27dpWjxs+fLi6aKRevXrk5OQQEBBwy1qCdu7cmRYtWgCmRTpZWVlkZ2e7JXTA7VK3PIVGo6FPnz58/vnnTqfx+OOPu7FE7uPBBx/Ez8/P6f6krNStXbt2cePGDRo3bqx6G3A2BIizmMeT79ChAw899JDLaZYrV47MzEwOHTpEx44dLRZE5eTkqIugFRSvZmUBd9Qt83s+Z84c8vPzWb9+PWPHjnVbOe3RsmVLh98tRcRfuHAh+/fvx9fXF1mWMRqN6thJkiReeOEFOnTo4PZxt7tp3759aRfBKmWh7WrSpEmJjfWvX7/OgAEDXBbvwTR389hjj7Fz5067eQrre4FAIBC83QS6AAAgAElEQVQIBAKBQOCtOCXgy7JcciYDxaMx8L0sywclSfoLWCxJ0nTgIHBIluVLtk6UZXkRsAjg3nvvlZVYyNZQ4o7t3r1bCPiCIjGvWw888ECJ+4SVJInAwEAA6tatS926dd2S7rhx41i3bp1b0rJGnTp11L9lWUan02E0GosUy4KDg3n66afJzc1VJ0ndibdNTJZ2/QJTHWvUqFGJ57t582Y6depEUlISnTt35tNPP1X3BQQE2BTvo6Oj2bZtm1qX0tLSqFChglrPAgICcNBxyy2JN9StkmDixIlkZGTw/vvvs3XrVrp162Yh4l+5coWPPvqIvLw8JEkiNjaWYcOGkZWVBUBQUFBpFd2jmMeoVto9dwmMt0vd8iSffvqpSwJ+w4YN3Vga91GuXDlat27t9PllpW6Zj8WUcVpJLwYyX+D52GOPuSXN2NhY4uPjycrKIj4+nri4OPLy8ti3bx979uwhJyeHJ554gtatWzNp0iR1fFoWcEfdMr/nyhi1JMNFlCtXjlatWiHLskPjnCpVqhAXFwegjq91Oh1VqlTxVFE9RnS010X/A8pG2xUaGkrz5s2RZZn8/HyPifmZmZluE+8Vvv/+ezG2LyVq1qzplKeRqKgoj+TnbLq3C84+L4FAIBAIBAKBZ3FoxkiSpCPuOMYDHAJaSZI0EziKSbhPA9py01uAo+70rXH33XdTtWpVdu/e7WpSTmE0GsnKyhKubAWlhiLeR0REWLgnB9NEpFardWv9VCyWHHEvGxAQQFBQkNsFdzH54z1oNBq2bdtGdHQ0SUlJ9O/f32q9MxqN9O/f36p4b461cBOC24Pp06fTtGlTALZu3cqZM2cA+Oabb1izZg15eXlERkZy+vRpRo8eTUBAACEhIV63oMdTaDQagoKCbllvA2URa6EeHKGkrb0F3oeycMCd4xofHx/i4uIICQkhKyuL8ePHk5CQwPbt26lduzbbtm1jyZIl1KxZ0215liU8cc8dwR3jHGV8rVjflxXMwxcIXCM/Px+dTueRUCfp6el23ebHx8dz+vRp6tSpw7x588R3WRng3LlzyLLs8E9qaqpH8nM23dsFe/dPIBAIBAKBQFB6OPoFfk8Rse4lINyF8jhLEjAMaALskGU5HkCSpKHAI8Cy4rjTNxqNNic2FJeBbdq0Yffu3ej1eosPR1cnVItDTk4OWq0WMLn7t4XBYLCbTkmUVeAeLly4YHd/ZGRkieWpiPfh4eFs3ryZTz75BIAbN26QlpZGfn6+OqnnDlfL4Jz1p7nnAWdJS0uzu80T9/12wJ31WRHxFev6Dh068Pnnn6tCoyLenzx50q54D5aWccXF3rUolv22EPXHu2jdujWyLHPkyBG2bt2KJEnqZNXjjz+uhguB/wRtQO2PbREREeFUeTIyMmzu02q1dttXZ/O0h6eu0xPYW2CZmppqVzxUvCy5M09X0vUUYjGGZ3C2T7A23jCnpPsLV8qjiPhTpkxBq9WSm5tLdHQ0zz77LFWrViUtLY3MzEzAZM19O42rzK9VWXCYk5Ojbrd3/e4YOzkzzimIMr5WvNB4C0W9eyEhIarXA3d5fiiN7zNvQLG8v3Tpkt2+z16/Z+0885j3bdq0oU+fPqrYqoj358+fp27dusybN4/8/Hw0Gg3+/v4uXE3pUdbGDQKBQCAQCAQCgaD0cFTAb1CMY+yrxy4iSZIky7Ks/AaQZVkHHJQkKRFoKUlSe1mWdwFaIFiSpBBZloucbQgMDOTuu++2uk+ZbGnbti3r1q3j9OnTNo91FwWF9tDQUDQaDcHBwWICVlAk7pw8Mhfvf/rpJyIiItRJsHLlyqluyMPCwpyy7nO2rJ6aILM20S5io/9HaUxM2sozMTGRhg0bkpyczHPPPcc333wDQKdOnVTxPjEx0WqbeatOsAocY/bs2RiNRsaOHcvs2bORZZmoqCiOHDlC+fLlS7t4JYI3ifCCovnxxx9555132LVrFzExMcyfPx+Azz77jM8++0y1jqxVqxZbt24lOjqa7Oxsr7O+v11EigoVKnhVf+OJsowePVr9e8yYMcTHx/PBBx+QnJzMpEmTOHz4MAkJCYSFhQGmb67baVxlfq3KeCQoKMij98CV52zvXG+qy0VRoUIFqlevrrZ/4vu5+DgqwjtLQfE+Pj5e3ae4zVfE+5MnTwI4/DzN7TguXLhQpuqwQCAQCAQCgUAguL1x6CtWluVzxfj5y1OFvYky0+EL/7nGv/k7H/gdGClJ0iogDogvjnhfXNq2bQvAnj173JVksdFoNKqILxCUFOZu87ds2WJT6JEkSdRPQYlT0J1+p06dbMa8FwhsodFomDVrFhkZGSQnJ5OamnrbiPeCssmbb76JJEkkJSWxZMkSnnjiCZYtW0Z+fj61atUiMTGRM2fOcO+994rxo6BE0Wg0xMfHk5mZyeTJkwkICGDDhg3ExMTwwQcflHbxBLcZov3zXszF+06dOjF48GB1n62Y964+TyHeCwQCgUAgEAgEgrJEmfqSlSSpI7BWkqRlwChJku4wd41/0xL/c2AmcADoLMtyojvLUK9ePapUqVIqAr7g9ubs2bMMGzaM69evl1ies2bNYt26dQDk5eXRtWtXYmJiiImJYeXKlSVWDsGtx9q1a2nevDmzZs2yGr/eEcxF/OTk5BIX7zt37qy+FzExMbRu3Vr9u2bNmrz22mseL4PAPYSHh3PPPfc4fN6SJUuoXr06J06ccGt5XnzxRSpUqEBUVBRRUVFER0erf0dFRZWoBbPBYKBJkya0adOmxPJ0hXXr1tG1a1e6dOlCly5deOWVV9S/u3TpQu/evfnjjz/cmufatWtZu3atW9O0hY+PD+3atQNg9erV5OfnU7VqVZYtW6YK94KS5/r16wwbNoyzZ886dJ4S9qV///4u94nuYuHChSxcuNDp8zUaDXFxcWRmZjJq1Cj8/f05duwYgEdiaJcVFKt7Z9y5jx07ln379rm7SLcMXbp04e233y6x/K5fv07Lli05ePBgieXpbVy4cIHJkycXGW6nIAaDgT59+liNeQ/w+uuvFxLvbzW0Wi2TJ08uMiSDQCAQCAQCgUAguH1x1IV+qSFJ0hPAh8ALQBWgJXAPcMDcnT6QK8vyfmC/h8pBYGAgOTk5GI3GW/JjUuCdBAYG0qxZM8DkClCn03m8DtarV4/w8HDy8/Px8fGxcEFYrlw5goODadKkicfy9wY+/PDD0i7CLcfnn3/OG2+8AZju78KFC3n55ZeZOXOm0/VZkiQ2bdpEgwamSC8lId4r72FiommdWLly5Sz237hxA4CrV696tByC0ufNN98kPz+fvn378ttvv7kt3X/++Qej0UhmZqbqelohMzNTzctoNKLT6QgLC/NIvTcYDNSvX1+N1/z111/TpUsXt+fjTnbt2oVWqyUkJMTq/rS0NEaMGMH8+fPVdsNVWrRo4ZZ0isubb75JpUqVOHz4MBMnTuSuu+5SYxQLSo9mzZqp4mxxxmtGo1H1HAOmEDDe4D3m0UcfRZZlcnNzCQgI4KbTM4fRaDSMGjWK1157jTlz5hAYGMh9992HLMtOp1mWmTZtGkePHuWZZ55x6DxZlmnXrp36LSAwobxjAQEB/P777/z+++/k5OQwY8YMj+f96aefcuHCBeLi4ti6datL70lZQpZl8vPz8fPzIzAwkEaNGjmcxrRp08jLyyMgIIBRo0ZZ7EtKSiIxMZEqVarccuK90WgkLy9P7asbNWrk1GIegUAgEAgEAoFAcHtQZgR8oAMwRZblvQCSJLUFugMHFPFekqR6wBhJksYAWebW+e4iLS2N1NRU+vfvT05Ojs2JYW/DaDSSk5NDUFAQPj4+pV0cgRNUrVqVQYMGAZCbm0tOTg7Z2dmEhoZ6LM/HHnuMli1bEhQURGBgIGlpaYSEhKh16XaYcOjZs6dbJrAFJhTx3tfXV7VW3bx5M7Nnz2bRokWMGzeOSZMmOTxZp9Pp0Ol06v8lMdmn0+nIyckBoGHDhnzzzTeASbAfMGCA6glg1apVQMktvBGULDNnzlStSc+fP68+d3ewadMm2rZty/Hjx4mKiuLrr79Whfx27dqp1qw6nY6srCyP9Anm4n1gYCC5ubmMGDHC6wV8ha+//hqA1NRUatasqW7/5ptvmDlzpiriu8ObQY0aNQBLccOT+Pj48PLLLwMmLznmbaCgdAgPD1fHavBfP2Hr3TQX75V2Izk5WRXxS5O6deuq401wzmLcHEXIV9LU6XS3xTjSHFmWadiwIQ888IDD40mdTkeLFi0wGAxioY4Z5mMxBcV7mKdF/NzcXMA07nPXe1IWyM/PV/ubSpUq0aNHD4fONxgM/Pjjj4Dp+e3YsYPOnTur+5XnNmnSJCRJshC8yzrZ2dnqvQsNDXX43gkEAoFAIBAIBILbC5cUBEmSxkuS1ESSpLWSJC2TJKmauwpmlkdzSZK6Ad8Dv5jt2gmEmB3nC5wG3pBlWesJ8R7gyJEjgMm6JigoyBNZeIScnBy0Wm2hCQ5B2SQgIICgoCCCg4NLJJ+AgAC726xx6NAhDAaDR8tXUiiTg0IccQ1z8X7Lli089NBDzJo1i6SkJHr37o1Op2Py5MmEhYUxYcIEh9wIK/WyJLGWp+IG2Zobf3MhR3DroEw0Dx06FID+/fu7LW2NRsP27du55557SExMpFOnTlbfi4CAAEJCQtzeJ5iL9xUrVuSvv/4iPDyc69evqwtWyiqdO3dm7NixGAwGRowYwa+//uq2tBVxoyTdhPv5+REQEGAhcpw/f57z58+XWBkEhbE3XjMX72NiYti2bZtFOBhb73tBDAYDhw4d8kTxiz3mK+00ywqujCdv5/tmj4L3pV69ekRERLBu3bpCbtk9hSRJt9WzsdbfOMK0adOQZZmYmBgaNGjAqlWr0Ov1gMn6/ty5c9SsWZPo6OhS6U89SXBwsEv3TiAQCAQCgUAgENxeuGqBXx6oKctyX0mS6gBxwEuuF8vETeE+AfgN8AMmme3OBWrePK4vUAH4SJblf53NLzs7m8OHD1vd5+Pjw8MPP6wK+C1atFBFGXsipcFgKGTxbm4NX1Ifb4rIVJYWHXgj3iJIK6EcPG3Fq+RT1DaFWbNmATB//nzOnj2LJEk0btyYvn37EhoaatNiMy0tTY0Jam+fuZtMSZLsngcQGRlpc5+9eIMF01Um5IqamCuYZsHy2iuPt2Hr/ijXVKdOHav1z9Z55uL9ypUrqV69uuqOG+Ctt96iadOmfPrpp5w4cYL333+fBQsWEBcXp7aho0ePtpq2ko75ui3ztG3d96JiTtp7XubpA+j1eq5evUr//v05efJkIfEe/qs/nl54c7uSkZFhd39ERIRb8zt27BifffYZeXl5VK1alf/7v/9j5cqVnDt3js2bNzN48GCnyqrVai0sdYOCgvj+++958sknOX78OG3atGHbtm1qf5SZmanWM2f7BGvlMRfvw8PDWbt2LYmJiYwZM4a3336bl19+ma1bt6px2L2B1NRU9W9FIFO2Xb58udDxMTExDBo0iBUrVtC8eXOb7vQLWu8ryLLMmTNnqF27toU1rTK2K8kJekmS8Pf3Z/LkybRv397qMW3btmXy5Mk203CHFwJ3sXv3bpv7brb1Nit7Xl6e3fbdmb7Y2RjFkiSRlZXFxYsXgf/6UD8/Pzp37kxycjINGjTg008/5d9/TZ8wn332mboQrGHDhlbd6X/66af4+/uzdu1ajh49iizL1K5dm+HDhwO2+8uirqXg+MfemM9ZPJFmSaHT6Th//rxV6/nijGWLO560hqP3zZUxTknjSlnT09MByMrKAkzf7Js3b6Z79+52LfFtPa+ixrnKuYC6MN5oNJKVlaWWoaTvrb32Emy37c6ep/Q3zjBp0iT27dsHQFhYGDdu3ODy5csMHz6c5s2bq2VSFl8o/eilS5fsltde/2XvPGv9u7kXHXePcTQajd17l5qayu7duy3KYN7eeFM/LRAIBAKBQCAQCDyPqwK+BLSSJGm/LMspkiS5Td2UJKkCMBzoL8vycUmSlgKNJEnKBNKBi8A1SZK6AxOBPq5a3Z86dYonn3wSMH1cPf/88zz11FOA6cPcx8eHo0ePUrt2bSpWrOh0Poo1PHhmcteai3wfHx+x0rsMUhqTa/byLE55zMV7WZY5cuQIR48e5YEHHqBjx44uhXAwd5NpPolZUCh3lQoVKrjl3tsqb1mmKHfA1ihoeX/fffcVOiYxMZFVq1Zx4sQJAgMDkWWZrKws4uPjLUR8aygTsIorU/NtnqJg+j4+PgwYMEAV7xMTE4Wb/NuAzz77DICpU6cCMGDAAJYtW8Zbb71lV8C3R2hoqNXFBr/99huNGjUiMTGRLl26qPXLz8/P7Yvz8vPzadCgAenp6YSHh7Nx40b1HWzdujWhoaFotVr27NnjVQK++SS8IpCZb7MmwtesWZOKFStauNO3JuJbIz8/nzvvvJMHH3zQo+FsCmJvAn/Pnj029/3yyy+cPXuWWrVqeaBUJcdNS0yvigdV3DGDEu6if//+nDhxggYNGrB9+/ZC/cWOHTvo0KGDhTt984XD69at4/jx4+rCNUmSOHPmDAsWLFBFfGdw1/inIN4kFruC0Wh0yvW/K/f1Vrl3nqLgeMzX15c6deqwb98+WrVq5bA7/eKMc5U8lb5Xo9F4fNzpKJ4M5eKKiKyI9wAHDx5U/z516hSnTp0CTIvrXnnlFYvzilps4E7MQwR4guIsNjAvg7OLJQQCgUAgEAgEAkHZxyV1QZblCbIsjwb6SpK0FvjDPcUCQA8EAQ0kSQoD2gHPAR8CbwEy0A0Yh0nkP+VqhhEREXTp0oUuXbpQs2ZNPvnkE/7++2+LYw4fPkzTpk1dyicoKIjQ0FBhDS+45VDEe41Gw6RJk0hISCAqKgpZlvn111+pXbs2r776qtOeDGy5D/VWF/e3ortTR8M3FLS8LyjeJyYm8vzzz9O5c2fOnDnDk08+SWxsLO+88w4hISGqiF+cOlOa9/n48eNW3eYLbl0+++wz8vPzqVq1qiqIDhgwAD8/P/7++2+OHz/u1vw0Gg27d++mYcOGJCYm8ttvvwHur/cGg0EV7ytWrMjq1asLLaAZP348AB988IFb8y4tCrrT/+OP4g1nFTfCZcWrRm5uLkOGDKF///6cPXu2tIvjNDcFKe9wieQgfn5+qngfExPD6tWrrfYXGo2Gzz//3MKdvsFgYOTIkdSuXZvExERkWSYqKoqEhAQmTZqERqNRRXyBZ9BoNLfUmO5WJiIigi+//NJhd/qOjHOVsamHIve5hDe6ni/u99/SpUs9XBL7uBoi4FYpg0AgEAgEAoFAICh9nLLAlyQpEfjd7GcjECrL8lx3FUyW5euSJM3FZF0/Flguy/I7kiS1B54FKgOXgWGyLCe5I89KlSqpq72vXr3Kc889x4IFC0hISABM7vLOnj3LSy+5FiVAo9EQEhLicnkFAm+iQ4cOqngfGxtLeHg4AK+++io5OTksXbqUs2fPsmXLFrZs2WI3LT8/P9UCUq/X4+trvalS9inW2pGRkaxYscLm8baYPn06HTt2tGoZ7izp6elMnz6dqVOnusUrQGkyceJEHn/8cdq3b+9Q+IYvv/ySN954A4A777yThIQE9dkYDAYuX75Meno6YWFhjBkzhjvuuMNiYVNcXBzx8fFkZWUxZcqUIidfXbnPZ8+eZerUqXzyyScO1x8FId57B3q9nrFjxzJp0iSPWsQVtL5XUKzwu3XrxpkzZ4pMZ8qUKXTt2pXGjRsXeawi4j/yyCMkJiaq29xJTEyMKt7/8ccfVmPDm1vhf/nll3Tv3t2tZXAnRqOxWPeoc+fOAMycOZNhw4Zx5513qp4QFA8vYGpnBg0axMMPP6y6EfaWd/7nn3+2u79mzZpcvHiRv//+myFDhlC7du1SF0qKw4ULF3jhhRcKLtKzGRz+xIkTNGnSRP3/lVdeYejQoW4rj3n/7mh/0aZNG9VduCRJPPvss3bHOMrimeTkZAvPCZGRkbz00ksWIbJiY2NJSEhQF8Nt3769yPJ4YvxzK5OSkmIzHJT5eDUrK4tmzZoxffr0kiyeTb788kt++eUXpk2bVtpFKRJX3i8wLQxV2nO9Xs+dd95JRkYG69atU63xrfH0008zc+ZMh8a5Svm8ZVG+Xq/nww8/ZOjQoep3WHEF4O3btyNJEh06dPBY+Z577rkij4mOjqZZs2Z2jzl58iQ//fSTw+26Xq9n4sSJZGZmqtuU/l3x5jZs2DAefvjhUrd6lySJlStX0qZNG+rXr+9sGi8CLwLUqFHDncUrNaKiomx+70VFRZVwaQQCgUAgEAgEAs/jrAv9tsB9N3/6AmuAZGCqvZMcRZblDZIk/QC8CRy9uW2XJEmvATeAGFfd5tuiUqVKtG7dml9++UXdpkzER0dHFzrePK69t0zkCgQlyf79+wF48cUX1UkjhaCgIMaNG0eLFi1o1KhRkWnl5+er4pQjnD17lrS0NCpXrlzkseZu97t37+5SWAxr/PPPP7Ru3brY5fFmVq9ezdatW0lKcmytlHn7eenSJS5dulToGEmS2LJlC3Xr1mX9+vUW+3x8fIiLi+ONN95Aq9WyZs0a+vXrZzO/4lpXWWPChAn8/PPPrFq1ikGDBjl07qOPPorRaOTjjz8u84s1bgWuXr1KmzZtOH/+PHfccYdH+uTVq1eTn59PUFBQIbfsLVq0YNmyZVy7dq1YafXu3ZtKlSoVO29FxH/mmWdcCkliCyWecHp6OsOGDWPgwIGFjrl69aoaHuTw4cNeKeDXqFGDU6dO8dJLL7Fw4cJindO6dWtmzpwJmNrwf/75x+pxK1as4OGHH3ZbWd3Fd999Z3f/XXfdRZ06dfjhhx8AU6zdssDp06cdsiLV6/UW798777zD4MGD3fK+yLLMX3/9RatWrZzq38PDw1UB31kvHdWqVaNHjx6FRMPw8HCqV6/OhQsXOHToULHSUsY/5mMigW1ycnKKPT69dOmSKuDLsoxWqyU4OLjEvhOVZ7px40YmTpwIUCYEfFfGzzExMSQlJTn1DbFjxw61/S8uTz/9NIcOHaJv374O5+cJMjIyaNq0Kenp6URERDgkQrdq1Qq9Xo8syx4ZyxqNxkLjfGvMmzevyGOUeRpHy3rs2DH+97//2T3mxx9/9Jr+/dFHH+WOO+5w+nxZlhcBiwAeeOAB73MT4QRlZdwiEAgEAoFAIBC4C6cEfFmW04HdN3+QJOluINZtpbLM619JknYBT0uSlAcEApHAP54S7xUuXLhA7dq11f9v3LgBUEicBMu49sK6XnA78sYbbzBp0iS++OIL3nrrrUL7DQYD7du3B6B8+fIcPnxYnUxPS0ujfPny6HQ6srOzeeSRR8jIyKBv375MmDDBphVtWloaFy9epEePHuj1eqZPn17syT7z+PTFjXfsCA0aNPBIuqWF0v45wrRp09TJYlmWuXLlCpUrV1Yn23r37s2hQ4d44oknOHDggNU0Tp06hdFoMrQcPXq0TQF/3LhxqmWVM+6sT58+DZiESUdZvnw5ubm55OTkoNFoHI6NK3AvVatWpWPHjmRlZaHT6TxiGTd27FjA1PcfOnTIwlosNtY0HFIEk6KwtiiwKDQaTbEmwp3hjz/+oG/fvvz666+sX7+eDRs20L59eyZOnIiPjw9Xr16lX79+GAwG7rvvPqZMmeKRcrjKxIkTSU1N5fTp07z00ktFPo/MzEwGDBgAQP369Tl58iQ+Pj4sWLCAgIAAdaFGu3btvNJdMsDbb79NXFyczf3msYdjYmKYMmWKx8Qad9KuXTvatWtXaJstGjZsyDfffANAjx49OHLkCKNGjWLuXNcdhel0OiIjI6lXr55Tbf22bdss/k9LS7M7xjHfN3fuXObOnculS5eYN28e5cuXZ8iQIVStWhUwhTG6cOECGo1GDbFRFMo4RenDBPYxr1sFSUtL47vvvmPChAn4+vryxRdfqPt0Op1q9Wsrrrq70el0fPbZZ7zzzjslkp+7cHT8bL745Ntvv7XYd/nyZdUlfsH31d67V1xq1Khh8ZxLm4oVK9ptG+3h7++PLMvk5+d7xPp8ypQpxVqIpXwr2iM0NBQ/P79ildVoNJKXl4efn5/qwr9Hjx689tprgMlA49133+X06dPUrVuXCRMmFONqSgbzeSiBQCAQCAQCgUBwe+KUCcBNwV5FluU/MVnje4qDmCzw3wKGA4NlWfZo8E69Xk9KSgr16tVTtykClrWJFxHX/vbmpsB4W7teiI2NxdfXl/T0dP7++2+LfQaDgYkTJ5Kenk758uX53//+V8gSThHUg4OD2bNnDxEREaxdu9auOJScnGwh3tuzzi7IrRif3pvR6XTk5eVZuEDesGEDDz30EHq9nhYtWnD9+nWLc2RZZseOHZQvX546depw+fJl1qxZUyhtRbyPiIggODjYI1bJRSHqk3cREBBASEiIR57H6tWruXz5Mo0aNaJKlSqsWLFCFXRTUlK4fPkyfn5+xRbwFQ8+ykKV0qZ8+fJ89913pKSk8OCDDyLLMj/88AOPP/44kyZNshDv58yZU9rFtYlGo2HhwoXUqVOH06dPEx8fb/MeK+J9ZmYmnTp1Yu7cuYwZMwaDwcDw4cPLdLz4gsTExPDVV18xa9YsVQC5lVm2bBlgciFe3PjL9iittl6WZV588UX+/PNPxo4di4+PD+np6cycOZOpU6cya9YsNYzR2LFjHbbaFH2Y62zatEkV7zdt2mThcSogIICwsDCnFhg6y8aNG3nnnXfw9fWlWrVqJZavs8iyTG5ursMLpJTvhwIhNgCTi3tRr4uHJ2OuG41GZsyY4XSIqoI4Utbs7Gx0Op3Vvs5oNBIfH6+K9wsXLhSeFAUCgUAgEAgEAoFX4exX1CJJkuoAF4HfMVnFH5ckKViW5Wy3le4msixnAHMlSQ0sfRYAACAASURBVFoOSLIsZxZ1jjOYu9w8e/Ys+fn5VKtWTd2Wm5sLQLly5QqdayuufVET8qUhNAncz02rpVviYSquXW0RGRlpc98jjzzCzp07Wbp0KWPGjAFM4v37779PVlZWIct7c5TJtYCAAAIDA9mzZw9t27Zl8+bNgMmy0Jzk5GSee+45DAYD7733nlXx3t61pKenO2V5Yy9Nd1jzeAtpaWl2t9mrB9YICAjA39+/0CTqhg0bVEv8hIQExowZo3o5OXnyJBcuXKBHjx5ERkYyb948XnvtNVq1aqWer4j34eHhbN68ma5duyLLcrHKqhwjy7Iq7GRlZanbHblGJWbq7URGRobd/Ur88NJIU6PRuGVBnbXyjB49GkmSGDFiBImJicyZM4d9+/bx4IMPqt5H+vfvX+w8dDodWVlZgPfE0YX/hPwdO3YwZcoUkpOTVQtuRbzPzc21+cyKWth248YNdu/ebXVfampqodAE5jzyyCPFugaNRsP8+fN55ZVXOHv2LIMHDyYuLs5igl6r1fLGG2+QlZVFp06d1FAcXbp0QZIkZs6cSUJCAoAag1yn05GSklLkGM7W9Tl6He6iefPmFl5RoPjxkcsS169f5+uvv1b/r1WrFmfPnqV37948//zzDBs2zOm0bbX1nh4bmHsNevXVV4mIiGDfvn3s3LlTDXuh0WiIjY0lJCTEYaG4NPswV8adJZkmmL4VrY2PNm3apIrlBcV7MN1fT1je27rO1atXM3HiRHx9fVm+fDnTpk3j0qVLLo3jisoTiq7r9vI0r+OO1EXz74eClLWxmb1+0dP9hSRJFtbsqampdvswe+UpeN7y5cvJzs6mQ4cO7Nixw8WSFi6rPYKDg/nnn3/w8fHhypUrgOk+nzlzhvj4eM6fPy/Ee4FAIBAIBAKBQOC1OOtCvx2AJEk1gEbA/Td//yZJkkGWZY/4jZZl2XEfzg4QFBRETEwMACdOnADgiSeeUCeRlY/RggK+EOFvH2w965uTcq6bdpVxli1bRt26dfn3339p1qwZdevWpWnTpqp4r0ygFMTahF5kZKRqEbF582YCAgJ4//33Afj9998ZOHCgujhg2LBhVidG7U0yVqhQwenJy5JMs7SwNgFbHAHC3vXXqFHD6vZffvmFtm3bsnfvXmbPns2BAweoXLky3bp1IzIykg8++IDMzEwOHz7MgQMH+PLLL+nevbuFeP/TTz8RERGhuoIuTlmVY3Jzc9XzQkJCXL5OQengzIIBR1m/fj3//PMPbdu2pUOHDnTt2pXNmzfz5Zdf8uijj3LlyhUCAgL48MMPi13WsLAwsrOzixUb2VPXaC/dZ555hmeeeYb09HSeffZZ6tatq7oit7fg4qY1ZIkOkKwJCkajkWPHjtGkSRNSUlJ499131Yn6zMxMXnvtNbKyshg6dCiLFy8ulF79+vV54YUXmDp1KgsWLABMovedd96pLkzyJsytV7du3crXX3/NjBkzrIZ/8mZcEasUrxYKgwYNIi4ujiNHjtCrVy+n0iyqzXd2vGEvXfN9RqPRop0wD1WUkJDAjh07WLt2LdWrV7dbzqLyFNjH19e30BhhzZo1qnh/4MABHnzwwVIqnQlz8V5ZTKCMn711kWlkZGShOl5cbI0tlXSd2VcU3vYOOdteOiLCO4vRaOSLL77Ax8eH119/nb59+7Jnzx5WrFjBokWLGD16NFqtloSEBFq2bOlUWe2h0WioU6cOgCrgh4aG8u6776ri/cmTJ71GvC/phX0CgUAgEAgEAoHAu3HpS0WW5fOyLG+VZfkdWZZ7ybJ8N/CAm8pWqiQlJREaGmoxKaC40LdmgS+4vbn50e8d/o9LmVdffRWAIUOG0LRpU9Vtvi3Le3tUqFDBwp3++PHj+f3331W3+e+99x7Dhg0rUZekAs+wZ88eC3f6GzZs4LfffmPkyJGqhejMmTMBUxxNc7f5W7ZscUnYDAgI8PoY0ALvIDY2FkmSmDdvHmCKGTtmzBgOHz5Mx44dARg/frxDaWo0GkJDQ71m8tgW5cuXZ9u2bcWOI37TGrLUF7ZpNBrCwsJYtGgRdevW5fTp07z00kuF3OYXFO8Vhg4dytixY1V3+kqannI17E66devGokWLypx4725CQ0OJiopClmU2bNhQ2sVxCnvtRGxsLD/99FOxxHuBe1mzZo2F23xvEu+XL19eyBOAN1NW+kKBY6xcuZLc3Fwee+wx1RtCr169CA0NZcqUKWi1WsqVK2dXvHc3W7duFW7zBQKBQCAQCAQCQZnAPYHIzJBlWevuNEuKjIwM1eXmr7/+SnR0tMUH3Y0bN5AkyWGxULEECgoKEh+IgjLF2bNnOXbsGE899VSRxxqNRnJzcxk5ciRz585VrdGcFe8V7rjjDtWd/tq1a1m7di2AGvO+uC5Jly9fTq9evQgLC3OqHNZw5P4Iisbcnf6YMWOoXLmyhbXkXXfdRYsWLThw4IAq3u/du9fluMaSJAkB30WWLFlC//793bqY5vDhw+zatUt1aV7aKNb3/v7+zJ07l/z8fPz8/DAYDPj7+5OZmUlAQACjR48u7aKWCikpKTzzzDNkZlpEObK5sC0lJYWePXsW2q6EtPDx8UGSJKKiohg7dqzL4qRGo2HhwoW89NJLnD59mu7duwNYuM23RefOnYH/FhHl5OQ4bHn/999/c+LECdq3b+9E6QWuMmTIEOLi4jh69KhavzzFypUr6dOnj1hc6ASbN2+mSZMmREVFuZyWLMvodDoMBgMbNmxg4MCBLqd56dIlJk2aBJisebdv327TbX5Js2bNGgvL+5KwEl+wYAFLly5V/zcajeq3bsWKFYmPj6d58+bqszDfLyiM0i8GBgYyYMAAdWFgaeNs/2U0Gvn0008Bk/eKOXPmcOPGDcqVK8ddd93FH3/8AcCECRPcXmbzMuTl5VksuJNlWYj3AoFAIBAIBAKBoEzgdgG/LHPx4kULy7kOHTpY7JdlGY1Gg06ncyieXk5ODlqtaV1DSEiIeworEJQAAwcOJDU1tVgCdXZ2tuqy9vHHH+ebb74BcEm8V7jjjjvYu3cv9913H/CfeF9cvv76a9V9rmI56w4cuT9lmZCQEJo1a1YieZmL+Ddu3CArK8vCuv6DDz6gZcuWhIeHq94ZlJiua9as4caNG1SuXNnhfENCQrh27RqrV69mzJgxYkLPAS5cuEDXrl05ceIETZs2dVu6HTt2JD8/n3vuuYcuXbq4LV1nUeK/5+XlsWTJEqvHOGp9fysxd+5cUlJSin28wWDg33//LfK4f//9l48//liNQ+8Kiog/bNgwUlNTeeyxx4q9QMRcxHemjdHpdDz00EMOnydwDwaDAUmSkGWZw4cPe+xZXLx4kY4dO3Lq1KlSF3TLIq+99ho1a9Zk7969LqelxFT/888/6dixIxcvXnR5IVBaWhorV65U//cW8R5Qx7dDhgyhUaNGFvHuPcXChQtthlK5du0aY8eOZf/+/eqzyM7OLvbC29sR835x1qxZXiPgO9t/Xb16FY1Gg9FoVL8LCxIREeFR6/vs7GwlpA+VKlXC39+f6tWrC/FeIBAIBAKBQCAQlAmEgG+GeVxXKBzfrlmzZhgMBjVec3EJCgqy+C0QlBVSU1OLfWxwcDBBQUEEBARQu3ZtwGR94y4rN3MR1xHxHuDEiRMA7N+/X7UCuune2SWU+5Obm3tLu2E/ceIEsiyX2HVu2LBBdZHfpk2b/2fvzsOjqNL9gX9Pd5LOnpAQAUMWFsOu7IiKgLIaEAVFEJEBFfSigtygIpnBAILAHRABR3RkcQGVbcYhIupAdNxQ0LD6kyvbjagskQSydTrd5/dHrLID2bq7uqu68/08Dw/pru6qt6pO1amut845VW7kJyYmYu/evYiLi6ty4825G9uausKuzc0334w33ngDv/32G2677Ta8//77mqxLQ6DUle4kNavjcDiwaNEi2Gw2AMBjjz1miAT+8uXLMWbMGFy6dAk2mw0VFRUICwtTW+I3b94c7du31ztM3Sxfvhzdu3fHqVOn1Pf++te/1vj5uLg43HbbbVXeczgcEEKgoKAAjRo1Uj83fPhwzeJUkvjuSE9PR69evdwasiMlJQU2mw1SyoCtK4yqsLAQ8+fPh5QSLVu29OqDFEqC+KqrrtL0eqMhceXaszbKdu/Ro4dmx1xqaiqysrLU1127djXMEBUvvfQSRo4ciVdeeQWtWrXCoEGDvLIc53Kdk5ODNWvWQEoJAGqPcwAQGhqK+++/H8Af+4K9UtQuLi4OQ4YMgdlsxpAhQ/QOR5Wamgqgct8r1zz10aRJE7z11ltVrgvOnDmjXi+azWavP/wSHh6uDnnTsmVL7Ny506vLIyIiIiIi0hIT+E4sFov6A7U6ffr0gRACOTk5LiXwTSYTW96TX1FuzrnCZDK51DOFXpRWQFpS5ucP6+8u5+3mi/VcsmQJAKhJ/G3btiE+Ph5A5YMhzrZu3Yp58+Z51BJOubkfHx+PI0eO4LbbbsPBgwfZOscFDodDvanvyXazWq144YUXAFTeeC0oKMD7779/RbJXD71790ZpaSmKi4shhFDLJFUaP358lde1JfAbN26MBx54QH1dXl6ulp+ff/651usxrbiajACuPP/Ul81mU+tVV7vfJ/cpyXuHw4GWLVti6tSpPlu2N643GgotHn4QQmh+vRIVFYX+/ftrOk9POG+nzp07Y+vWrRg5ciSeeuopFBUV4aGHHtJ8mc7lOi4uDhkZGeq0/Pz8autFZV/wmqp28fHxGDNmDCwWiyHrCed6rL6aNm2Kpk2bqq9PnjxZbf2u1MdaD7NgMpkMuS2JiIiIiIjqg7+iXRAbG4suXbogJydH71CIvCqQbzpbLBa1pwCtaD0/I/LGdqvLkiVLcM8996CgoAB33HFHtd20bty4UU3er1+/Hm3btvVomUuXLkWHDh1w5MgRdOvWDQ5HjUN402WsViuKi4tdvrl7uZUrV6K8vBwpKSlqS2lfJN3sdjtat26N1q1bw2631/g5i8WCiIgIl5K+VLfg4GC1lZyvKMkIpbcHb3Jn/ex2O8aNG4ewsDDMnj3bi9EFlp9++gkZGRnIyMjA3LlzdUneA/rUm4FCuQ71tD4JdJdvJyWJHxQUhHnz5mHjxo2aL9Oo5fr06dOIi4szTLfz7hBC+LwedIU362mlPi4pKfFoPrNnz0ZERAS2b9/u0vcCofwQEREREVHgYQv8ehJCwG634+abb8bf/vY3FBcXV2nVUVM34Vp1H07kS0a7Kaclb7TICsSW95cPIaLXMt9++21ERkbitddeU7vTV7qvdu42/7PPPkOHDh0QHh7uUcsdk8mE7OxspKenIzc3F506dcL7779/xTxramVW17Sa1tMfXd6NeHR0NEpKSjzaB7m5uWrvC3PmzEHz5s0RGRmJgoICrFq1yitJzJycHNjtdowaNQqFhYUAKlvBbdmyBWazGf369XNrvjWNC6xwpxt2o/FkHaKiotzetu6oblkOh0Mts65+191lKnJycmp8INRut2PAgAFV3luwYAEWLFigvla6rK5uvu7E5O73jEo5BwkhMGDAAOzYscOry/P1eT0vL8/t73qjjqorHlfnqVyHuns96q39ERISYqh9bbFY0KxZsyr1blJSEr744gvccMMNeOqppzSPJzk5ucZptW2bvLy8WtfF3e26dOnSKj1tfPDBB2jVqpX6wM6MGTPcmq8eoqKi3Br6wBvnb0/O+e58t771cXWqGyLDeeidmurL6r77wQcfVHmvtu/6k4MHD9Y4lEhKSopbQ5ekpqZWGR6huvkSEREREZFn2ALfRX379oXVasWePXv0DoWI6qCM207+7e9//7vaEv/mm29GQUFBleT91q1b0atXL0RGRmrS7aaSxFda4t92220ut8RXyl6g3PirD5PJ5PE+eOONN2Cz2dCsWTO0aNECAPDkk08CABYtWoSioiLNe0VwTt7HxMQgJiYGhYWFGDVqFCoqKjRdFhmLFmXWU1JKlJeXQ0oJu92O+fPnY+DAgbrFU11c/qZbt26oqKhARUUFbDab15P3RlBXneNvdZLysKVWY9cHgur2oRCi2nNYjx491Jb4Tz31FI4fP+7rcF0ipXS7fndO3iclJcFkMuH48eNYtWqVFyI1Ln8+ZwPGqI8DmVI2qvtXWxK+NqdOnapxnlJKtx4KICIiIiKiqtgC30V9+vSBEAKffPIJ+vbtq3c4RF4RKF3oK+tRW3fY5B+UVtnvvPMOrr32WgDwaMz7mnzzzTfq308++SRmzJiBI0eOoGfPnmoMAHDp0iVERUVVO49Lly7BYrGgvLwcISEhuP766xETE6NZjIHsjTfeAAA899xz6nt9+vRBZGQkLl26hE2bNuHuu+9GZGSkJsu7PHm/ZcsWAFDfu+uuu5Cfn+9xbzp5eXkB0/MCactms6G0tBTPP/88cnJyNE2+FBUVAYBbx8vp06fV8xbHDza+t956CydOnEBwcHC15yu73Q6bzYbg4GCUl5cjLCwMAJCQkID77rsPQUHa/iQ8ffo0EhMTNZ1nQ2e1WnHq1CkkJibW65hWutMfOXIkiouLfRBh/VVUVCA/Px9NmjQBULluFy9eBODa+er06dNq8l4ZJkNJ6CtJfH9qge8JpQv6s2fPonnz5nqHYyjbt2/HsGHDrnj/9OnTOkRDRERERERUf0zguyg2NhZdu3bF9u3bMWPGDI+7ayYyIqXL0sTERLdubrRr1w4A0KtXL0gpNWtBlZqa6tLT/Mp6dOjQAQBwww03aBKHwt3tQ+5xTuILITRN3ivJjBdffLHa6WfPnsWECRPcmndSUhI+//xzt2NrKL7++mvYbDYEBQVd0UVv586d8dlnn2HevHkYP368Zst84oknUFhYCLPZrHaZDwBbtmzB4MGDUVhYiBkzZmD58uVuLyMvLw87d+5E+/btNT8Hkf8LDg7GsmXLsHv3bgCV54tVq1bh9ttv92i+Ukrs3r0bQUFBLo/pu3//fhw/fhw9evRgEtYPrF27FnPmzHH7+5988gnWrFmj2bXaokWLsGrVKmzevBk9e/Z0+fssc9WzWCwYNGgQevTogc2bN9frO0oSXzmfaHlN7omPP/4Yp0+fxgMPPACgct2io6Nd7j598ODBcDgciI6OVrvMj4mJwaxZs/Dcc8/h+PHjOHLkCNq3b6/5OhhNcHAwzp49i2+++Qb5+fm47rrr9A7JMO644w6Ul5dfcc9m8ODBdX63oZQfIiIiIiIyJibw3TB58mRMmTIF//rXv3D77bcjIiJC75CINKV0XaokFFw1bNgw3HTTTSgtLYXVatVsjPj169cjNze33p9X1mP48OFe6ZLY3e1D7luyZAmysrIAwK1xMmsyZcoUlJWVoaKi4orWi1JKbNiwAXa7HUIIjB8/vtZyXVZWhnPnzmHXrl0AgEcffVSzOANZz549q3RfryTUX331VXz22WcAgKysLJSVlWnWAv+ZZ57BSy+9BLvdXiVRP2PGDNjtdpjNZsyaNcujZSQlJaFbt268mU7VEkIgODgYABAaGoq8vDwsWrTI4/nabDZ07NjRrdbznTp1QmhoKFtx+omxY8ciPz8fGzZsqNfnHQ6Hmshq2bIlnnjiCU2v1ZTk8ieffOJyAv/o0aOaxBCIhBCQUuLrr7926XudO3dGbm4uysvLNd3Pnrjhhhtw5swZ9bUyFICr/vrXv2LIkCG4ePEisrOzkZ6eDrvdjhdeeAEAEBER0WCSr0IING/eHMXFxbjmmmv0DsdQlOFp/vKXv1R5Xyk/tWko5YeIiIiIiIyJCXw3jB8/HgsXLsSLL76I0aNH6x0Okdd4cpMvJiYGoaGhait4T0kp0axZM6Smprr1fW/csDTCTdCGSMvEvSI+Ph6zZ8+GxWJRb5JbrVb19bx583DbbbfhyJEj2LdvH15//XUkJCRUO69PPvkEEydOBAAsXLgQY8eO1TzeQLVlyxa1+/pRo0Zh6NChePvttwFUdqt/5513arr/mzZtio0bN2Ls2LE4cOAApk2bBgA4cOAAzGYzNm7ciKZNm3q8nC5dugCoTJwp5YpIoSRTn376aZw6dQqbNm3yeJ7BwcFITExUHw5wNZ42bdp4HAP5RmhoKDIyMpCRkVGvz+fn5yM+Ph4AqtR1WvFk2CLlusobcTVkjRo1MtT2jI6ORnR0tMfzGTx4MCZNmoQ1a9Zg165d6gMOxcXFiIiI8KhnCn/Fc/eVzGYzFi9ejMzMzCqt8OvTAp+IiIiIiEhPAdX3uxDCs0Fq6ykkJASzZs3CN998gw8//NAXiyTyO0rrd6266lTGs7darZrMz1NSSpSVlWk6XjHp5/Lyenl5M5lMeP/999G+fXscPnwY48aNg8PhuGI+ubm5mDhxIioqKrBw4UKMGzfOp+vh75Su7JWW+EryfsGCBbjhhhsQGRmp+bA1CQkJ2LhxI8xmMw4cOFAleV/TQxruslqtKC4uNsx5jIwlLCwM999/PzZu3OjxvIQQCAkJMUR32WRcWl+rXU65VqquvqyN0a75/J2397OeOnTogEmTJgGo7BlLSd7Pnj37ih6VqGEaN24ciouLMX/+fL1DISIiIiIicknAtMAXQgwFMFgI0QjALCnlz0IIIV3Irkkpa7zBVFFRgZKSEvX1qFGjsGDBAjz77LO4+eabNWlFQKSlvLy8Gqc5t75yZZqelFZDRmk9pNxcBrRpiV/b/vLWPJOSkjRfZm2MFk9tqitvShJfaYk/ZMgQvPXWW2pC+dChQwGXvLfb7SgoKKh2WmxsrFeWqSTxJ02ahLKyMkyfPh29e/dGWVlZjbF4Go+SxH/ssccAVHarmpCQoPkyjXYeo/rJycmpdXq/fv1cnufJkyfVvy9dugQAOHPmTJX3jcQb28BbysvLa61vjFTXBIr8/Hz1b+W3VGlpKc6cOYPy8nI0a9bMpS7SvX2u9KdrLudtW9177sy3unk687djREnib926FSEhIZg+fTqklKioqNA7tAbJaPXFPffcg7feegsLFy7ETTfdpPmDoERERERERN4SEAn835P3/wMgA8DdANYKIdKllHX+ahdCTAYwGQCSk5PRtm3baj9XUlJS5cdeaGgoZs6ciUcffRT//ve/ceedd2qwJhRILi9b/iI+Pt7tG3feuOHnyTy9GY/D4UBJSQnCw8N1uRHkr+XLXUYqWwcPHkSnTp1w5MgR3H///cjOzsaBAweqJO+ffvppjaP1Heey5esxsJ1v6p46darKtNoS6Votc9SoUVWOa0+W6a0HHPxZQztv1cZ5OJioqCgAQJMmTVBcXIwlS5ao09q1a4dXX30VN954Y73m625ipK7v1ZWQ0Ztz2UpMTNQ5Gu8z2rWR84OfyjVRWFgYmjRpAqvVWuvQJ0ZPFut93qruodr6PGhrtO3qrXhmzJih/v3aa68BqHqNbnRalC8jPUClh927dwMAhg8fjqKiIowZMwZvv/02MjIykJ6eDgC49dZb8eGHH+LNN9/E/fffX+W7zttP7993REREREREzvz+V4kQIgbAnwDMllLukFJOAlAMYFR9vi+lfEVK2V1K2d3VrnLvvfdepKSkYMGCBexGm67gSdki4zOZTF7pzru+WL70c3l3+r1798bIkSMDpuW9c9lq3Lix3uH4lN7HdaDjeat28+bNw6OPPopTp06hQ4cO+OKLL3DkyJF6J+8bMueyFRcXp3c49Dul63Z/PqfyvOV//KkuZ/nSTkZGBgDg7bffRtOmTauMcT9t2jR1eKTahvTwp7JDRERERESBLxB+mRQBeB7A+0IIpUeB0wCaujqj7777DrGxsYiNjUWjRo1w55134ttvv63x8yEhIZgwYQL27t2Lzz77zK3gibxNSolWrVohOTlZ/delS5cqr4cNG6Z3mOTk8v2lhdzcXEyfPh1nzpzRZH6eys3NxWOPPYZff/1V71DcYjKZkJ2djXbt2uGXX34JmOT95XJzc9GoUSM0atQI8fHx+OWXX/QOCQCwb98+PPzwwzh9+jRKS0tdHl/ZVQ6HA5s3b8ajjz7q1eWQcUkpUV5ejsWLF+PTTz/VdJ5K+S0qKkJqaipWrlyJQ4cOoXfv3posR0vnz5/HggUL8P/+3//TO5QaHTx4sEodOmvWLL1DalBatmwJoHJoEiklysrKvH6Odtevv/5apaxodc21Y8cOzJw5U11/Tx70vnweWgzb5Mxo14cUOM6dO4f58+fj+++/98ny+vbti7CwMACVx/bAgQPRv39/9O/fH+np6bDb7SgrK0N2djbKy8vZAIOIiIiIiAzP77vQl1LahRCHpZTlTm9/j98fThBCDANwSkp5sK55xcfH484770RISAhsNhveeecd9OzZE7fffjtmzpyJLl26VPn8119/jWXLlqFVq1Y1dr1PpDer1Ypnn30Ws2fPrna62WzG8OHDfRwV1WbJkiWYPn2681seP2yVlpaGG264Qe12VUqJoqIi3bqITE5ORteuXV0aE9dobDYbNmzYgGPHjiE4OPiKOiLQ9OrVC0ZpHdauXTv06dMH0dHRKC4u9vryrFYrunXrhpCQEK8vi4zJZrPBarWid+/emh3ryjxHjx6N9PR0VFRUoEOHDprM21tiY2PRpUsXpKamQkoJm82G4OBgvcOqUVRUFAYMGKB3GA3K8uXLUVhYiLS0NFitVpSWlqKkpMSQ9X1kZCTGjx+PN954Q9P53njjjQgODlbX3xPO89i1axeEEFqEqEpLS0Pv3r0REREBKaXm86eGKyIiAh06dPDpsCYrV67Etm3b8MMPP1xRlisqKhASEoKOHTvCarUCAK/riIiIiIjI0PwugS+EEFJKqfwPAJcl74HK9QoSQowGsADAoPrMOykpCUuWLEFYWBhMJhMWLFiAFStW4IUXXsB7772HYcOGYdasWbjuuuvw9ddfY8SIEbjqqqvw/vvvGyapQXQ5Nh6RhgAAIABJREFUi8WCu+++G/fdd596IyM/Px9xcXGwWq2wWCy8WWcwI0eOxMiRIwEAZWVlSEtLM3s6z/DwcIwePVp9bbVacfHiRQDQ5aZ6o0aNMHbsWFgsFp8vWytK7D169AjYY6hjx4748MMP1RZNRhEeHo5x48bB4XAgKCjI6+XIYrGgadOmSElJ8epyyLiUJPVNN92k2fGuzDMxMdFvziFBQUEYOnQoAKC8vFxNghhJp06dkJ2djbKyMpSWlhru/BXoEhMT1YSd2Vx5+WLUscgjIiLw5z//GfPnz1ePQS1a4UdHR2PAgAFqC19P6ijluxaLBa1bt/Y4tsuFh4djxIgRKC0thdVq1byFPzVcYWFhSE9P9+lDXs2bN8fkyZNhsVhqTM77w8NnWhBCTAYwWe84iIiIiIjIff7YhX787/8HAZUJ/Wo+UwBgBoCpAG6XUh6vz4yFEIiIiFBbo8bExCAzMxPHjh3D7Nmz8dlnn+HGG29EWloabrnlFjV578unyolcpYw/evmhUtP7ZCy/37i1e2O+0dHRut1UD4TyFwjrUBeTyWTohyxMJpP60F0gLIeMSwiBkJAQTY93b8zTl4KDg2GxWAybBLFYLAgLCzP0OSzQKfWkUc+d3q7HtZi/L641eKyQN+hRx9WnXvL3ure+pJSvSCm7Sym76x0LERERERG5x5h3U2oghBgK4G0hxBoATwghGsnqBy/7AcAlAI9IKY94utyYmBg89dRTOHz4MDIzM1FWVoYBAwYweU9EXvf7zSXNB48VQiAyMtKwN9XJGEwmE8sIEVXL6EmQhvCQFZEWeKxQoDB6vUREREREROQKv+lCXwgxCMALAB4C0BTAjQDaAfjCuTt9IURTKeUeIcRNUsp8V5ejdPV4uaioKERFRWHevHnIyspiQoMMLykpya1ppA9v7BOj7WejxeOJQFqX2pjNZsTGxuodBgDoEodR1p301a9fP7+Ypzf5U7whISEN5hxtFP62vf3pmsufYiUCfF9f+FP9RERERERE5Ap/ykIPBjBXSvmplPJdVD58MAIAnJL31wCYK4QIcyd5X19M3hMRERERERERERERERERkdYM3wJfCNEbQAKAjwD86DTpYwC3On0uCMAxAE9JKUt9GiQREREREREREREREREREZGHDN2UXAhxO4DVAO4G8CcAzoOZlQFI/f1zYwBMQWVj/Au+jZKIiIiIiIiIiIiIiIiIiMhzhk3gCyHiAUwFcK+UcjyAYgCdhRBNhBDBAE4DOC+EGAFgFoCPlK70iYiIiIiIiIiIiIiIiIiI/I2Ru9CvABAGoK0Q4v8A9AdwFYCRAH4AsAXA7QBaozLJf1SvQImIiIiIiIiIiIiIiIiIiDxl2AS+lLJQCPEiKlvXZwBYK6WcJ4S4BcB9AJoA+BXAI1LKw96Ox2631zrdbDZ7OwQil+Tl5dU6PSkpyUeREOmHxwEZUUFBQa3TY2NjfRQJKXJycmqd3q9fP5/EQd7FOoECCcszkf/h9QYREREREdWXYbvQBwAp5WYAAwD8B8B3v7+3C0A8gEsAOkgpD+oXIRERERERERERERERERERkTYM2wJfIaW8IITYBWC0EKIcQCiAJABnfT3mvcPhQGlpKcLCwmAyGfrZByJIKWG1WmGxWCCE0DscIl3xeCCjcjgcatnktYUxSClhs9kQHBzM80UDodQRDoeDxyH5DV7bEPk3Xm8QEREREVFt/OUO1ZeobIE/G8BUABOllCd8HURpaSmKiopQWlrq60UTucxqtaK0tBRWqxWLFi3CgQMH9A6JSDdWqxV79+7FwoUL9Q6FqIpnn30WX331FaxWq96hEICKigosWbIE586dg81m0zsc8qLVq1dj9erVAP64ZiopKdE5KqL6c77W37RpEzZv3qx3SERUT0a53khJSYEQotp/qampusVlFIGyfWpbDyEEUlJS9A6RiIiIiKph+Bb4ACClLADwohBiLQAhpbyoRxxhYWFV/icyMovFov4/YsQING7cWOeIiPRjsVjQokULxMXF6R0KURWjR49GTEyMes4mfRUUFKBHjx4oKirC1VdfrXc45EXPPfccAGDKlCnq8RceHq5nSEQucb7WHzJkiM7REJErjHK9cfLkyRqnsVeAwNk+ta0HERERERmXXyTwFVLKS3ou32QyISIiQs8QiOpNCIHQ0FAAQNu2bXWOhkhfQggkJiYiMTFR71CIqujYsaPeIZCTxo0bo3///nqHQT6mXDOx+3zyJ87X+lFRUTpHQ0Su4PUGERERERHVhXepiIiIiIiIiIiIiIiIiIiIDMCvWuB723fffae2XjCZTHjwwQeRlZUFIQQcDge71TQYu91e63Sz2eyjSDyTl5dX6/SkpCQfReI5f1oXf4q1LuXl5TWuj7vrEUjbp6Gra196Q0FBQa3TY2NjfRQJ1Ye7+6uu73lDTk5OjdNOnjxZ43iktU2jhiM/P7/W94xUt7Ee9h5368Xarrfy8/MRHx9f43e5v/wHj73a61oA6Nevn1e+6w1Gi4eIiIiIiKi+mMB30rhxY9xzzz0AgBMnTmDp0qWwWq14/vnnYTKZ/CYhTAQY5+aSlBJWq5XjO/sp5/3nT+P8KYxyHBDgcDh4LvgdH2DQnpQSdrsdUkq3zlW8gd8wVJdgjYuL47mJNOWrayde45C/kFLCZrMhODhY71B0x+sNIiIiIiKqLybwnSQmJmLhwoUAKn9kPvXUU1i1ahUA4Pnnn9czNGpA/D1hejmr1YrS0lK9wyA3Oe8/ZZxVChxSSsBHw+lYrVYUFxf7YlHkIueHK/x1DHCbzQa73Y7y8nIIIRAcHBwQdSh5nz9dp/ChSONR9snv9SkAXjtRYHFOvrtbr9psNlitVo0jIyIiIiIiCmxM4NdACIFFixYBAFatWgUhBFasWKFzVBToTpw4gW+++QYDBw4E4N83/dauXYtRo0apw1IY+Wbztm3b0LVrV6SkpOgdilt+/vlnZGZmAgA6d+6Mu+66S7N5WywWvPfee+jZsye7nw4AX375JbKzs9XXvw9F4tXuZTZt2oTu3burx5eRzwUNlfPDFdu3b0f37t3RokULl+Zx7NgxvPLKK3UOb6Ol3NzcKl3jXrx4EZGRkbDb7TCbzVUeRrh06ZJaHwFAQkICxo0b57NYybiUc5KRz00nTpxAbm4uhg4d6jcPG/iLVatW4ZdffqnXZ52vtxR2ux0VFRWw2+3qcGtSSnTs2BFjxozRPF7yrYsXL2LLli2YOHGi3qHo5uTJkzh06BAGDx6MkJAQl767detWDBo0CBEREQCgewt8JZ7IyEhd4yAiIiIiIqoPJvBroSTxS0pKsHLlSsycORPJycl6h0UBbMKECTh58iSOHj1q6BvJddm+fTvmzJmDb7/9FitWrDD8gwjTpk1DamoqPv30U71DcUt+fj5ef/11AMAbb7yhaQJfCIGMjAy/3j70h4cffhgXLly4/G2vZlwnT56Mli1bYt++fQgLC/PmoshNzglM5/3liv/6r//C119/7Y3wajRnzhxcvHjR7e9fe+216NSpk4YRkT8SQhj+OkW5PrzjjjsAGPthA3/yzTffqA9s14fz9VZdhBAYO3asu6GRQcyePRv//Oc/kZCQgGHDhukdji7+/Oc/4/Tp0y6v/+7du7FixQocOXIEmZmZLif/tXZ5PEREREREREbHBH4dhBC4+eabsW7dOpSVlekdDgW4kydPAvDvlvcA8P333wMAPv/8c50jqT9l2/ujFi1aYO7cuXjiiSdw/vx5ryzDn7cP/aGiogJmsxnr1q1T3xs/frzD28s9fvy4txdBHjCZTFUernBnfyld427evFl9T8uHiapjt9thMpnU4Y/OnDmDJk2aVPtZ52kbN25Ebm4uSkpKvBofkVaUOtgfHjbwJ0VFRQCA66+/HlOnTgUAjB8/vsbPK9db1bl48SKio6MBwKvXY+Rbym+Z77//vsEm8E+fPg0ALnefr1xLfPvtt5rH5A6jxUNERERERFQXJvCJiPxcZGQk+vbti2bNmvGGMdUpPDwcffv21TsMClC33nqrT5cXFhaGnj17AqhMctY01IfztC+//BK5ubk+ipCIjK5Nmzb1qheV663q5OfnIz4+HgB4PUZEREREREREHjPV/REi43I4HCguLobD4fUGpBSApJTsWYOIqIGSUqK8vBxSSr1DISLj4O9jAlBZR7B+8H9KXU9ERERERORvBH+U/kEIcQ7AKb3juExjAEZswmGUuEwAzKgcwzkO+saUIqVMqG6CTmVLz32k17JdXa5z+fH0KRBvrnONZQsAhBD5qCxf3nySRY992hCWaYR1NNq5CzBGHcMYXIuhuvOpEcuWs6sAXIA2dYCnjLCvAePEAdQei9HKlhHO5YG4TF8vz4TKshVf3USnsmWk40RhxJgAY8blSb3mibqu531x7moI543Ll6n1fqzvcn1FWWaV8iWEmAxg8u8v2wD4QYeY9MQYtIuh1nMXEREREXkPE/gGJ4TYK6XsrncclzNiXEaMSU96bg+9lt0Q19lX9Fi/hrDMhrCO7jBCjIzBODF4i5HWzSixGCUOwFix1KWhnMsbQh1ZH0aMy4gxAcaMy4gx+UpDOG/otUy9lmvE8myEmBiDcWIgIiIiIvexi0AiIiIiIiIiIiIiIiIiIiIDYAKfiIiIiIiIiIiIiIiIiIjIAJjAN75X9A6gBkaMy4gx6UnP7aHXshviOvuKHuvXEJbZENbRHUaIkTFUMkIM3mKkdTNKLEaJAzBWLHVpKOfyhlBH1ocR4zJiTIAx4zJiTL7SEM4bei1Tr+UasTwbISbGUMkIMRARERGRm4SUUu8YiIiIiIiIiIiIiIiIiIiIGjy2wCciIiIiIiIiIiIiIiIiIjKAIL0DMJK4uDiZlJQEk6n65xrMZrOPIyJ/sm/fvvNSyoTqpjVu3Fimpqb6OCLf2rdvHwAgLS3timnHjh2D3W5Ht27dfB1WQKitbAHeKV92ux0A4HA4cODAAQBA586d1emBcD5U1hEADh06hIqKCjRp0gTNmjUDEBjrWB/eOHeVl5erfx88eBAA0LFjRzgcDphMJlgsFveCrccyz5w5g7NnzyIoKAjt2rVTp4eEhGi+TKqdr8pWp06dIKWEw+GAxWKp8Tquoatp2yn86Rhxp2wdPXoUly5dQqNGjRAREVFlWnFxMS5cuICoqKhqr2Oo4XD3vFVTvSeEAOBfxxfrU+/Q43peD5cuXQIAnD9/Hr/99hvMZjNatmwJKSWEEIiOjtY5wvpR1gOorD+Aqr9zo6KifB5TbWorX3FxcbJ58+b4+eefkZ+fj9TUVERGRvK6KcB46zqvod/nIu+pq14kIiIiJvCrSEpKwu7du2v8ARMbG+vjiMifCCFO1TQtNTUVe/fu9WU4PhcUFAQpJVavXn3FtJEjR+LChQsBvw28pbayBXinfBUUFACoTODHx8cDAHbv3q1OD4TzobKOQOUNuXPnzuG+++5DZmYmgMBYx/rwxrkrLy9P/Ts5ORkAkJ2dDavVCovFor6nJWWZS5YswYoVKxAbG4vs7Gx1elJSkubLpNr5smxJKWG1WtGqVSveiK5BTdtO4U/HiDtla+DAgfj4448xcOBA9OrVq8q0PXv24N1330WvXr3w0UcfaR8w+Q13z1s1HV9KAt+fji/Wp96hx/W8HnJycgAAr732Gt58801ER0dj9erVsNlsCA4ORv/+/fUNsJ6U9QCgxuz8O7dfv34+jqh2tZWv5s2bIzs7G3/+85+xfv16ZGVloV+/frxuCjDeus5r6Pe5yHvqqheJiIiIXegTEVEtGuINndLSUjgcDr3DCDhCCISGhqrJDG+TUkJK6ZNlkf6U8tUQz1me4DFC5D2+qu98QUqJsrIynjPILUIIhISE+P0xEUjln9dNDYdy/ubvWyIiIiL/w6t1J4cOHUJKSgqSkpKQnJyMl19+We+QiPyGEAIOhwPnzp2r8r7dbkdRUZFOUZFWQkND9Q7Bq6655hoAQFxcHIqLi2G1WnWOKLD4svwkJFT2wpeSksL9SFQD5ZhsSMfIL7/8AqBqt8iKY8eOAWg4Q6eQdwXKNZNSn7Zs2RJWqxWlpaUN6pxBdDmbzaZ3CG45ePAgkpOTsX79egCVPedR4HO+1istLUVJSYnOERERERGRq3jl7iQ+Ph6jR48GAHz22Wd4/vnnMXbsWMTExOgcGZHx3Xrrrdi5cyfGjh2LjRs3IiEhAXa7HaNGjYLNZlO7YSf/s2fPHr9vMVOXl19+GYWFhUhLS4PdbvfKGO0N1a5du3xafu677z706NEDYWFh3I8BznlYD3LN+++/j/Ly8gZzjDz44IM4fPgwhBDYtWsXrrnmGqSkpACo7F523759AICsrCw9w6QAsWPHDr1D0MR9992Hnj17IiYmRj1XNJRzBpGz9evXq0MA+KOwsDC0bt0aANCoUSP07t1b54jI25x/fynn7fDwcD1DIiIiIiI3MIHvJDExEfPnzwcA7N+/H/369cMrr7yCmTNn6hwZkfF98MEHuO6663DgwAGMHTsWb731FqZMmYLCwkLExMTgnXfe0TtEclNaWpreIXhdUlISx3T1EuWGoa8EBQWhQ4cOPl0m6aNVq1Z6h+C3fH1c6unBBx/Ea6+9hri4OEyaNAnr1q3D6tWrMWXKFBw6dAi7du0CAEyaNAm9evXSOVoKBIFybgoKCkL79u3V14HSswCRq5TxxP1V69atq4yFToHP+TqPwyUQERER+a+AuYITQtwghLhLCDFQi/ldd911GDp0KFatWoXCwkItZkkU8JYvX45rr70WdrsdY8aMUZP3W7Zs0bVbWrvdjscffxy//vqrbjEQkWu++uorzJ07V+8wiMjPHD16FAMHDsTAgQPRsWNHNXn/v//7v2jWrBkeeeQRREVF4cUXX6ySvOeDP0REROQPeH+DiIiIqGEIiBb4QohBAFYCeAvADCHEcCnlp/X87mQAkwGgSZMmyM3NVafdcccd2LFjB7KysnD//fejX79+2gdPAcu5bBntqf2CgoJap8fGxro97+XLl2PatGk4ePAgYmNjsWnTJt2S9zk5OWo3/oWFhXjppZewYcMGxMbGIjg4GP3799d0ed7crpczavny1jaoab4OhwMXLlxAo0aNamxVoOV2rw9flgNvqG/ZysvLq3Fafn6+W8NmLF26FABw+PBhrFmzBgCwbt06PProowCAGTNmuDxPT1S3jlJKWK1WWCwWQx17/sC5bCUmJlbZvs7bVQiheY8YtZVXAOyBQwdankOcyxYAfPzxx87T1Jb3R48eRVpaGnr16qW2RtQieW+08mW0ePyZUa+3AH328/nz51FWVqaeq53Vddw2hHJX1z653OX3Ij788EMEBwdfsW29cR8iJyenxmknT55EampqjdNri+fkyZMAoDaCsNvt6nvkO5dfcxmFcoxcft2n4Hmi9m2wdOlS2O12ZGVlobi4GKtWrUJmZiZiYmIQFhaGYcOGaR0uEREREenI7xP4QogEAHMBTJdSvi+EKAZgEkJcI6X837q+L6V8BcArANCmTRvpPC0tLQ033HADNm3ahJEjR3ojfApgzmWre/fuso6PBwTlZs7+/fv1DeR3zsl7s9kMu92Oe++9F6+++qqhbmS4w9vlS4sks8PhUG/MeKvLPqvVirKyMlitVoSFhbn0XaMn0vWiRdmKj493+wacc/JeCIETJ05g5cqVahK/Jr664We1WlFaWuqTZQUa57J17bXXVilbztu1tm6aG8KNXW/xx21X0w3+aj6nlq24uDg5cGBlh1yXLl3Crl27sG7dOjzyyCNIS0tDdHQ0srOzERwcjM8//xw9evTwybqQf6pvneiPx1dNaluXsrKyep2rqSopJVBN74fO5SstLU1arVYAQEhIiC/Dq1Z5eXm1DxPURUn8x8TEAADMZnOtDwMYlb833rj83GW0c1R9r/uoKufkvclkgsPhwPz585GZmYmKigokJiayq3wiIiKiABIIV3YFAL4BUC6E6AjgGQAPAPhECPFfns58woQJKCoqwtatWz2dFRH5kHPyPiYmBjt37lS793/ooYfqbCVNnrNarSguLoZyM9IbLBYLQkNDYbFYvLYM8h3n5P0tt9yCP//5zzCZTGoS3wgsFgvCwsJY5jTG7UrVUW7wu1KPREREoFevXujVqxcGDBiAKVOm4NKlS/jb3/6GXbt24aGHHmLynshNPFe75/dzWK1dkgkhYLFYEBwc7JugamG322G1WmGz2fQOhQIUzyWuc07eR0RE4Pnnn0fLli3VJH5+fj5KSkr0DpOIiIiINOT3CXwppQ1AEYCxAN4FsFxKOR7A7QDmCyFu8mT+zq3wy8rKPA+YyGBWrFiBFStW6B2G5tq0aaMm77ds2QKz2Yzly5erSfzx48d7dfmvv/46rrvuugb9oMBXX32FzMxMzW/MtGvXDo0aNUKjRo0QHx+P1q1bIz4+Xn1v8uTJdc/ERwL1+HJWWFiIRx55BCdOnPBoPj/88EOV5H16ejpiYmKQmZmpJvHvueceLUJ2y2effYaMjAwIIRAaGupyizSq6uDBg0hOTkZycjJat26Nr776ymfb9cSJE3jkkUfU7n1Jf6tXr1bLQ3JyMrp06YLk5GSkpaXhuuuuQ1paWpXprkhJScGUKVNQUFCA7OxsBAUFeS15X1hYiBtvvBFffvml5vN2h1bnZzK+1atXY/Xq1V5fjnMd2KNHj2qPW+XftGnTvB6PkaWnp6NDhw7o0KEDunXrBgD22j5/9OhRDB48GLfccgseeugh3wT5u+eeew633norhg0bhmHDhuGxxx7D2LFjMXLkSAwbNgxTpkxxeZ5KLwJKS3wiZ0IIfPfdd7jpppsa9PWY8vuiPtq0aaMm7+fMmQOz2YypU6eqSfylS5ciPDzcyxETERERkS/5dRf6QgiTlNIhpZwlhAgBMAXAYQCQUu4VQrwJP19HIm9RujcfNGgQE1EaW7duHZ544gkAwN69ezFgwACdI9JHnz59UFpaqnk3fkOHDsXatWs1nae3DB48WO8QvE5KiW7dunn8oIby4EWTJk2Qnp6uvh8TE4MOHTrg4MGD+PXXXz1ahieuv/56tmoJEKGhoejVqxeAP7podzgc7HJUR82bN1eHuvGGQ4cOoaKiAkDluM/eann/+uuvIy8vD3PmzMF7771XZ9f/vtCrVy92T9wA3HrrrZBS1jg+vTcMHDgQb775pteX468OHjwIAIiKilLecugWTB0uXLgAh8OhJgedFRcX4+jRoy7P884774TFYkG7du0AVNa3NpuN9S2p5syZg7y8PLz++ut47LHH9A5HF1r/vuCxRURERBRY/C65LYRoAyAOwF78/iNYCCGklOWi8k7FA0KInwD0ATAAwDJPlnf06FF88cUXmDhxIm9+UUBRujdPTk52eexwf/DDDz8gPj4ehYWFGDVqFLZs2YIZM2bgwIEDMJvNXrvh6Jy8VygPS0RHRzeoH9VBQUG47bbbNJ/v0qVLsXTpUvV1UVERIiMjUVpaWu2NR704HA4kJSUFfNeQoaGhGDVqlEfnkVOnTuE///kPQkJCcObMGfz0009o3rw5gMruIg8dOgQA+Oc//6lJzO4ICgrCoEGDdFt+oOnUqROys7N1WXazZs3wpz/9CcAf4zmXlJQgMjJSl3gaMuUBittuu61KK/H8/HzEx8fX+D1XWuFnZ2dj165dAIBJkybhxhtvdD/gOii9dZ07d073sX2llLBYLJgwYYLuDxGQ97Vu3drn49MvWLAACxYsUF+fP38ekZGRhnhwxSic67q6zltpaWk+6UWhOosXL8aUKVPw448/olmzZpg1axZatmwJAJgyZYpbCfzIyEiMHj1afW2z2WC1Wlnfkur8+fMA0CB7ulSufywWS71/X/zwww+IiYlBcXExsrKyMGfOHLz88ss4fvw4TCYTnnnmGS9HTURERES+5leZJCHESAD/BDAfwGsApgohoqWUEgCklC8CEABmAZgI4C4ppUd9Rq5fvx6RkZEYOXKkZ8ETGYzFYkFERETAJhfNZjO2bNmCmJgYFBYWYsCAAWryfuPGjUhISNB8mUry/vJEn/KwBFvvepfRyrSy310Zu9kfaTGG5cSJEyGlxIgRIxAWFoYPP/xQnfb2229DSomUlBTExsZqETKRSim/7HJUH+6McV+X4uJi7NmzB3v27MGGDRuqJO87dOig2XJqI4TQfWxfb2xbMja9x5SuqKhgmfNTJpMJq1evRuvWrfHjjz8iKysLDoe2HQYEBwfDYrGwviWCe3W02WzGnDlzEBERgeLiYjz55JNq8j4zM5PDVfiZ1NRUCCGq/Zeamqp3eERERGQQftMCXwgRDOAeAA9IKT8XQowCcD2AJ4UQS6SUhQAgpbxXCGECECGlvOTKMpRuBxU//vgjvvjiC4wfPx5BQX6zqYjqxWQyBWTLe2dKEn/UqFEoLCzUJHlf05j2zsn7bdu2YfPmzQCA0tJS2Gw2CCH86oZVTeupMGIi1WhlWrmBrtWNdKPuE2U83PrKy8u74vXu3buRkJCAtm3bIj8/H7t27cKxY8fQpEkTfPfddwCAcePGaRo3BZ7Ly5azmlp0K+XXG72j1BYPACQlJWm+TH+j9XkSqOwK+t13363ynreT9/n5+QCgtn5WuqIuLi4GoM++rmnbKrHWhOXSfznXx3rs56CgIN0fXNHb5du9oqKizn1hFEoSf/LkyTh27BgmTpyIOXPmqAnGkydPejR/IQRCQkIaVG9kWsrJydE7BE04Hw/KQyKlpaXq+w2lDnK3jlaS+FlZWSguLmby3o+dOnUKv7dFuwJ7sSEiIiKFv2WlowFcA+BzANsAnAeQDmAsgJeFEL0AWKWUuQBcSt4DQEREBK6//nr19YsvvoiYmBjMmzePF8QUUIyYfPWGfv36Aaj8IVxaWgquNd6rAAAgAElEQVS73e6VY9k5eb9z50507dpV7eo7LCwM0dHRABrGmHTeKlu1zddo5dlo8XiLVjfYMjIyAAB/+ctfcNNNN2H06NG48cYb8eOPP+L06dOQUqJr1654+OGHNVmeKxrKTUQ9hISE+HT7xsfHc38aTG37w5N9FRUVhV69egGovNGdlZWlvvYW5eEQ5SEyk8lU6xAA3say3jDosZ+9ddwGisuP+6CgoHqfC6KiotTfLr5Q07KOHj2KNm3a4Mcff8TChQsREhICAPVuEerLdSD/43w8KL+Nw8LCdK0zfc2Tc+WMGTPU/715f4OIiIiIjMFvEvhSSpsQYimAx4QQx6SU/xFCfAYgEcAwIcR6ADcA2KjF8vbv348dO3bgmWee4QUxkZ8zm81eG2tx7dq1mDFjhtryvmvXrl5Zjt4cDoc6Tl9DeBCBfCMvLw9ffvklEhISMGLECOTn5yMmJgYPPvggli5dqn5u3bp1+gVJpAHnsU7Zqsa70tLS8NFHH+kdRpV9TqQHnnfIHUpL/ClTpuDHH39U35dSwmazITg4WMfoKFBIKWtsfUx18+b9DSIiIiIyDn/LwvwHwIcAxgshbpZS2qWUGwBcDeBqKeUyKeWv7s78hx9+QL9+/dCvXz/cfffdiIqKwuTJk7WKnYgCzObNm9Xk/c6dO9G5c2e9Q/KKuXPn4uuvv24Q47n7g4qKCkyfPt1vumStzdNPPw2gsvW9s4kTJ6p/d+3atcH0akDaOXDgABYvXqx3GKq9e/di8eLFPIcGOCVJGhoa6hdj0M+aNQu7du3SOwzyEqUM7ty5E88884ze4TRIBw8eRHp6OtLT0/UOxSVKEr9169bqezabDVarFTabTcfICADeeecd9O/fv8o/f+P8gBsfMKreb7/9hqeeegoVFRV6h0JEREREOvGrBL6UsgzAWwD2A5glhJgshJgAIAFAkafzLy0txf79+7F//36cO3cOwcHBCArym04KiMjHXnrpJQBQu80PVHfddRdatGiBiIgItiQ0gHPnzqFv3744c+aM3qF47NdfK5+5+/zzz6u8HxMTgxYtWgBg63tyz9VXX43hw4frHYYqNTUVI0aM4Dk0wI0ePRrXX389MjIyYLFYDD8e+FtvvYXHHntM7zDIS5Qy+N///d9488039Q6nwenQoQOAyiT+wYMHdY7GdUoSv2fPnujduzeCg4NhsVjYAt8AAuE3gMViwRNPPIHrr78eo0eP1jscQzp79iz69OljuIe2f78Pu1cIsffcuXN6h0NEREQU0PwuOy2lvCCEeBXAEQBTAJQBuE9K6fGvmM6dO2P37t0AKpMJw4YNw7x58/D88897OmsiCkAOhwMAak3eOxwOlJaWGvoGfl3at2+vdwj0O4fDgdjYWIwYMcJvhzJw7tJ3y5YtuPnmm/H2228DAJ566in1c0q3kGx9T+5o3Lgx4uPjUVZWZojuoxMSEpCQkKBrDOR9ycnJePfdd9XXoaGhOkZzJYfDccUxcenSJZ2jIm8RQiA0NJT7WCc7duyocs2TkpKid0guM5lMWLRokfo6JCREx2hI8fjjj+Pxxx+vMqzBLbfcondYLhFC4J577sE999yjdyiGo5w32rRpg7Zt2+odzhWklK8AeAUAunfvznEQiIiIiLzIL+/+SynLpZS7AYwDMElK+Z3Wy7jxxhsxefJkrF69+oqWgURE9WWz2dj1PGnGarX6fXly7lY6NjYWn376KWJjY/H2229j7ty5eodHAcQfujAn8qWSkhIeE0Q+xHqIvInDGgQmnjeIiIiISOF3LfCdSSntWs6vpKQEubm56us77rgD27dvx+TJk7F27doqTzUrrWrDwsJgMpnY1X4t6hqzi9vOOwoKCmqd7o1Wrc7LdDgcaosTpaVwTcusLdaioiK1JW51fN06t6joj9E6lBb4ynvO66HcSKmoqIAQosHcWPFWufPGfOsqr3Vxpzx78j0Aak8ORujRIS8vr8Zp+fn5iI+Pr3aackwr66Ak8W+++WZs27YNAPCXv/xFrTuUbiOllGjUqBHCw8Nd7n2gtlgBICkpyaX5eTpPb8RDV9LqeFm6dCkA4PDhw1i7di2ioqKQmZkJs9kMAJgxY4ZngWpIKVvOrT6Vltavv/46wsLC8NFHH+Hjjz9GRUUFUlJS8NBDDyEuLg7Dhg2rcb4sk+6rq+tbX55/wsPDYbVaYbfbUVxcrL5//vx5tZwYaV/Xtp7VledJkyap3ZYb8bisiTe2eXXlzh/3c11qu94AvLOerlz/+OK6LScnp9bp/fr103R5J0+erHWZtS3PG7Eq83Ruje7c605d48NL6b8NiJXhDIw2rIHzMXL59Uhdx2ygXCN7sh61nTe8sX2U61y73Y758+fj4sWLLs+DiIiIiLyDmdNahIWFYebMmXjiiSfw6quvVkngl5aWqkm7iIgIvUL0S5c//ECBSWkpDFQeS55wJ7nqLc4PEyixOL+n/K3cSImIiKj1JoVRNbRuy7Usrwqty22g7JPGjRtfcXMpKSkJx44dQ6tWrbBt2zZYLBb14S7l+CkrK1NvKNX2UI8/qS7JSu7z5k3dw4cPY82aNQCAixcvIisrC3PmzFGT+L6Opy5K6y3gj27cc3JykJOTU+XBylOnTiEzMxMtWrRAjx49cNVVV7EsusFfEgomkwlNmza94v3IyEjDdfdfl+rK85o1a6ok8Ruy6q49/XE/G1FtdXd8fLzfnA9q40kSXi9Ka3Tgj67+T5w4oWdImtL6QQxfufx6pK5jxJMHegJBXecPb20fu92OrKwsFBcXIygoqEpdUVRUxJt2RERERDrhhVgdOnfujDvvvBObN2/Gf/7zH/X9sLAwREZGapboaUiUhx+UH3IUmCwWCyIiIjRpcRII3YaTsWlZXhUst66Ji4ur0p3+oUOHqky3WCyIjo5GeHi4ThFqj11k+gfn5H3//v0RERGB4uJiZGVlwW7XtDMozVgsFoSFhcFiseDFF19E69at1VbK8fHxyMjIwOLFi9G1a1cIIXDixAn06NEDI0aMQGFhod7hk48ZoVeX+qqpPCsPWq9ZswaHDx/WOUpj8qf9bGSsu40pODgYFosFwcHBOHHiBMaOHYtJkybpHVaD53w9QsbknLyPiIjAggULkJWVpf4DUPPTqkRERETkVWyBXw8PPfQQ9uzZgwcffBDffvstIiIiYDKZ2PLeTcpDD3z4wXcWL16M/v37o0ePHj5b5po1a3DvvffWu+Wx0lr5m2++wUMPPaR2ZyilhBACUkqEh4fjySefxLhx47wZustmzpwJAGq3jQCQnZ2tZ0iGcOrUKezbtw8jR45U9290dLTHrdG3bt2K7t27Izk5WaNIK1vULl26FCUlJdVODw8PR0ZGBqKjo+s9T4vFgj179iAkJAQ33HCDS/Hk5+dj8eLFWLhwoe69TtTH1KlT8dVXX6nHrcPhUONu3bo1lixZgpSUlDrn49yd/uVDCgghNGl5/95776FLly6atpArKSnBpk2bcP/996ut8uojODgYGzduRP/+/ZGamqpZPKSdnTt3qsn7W265Benp6Rg6dKh6ozMrK0utA4xECIF3330Xc+fORXl5OQCgUaNGeOCBB9CsWTP1c+PGjcOYMWOwefNm7N27F7m5uejUqRN69OiBLVu26BV+wNq2bRu6du1ar/NhfRUWFmLr1q2YOHGi2jLY+RxcH/7Q68Lrr79ea3lOT08HAOzatQtr1qzB6NGjMXjwYN3irYlSX0yYMMHny/aH/Xzx4kXMnj0bn3/+ebXTg4KC0KdPH/V3ZFlZGYKDg2EymWA2m/HAAw9oenxVx7l767Vr12LUqFEuXR9609atWzFo0CCf9VRUVlaGDz74AHfccYfL3921axfat29fba8g7hBCoKSkBA888AB+++03AJXXWQ1lGDOjysvLQ25uLm6//fZ6f0epyzZs2IC77rrLMMeXu5Qhwu68805N57t+/XrcfffdHj/c7Jy8r6F3KWM+rUpERETUADCBXw9hYWF4+umn8fjjjyMzMxPLli3TOyS/xocffGvYsGH4/PPPsXDhQqxfvx7Dhg3zekIwLy8Pw4cPx/fff49u3brV6ztKa+Vly5bh7NmzNX5uxowZhkngX3PNNdi/fz/+/ve/1/iZq6++2ocRGUtZWRluvfVWAH/s35KSEo9uKjocDvTu3bte48XXV35+Pnr06IELFy7U+jkpJZ555pl6d4lvMpnQunVrt26Y9+/fH3l5efjtt9/w6quvuvx9X/rpp5+QnZ0Nh8NR7fTz589j3rx5tR4nzpQkfv/+/b1y07Vfv3749ddfUVZWplnX9UePHsXQoUNx4sQJNGrUqM7POxwOLF++HC+//DJKS0uxdetW/Otf//I4DtLef//3fwMAoqOj1QSh2WzG9OnT8dxzz6G4uBiHDh1Cx44d9QyzWkqy02QyYcWKFbhw4UK1D0+azWb86U9/wvz58zFkyBA4HA588803+P7779GuXTsdIg9MUkpMmzYNqamp+PTTTzWZ54ULF9CzZ09YrVZ07NgRnTp1Qmlpab3r2oiICPTq1UuTWLytPuU5PT0de/fuxcWLF5GRkWHIBL5SX5w+fRqJiYk+WeYtt9yCPXv2+GRZntqyZQv++c9/1vqZTZs21Tjt4MGDarLMW4QQCA0Nxfbt2zFnzhx8++23WLFihVeXWR+7d+/GihUrcOTIEWRmZvpkmSdPnkSfPn1w5swZXHXVVbDZbHU+QKSMVd+9e3c10a6Vt956S51nVFQUNmzYgOHDh2u6DHKN1Wp1uft/q9WKf/zjH3j22Wfx3XffGeL4coeUEnv37sW0adMAAD/88AOefvppTeZ9+vRpDB06FIcOHUKPHj3c/j1z5MgRdRi56dOn1zQ0VPU/8oiIiIjI65jAr6cuXbpg6tSpWLlyJUaOHIk+ffroHRJRnZTkvWLChAlYv369S0/Au0Np2dqkSZN6f0dpzbJlyxYsW7ZMHWLBuVW7yWTCvffeq3G0rlNak69evRqTJk1Sf/SWlpYiLCwMVqsVZWVlaNmyJdq3b69ztPpp06aN+reyfz1tIWC1WhEcHKxZa2Xn5P2wYcPwpz/96YrP7NmzB0uWLMGlS5fUfV3fHkSaN2/uckyHDx9WxzfcunUrXnrpJVRUVGjSe4E3NG7cGO+88w52796t3vRRjgUASEhIwF133aX2plEfsbGx+O6777wSb3R0NEJCQq4YH9wTnTt3BlC5rrW1wHc4HJg3bx4WLVqE0tJSdXspLUrJeHbu3Ink5GRcvHgRK1euxKOPPorCwkIsXLgQAJCammrY3hOUMYBDQ0MxdepUtG3bFkOHDr3ivPTLL79g7dq1yM/PV783bdo0Ju81pnS3ffLkSU3md+HCBfTt21edb1FRkct17ffff69JLL5Qn/K8cuVKXLx4ESaTCR988IFeodZISom2bdtq9vBYfa1bt85ny/LUxIkTkZCQgEOHDlV5iC84OBhmsxm7d+/GoUOHYDabsWLFCkgp1da548eP92l9qhw/NfUW4GvHjx8HAHz77bdqklz5DeUtbdu2Vf8uLy+H1Wqt8wEiZaz60NBQzevPqVOnoqCgAP/+979x6dIlJu8N4JprrnH5OxaLRa0rjXJ8ucNqteK+++5TX7/00ksAoEkSPzExEWVlZbjmmmvU48kd7du3R4sWLXDixAksXLgQmZmZiImJ8Tg+IiIiItIGE/gueO6557Bjx44qXekTGZWSvA8KCsL+/fvx6quv4oUXXsCECROwceNGjBkzRu8QqzCZTGrCT2nxCFTekPZVN5D1pbQmB4DevXur7yuxKgl+jvX3B2X/epqAdu621FPOyfv7778fy5cvr/XzQUFBiIiI8Pp+VXqYaNSoES5cuICHH34YixYt8rj3Am+xWCy47rrr0LNnTzUhkZ+fj/j4eACVPTEoY8VqkSzXgpblyJnSKu9ySuJ+yZIlKC4uhtlsxl133YX58+ejbdu2CAri5ZhRJSYmIjMzE/Pnz8eJEyewbNky/Pzzz3A4HGjZsiWmTJni8YNJ3iKEgMViwRdffIG1a9di1apVWLZsGTp06IBBgwbBbDbjtddeU3sfURL3jz32mM6RByYtzzdK8r6goECtK4A/zkFGfNjLU3WV53/84x84ceIETCYTMjMzfda63RXK2OmANg+PBaphw4YhPT0dVqsVISEhKC8vVx96mDlzJmbOnIl33nkHzzzzDLZt24ZWrVrpHbLhKElyX1IeFqirTlQ+562HC2bPno2nn34aCxcuxK5du9Thnch/CCFqagnuV6ZNm4bS0lIkJiZi3rx5mDRpkprEX7Vqlcfz1+r3zKOPPoqVK1fixIkTmD9/PpP4RERERAYSeHd3vCgiIgKvvvoqjh8/jtmzZ+sdDlGN+vbtWyV5f/XVV2POnDmYPn06AGDs2LHYvn27zlFqa/bs2YiIiPDJelkslloTuVolq+lKWm1bV5P3Cm/v18OHD+PUqVOwWCzYt28fAOAf//gHQkNDDZ0kDA0NrbE1ocViQVhYmKEeaKkrZi1t374dISEhePbZZ1FWVoYJEybg8OHDWLp0qeH26enTpxEXF4ehQ4fqHYqhxMTEIDMzEyaTCT/99JOavJ86dSqCgoI8Pid4u/6Kjo7GtGnTkJGRgSFDhuDYsWNYtmwZ/ud//gcXLlxAUFAQhg8fjh9//JHJey/S6nyTn5+vJu/HjBnj9V6VjKam8uycvDdq4sGI9aEvr59d4fwwyuX19ZIlS3DPPfegoKAAd9xxh6bDKgWK4OBgWCwWr7fAdyaEQEhISJ11ovI5b16Dmc1mZGZm4qOPPvLaMupj9uzZCAsLw7hx42C3cxjxhuTgwYPYsWMHhBDIzs7GgAEDsGbNGgCVLfFnzZrl8TK0/D3z6KOPokWLFnA4HJg7dy4yMjLUf0RERESkHzb5chIeHq52g3u5//u//8PJkyeRnJyM8ePHY9WqVejdu7c6bmTr1q19GarhON84cW59rPyAj42N1Su0gFbdDSul5b3ZbMaGDRtw9uxZdUz5ESNG4OzZs+p4gBs3bsSQIUOumEdN++u33367Yt/W53t1qe17tU3LyckBgP/P3pnHVVG9f/w9rKIoipK7oBYuuGGpSC6ICxpSmntl5votqS9pbqmVJqapmZZaaZjpN9csF7RMxXLPnzu5b4jiEoKAyM6d3x80070sl3sv98IFz/v14sW9c2fOeWbmzJmZ8znP87BixQrWrl0LQFBQEDNnzqRjx4506dLFJHv0YaqtTwr6jkFCQkKRBllNOb751WeqeG8opraD06dPM2TIECAnDOzNmzdp2rQp58+fZ/jw4SU+CJkbJVWGsb+ZWmZhKGkHZFlW+yntAS1TylbKLAh9ZS5cuJBz586pg3WQIzylpKSwe/duXnrpJaPtsRQLFy4kMTGR0NBQNBoNv/76Kw0bNiQ4OBiA8ePHm73O9PR0oqOjCxx0LEpbyI/CzqU+BgwYQN26dRkzZgwffvghtra2LF++XC1XX9kF7cfChQsB2LFjBxEREUDO/WvEiBF4eXlZ5JgHBgZy6NAh0tLSgJz2OHnyZKZOnWr2uqyVolzTxU1+tmp73g8ePJh58+bxwQcfGFWuJfaxsONaUL9cFJtyt+dq1apx+vTpEvO8t1Tb0leudrQbY+osqP8ZNmwYLVq0sEj/ow9Tjs369etxdnYmLCyMTp06sX//fiDnPdSYlD1lFUUkNxXlHasg9OU0L8q2xpappAro1q1bgRMHZFkmOzub119/nV9++YXg4GBmzZpltA2Gkl/bW7t2rfquumfPHr3e5aYcn6Jgat9Vmu6nJUFgYCCQ0/7yG2OcO3cuSUlJajh97ftkvXr1CizXEsdV6fPHjx/P6NGj2bBhAykpKervYvKJQCAQCAQCQckh3ENNYMKECdStW5f3339f58H2SUWj0ZCamopGowH+DS9e3GH7nkRyH3vtsPmrVq3Czc0tzzajR49W88gPGTJEzRGau6z8sMZzqy3e+/r6AvDRRx9x4MCBkjRLYCKGtMOioC3eDxkyxCTx3lI2Xr9+nXv37mFvb6+G0VfybO/du1cnF6ygYJQQxSXdT2mL9/7+/owaNQpnZ2c2bdrEjBkzWLdundWcU23xvm7dutjY2HD9+nWzhPcsCGWyX0kgyzJpaWlGh9WtXbs2YWFhqnhf1PK1xTMvLy8AVq5cyblz54yyqzBiYmIYNGgQ7du3Z9++fdSoUYO1a9eSmJj4RIn31oQh7SN3O9IW7/v27cu8efN01s/IyLDaUNHm7JcLas+xsbElGjbf1H6lpMiv//n+++85ffq0xZ7BzM23336reuJ36tQJKNl7izUhy7JF+gSlXGtpI0qqgMLGZGxtbfnhhx+Ij4+3qHhvCN27dyc0NFSIokZQ2vrX/v376/3d09MTyPHEnzt3LmA97y8rVqwgKSmJrKws9U8gEAgEAoFAUHIID3wtEhMTVTHT3t4ef3//fGdQly9fnjlz5vDaa6/x2WefGe35UtZISUlR84Frh4W0pvCQZRXtXOwDBgzQCZsfHR1d4HajR4/mqaeeYtGiRQwZMoR169bRuXNntayCyH1ub926VaKz67XF+zlz5uDj46Mu++ijj2jdujW9e/cuMfsE+vnhhx+4ceOGzrKsrCwyMzNp0aIFgwYNMmt9uT3vZ8+ebVI5ynVn7pz0SmqWYcOGqcsqVaqkeuEPHTqU9evXm62+soqjoyN37twxe0SMrKws4uLiqF69eqHrhoeH64j3ihdO48aNuXjxIrt372by5MksWbIEoEQHJGNiYlTxXgkLrwj6iohvCW/M2NhYvvzySwCaNGlSrH11eno669at4/79+/l6wZlqT2JiIpDTBpU81wWhLZ6NHDmSpk2bqstWrlxJ3759i3xMMjMzSUtLo3379gC4ubmxePFiNdLHk45yvkoi3LohedC186U/evQIPz8/Hj16xAsvvMCwYcO4fv068O9+ZGRkkJ6ebhW51Tdu3MjNmzd1lmVnZ2Nra2vy9WXt7Vn7fNna2hIfH2/Q/cIYbt++zZUrV9Tvjx49omLFiur31q1bG9Se9fU/a9asISgoiAEDBpjVdksxf/58ADZs2ADk3KuL6x1UEWCtUVRUhG1zkJWVRUJCAtWqVdMRzA15Br5//77ZrwNte5QUAdaWkkgfsiyzd+9eIiIi6NKlC9OmTbOatGsxMTEmTYSy9P1Uu3+1dk6cOMHmzZv1ruPq6srKlSsZMWIEy5YtA2Dy5MmAGEMTCAQCgUAgEOgiBHwtbty4oTMI1Lx5czUcX27atm2Lt7c3q1ev5r///W9xmWiVlC9fXicfuJKjWmB5lGN+48YNDh06BOSE4a5Vq5ZeAR9yvNQTExP57rvvGD58ODExMTpl5of2uT18+DDnz58nICCgxER8RbyfMmUKPj4+QM7khKioKA4fPszgwYNJTk4uEdsE+vn6668Lzf2XkJDAf/7zH7PUp9FoGDFihE7YfEPbxqpVq4B/BweVa8Tcg4X37t0DoEePHjrL+/fvz8cff8zWrVvNWl9Z5c6dOxw4cIC///5b7ReKiizL7Ny5k7///ptRo0YVur4y+cTLy0sV7yEnrGqTJk3w9vbm7NmzfPPNN0COZ21Jhfzt2rUrGo2GOnXqqCHzlZzvs2bN4vr16xw7doy2bduatV5tAV/5Pnz4cLPWURBr165lxowZete5c+cOo0ePNuqc/Pbbb8C/nlf67qeKeDZ48GCaNm0K5IRbvX//PufOnTPL/UsRldzc3Pjwww956aWXnviQttoo52vAgAFq6FqNRmNxIaV27doG5UHXnjTZtm1bHj16BMDOnTvZuXNnnvVPnTplFZMWv/vuOz766CO965hyvVt7e3Z0dCQlJYUpU6awZcsWJEnKM0nRFLTDKnfs2FGv127dunXV9wF9FNb/DB8+vNQI+KAr4tva2hbbvVSJXKBEALMmFGFb+V8Uxo8fz19//UVERIRRgvnZs2cJCQnhlVdeYfTo0UW2Q+HIkSPcv3+f/v37q6kCrEUAN4Rt27bx6quv8ujRIyIiIqhYsSIhISElnvYhJiaGPXv24Onpibe3d4EpT/Jj165dZGZm8sorr5htP5o0aQLkXF+lyUFEiaJWGN26dSMoKIjt27ezbNkypkyZYhUT8AQCgUAgEAgE1oUQ8LWoVKmSOthvb2/PggUL8l1PlmVmz57NqVOnGD58eIl47lgTQrAvOZRj37RpU6pVq8aDBw/w8/Pj4sWLhW4bExPDH3/8oZZj7Hn08fHBycmpRAdPW7ZsyZkzZ5g/fz6tW7fGzc2No0ePcvjwYQBCQkJKzDaBfgYNGsTt27fZsGFDvgM9nTt3NqtXXXp6OnFxcQBGhc0PCQkhPDycKlWqqF7IyrVi7sFCpT0rUTHc3Nw4cuQIH3/8MWCZPORlkdq1a+Pt7U2zZs3MVmZ6ejre3t4kJSUZtP67777LJ598wrlz5zh//rwqkABERkayYcMG1ZOoUqVKzJ49u8Q8Z1977TU++OCDPOFnbW1t1UkFzz77rNnrtbOzU6MkPP/88/Tr18/sdRTEK6+8Qnx8vDoJLDft27enV69eRp+TDh06ADkTNQrbrmHDhly7do2NGzfi6emJi4sL58+fV8Pnm+P+FRkZSXJyMtWqVStyWWUR5XzBv9595o6skpvLly8D+j3vFZR29Ouvv5KQkECFChXUtCrJycmqnfHx8cyYMYPVq1fz4YcfWsx2QxkyZAhxcXGsXbsWWZbVfkS515t6vVtze05JSWH8+PFs2bLF7GGxtT1Ps7OzcXBwUJ+P0tLSiI2NVQX5t99+26Ayi6P/KW7mz5/PzJkzi1XIDQoKonv37sVWnzEowrY5iIyMzFOuIcf5zz//BODXX381q4Dv7e2tPtOXRvr166emUKpevToDBgwgMzPTbB4UWPYAACAASURBVOfLVJTn56efftqgKDHatG3blrS0NLM+y/bu3Ztu3boBhj1XWQsLFy7UmbybHxkZGfj4+HDnzh0A+vTpUxymCQQCgUAgEAhKIULA16JBgwZq+D19fP7553z//fe88cYbhXqQCgTFxcWLF2nUqBEPHjygcePGqtdwfsTGxjJy5EhiY2MpX748dnbGdwU2NjZ4e3sXweKis2jRIkJCQjh79ixDhgxh4sSJah65V155xeQQ6QLL4+LiwrRp0/j444+LZbDV0dEx31DZ+ggJCWH16tVUqVKF48ePmz0ke25EezYfLVq0MGt5jo6OuLm5UadOHYPWnz17NkePHiUiIoKwsDBGjhxJdna2jnDv4uLC/PnzCQgIUL0rS4Lp06czc+ZM4uPjuXv3LjVr1gRQUwB4e3sbfe0YQpMmTdixY4fZyzWEcuXKMWHCBCZMmJDv79oer8agHDtDGDt2LEuXLuX69euEhoYycOBANUWGv7+/Wa73cuXKlZoB75JA+3xZKrJKbkw5HxMnTgRyJp8pEVri4uKoWrWquk5YWBi3bt1iyZIlBou4lkL7+tK+lorqlWmN7TklJYW33nqLtWvXkpWVRfny5XnzzTf57bff+Ouvv8xSR27P00aNGqk5vP/44w81ksGcOXMMnvhYHP1PSVASYdStrU1aE8rzvUajMWu5zs7OFp1oZWkyMzOpWbMms2fPxsPDg8zMTLNESjAHLVq0QJZlbGxsjHoGcnd3t8izbGm8vl544QW2b99OUFBQgeucPHkSyOmzNm3aRPPmzYvLPIFAIBAIBAJBKaP0xBqzEs6dO8c333xDv379mDp1aomHOhMIFGxtbbl06RJVq1blwYMHvPrqq/l6AcXGxjJu3DhiY2PZvHmzKt5rNBpSU1PNPshiaRYvXkyLFi3Izs7WETtHjx6NRqMhOTm51O3Tk4CpXuymnlMbGxuj+uvc4r2rq2ux2KmvPZdFrPUaVexSQjYrnj/GtKHAwED8/f2BHHFt1apVpKam4uTkxJgxY4iMjKRnz54mlW1uFA8nRbRPTk7m5s2bSJLE4MGDS8yukqK4zklwcDANGjRAo9HoiGeFeW7lxhLXkbVem5ZCOefWFob5119/JTExERcXlzzpVbQJCwsDciaCWRPW0L+ZkzNnzlC9enWqV6/OU089RcWKFVm9ejWOjo6MHz+e8+fP8+6776r7a47c6AV5np4+fZrhw4eTlZXFnDlzDA7brGCu/kdgHciybLX9dVm5/gvC2PvlypUrWbt2LfXr11cjGljTMTKl3zZkmyfpucKQdDaBgYFcvHjRaPH+STqOAoFAIBAIBALhga9DTEwM06ZNA3JeQlq1aqWGFNdoNLRr146ZM2dSpUoVId4LzEZCQoLe343x+lVE/EaNGhEXF0e/fv344YcfVO/J2NhYpkyZwsOHD1m/fj1NmjRRBxcfPnxIWloa5cqVM1qstCT6jo9i7+LFi3nvvfeIiYmha9euqth5//59Hj9+TIUKFfJND2Bpj2qB+VByQaempuZ7Tgs6l9o5pJUJLcqygtrWpEmTWLduncnifUJCQoF26rNVoaD2bCqF9THFza1bt9TPaWlpqqhdrlw51au0IK9NS6Ts0LYnt13p6enUqFHD5LIVIeTPP/9Eo9EwaNAgmjdvbnVpZzp06MDu3buJj48nKiqKLVu2ANC8eXMyMjIK3C6/Y1eS6LMnt8eyMegL1VuUciFHRPvqq6+Ii4vD29vbIPEs935qX0ePHz82yR59ZeYWD/O7Pq0pF3lGRkaBbaGo56s4CQ8P57333gNy0s6Eh4ervyn3F22qVq1KXFwcb7/9Nlu3bi1WW58UsrKy+Pvvv3WWOTk50atXLzw9PXn48KG6HuQ8hyqetaZeI0r/o4TczsrKUj3vTRXvFUzpf/SR+7rL3VdYUz9RloiKiiI7O1t93svOziYqKqrIZRqyTN+2iYmJZrPHUuzbt0/1gM9vbMfPzy/f7X7//Xf1c0ZGhtrODQmDX79+fVPNNRl990VLkN9zk7merU2hoH1X+qiGDRsW6wS+Zs2a8dVXX5m07bVr1wp8PgPreh4TCAQCgUAgEBSdMiPgS5LUDcgCDsiybFLywdjYWJYtW6Z+b9KkCePHj1df5g4dOsSpU6dYtWoVrVu3NofZZQYhhJoPjUajDgIU9iJZ0HG/f/8+1atXJy4ujjfeeIOLFy9y7949goODefToEevXr6dTp07Av14RVapUKTT0nbWdZx8fH9WmEydO5Pk9Pj4eoMRCUwt0MUf7yR1KtjC0Q2wq15P2stwhOENCQlTx/urVqyZPZjHWTtAdJMyvPVuCf7w3SszltKDjpJ3z19DwmeYcsFLsqVy5ssnljh8/Xue/NTN06FAePHjAokWL2Lx5M3fu3EGSJLZu3WqR8PkADg4OFhlkLGjyR9WqVS1Sn6nlareLorYR7euoXLlyZtlPfX2YKdentWCpdqAPU+s7duyYOkjfqFEj9ZgDXL16FU9PT53133jjDT777DN27txZJHtNwVLH1NqEiDp16jBu3Dggp6+5ePEiu3bt4scff2Tfvn1MmjSJ/v37q9GtqlevXuQJ38qEE2XCbWJioo54P2XKFKPLNGf/o4/i6CtKoo1YW7v08PBAlmX1OdvW1hYPD48il5kbd3d3g9qzsq2Li4vZ7ClISC8qmZmZpKenA5icg16ZpKP837dvn8XsNQfmmlhj7HbK80R+EQKLUm5RUPqolJQUs6dlUPrs8PBw+vbtS1ZWFgMHDjQoZac+THnHFAgEAoFAIBCUXsqEgC9Jkj0wB8gAJkiS9H+yLGcZuO0YYAzkvGQqeSZPnTrF5s2bOXHiBM899xyPHz8mNDQUX19fhg4daqE9EZQltNtWvXr1DN4uPT2dx48fA5jspantif/gwQMaNmyIq6srDx48YPPmzTRp0iTPNkpI87JEWdwnBVPbV2mnKOe0sEHHoobN16a0tL1/Bi11FNribFsFhQYu6cGpguwqq6SnpzN8+HCWLVvGnTt3AHjppZfMLt4XR9sqzeKyqViiveors6Svz/zQblu1a9cuYWvMgzLIP2jQIIPWr1WrFq6ursTHxzNnzhzef/99S5r3xKDdtqpUqaK9nCZNmtC4cWMuXrzI7t27mTx5MkuWLFFDG5szWptSltJHF8Xzvriwxr7C2jDXfVGSJIt7EGdmZposclsrucV3U1DC4FsbBd0XS+o5SXmuUMY5rAGlbypfvrzF6ujduzeZmZlkZ2eb5bn6SXtHEQgEAoFAIHjSsa5Ej6aTBRz95/80oAOAZMCoiSzLy2VZfk6W5ecqV65MjRo1qFGjBgEBAdSqVYtt27YBsGXLFuLi4li6dKnV5ccUWCfabcvNzc2gbbZt28bEiROpUKFCkQe7FBG/atWqJCYmcuPGDTZt2kSbNm2KVG5Jsm3bNt555x2jt7t79y5vvvlmsXk1FwemtK+ywjvvvKP2zcag9N1VqlShSpUq1K1bV/1cpUoVs4n32ri7u+Pu7m6WssxBjx49dPa5Vq1aADquMMXZtvr06UO9evXUP29vb+rVq4e7uzuenp60aNHCovXnplevXvTq1atY67QGHB0dcXJy0ulfP//8c6PKeP/993XOZX5CRHG0LWVfIiIi1EmZ5mTixIn88ssvZi/XVCxhz88//5znXGr/ubu788svv1hVKintthUTE6Njb2kUshctWkRqaiqOjo5G5ccdOHAgALNnz7aUaU8c2m0rd9oC+FfInzRpEqtWreLx48fExMRY1KbSIN4vWbKEpUuXGp1L+0nDnPdF5dnVUh7MxorclrbHHGjnoJ83bx779+83uoz9+/czb948C1hXNAq6LzZq1IikpKRim1iT+/lQedbXfqa4f/9+sdgC8Msvv6jPh4oYXhzje+aeFHv//n3effddTp8+bdZyBQKBQCAQCATWRZnwwJdlWZYkaSfwM+AOjJMkqQVgK0nSF6aE1E9ISCAuLo6mTZsSHR3N77//TnBwMK1atTK3+QKBip+fHw4ODmbz3FVE/A4dOnDx4kUmTpyok7OvtKEcH2Nxc3OjY8eO+UYeEJQ+AgMD8fX1NXq7b775hhkzZqgD6xqNRmfApkqVKoSFhZlNvF+wYAFJSUkALFy40CpCqS9dupT27dvnDl+pKSl7PvvsM7p161ZgOM2AgIBitefcuXPFWp+1oAxghoSE0LlzZyRJMnqgcdSoUfz+++8WF64KQ9mXDh06WMQjLiAggLZt25q9XFOxhD1t27alW7du7NmzJ9/fPTw8Sk0qqYoVK9K9e/eSNsMoVqxYoYZpT09P5//+7/8MmnyZmJjI8uXLAXj++ectaqMgL7/++iu7du0iIyMDwCLPnBERETx69Ahvb2+zl21u/P39S9qEJ46goCBatGhh9lDgCsZOxLC0PeamY8eORk2YUmjdunWRPPiLmzZt2lC7du1im1hT2PNhmzZt1FQhxcHzzz9fqs5XQVStWhVfX9886XQEAoFAIBAIBGWLMiHg/4MMvC3L8suSJLUBPgc+NEa8j4+PV8NVXr9+HY1Gw4ABAwgLC8PZ2ZlZs2ZZxnKB4B8qVapEz549zVqmra0thw4dws/Pj8jISPz8/AgPDzdrHcVF7uOj0WhITk6mfPnyemfO29nZWb2nksBwTL1GnnnmGX744Qf1e3JyMs7Ozmg0GjUXpDk9MObPn69+njdvnlUI+M888wwPHjzQWaYdEri4adiwITdu3FC/x8XFFesgniAvpk5UbNiwIUeOHFG/y7KMu7t7iYUsqlSpEt26dTN7ud26dUOWZdLS0tT8sSWJJfaxdu3arFy50uzlFhfNmzdnx44dOsu0c/5aMytWrGDMmDHY29szZswYfvvtN/XdRJ+In5iYSGhoKBqNhgYNGrBr167iMvmJZ/fu3ezZs4esrJzsbXXr1mXlypU0atTI7HU9/fTTZi/TUjRt2rSkTXjisLOzo2HDhiVthopijyzLZGRkYG9vX+L3TH20b9/epO2cnZ1N3ra4yO++WFzkfj4s6FlfuU/nnmBtbiz1fFjc2NnZqVF3BAKBQCAQCARll1Iv4EuSJMmyLAN7gHaSJLUHugJhgL8kSftkWT5sSFnJyclq2DQbGxsGDBjA5cuXuXbtGsOHD6dy5cqW2g2BwKLY2Njw+++/qyL+Cy+8wP79+0t9Ooj09HTS0tIASo13h8D6SE9PV/Mxmiv6xYIFC8jIyFDD59+8edNqvPAFguIgPT0dwLzxQq2EksofKzAd7XNmrcyePZvp06djb2/PoUOHOHDgACNHjiQsLIz169ezd+9e9V0kJSVFJ2fvtWvXVPE+ODi4pHahzBMbG8vXX38N5IhNUVFRqnBftWpV1q9fbxHhXiAozWRmZirPBFaZK15gHSj36ZSUFPFeLxAIBAKBQCAQ/EOpE/AlSWoEuALHAY0sy9n/iPhZkiS1Az4CXpJlebskScHAbUPLrlu3LlOmTFG/p6SkMGPGDBo0aMCzzz5r5j2xHMpAUkHY2ZW60y4wA7lF/E6dOrFz505y5r9AUlKSKuibOlklISFB7+/mngTj6OiIg4ODziC2OSju/XhSsNbjqnhkmssz8/Tp02ouzI8++ghZlhk5ciRz586lS5cudOnSxSz1CHS5deuW3t8LysEaFxeXZ9mDBw9UL7Hizt1q6n5YG/9cT0anMCoNaPcZ+bUfbUw9X/m1A8U7LTk5mWrVquW7naXsKe2Yu583FwsXLgRgx44dREREANC3b18OHDjA5cuX8fT0pEePHly5coXY2FhiY2MLLMtQ8b6s9DElQXp6OleuXNFZ5urqyuuvv46np2eB4n1JXJdFOc+5t9WOYCFJkmgjTwBRUVEGLTMEJVy5vb09UVFRBaZzi4qKwsPDo8By/Pz8TKpfUDpQ7s/x8fE8fPgw33UKi9RVWvompY/N3bcqlJb9EAgEAoFAIBBYnlKl5EqS9DLwCRDzz99xSZJWybKc9M8qA4FGsiyfAJBleakx5bu6ujJkyBD1+8SJE0lJSWHVqlUm5UMTCAzBUqJlQeWePn2aVq1aERkZSe/evZEkCVmWsbe3N5v3sTkpyvERQnvZwdRzqW87S7WPNWvWkJmZSc2aNalfvz4ANWvW5O7du6xevbrYBXxruw70DUqVxIBVfgOBzs7OT5RntanH3YDtNCYVbCKWaj/6yi3OcMCKd5qzs7PZ97UsDRY7ODiUqv3RFu9dXFzYunUrNWrUwNPTk44dO6qTi8ePH19gXvVnnnmGzp07F5vNTyru7u5Mnz5d/d61a1f1Pm8prKEtGxp1xBpsfRKxhLCdn5Beq1Ytgzzo9dlTkHhfUph67ErbZILivi8W5Vm/sMlHpmCtfZMpEZ2sYV8kSRoDjAGoV69eCVsjEAgEAoFAULYpNQK+JEn2wCBgpCzLhyRJ6gf4AJMkSZovy3KiLMvJwIl/1reRZdnkgeOzZ8+ycuVKRo4cWSbEe41GQ2pqqlUKtILiJbcnPkDFihWtzivNmrBUjnRB2WTNmjVATjhkhdDQUEaOHMkPP/xAWFiYaEdWjjX1hwV55wisF0vlW7dWL3KB6WiL9yNGjKB27dp89dVXfPPNN7z00ktMmTKFzMxMli9fzujRo0vYWkG1atUYNWqUyduX1v5c9D0C+NeTvjiRZZnMzMwSqVtgnZTWfjQ/SmvfKsvycmA5wHPPPSeXsDkCgUAgEAgEZZrSpiBUAp755/PPQDjgAAwBkCTpOUmSWgGYIt6fPXsWd3d33N3d6d69O87OzkybNs1MppcsqampJCcnW33+T0HxoIj4yuSUR48emVVQTEhIoGXLlhw8eNBsZZYUY8aMYfTo0Tx+/FjN3ygoOgcPHqRly5aFhtUvbXz55Zd5vO8hJ7RxzZo1yczM5PPPPy9BC8s+iYmJvPXWW9y4ccPkMqxlQDAkJIR33nmH1NRU0f+UAgICAggICFA9qsxxzrTbsyRJlCtXzqD2qdFoeOWVVwgJCSmyDQLLsGbNGh3x3svLi8qVK/PWW29Rrlw5Nm7caHHxvnfv3rz66qvExMRYpHyBLunp6ezfvx9fX18SExOLrd6DBw8yYcIEo7e7dOkSjRo14n//+5/BfY+g7KGcd3Oe/+zsbF566SV69uxJ79696d27N2PHjlU/d+/endmzZ5OZmUl6ejqZmZlmq1tQOkhMTMTDw4N69eqpf97e3ri7u+Pp6Ym7uzvffPNNSZtZJCRJYsqUKbRo0YJ79+6VtDkCgUAgEAgEAiuk1Aj4sixnAguBlyVJ6viPQH8QOA10kiTJCegImO3JNysri8ePH5uruBLFyckJZ2dn4YEvUFFE/KlTp/L111+bteywsDCio6OZPHky8G8ECI2mWKMpm4VNmzbx008/UaFChVI3O96amTx5MtHR0Xz77beltm3kh77BTVnOcVAwJPyooGi0a9dOTQ9Smvn555/Ztm0bTk5Oov+xcn755RcuXLjAhQsX+OOPP8x6ztq1a2dUSgeNRsMLL7zAwYMH2bp1K5DT/6SlpZWZvrYsExMTo4q7oaGhFvW8P3v2LAcOHKB9+/YMHDiQ27dvW6wuQY6X5fz584mJiWH16tUWrUu55mVZxsfHhx49ehhdxvDhw0lNTWXGjBnmN1BQavjwww8ZP368Wcv85JNPSEpKIj09Pc+zWlpaGllZWURFRWFvb4+jo6PwwH8CkWWZ1q1bl7QZFiU+Pp6ffvqJxMREfH19hYgvEAgEAoFAIMhDqRHw/+EA8BswVJKkTrIsZ8uyvBaoBdSSZflzWZZNfupt0aIFN2/e5ObNmxw+fBhZlhk3blypFwAgR6ytUKGCCNss0MHGxoaJEycyaNAgs5arRHqIjY0FcjyOHj9+TEpKilnrKU6cnJzE9WNGlLaRnJxcbNENjh49yqxZsyxax9tvv429vT13797V8QC/du0a9+7dw97ennfeeceiNjzpuLi4MHjwYFxcXMqM17rwfLR+Jk2apH6eMGGC2c6Zi4sLb7zxBjVr1jRofUW8P3/+PAAVKlQA/s2zWprvw2WNoUOH4u/vD8DKlSs5d+4c586dY+XKlQD4+/sXSySwSpUq4ebmxtGjR/H19aVr165ER0dbvN4nEUmSiIuLA3JESkuiHQnEzs7OaAH//Pnz6oSOzMxMlixZYgkzBaUAPz8/goKCzFZednY2+/btU7+PHTuW8PBwli1bRnh4OHXq1AFg3LhxSJKEg4ODeAZ6AilXrhxhYWFcvnyZ6OhooqOjOXXqlPo5Ojqa//znPyVtZpEYMWIEAOXLlycrK0uI+AKBQCAQCASCPJQqNUqW5TTgB+AM8L4kSWMkSRoGuAHJRS0/PT2dq1evcvXqVSRJYvr06fz2229s2LChqEULBKWSjIwMLl++XORyHB0dqVChAuXLlzeDVaahiBkC68LOzq5YohuEh4fTvn17PvzwQzp37mzRuoYOHQqgI7xMnz4dgGHDhlm07icJfde0o6Oj8Fo3kcuXL5ORkVHSZhjE33//zd9//13SZvDLL7+QmJiIi4sLLi4uJCYmsmvXrmK3Q1u89/LyomLFiupvyjVRkvdhQV4CAwN1RHxt8T4wMLBYbHB3d+fEiRMsXrwYNzc3IiIi8PDwwM/Pj0uXLhWLDYKiowhaCkW9D44aNQqA119/HYBFixYV3UiBgBzve1mW8fLyonHjxvzvf/8jKysLgHPnznHz5k08PDxo2rRpvtsX5f1UvA+WHsr6s3x8fDwnT57ExsaGc+fO0a5dO1XEF2ltBAKBQCAQCAQKdiVtgLHIsvxQkqQVwHngP0Aa8Josy/eLWvaFCxdo06aN+l3JsTVu3DiuX7/OvHnzilqFIBfKy3pB2NmVuiZqNejLLZ6cnIyzs3O+v50+fRrI8ZAeMmQI2dnZvPLKK2oIVz8/P73lAmqeQlmW1WVAsXuw//7770BOHumzZ89SuXJlfvzxR2xtbYGC90Xb5vyWVa5c2ey2PgloH0MlsklmZibZ2dmkpKTg6upq9jqV/nvbtm1Ajvfb/v37qVOnDgMGDNCbj17fNQQFt4MBAwawZs0a7t69y8WLF5FlWfW+79evn8n7Yqo9ZYWFCxcCOZ5bM2fO5PHjxzRo0IDg4GAg57grKLnCDUHxhixoWd26dfPd7tatW3rLLWg7S9lTFJRjGx4ezr59+7CxsWH69Om4uLgAmD10blFQbNX2VFbyh0Px2xoeHs57770HoEazWb58OSEhISxYsIC33nrL7HXm10a0xftGjRqxevVqdbKS9vqm3oct1d7LCvqOT1xcHFWrVs33t9TUVFWoj4iIACwv3uduP1lZWcTFxdGpUyemTZvGwYMH2bZtG3/88QeNGzc26PqyVPsoK+1O+5graSxSU1PV5fr2Q98xWL16NQkJCYSFhfHw4UPg3/7QycmJ3r17m2Tv119/ze3bt7Gzs8PHx4cdO3YQFxfH22+/Tc+ePc3er5WV8ywonA8++ICDBw8COdE/Hj16xL179wgODqZ9+/bqu9vEiRN1tpsxYwZ//PFHgeXqi5hYmPe+KdEWFTsLQt/7ssAwjHmWh/yfjbR/K+g+DKb3wYVtWxDh4eHMnz8fgOeee45ffvmFYcOGER8fz5UrV/Dw8ODw4cPUqFHD6LJFfykQCAQCgUBQtiiV6qgsyxnAPkmS9ud8lc2S0LNSpUr4+voCcPv2bU6dOkWXLl2IiYnhxx9/5NNPPy0V4duE6C0oDGdnZ71in7Z4D7B27VqAQvOwKpMClDyFkiRRvnx50tPTS2z2vCLeQ44A2q9fPzZv3qyK+PmR3+SGgiY8CAxH+xgqfam9vb1Fj622eP/cc8/RqlUrVq5cSUxMDJs2bdIr4JuKj48PkyZNYvbs2cydO1cdGJwyZQo+Pj5mr+9JQlu8h5zzu3TpUoKDg00esMpvQM/V1bXE7vf52aNv0NFcKOI95AhMoaGhOiK+NaEt3kOO57K2yFic/Pnnn6SmpuLk5ESjRo2AnJQrKSkpHDt2zGShy5j2nFu837VrFzY2NmobNnf7kWVZva+Xhudia0Q5hkOHDqVevXqMHz9ezXtv6Wsud3uws7OjatWqJCUlsW3bNo4cOUJGRgbVq1fn/v37JXp9lRW0j7kyicbJyalI1+alS5dYsGCBOrnP1taW7OxsnfNl6n3xq6++AqB79+6kpqYyfPhwFixYwM6dOy0exUhBu58RFD+WEqAV8R7gyJEj6ufLly+rXvVeXl6MHTtWZzt94r2gbKGv3yor4nRsbCw3btxAkiT69++vph988803+frrr7ly5Qq+vr4mi/gCgUAgEAgEgrKDQW44kiS5GvBX7K5/sixnm0u8h5w8W40bN6Zx48Z06dKFatWq8eeff9KmTRtu3LjBmjVrzFWVQGC1aIv3LVq04JNPPgFyRPwVK1YYXV56enqx5TjPjSLe29rasnHjRjW0cb9+/dTJCYKyS3h4uI5436FDB5ydnRkxYgQ2NjbExMRYbCB6woQJODg4cPPmTaKjo3F0dDSLZ7BGoyE1NVX14HuS0BbvK1SowLRp07CxsVFFfHNiSn8lyzJpaWkmeXKVNNri/YgRI2jQoIEq4iuiorWQO0d47hzixc3GjRuBf73vtT8XRwqm3GHz165da/FoN9q5tQWmkd8xVFIwFDfZ2dksWrQIX19fIiIiaNCgAePGjWPSpEklfn0J8nLp0iV8fX3p3r07CQkJ2NnZ0atXL+bNm2eW83X27FkePnyInZ0d3bp1A6BmzZq4urqSlZXFnj17zLYv+hD9TNnD0HevsLAwC1siEJQsynOst7d3HqeCcePG6YTTv3fvXkmYKBAIBAKBQCCwEgwd4bsDHAdO6Pk7awkDi5Pk5GT279/P/v37OXToEG3btiUtLY2HDx9Sq1YtQkJCuHv3bkmbKRAYzccff8ypU6cKXS8jI0NHvF+8+PHHaAAAIABJREFUeDHt27fXEfH79++vdwAmOjpaDQMLOfnriiPHeW569uypivfr1q3Dzc2NzZs3qyK+ttgiKH6UkIiWEpoiIiIICgoC/hXvFbRF/P3799O+ffsCy4mOjmbGjBm8+OKLXLt2zSgbtMN/Tpo0ycg9yJ/09HQSExP573//qzdUZFlk1qxZqnj/0Ucf4erqyvTp01URv3v37marKy0tzaj14+PjmThxIo8ePSp1YsOcOXN0xHsvLy+Cg4N1RPyMjIwStjKHQ4cO5ckRnjuHeHF66W3btk31vm/evLm6vHnz5jg5OZGamqpGsLEEMTExdOvWTRXvd+zYYXHxPisri+DgYO7fvy88Y/MhKyuLNm3aUK9ePfXP29tb/ezl5UVERIRV5fY9f/48CxcuxMfHh7FjxzJixAjq1KkDkOf6+vPPPwst7+zZswwfPpwTJ06Y1c5Nmzbx448/mrXMkkB5/jElekXPnj3p3r07t2/fxsHBgW7duvHpp5+qQnvu8xUeHm50HUrY/dz31BEjRgCwe/duo8s0huPHj9O9e3cePnxoNdeIwDy8/vrrha7TpEkT2rVrp7PMkHzgM2fOzHd5z549DTOuCOzdu9ciEb0EpjNp0iQ6deqkPie+8sor6ufAwEBGjx5tdJ75rKwsJk+eTHx8fJFsS0xM5ObNm0iSxODBg/NdZ9OmTaqI7+PjQ+vWrfP9a9u2baHpHAQCgUAgEAgEpRtDR/kuyLLcQJbl+gX9AaVeSUhNTSUyMpLIyEhOnTrFxYsX8fb25uLFizz//PMkJiaa5IEsEJQ0/fv3Vwdj9REVFaWK89ovlNoi/ubNm3FwcODVV18lOzubmzdv8sEHH/Dcc89Rq1YtWrZsqU4WqFmzJjY2Njg5OVlcVMjNsWPHAHj66adxc3MDcsKL9urVC8Dgl+9XX32VV1991TJGPsFMmzaN559/nr59+5rdmzw7O1s9z7nFewVFxLe3t+fo0aO4uLgQHR2db3tevHgxBw4cYOvWrUbZUbNmTfWzuTzWHB0dSU1Nxd/fn/v375ulzNLCo0ePAPjoo49UbxUXFxcmTJgA5Bzj6Ohok8vv37+/+rlFixb07dvXYO/zv//+m86dO5OSkmJWsWHgwIEMHDjQot7927dvB/6NQqSghM/VaDRERUWZvV5T2LRpE5ATjlo7R3hgYCDNmjUDYNiwYcVmz6FDh1R7cqNMEnv11VdNEtH0ERMTw6BBg2jfvj1Xr16lRYsWxSLeA/zvf/9j9+7dfPjhhyJ8vhbKNfrgwQO9k3gePXrEnj171Ny+JX0MlbRbSsqj6tWr51mnQ4cOqp27du3SW97p06fp06cPe/fupW/fvnTt2tVsQn7Pnj0JCAgwS1klyYQJE/Dx8WHgwIFGb3vhwgUgZ5LQ1atX8w1zri3iBwUFGdX/dOrUiVu3bmFvb69OClCoUaMGDg4OZGVlsW7dOqNtN5Rhw4Zx6dIlnn/+eRISEkr8GhGYB41Go97D9XHlyhUdYTUmJgYPD49Ct/v444/znWCuvA9aiu3btxMaGqpG/BKUPOfPn2f9+vVERUWpY3sXLlxQP0dGRrJr1y7at2/P4MGD9Qr5Go1Gff6Oi4ujY8eO/P3330Wy79atW0DOc8OlS5cKXG/Tpk34+Pig0Wh48OBBvn/37t3j9ddfL7bIKAKBQCAQCASC4sfQkb6C3RONW8eqcXNzIzg4mODgYFq2bMnNmzd55plngJyw4h06dDDoxVNgHBqNhsePHz+RIaGLi8aNG+Ps7FzoMfb09FQHFKdOnaqTm7B9+/Zs374dX19fNBoNa9euxc7ODg8PD0JDQzlx4gQODg506NBBFS7atGljuZ0qhMjISGxtbbl06RIhISEArFixgvXr1wMwe/Zsg8pZsmQJS5YssZidTyqDBg1i06ZNuLm5md1j2d/fn4yMDJo1a5aveK/g7OxMfHw8derUISkpCXd393zbsxLSWFvgLYzU1FT++9//AjnCyJEjR3jhhReKtmPkRCyoX78+L7/8Mk2bNi1yeaUJd3d3APUaVjhz5oz6efjw4SaV3b9/f44dO4adnR0BAQHY2Nhw4sQJmjdvjq+vb6FCfuPGjQkKCsLd3d2sYsOCBQtYsGCBRUMJHzhwgAoVKpCWlsbMmTPJzs7OE6be09PT7PWawmeffYYkScTFxan5QiHHK+rOnTvY2dlx8+ZNjh49Wiz2TJ06FUmSuH37to49kCOwmSqiFUR0dDT+/v60b9+eI0eO8NRTT/Hll18SHh5ebJPkYmNjAbh69Wqx1FdaUK7RypUrc/bsWaKjo9W/U6dO6XxXJkQaw+PHj1Xx1pwcP36c1q1bI8syW7ZsYcaMGfzwww+qEJaYmEhoaCiyLFO/fn0+/PDDAss6ffo0L7/8MllZWYwcORJPT0+uXLlC37598fLy0nmmNIWKFStSsWLFIpVhDbz88sts3LiRevXqGb3t119/DeQ8486dO7fA9UwR8Tt16sSBAwews7Pj/fffz/P7xYsX1Wgs5kgJlB87d+5UJ+uJ8NFli48//pjMzMxC18vKysLDw4OYmBhVvM/Kyip0O41Gk6+Hf2RkpEn2GsL27dtZuHCh+l2WZTIyMkplKqWyxKhRowCoV68ekiTx2Wef5bkPf/HFF7i5uXH48GHat29P165d850EnJKSoj5/V69end69e+tMdjWFZs2aqf1zWFgY58+fL3DdjRs36tid+2/s2LFAToQUIeILBAKBQCAQlE0MGu2TZTkNQJKkAZIkVfzn8weSJP0kSVJr7XXKCp6enmRnZ5OQkEDVqlW5cuUKAwYM4K+//rLIANqTTGpqKsnJyXkGvwXmw5g89G+++SYDBgwA8or4zs7OHDp0iISEBHx9fbGxscHGxoZXXnmFhw8fEhUVxfbt29XtS5LatWuzbt06bG1tOXv2LEFBQWoo408++URv2HRtnuSc45bGEukVdu7cyf79+7G1tTXI68/Z2Zlbt24xfPhwJEnCycmJGTNm6LRnWZZxcnIyarC9a9euaDQaOnTowF9//YWdnZ3ZRPwnFSV876lTp1RxKTU1lf379+Pl5UWNGjXYt2+f0V742uL94cOHWbFiBdeuXaNPnz7Y2Nhw5MgRKleubJCQbyksGW7b1taWjz76iAoVKvD48WOmTp2qivd+fn4EBARYTf9na2tLq1atAHQiIh0/fpz4+Hg18sbIkSOLxZ6KFSvSsmXLPPYoBAYGMmXKFKBoIr4i3Ht4eLBv3z5VuD9+/DgvvfSS6TsgMBuWvEbnzJlDxYoVadq0ab7CqrFoR/RwdXVly5YtnD59WhXyT548yeTJk/nuu+8IDQ1Fo9FQv3593n777QLL1BbvP/30Uz766CP27NnDzz//jKenJ+fPn8fX19csQn5pxFxRVHr27Mk333wDwLJly/jtt98KXNeY/kdbvI+KilInLmrbv2vXLlxdXWnYsCH37t2ziBe+km7o22+/1ckBbWyoa4F1odFomD9/vhrxQx+dOnVSRXxFvO/UqZNB9axfvz6PF37t2rVNsrkwFPHe1taWp556CoDMzEzS09MNmqggsAznz59XU4zs2bOHDh06MGHChDwREvr06cOJEydUIT8iIgIPD488Qn758uUtcm/XnmRVmIivjylTpggRXyAQCAQCgaCMU/hblC4fyLK8SZKkDkAPYAHwFdBO/2alg0ePHql5YGVZxt7ensOHD+Pk5ERMTAwtW7ZEkiTWrFmTJ59x5cqV8y2zsBnj+l5ki7JtacLJyUnnvzVjiAeAsSQkJOj9vaC2ZQzKS6fyPzk5ucB109PTGTt2LLa2tqxfv56pU6eyfft2nJ2dmTFjRr75hdeuXcvatWu5fPkyTk5Oav7ozMxMnboK2hd9xyA5ORlnZ2ejf4OcqBrr1q1jyJAhqh0zZ87Ex8eHtLS0AuvVLleZ/ACFt9H8ytNoNKSnp+Po6Iirq6tR2xaV4mhbRUFJr6Cg5PBbvnw569ato2XLlixatEj9Pb9QsdrbxcbGMmTIECAn//zhw4dJSEgocD/37duXx1s6NTWVGTNmqCJ+QkICSUlJtGrVitTUVBwdHQv1dB0xYgQXLlzA1taWbt268dNPP/Huu++ycOFCjhw5gq+vLzt37sx325I+J7nJyMhQQz3mpm7duiaVWVB5hZVra2tL3bp1uXXrFj/88AMDBgwgIiKC1NRUOnfuTKNGjQgJCWHIkCF5vPTj4uJ0wpzLskx6ejqvvfYax44dQ5IkmjVrRkBAAJmZmdSuXZvKlSszePBgLl68yKlTp1QhX8kT7+TkpOYKzg/FK2vHjh1ERETg5OTEoEGD1PzoBW2b21ZADbdtKRQRf+bMmWp/5+fnR69evcjKyiIlJUVvX1uc9OnTh9OnT3Pz5k3i4+Oxt7dn9+7d1KlTh5YtW3Lx4kXOnz/P1q1bad26tc62prbZgrCxsaFv376cOXNGtUe7T4uKiqJJkyb4+/sTERFBUFBQkeqrUKECffr0oUuXLjz77LPExeXNXqV4yAOqWKi9nqnHQClDmWyp0WgMKtfU670o6Ou39NVZ0DZKf9GwYcMC+39Tr9H8zqFCfpPG5s6dq3pe6xODc/c/DRs2VAf5HRwcVEFMsVkR8r/66ivWrl3LzZs3+euvvwBU8T41NTXfY3T69Gn69u1LdnY2H3zwAT169FD3y8PDgw0bNrBy5UrWr1+vCvna9kDhHt3KOXB0dFTv2/qOHVimbZmKEqEByLed6Guv2vcESZLo1asXK1euZMSIEezfvx+AHj165NnO2P7HxsaGqVOnsmHDhjyTqi9dusStW7fo06cP9erV44svviAkJCTfKEemHPfw8HBOnDhBUlIS5cuXJyMjg2HDhhEfH8+VK1fw8PDg8OHD1KhRI9/tC6pTuQ4SExPVyBdTp05VJyhYKpKAuSksx3VBz8dFKTcqKqrA0PX6fsuP7777jpSUFAICAgpNw6G0ae13bmWZPpo2bcr58+cJCAhg+vTpBtumj4KOj7Z4P3XqVFavXg3AnTt3yM7OVtM8lXUsdX83tdzw8HA++OADIGey0549e+jXrx+xsbHMmDEDgBdffFFnm44dOzJt2jSOHTvG1q1biYiIwN3dHX9/fzVVk6mOCfr2IzU1VS0/IiKCsLAwRo4cSdOmTbl7965REz6V95ddu3apk51zp0BRsKb7okAgEAgEAoHAMIxVgJUpzYHAV7Isb5UkaYZ5TSo5UlNTdULxQo4AmZSUBMDRo0dp164dW7Zs4Z133jFIyBHoR5mE4ODgUMKWFI1/vBOtqjGYKgT6+PhQuXJl/Pz8yMzMZPPmzcyZM4dDhw7lK95r8+KLL7Jq1Sp1cNLe3r5ERR9lQMvX15fz58+TlZVFy5YtqVSpkt7JGM7Ozurxq1SpEikpKZQvX96k6117AoApWKptaTQakpOTTd4vUzCkTa5YsUL16jpz5gwhISEsXry40O0U8T47Oxtvb281T+6wYcPw8/MjIyODtm3bcuvWLW7evImzs3Ohoc6Tk5PZsmULAAEBAciyjIODg942nZqaqm7Tu3dvnUkUI0aMYOXKlaonfkEifkGUhLgvyzKyLFtFDtrXX3+d3r1706pVKyIjI1mzZg3z5s2jR48eqpdhaGgohw8fJiYmRq/XVXp6OoMHD+bkyZNAzn6ePn1a/V3JSZmQkMDo0aMZPHgwa9asITIyUhVOvLy8Ch0IU8QzyGkbq1atwsnJiaFDh6oCfm5hqmrVqsU+wKaIGOPHj+eXX35Bo9Hw4osvotFo1P7PWhg+fDgnT55k69at7Nq1iwEDBpCQkMDixYtp0aIFzz77LH379mXSpEns2bNH5/gWhz0//fST+psyqB8YGEi5cuU4cOCAKrpmZWUZPBFTycGalpbG9evXadKkSZ5JHtpoi33a34uCUoYyQcHGxgZXV1eLHtuikp/oawqK+KpvIou+a9aU69kcqXu0+59r166xdOlSgoODycjIoEGDBvne/z/55BM++eQT4uPjee2113j66af54osvgPzFCMXzPjs7m08//VSdRKdNUlISV65cUSdSSpKkY48+lGOXnJxMUlISlSpVsprJRMbQsGFDvc+S+oSe/O4Jw4cPx83NjaCgIPbv30+zZs3U+6CCMf2Po6MjwcHBqrCtHYpclmVefPFF6taty2effUZSUhLHjx/n8OHDbN261SxRQB49eqRGyRo4cKA6geDNN99k6dKlXL9+HV9fX70ifkEoaSCUSDKhoaFMnz49T5QBgWXQaDRs3LgRW1tb3n33XQYPHswff/zBqlWrWL58uZquEKBLly4m1dG5c2fGjRtHnz59iIiI4L333qNcuXJqvy/LMklJSZw5c4a4uDj1PdcUtMX7JUuW0LhxYzZs2ABg1KSGsoS57rVFLe/69evExcVhZ2dH586d1X7kjTfeYNWqVcyYMQNnZ+c8gvzt27e5ceMGaWlp2NjYoNFo1HtnYGCgRZ7JX3/9derWrcv48eN5//33mTt3LmFhYWzfvp3Lly8bHZmyR48eZGZmEhERob5vFiTiCwQCgUAgEAhKF8YK+DGSJH0DdAM+lSTJESsTLS1FuXLl2LJlC3379mXy5MmcPXuWFi1alAqvcYHl+eclq8xNt9+wYQMODg4cPnzYoNDR9+/fx9/fv9jCFxtK7dq1qV27to4YpUzMKQwbG5siDRbnjn5gLP+kPTB720pPT1cjJVjLYPiKFSvUAdwpU6Ywf/58zp49W6iIry3et2jRQicfJcCqVasYNWqUGlazadOmBoVZ79KlC9WqVQPgP//5D5UqVSpUyGzbti2yLFO7dm3q16+v85uzszPjx49n0aJFJov4xY0SQcKS3t/G4OrqSuvWrTl58iQBAQEkJSXx7rvvqr9Pnz6dkJAQ3nvvvTxe+Nq89tprnDx5Ejs7O72TeS5dusTixYsJCAhg2LBh7Ny5k4iICFXE14e2eDZy5Eiys7NVz8bly5ezYcMG5s+fj5+fn17PzOLE1tZWJzJAUfs/S7Fo0SK2bdvG8ePHuXXrFq1atcLPz4/4+HieffZZnnnmGS5fvszJkydp2rSpxVP0aNuTmJiYrzDUtWtXunbtqn6/fPkynp6eBtfx8OFD9u7dy7Fjxzh27BgXL14kODjYYuGBDUHbq9gaKczr2VCU+3dxTGSJj4/nhRde4M6dO4Wu+/777zNnzpx8f9PufwYPHszGjRu5fv26KpoXdl27uroWen/SDpv/wQcf5BHvk5KS+O6771ixYgVJSUl4eXnRo0cPKlasSGhoqI49haEce2uaTGQMluhLe/furd6Lli1bBpBHxFcoSv+zb98+zpw5w7x587C3twfgs88+o3379nz88cdmEfAvXLhAamoqTk5ONG/eXOe34OBgNm7cyJ9//mm0iK8t3jdo0ADIEfkUEV9geb7//nvS0tIICAhQ++F+/frx448/8v333xMaGmqWelxcXFQv/E8//ZSpU6fqOAg4Ozvj7e1dpInLuT3vi5oLvaxgrnttUctT0j91795dZ7m9vT1vvvkmmzdvZsKECUCOV31MTAxLly5VJ463a9cOf39/7t69S1hYmHoPtXSkDuU+PnfuXIKCglRPfGMJDAzE3t5e9cQXIr5AIBAIBAJB2cBYAX8g0BNYIMtygiRJNYGJ5jfL+nBxceHo0aPMnTsXSZL49ddfee6550wqS8mpLcT/ssM/5zK7sPUK49q1a5w8ebJYc8gruUjzywlva2vL4MGDWbt2rUG5u7OysqhXrx5ffvklQJ48hIZw8OBBJk+erIYB1mg0OgMtNWvWpE2bNkBOhAxlMBGgVq1ael+yCxpA/emnn3juueeoV6+eKlhWqlSpSJ7pKSkprF27llGjRhl9ra9fv57jx49rLypy29K2B3IECQcHB6sZDJ82bZoq3s+ZMwcfHx9at27NkCFDVBE/d4QUgJiYGB3xPrfQP3r0aK5evQrkeOicOnWKW7duFSq+Qs6ElOvXr1OuXLk8Ynx+rFq1ir/++gsbGxtefvnlfNdxcXHhzJkztGzZkiNHjhAUFMT27dsLLbukuHTpEr6+vtja2tK/f38mT55s1vKPHTsG5Ex8MARZlvn6669p27Ytd+/epVu3bjRr1kz9vW/fvsyaNYvDhw/j7e0N5Hh7avcjDx8+JDs7Gzs7O/bt20fHjh0LrK9BgwYkJCTw7bffUrduXVXcVkT8fv365ds3Tps2TUe8VwbimjdvTmRkJBs3biQxMZExY8bg7OzM8uXLef755w06BoKce9OLL77I1q1buX//Ps2aNePDDz8kLS2NcuXKUbt2ba5cucKECRPYu3cvYPokKmPtGTZsmBqFw5xUqVKF/v3707VrV/744w82bNjAhg0bGDRoEBMmTNCbosUSSJJk9AQ1Y693U7lz5w7Tp09XvY1Hjx5ttGdkdHQ0p0+f5sUXX1TD41s6Ws2KFSuYNWsWkCNUp6Sk6F1/7ty52NjYMHv2bJ3l+fU/np6eqmi+bNmyIgsSZ8+e1cl5rx3CPSMjg6+++koV7nv06IGXlxd16tRR15k+fbpR9hQmgEdHR3Ps2DH69etnFRFjTEHxOt2wYQMDBgww6PmsW7duOiJ+SkoKH3/8sVlt+vzzz6lbty79+vVTl9euXVsV083hha94MA8aNCjf3zdt2sSAAQNUEf/IkSO4uLjo9dC9d++ejnivTBRRPPpDQ0N56623jPboL2nS0tL49ddfeemll/K8BxWF06dP8+WXXxIfHw/kvH/lDgWv9Kn5/VYQDx8+BHKi7i1evJhHjx5RsWJF6tSpw6FDhzhw4IDe5zBj+OSTT+jTpw/79+/PM0GjqJNoduzYoeN5X9ITLq0JR0dHjh8/jr29Pe3aFT2zpvazxffff29QfxgZGUl8fDx2dnb5itYODg5qmPr33nuPJUuWcPv2bQCeffZZevToQZUqVYCc562RI0eqIv60adPy3GeN5c8//yQzM5Pnn38+3z5LW8TXDqdvLC+99BINGzZk2bJljBgxglWrVuHv718k2wUCgUAgEAgEJYtRI1GyLKcA+4AqkiR1Ap4B0ixhmLXh5OSELMvExsZSv359zp49S0ZGhkllpaamkpycbNVeSwLj+GdQV2PKtsqEDo1Gw8CBAxkzZox5jSuEunXr5ptnVUEJwXnixIlCy8rMzCQjI4NGjRoBqB7exhAcHMz58+eJjY0lNjaWuLg49XNsbCxnz54lLCyMsLAwVq9erX4OCwtj1qxZHD161Og6/f391etRCXlf2MB5YVy4cIHevXsXmscvP8aOHauzX5jYtvTZowxkWUsaECXXva+vLz4+PgC4ubmxdOlSIEcsUCYfKMTExODh4VGgeH/o0CGuXr2KnZ0dv/76K7///juRkZFIksR3331XqE1vv/02Go3G4AkYn376KZAz8KNvYLN69eqqh9nBgwd1+gBrIzs7mwcPHnD//n2WLl1KTEyMWcuvU6eOUaEp09PTSUlJUQf3cg/2KxNwICdvcFxcHA8ePCA+Pp4HDx7w4MEDdWKRl5cX9+/f11tfxYoVad26Nba2tty6dYvNmzcTGBioThrQ9v7XRmnPXl5eeQbgmjdvzqeffqq2geTkZGbMmFFqRaeSYtGiRVSoUAGAvXv38v3337Nhwwa+//57NW/tzZs3VfHVksf3559/5tChQwCcPHmSkSNHEhkZaZG6qlSpwuDBg5kxYwaZmZn873//Y/PmzRapKz/8/PxwdHRkyJAhRh9b5XqXZZm0tDS9OdyLQlxcHKtXr2bNmjWsWbOGcePGGV1Genq6ySGWTUW5h9nY2KgTTwzdRhslCs3QoUPV/sfFxUUVtK5du1ZkWz///HOysrIYNWpUHs/7r776is8++wwfHx927NjBt99+qyPeK/YMHDjQbPYkJSXRtm1btf8vjaSnp3P9+nX8/f25fPmywdspIj7kTCR8+umnzZKCAXJC2585c4auXbvmEYqHDRsGUOQJS0eOHCE1NRV7e/s83vfaKFF1srKy+OKLL0hNTdV7vj/55BN18t6bb76pLn/zzTfVMNkFRbCwZqKioujYsSMxMTGkp6eTmZlplnI//fRTrl+/TkJCAgkJCSQlJfHw4UOdP32/FfSnsGPHDrZs2cLevXvZsmULFy9eBFAnLRWV5ORktm7diq2tLbIsG/Teagxr1qwBcqIHCM97XSRJokGDBnrHE4wtr1y5cty5c4devXoZ1B8qaT+USf75Ua5cOV599VUAbty4QWZmJp06dSIwMFAV7xWaNm2Kl5cXkHOfLeo72lNPPUW1atX09llz5sxRo6iEhYVx7tw5k+qaMmUKY8eOBSj2cSWBQCAQCAQCgfkxygNfkqRRQAhQBzgN+ABHgDI/rfPhw4e4urrSrFkzbty4Qd++fU325lLEIOGBLwDdHOnXr18v9vpzD6rmRnl5rFmzJlFRUXrXTUtL47333uOdd94BcmaRG8sff/xBWFiYKqgrg3qZmZnY2tqybNkysrOzadu2Lf/9739VD4hFixZx8OBBNceqMVSuXFnNL26uULnPPvusydvKssxTTz2lhkTt379/kWwpqj3FwYYNGwgKCuLw4cOsWLGC0aNHExsby6xZs3ByckKSJGUyA99++60q3mdlZeUr3gNq/nk/Pz8CAgIAqFevHtu2bSMoKKhQm+bOnYu9vT2PHj0yaB/27NmDh4cHcXFxqrdYbi5dukStWrXIyMjA1taWxYsX6/QB1sZTTz2liuR+fn5mD9ddq1Yto9ZPSUmhT58+ag575bxCjngfGBjIo0ePqFmzJv379yc7OxtbW1udqDfR0dFs376dM2fOMHjwYL31nTlzBkmSqF+/Pi1atKBVq1bAv4LTvHnz8t1Oac/nzp1jx44dBAYGAjkTItavX8+pU6dU8bJ169Z8//33Rh0HQY7X+4ULF9i3b5+6TPG12oEQAAAgAElEQVTsUzAmRL0p/PDDD4wbN06NGNOuXTtatmzJ+vXrCQwMpHHjxvTq1avQ+6yhyLLMhQsX2L17N9HR0dStW5d33nlHxzPW0rRp04YrV66YtK1yvaelpVl0Emv9+vVVL+ShQ4eaNOFWOy9zcbF+/Xr69+9PSkoKvr6+Bm+Tm5dffpm1a9eyf/9+tc8C+L//+z8gJzx+7uhGxhIcHMzevXvZv3+/zvKkpCRWrFhBjx49+Pbbbwvc/ty5c6rt5vAO9PLyUnMml1YcHR1p8P/snXlYFWX7xz9zDnBkEVzTUhb3BU0t7TUNRMolwz3TLBVJK82fppmaS4ThvqdWprm8uWta7pq5L2lqKGluCURmpCgogmxnfn/wznQOspwVDvp8rosLODPzzD0z9zwz5/k+931Xr45OpzO75vJLL73Enj17CAsL488//2T69OlotVratm1rVQplT09P2rZty6ZNmxg5ciSenp7qspkzZwKo7/yWokzOzMzM5M8//8yzv8zOzlbfY8uVK0dERARZWVkFXu85c+awdOlS7t+/T0REBOHh4QBERESg1+txd3d/qORSSUARj2VZtmkE/uLFi9m8eTMZGRno9Xru3buXZzkYZVnp0qXJysrCycmpwL7ExcWFWrVqqRO9EhISqFSpEpDjQ7du3WLVqlWqsGoJsbGxvP7666SkpFC5cmX+/vtvi9vKC1mWGTt2LCNGjGD9+vX4+Pio4q4gB3Pf501B+c7xxBNPFLheXFwcUVFRSJLEn3/+iSzLeU4s3Lt3rzqZp2rVqvz555/8+OOP7Nu3jyZNmtCrVy91Avb27dvVMZCFCxeSmppqVQYHPz8/k55RU6ZM4eTJk0bluizxtTFjxrB161bi4+NZsGABQ4YMsdR0gUAgEAgEAkExY24K/WFAM+AnWZZbS5JUF4iwvVmOR3JyMkOHDuXMmTPIskzr1q0tHvjSaDRq1Jg5GKbed5SoWYH1WFsj3RKUKFWdTleoL02ePBnIqbVZWERPu3bt2L9/P3q9nueeey7PgZ/CKFOmDB988IH6f0pKCm5ubqq977//Pk2bNuXkyZNs375dFbl37drFkSNHzN5fbjQajUPcY0899ZRRvdJHnZCQECZPnszYsWNZvXo1KSkpnD59mjt37jBz5kyqVq1K//79+frrr7l79y6bN28mKyuLwMBAIiLMewyFhISwdevWQkV8JeJs586dnDlzhmeeeabA9atUqUJsbCw+Pj5cv37dSMTPzs5m06ZNagR7/fr12bdvHzqdTo3qcEThoVKlSnz4of0q5SgpgwtKg6tw584dgoKCSEpKolevXkbiuSLenz9/nvr167Njxw6jezgxMZHy5cur/0+fPp1OnTpx6dKlAvfp5+dH3759jfqy6Oho9VncpUuXPLcLCQlR60/u27cPWZZJTk42Eu6fffZZli9fblE/KfiXoKAg1Ydu375tdJ3txapVqxg5cqQqErRs2ZKZM2eqg81Dhw5l2bJlLFy4kDlz5qi1vy0V8hXhfs+ePcTHx1O+fHmmT59O9+7dTRJvDO8zR8De7z0eHh60atXKLm3bGsNr06BBAy5evMigQYPYvn17odtu3bpVLethyH//+1/WrFlDXFyc0eSlH374AYA333zTKjFClmUaNGhArVq1uHz5Mr/88osaebls2TLu3r2bb3YSyBHvlYjx4OBgdYKTNSgRmyUZa4/Bz8+P7du3Ex8fz6BBg4iPj2fnzp388MMPtGnTxmIh//3336dDhw4sW7aMYcOGATlZua5cuULt2rULfTcqiOPHj3PhwgUqVqxISkqKOgnBEEW8v337NuXKleP06dNotVqcnAoextBqtYSHhxMREaGK+AD379/H3d2d8PBwk9PAOyKSJBnVeLcWDw8P+vTpo/4fGxubb+mR2NhYfH191QkEpmRhUSYc/PXXX2q706ZN46233mLFihVWCfhxcXG0bNmSfv36sWPHDpuXscnMzKRatWrMnj2bESNGMHPmTEJDQ80uzSKwD/379wdyyvOcOHGCixcvUq9ePaN1oqOj+eKLLwB45513GDt2LHfv3iU0NJTTp09z5swZfvnlF5o0aYKXl5c6OTQsLIzu3btbPbHfnP5deSZaK+IvXbqUNm3aMHfuXCHgCwQCgUAgEJRgzBXwH8iy/ECSJCRJ0smyfFGSpDp2scwBCQsLY/Hixeh0OurXr2919Iq5KKn3AYsmAAgcE0UwLkoMI34L27fyBXbcuHGFCvgzZ86kUaNGAKxfv94GluZgeI7KlSvHqVOnaNq0KWvWrMHZ2TnP6GtByeP5559XRfwtW7ao9TKVFMBXrlyhZs2abNiwAYDAwEAOHjyopss2h7xEj9xs2bKFb7/9lp07d7Js2TKTBqmrVKmiCreKiN+0aVO2bt2KXq9HkiQWLFhA79691W2Kow9wFNLT09VI3IIGthITE2nVqpVF4n1euLq68sMPP7BhwwajCUO5qVy58kMCu1Krt7DMGP7+/qovGEaJ+/r6MnTo0DwzNFiKXq8nNTUVNze3Yp98VNQY+pC9uX79OnXq1FGfn8HBwUyaNOmhzBSenp4MGzYMV1dXTp06xYEDB5gzZw4uLi4EBwfTpk0bk/anZGw4e/Ys2dnZlC1bltdee42AgACzak4X5TkyhUdBbLUVefWBX3zxBdHR0YUK2/k9x7RaLU2aNOHMmTMsXryYoUOHsnfvXrKysihXrhxVqlQpVIzIzs6mTp06yLLMmTNnjDJbKDZ/+umn9OrViw8//JB169YZRd8rZUZyYw/x/nGhsH5emRDTsGFDjh49yvTp01m9ejW3b99m586d7Nq1K9+2tVotffv2zVMkatCgAW3btmXx4sWqUDZq1Cgg/yw0pqJE3/fq1YsrV66wa9cuoyj87OxsVYA3FO9NRavVMm7cOCIjI9V++1EQ7x0BcycQZGZmkp6erpYxAqhevboaMb9q1SqLbXnmmWeIjIy0ePvCUCbKNWzYUI1mXr58ORUqVDC7D3uc39dsheE5jI+P58CBA1SuXJlu3bpx5coVdu/eTd26ddWJJYbPnXfeeYfBgweTnp6Ol5cXmzdvZtGiRaxcuZK4uDjOnDmj7kcRzq2JvLeU3CJ+fpNkJEmidevWdOjQ4aFlderUwdvbW0ThFwF+fn7ExcXluczX17fQLJYCgUAgEAgEBWGugP+nJEllgO+AHyRJugP8ZXuziofSpUurtZcvXbrErVu3mDRpEuHh4VSvXh1/f3+OHTtG8+bNcXFxQavVFiqkFxYdYM62pUuXRqvVii98xYg119ORqFSpUr6DB0p9Q4WbN2+i1WopVaoUO3fuJCsri9dff51GjRoRGRnJxo0bWbhwIWPGjGHKlCno9XpatGiBr6+vyfYo6etNXVamTBmuXr1KzZo1+e9//wtgdhRKQfu0FHu0aQ2OZo+hX+VFUFAQQUFBNGzYkC5dupCVlYWLiwtBQUEcOHCAn3/+GV9fX+7cucOzzz5LREQEBw4cKDBKCMi3zrIsy2zbtk2NxH/55ZfZtWsXL774Ilu2bCE9PZ22bdsCsGfPHtV+JYNFpUqV8uyLFy9ezCeffIKfnx/Xr19Xo+4bNmzIqVOnbBoxZW9cXFzMTuVbGIbt5R7IjI+PJz4+3mj9O3fumCTeN27cmNOnT+d5TfI7hhEjRvDee+/RtGlTfv31VyAndfb8+fNp167dQ7bs2rWLtLQ0PD09Cx0sHjFiBABdu3blyy+/5M6dO+zYsaPQiPv4+Hj++OOPPDMT5M4koKCkJK9evXq+A425jyU3tr7O9iK3nUUxGD579mySk5OJjIxUM2aUKlUKFxcXjh07lu9kjFdeeYWjR4/y4MEDADIyMti1axf79+9n2LBh+W6XnZ3NuHHjWLt2rVHd1bt37+Lq6mryBAAFW0S8W+ofJcWvoHhsrVGjRp7+6+3tjSzL9OjRg40bNxptk1/kvSHffvst1atXJy4ujrZt2/LRRx8BOROQ6tSpk++9Mnv2bCPRFHImpo0bNw6dTseIESPUe65BgwZMnDiRCxcusHTpUq5cucLdu3fx9/dXJ9opjBgxgm3btqkTppR3RmsoSb5VGAUdi/JcVPp5V1dXowkw+W07f/585s+fz6+//kqnTp2Ij4/P930oKyuLpUuXqr6VO7W8v78/e/bsYeTIkdSqVYsrV65Qv359syYS5X4GnTp1igsXLlC7dm3CwsJwdnbm2LFjnD9/nuHDh6uR9/fv36dixYrcuHHDbNFd8dfBgwczZMgQNBoNS5cutVq8NzyWvDIJ2do3g4KCbNqevdvNi/ye1Xv27OHpp59Wa8wXhCzLBAYGcvjwYfWzypUr5yle2oK8zk/r1q159tlnef7559UyEnnZqWSQy93Xpqamsn//fnQ6Xb7fB/K7LpZMWLYnpvRblmxbWLu///672heGhoYiyzLjxo3jhRdeAGD06NFUqFCB4OBg9u7dq4r3Y8aMYdKkSQ/5YWRkJJGRkSQnJ9OhQwcuXbrE8uXLTZrsXRCW9gPK94cRI0Ywbtw4ZsyYYfQuaEh2djY//vgjzZo1Y8qUKcyePdvo+duzZ09mzpzJ7NmzqVSpktp2bgr7jiAomLi4uHyfr6ZkKBEIBAKBQCAoCLNGOmVZ7irLcpIsy58AE4Cvgbzzx5ZAUlJSOHToEIcOHeKff/6hU6dO/Pbbb9y9e5c2bdqQlJREVFQUgYGBeHh4FHnEpEajwcPDQ4j3Aqsx1Zd+/fVXZFk2ii708PCgR48eHD16lP3797NkyRKef/55XnzxRbWe6Y4dO+xqP/wbiV+2bFn++9//smnTJrvvU1A0hISEcPz4cZydnRk4cCBLliwhPT2dcePGcfbsWUaPHp3voFle5Dfooexr69atAOzcuRMnJyecnZ3ZuHEjGRkZuLi4ULFiRWJiYtRtlAwWqamp+barpNP38/PDy8uL5cuXc+7cuRIl3hcFhfVFhuJ9165dC4y8z0+8LwydTkd0dDTLli3DycmJK1eu0L59e5ycnGjXrp3RgKlSTmDWrFkmD8iEhISwbds2jh49anK6fCXCNT093eRjcHV1tTrFZ0mkKN6NDMX76tWrM3z4cGrUqMGuXbsYP3488+bN4+7du+r6169fp2fPnjz//PPs37+fypUrs3r1aqKjo6lWrRrp6elMnz6dmjVrGmW2yc7OZujQoVSvXp3Vq1erE+Ju377NJ598QqlSpVixYgX+/v6MGDGiwD7IECXiXQwiOh6F+e+GDRs4deoUnp6eODk5mSTeQ07ksSKuBgQEkJGRgbe3N3XqFJw4zVC8d3d3x93dnfv37zNp0iQ1ctbQ5sWLFwOwdu1aDh48iL+/f56lIgwny9lCvH8cUfp5cyfiNGjQgGvXrpGZmUlWVlaeP2PGjAGgY8eObNu27aE2qlatir+/PwcPHlTf9RVRzFJGjx4NwIwZM4CczCUDBw5kz549nDt3zihtviXivYJGo8HLy4tvvvmGFStW2Dzy3tzn9eNKfn1dw4YN1ediYSjivZOTEydOnCA4OJiEhAQiIyPp3r07P/74o73MN6JZs2YsWLAArVbLzJkz+fPPP42WZ2Zmcvfu3Tyf0W5ubuh0OpPK3wjyRukLb968ybFjx6hYsaL6vOvevTve3t7MmTOHvXv3qiU5Bg8ezJQpUwp85np5eXH06FFu3bpltXhvKyZNmkRGRka+fbfyHXbq1KnqRD1DnnzyScqVK0dWVhZ79uwpavMFAoFAIBAIBDbA4nBiWZYP2tIQR8DHx4cJEyYYfTZt2jQqVqxIw4YNOXLkCLIsExQUJFLYC+xKUZdnyI9Zs2YBObXtDenWrRvr169n4sSJeHh4MGLECKZOnaqKDUVV09kwnf7t27eLZJ9FxfXr14tsIKqoUCLXdTqdGm2dX3RCs2bNOHr0KC1btmTgwIH4+vryxx9/MGrUKNq3b2/Wfgu7l0JCQtixYwehoaFqqtmdO3cCULFiRRITE9Hr9WptRGXwvDCxtEqVKkbCv8A8bt68SVBQEPfu3aNDhw7069ePa9euATm+NGjQIC5dumRy2vzCCA0NJTQ0lC+++ILp06cTFxfHb7/9Rt++fdFoNDzxxBMkJyfj5eX1UJ9oaxQfe/DgAfPnz1c/N6xnLUkSr732Gj4+PqpAa8o5kGWZmJgYqlWrJgRdE7h+/bqReP/ee+8BOalV//zzT3788UdmzZrF4sWL6dWrF1FRUZw8eRLI6T/mzZvH66+/rrZ37do1fv31Vzp06EB8fDzTp09n7ty5+Pn5ceXKFTWCp0WLFkYZG8LDw5kwYQKffvop06ZNY+PGjWzevJmuXbsSGRn5WE7eyI+UlBQOHnx0vqY8++yzJCcnm73dnDlz+P7779XsMYUJrrnF+/DwcACjGuIjRowwEkBbtGhB/fr1uXDhAoCatcaQ8+fP2zTy/nFFkiSSk5MpX768zTOCKddk6tSpdOzYMc+ay23btmXOnDmkpaXh7+/Pf/7zH4v3d+rUKa5cuULt2rVp0qQJiYmJQE4t68WLF6viWbly5Th69KhDP6tu3bpFhQoVrMpw8rjz/fff8/TTTxe6niLex8bGUqVKFX788Uf++OMPunTpwi+//EJkZGSRXYe6deuqaclzC/XOzs54enrm+VzWaDRGk3kTEhKoVKmS2fu/d+8ea9eudYjxgsLIysoiMTHRouPMC+WdV5lU+/HHH6vLXFxcGDJkCKNHjzYS75VJSo8aykT0jh07MnXq1DxL04SFhTFz5kyTxxWysrLU7FHOzs4O3f8KBAKBQCAQPA6Y9cYvSVJTSZI2S5J0RpKkc8qPvYwzB0mSGkuSVE+SpHq2avPu3btcuXKFFi1aoNFoOHHiBE5OTjz33HO22oVAYIQS6e4oURzR0dFATmSVYVS9h4eHWv/5vffe48qVK+qXwqKIvjdEEfGVAZviqFNnD27evMmrr75aaJ3tkoQSuZ6ens7EiRN5+umnOX78eL7rKyK+RqMhLi6O/v37myXeK/eRYWRsfrz88sskJCSQmZnJ6dOnGTJkCLVr1yYpKUmN4A8ODiYwMJAVK1bg7OxcIgbNSjIvvvgi9+7dA3L6lS5duqhlFoKDg7l06RJubm42Ee8NGTRoEDExMej1eiIjI6latSqyLPP3338DqKV27IkyONmrVy81DfL8+fNZsmSJ+vdnn31G69atzW47JiaG3bt3G6WgFeTPs88+i16vx8/PTxXvFapWrcq7777L9u3b8fX15auvvuLkyZNUrFiR+fPnc/r0aSPxXqFBgwYcPXqU3bt3o9PpyMjI4PLly8iyzLPPPkt0dHSeGRs0Gg3h4eH89ttvDB8+HBcXFzZu3Ejz5s0LLVHyOBETE0OfPn3o06cPYH6JnUcFrVarltKRJKnQ6Pvhw4dz//591c+0Wi1arZbw8HB0Oh3379+nbt26D2W1UcRWJyenhwQaw9rDQry3nq1bt7J37167tD1lyhRV5Fq6dKk6KUOhdOnSqpDz9ddfW7yfpKQk+vfvD/wbfa/g4eGhlgdQxPuMjAyTs40UNSdPnqRFixbMmzdPiFxWoEThF4ZWq1XFewUfHx9mz57N2rVrady4sfrun1cmCVujiPi5kSTJpMxACQkJHD9+nLNnz5q97/fff5/Vq1ezcuVK9cdR2bt3r12ux08//UTZsmUfKuVRq1Yt9e9HWbxXMMwmt2/fPrZv3260/IknnkCr1ZKVlaVOMC2I0NBQ+vTpw8CBAwkNDaVfv352sVsgEAgEAoFAYBrmjnivApYB3YGOBj/FiiRJLwNbgcHABkmS+pux7duSJJ2SJOmUIhQoKGnylUHRBw8eUKpUKaO6gwJBfhj61s2bN03a5uTJk1y7ds1hojjWrFmDl5cX9+7d44033qBHjx4cOXIEyPlyt3//fjw9PRk7diyQMzhbVNH3hpQrV45r165x48YNnnvuOdLS0gpMm+7oHD9+nLfeekv9yQtL/Ku40el0uLu7o9PpWLNmDUCh0QDNmjUjIiICQI2KN5XTp08DcObMGbMGf5955hnmz5/PiRMn+Oeff4xqwUZHRzNixAgqVapEkyZNWLRoEVlZWWbZ5eg4gm/t2rWLpKQk3N3d+eyzz/jss8+YPHmy+vfUqVNxcnIiNTWVnj172s2Ovn37cuzYMRYtWqR+tnv3bqZOnWq3fRry3XffUbduXSpUqECFChUoV66c+re3t7dFYli1atVo2rQpLVu2tIPFBeMIvmUOx48fJyEhAcgZqM+PhIQEdcLbgAEDOH36dIG1ofV6PXPmzKFLly5GE/aWLFnC5s2bC32OajQahg8fzm+//UbXrl1JSkoiMDCwQBFflmUePHhQop+NBWHoW+7u7vTt25e+ffsSGhrK3Llzi9u8YqFHjx7cuXMHyLn+hUXxjx07Fo1Gg16v58svv1Q/P336NBkZGeh0Oq5evapOagFYvHgx06dPR5IktY56ZmYm8OiI947Ub7Vu3ZoWLVrYrX1DEf/rr79WRXyljIgsy9SoUcPi6Hulr0pOTub111+nSZMm6jKlLM4///yjlsVxc3Nz6PIwSqaPjRs3WtyGI/lXcfL999+btF7ZsmXz/LxixYqkpKQAOc/II0eOPDRBxB7UrVuXnTt3snv3brO3rVSpEvXq1aNhw4Zmb/v5559TrVo1ypQpQ9myZfM8L47iWy1atCAwMNDm7er1eqPJHABRUVG89tprQE5t+0ddvFfIT8RXMutkZ2fj7u5uUiCS8t7Qr18/9Sc3juJbAoFAIBAIBI8D5ubfuynL8ha7WGIBUs5Ud3fg/4D3ZFneIklSc2ClJEk6WZa/LLgFkGX5K+ArgFKlSslKfV1Jkmjfvj21atXi4sWL9jsIwSOLoW81bdpUNmUbNzc3hxqkqlWrFrGxsWzbto3/+7//IykpiQkTJlC6dGlGjRqFVqtl3LhxAPTu3btYB2eV85aWlsb9+/eLzQ5bULduXaMa73lFOlniX8WNRqNR038rtXRNYfz48UycOJEbN26oqb8L4/Llyxw7dozGjRsTFRXF4MGDWb58uUV2K2n+BwwYwNChQ5kzZw7bt28nKiqKd999l3fffZc2bdo8MrUFHcG3lLSY8+bNU1MyJyYmUr58eXWd4OBgWrRowYkTJ+jRowc//fST3e0ZPHgwn3/+OZ9//jkACxcutNs+AUqVKmXkV7nPgSVIkkSzZs2sNc0iHMG3zGHAgAFAzqSHgwcP8sILL6h9mEJ0dDRffPEFkJO9Ia8apAp6vZ6JEycyY8YMUlNT0Wq1vPrqqzg7O7NmzRqza+JqNBrmzZuHi4sL69atIzAwkM2bN+fpI0qd5tTU1EcmU40hhr719NNPy5GRkcVsUfHSo0cPNXNYUFAQe/fuJTQ0lM2bN+e7TeXKlRk/fjyRkZFcu3aNhQsX0qxZM9avX0+tWrUIDQ1l/fr1REVF8eyzzzJo0CDeeecdnJ2dee+99/j7779Zt24dS5cu5fnnn2fFihVATl9dUsV7cKx+q0aNGnbfx5QpUzh58iT79u3j66+/plevXqxfv17NRPL2229b1K7hRKNevXoxbdo0dZki3p8/fx5/f3+2b9+uRi+bWh6mODHnnTY3juRfxYkpInZ2dnae7/N6vZ533nmHq1evUrNmTWbMmEG/fv3UrHBBQUF2sPhfrAnuKCwzSn7odLqHyqLkzsrkKL7l6emJp6enXdo2zHzx66+/0r9/f7KyspgwYYIq5Jdkxo0bx9y5c1m3bp2a7SY/QkJCCAsLY+nSpezbtw9Zljl58uRDZXFM5dNPP1X/Vp7nCo7iWwKBQCAQCASPA+Z+Gw6XJGmJJEmvS5LUTfmxi2UmIOeQApwCPCVJcpZl+SegFzBakiSL8z1dv36d77//njp16pCQkKDORBUIHgf0er1RFHtISAgxMTFMmDABDw8P7t27x4QJE9TI+969ezNw4MDiNFnFMMrb0dDr9aSkpBAfH0+DBg0sitZ4XFFSISsTRgpjxYoVlC5dmoiICNzd3Vm1apXFKVgNI1a9vb2ZPXs2Fy9eZNasWWpq5h9++IFWrVpZ1L7AmF27dqm15vOqp6xQuXJljh07hpOTEydOnHjo/Cv3m7URx4b2jBkzRh04/vzzzwsUawUlm+PHj3PhwgX8/f3p0qULaWlpagYahfPnz5ss3n/yySeUKlWKiIgIMjIyePXVVzl//jyzZ8+2OsX7jBkz6NmzJ0lJSXTp0iXPSHydTufQkawC29GqVStVvD927BiLFy9GkiROnz5daKkFLy8vxo8fj0aj4dq1a6xbt45atWoRFhaGTqfj9OnT6sS4d955R92Ht7c3zZo1o2fPnly+fNlIvM9dj1dgH3r37s0bb7xhk7ZeeeUVgoODgZwyWnq9nurVqzNo0CCcnMyd/w+3b982Eu+VCfOQ86zu3bt3nuK9qdjqeS8wn927d9OgQQOuX79u933l9T6fW7xftGgRZcqU4ZtvvsHT05MdO3Y4zHdUU5Bl+ZH0ZSULkCzbR+uNiopSxfspU6bQp08fhxwLMIePPvqIyZMnk5qaSseOHdUI+4Lw9/cnLCwMgP379xuJ91qt1t4mCwQCgUAgEAjsgLnfwPsDdQFnQPlWIQObbGmUBfwNvAhsATJlWT4lSVIfYK4kSYdkWY4xpREnJycqVqwIQEZGBrGxseqL//LlywkICLCP9QJBPiipAC1FqX2am4IGcFNSUtBqtWoUu2G0YYsWLQgODubw4cPMmDGDlJQUXn/9dasHRgqzJ79owbyWGUZ524PCBr/zO+eQUwPw+vXrDBw4kOzsbNq3b09ERAQBAQFIkkTjxo1tba5DYejPygBOZmam+nlB565Hjx5888033Lhxg4sXL+Ln56cuS09P58GDB+r/V69e5dixY6ro/3//939MnTqVAQMGqJHTCgXtU7FL+a3YeuPGDd5441qIR4sAACAASURBVA2uXLlClSpVaNGiBd9++y2HDh2iatWq9OjRgzlz5phySgS52LZtGx988AEAPXv2NKqZqQxC5SYiIoIJEyZw6NAhmjdvzoYNG4CcsjdpaWm4urpSqlQpNZOCLewZNGgQX3zxBVOnTuXu3bt5pui0ZH8C64iPjy9weUHXJPe2SsrQyZMnc+rUKerWrcuBAwdo2rQppUqV4uLFi2rN2fzE+23btpGWlsa2bdvYv38/kFPDNygoiMDAQNLS0khLS1P7r3v37pGYmFiorXmhpApet24dAQEBfPfdd2o/q7QJ2CWSNa/zLssy6enp6HQ6fHx8bL5PR6Mg3yssc4YlfUV++1Mi7zUaDREREZw6dQqApk2b8vPPP9O5c2c+/PBDBg0alG/biog/efJksrKy8PLywtnZmcuXLzN37lxatmzJ2bNnkWWZBg0acPDgQa5cuULt2rWpVKkSkiQhy7JDi/eF9RX2aNMezwSlj1mwYAExMTlfd48fP86QIUMAGDFihMVtK9ful19+oXz58gX6jEJe58Aw8r5r166MHj1a7ZMU8f7SpUvUrVuXb7/91uw+Kj4+/qHnvSH5nXdrrpdif1paGpBzHIb9bEl5/h84cADI6a8zMzNxdnY2imjOL3LdcB2FqlWrqn/bS6R99dVXWbFiBd26dWPMmDFG4r2Pjw8fffQRf/zxh7r+pEmTGDNmDEuWLOGvv/5Ssynlxt4R+uZw7do1UlJS0Ol0D03ui42NNfr+U9yY89xTsgCBdRkLDO8zgKysLA4ePGgk3uc1kSn3dgXZmpuivp/zur8AOnXqBBR+fyki/qZNm3BxcWHkyJGFiveG50cpDVfQORMIBAKBQCAQFB3mCviNZFk2v0iXnZAkSfpfFP7nkiStA76UJGkQkCrL8hFJks6RM8HAJO7fv8/Ro0eNPrt06RKQU/9Rie6zJPJAIMiPggTE4sDDwwNPT09SU1Nxc3MzGkhr3749kDPQMWHCBLvbotfrSU9Pf8gOQ1uL6/wptul0OpMHG5OSklTxvnz58iQmJhIeHk5ERASBgYEO5wu2xnCyhTI44ezsbFI65+bNmzNq1CgmTZrEtGnT+OWXX9RlDRo0MGrjs88+w8vLi08//RStVssLL7zAZ599xvr165k+fbrJ6aOV9ZTfTk5ObN26lTFjxpCamkqrVq1o3LgxkiSpKQuvX7/Ohg0bhIBvISdPnlQH4evUqaMO9kHOxIzatWs/tE2pUqVUsUlJp79hwwZ1Ap41ETj52VOzZk1VxFcmhdiqzmZBA4XWDCKWFEHBETh9+rQqSDZp0gQfHx+aN2/OK6+8QlpaGtWrV2f8+PFAjnife2KQQm7xvnPnzly9epW9e/dy9OhRBg8eTP/+/dXBbJ1OR7ly5fIdvFXI71quXbsWyBHxu3btil6vR6vVWl12wRIMB+uLGhcXF4fydyXyUKfTFXptrcEwbf7YsWMpVaqUeg169OjBqVOniImJ4fbt2/m2YSj4Dhs2jFq1avHzzz/TqFEj6tWrR2xsLEuWLKF8+fLUrFmTn376idKlS9O5c2cCAgJo2bIlsiyzePFitQSFwDoK8mVD8V55F42JiWHBggWqiG8Jih9YMwEAHhbv582bpy5T0uZfunQJf39/jh07hoeHh0WTjGzxvDcHpU9VJgxrNJpi6WdtRWZmJunp6QBWZ4Sxhv379/P7778zYMAAnJ2dadasGefOnWPNmjXcunULHx8f1q1bx969exk6dCjDhg1Txftly5bl6TurV6+mT58+ajr9/ER8c7FG9C9oW8PJFLnx8/NzqMkGBVG+fHmjvkuv1+c5tmBJu4YkJycbiff5vYsX1XO4KNi2bVu+6fQN++y8SvDlh+F5VcY6S3KfJhAIBAKBQPAoYe7b80+SJNW3iyUmIklSHUmSnpckyRkD+2VZ7vm//+cCYZIkvQe0ArKKx1KBoOSi0WgsHkSzJUpktTKo5Eikp6dz//59k227fv06vXv3Jjs7m6effpqNGzfSu3dvAMLDwzl+/Lg9zX0kGDlyJC4uLsTGxnLhwoU81zl79iw7d+7kvffew8vLC8jx56FDh5KdnW3RYLRyH+zZs4fBgwdTv359evXqRZMmTdRBIA8PD8LCwtBoNFy/fl2k07eQdevWATnR7ubg5eVllE6/R48eSJJEqVKlrBqoK8iehg0bGqXTnzp1qsX7ETgWo0aNAv6Naoec692mTRtmzZqlpictLG2+oXgfFhZGYGAgYWFhDB8+nFq1ajFr1ixatGjB2bNngZzsT9Y+7wzT6aemplpVm9kalJT9JT2FrS3IysoiLS3Nru8yhuL9sWPH1OefglarpUmTJgAsXrzYpDbLlSvHlStXKFeuHEuWLOHrr7/mq6++onTp0gwaNIhXX32VgIAADh8+zMqVK2nRogWZmZlCvC9CDMX78ePHq+UPFBG/OMld8/7jjz9Wl+VV897T09Pi7x22eN4/zjg7O6PT6fIUjS3BmnT6NWrUoHLlymRmZnLs2DF69OihTqTVaDT07NmT7OxsXnnlFTVtfnh4eL6+4+npaZRO3/C57ohIkoSLi8sj58v2Glv466+/Coy8V1AmFTrimIIhppTm6tixo1GGMoExfn5+SJKU548jZbAoDF9f33yPw5pjeVTOj0AgEAgEjxPmvkG/AERJknRJkqRzkiRF/y/KvUiQJKkb8D0QCXwNvCdJkqeyXJblXsBhoCIQBHSSZflPW+3f2nTmAoE1bNiwgbJlyxb4o6SONodZs2Yxa9YsO1hsGUFBQerxPPXUUzRo0ICnnnpK/czPzw+9Xk9aWlqx1gfU6XQcOHDA5EiOhg0bkp2dTZ06ddQIpIEDB9KrVy/A9Nrujwq1atUC4IknnjB5G71ez/vvvw9Ay5YtqVq1Kt7e3tStWxdvb2+8vb1p27YtXl5evP3220bbKtdpy5YtZtuqpLeOj48nIiKC7du355ktQRHxJUni0KFDNovyeVyIiYkhLS2NUqVK0bCh+cl+KleuzJ49e5AkiRMnTjB37lyr7ImKiiItLQ0nJ6d87QkODlYHgz///HNV0BcUPzt37rToHrxx4wZXrlwBciLmfXx81Cj8H374QV2vMPH+8uXLRuK9v7+/uqxq1aq8++67bN++naeeeoqoqCggZ+DeFoK3IuIDRrWCi4IPP/yQnTt3PraCWkJCAj4+PkY/zz33HI0aNaJ27dpqmmdbMnv2bE6cOIFWq+XYsWNUrlw5z/V69eqFJEnExcWZ7BeKiF+2bFkuXLiAXq9n0KBBlClTBkmS6Ny5Mw0aNCAqKoqsrKwSJ97ndb1sgaX9jzlMnDiRmJgYJEli/PjxeHl5qeUPJEkiJiaGiRMn2tWGgujevTtJSUl06tTJqOY9wPDhw62qeZ8XUVFR1K5dm9GjR5u9raXXSym9V716dbO3dSQkSWL9+vWsWrXKJu1Z8g5nSGRkpPr3smXLaN26Nf3796d169asWLFCXVa1alUWLVpUqP8oIj7Ajh072LNnj1X2FRXTp0/n0KFDxW2GSSxYsKDYJg0VJt6D8aTCjz76yKjPV97xlB9fX18SEhKKyPp/iYmJMXkycOfOne1mh/Leluu5WLxRHWYQFxeHLMt5/sTFxRW3eSYTGxub73FYcyyPyvkRCAQCgeBxwtxc8O3tYoUJ/C/ivifwlizLRyVJ6g40B0ZJkjRDluVkAFmWl/5vfZ0syzadYnvx4kXq1q1ryyYFApNp3rw57du3Z9euXXkur169Ok2bNjW73Xbt2llrmk1Rangq9eCzs7PVum1RUVEkJyer0e/FiUajoW3btianY3/uuefYvXs3V69e5ebNm1SsWJHs7Gx27twJ5AySP058+eWXJCcnm9WnpqenM3DgQL7//nsuXbqEq6srr732GpmZmUYpP4OCgoyiD/V6vZpyskGDBmbbaiiobdiwgdatW+e77r1793ByciIzM5ONGzc6fKSPI6EMhKenpxvd96aQlpbG3LlzWbJkiVob8q+//rLKnjp16qDRaMjKymLhwoW89957Rstv377N2LFjWbduHU5OTmRnZ/Pxxx+j0+l4/fXXrdq3wHpatmxpUTRhxYoVCQwM5MaNG2pq+6ysLDWlqCzLvPbaa4SGhhbYjp+fHxqNBr1ez4EDB4wEfMh5nn300UckJycDOeV0XnrpJZsJ3jNmzFAzSBQl7dq147nnnivy/ToK5cuXZ+DAgflGuZcuXZo2bdrYdJ9KX+fs7Mxff/2Vr4CfkZGBVqslKyuLwYMHmzzhqFy5cly+fJlKlSqRmZnJqlWr1P7wwoUL/PrrrwCMHz++RIn3UPj1shRL+x9zaNu2LeHh4ciyzJEjR9Sa9UeOHFGfg8X5jt+yZUuuXLnCoUOHSEpKMlp29epVAJuK9926dSMrK4sTJ05YZKsl1+vNN9/kueeeeyjjRUnk+eeft1lb//nPf6zavkaNGvTv358jR46oz0SlbBnkfDf8/fff+euvv7h8+bJJNdUPHz4M5Hx/q1evnlX2FRUBAQFWT4YoKoKDg4t8n/v27ePevXtqdpmCUCYVAgwYMIADBw7kmymiWbNmxZI+PjMz06T1dDqdXTMJzJs3jylTpnDjxg0g53v0+fPnTf9SJhAIBAKBQCCwKWYJ+LIsF/eUPE+gFnAU2AzcAl4BXge+lCTpOSBLluUzQIatd37ixAmr6gkKBNbg7e3NmjVrgILrrxsuMwVLBE174+npqUYupqSkqCJ569atiYqKKvJal/nh6elJ+/amzWvatWsXjRo14ty5c7z++uusWbOGgQMHkpycjJeXV7EILcVJlSpVqFChglkDt8r1PnLkCMHBwURHR3P48GG2bduGp6dnntso4n10dDQNGza0KOpGGTxs06YN586dIzg4mCZNmtC8eXMjkfnGjRts3rwZd3d3vLy8iIuLM/JfQcF4eHjg6+tLXFwca9euLTSaBnKE+8OHD3Po0CHS0tJo27YtAQEBTJgwweo6rq6urowfP57IyEiuXbumivh37tzhxx9/5OTJk2g0Gnr16sXgwYO5efMm3bp1U6P/lDTsguLB09OTl156CcgR3dPT09Hr9YX2OU5OTqxcudLos8TERLMHc11cXPL0n+joaNatW6fWJvfy8mLGjBkmP0tMQTne4kA5548rTk5OTJgwgQkTJgA51yIhIYFKlSrZLRuBIkp4eXnx5ptvPuS/CkeOHFEno6xatYrPP/8cNzc3k/ZRoUKFh/w5KCiIpUuXAjnizaeffmqbAypCcl8vwCZR+Ib9j71o3rw5YWFhLF26lH379qmfK3+HhYVZLaRaw8SJE0lLS2PdunUEBgayefPmh/pRW4v3AO7u7mZtL8syLi4uvPjii2bv28nJifr16z8S9bVr1Khhs7aUycnW0LdvX/r27av+Hxsba5Teedu2bcyaNYshQ4Ywbty4AlM/b9++nZkzZ6LValmwYIFRbXZHxpaTKuxN/fpFW2VTlmWqVq1q0VhAjRo1jErX5X7HU96htFptkd7PtWvXNmm99PR0kyatWEqNGjVYsmSJ+r8sy/j6+hZPPSaBQCAQCAQCgWmpkCRJOmOLdaxBluVMYDbQTZKkAFmW9cARIAoIlCTJFWgJ/PW/9WVb25Cenq5GcQoExUlB9ddNrc3uCGnoLUWj0eDq6mrzOnr2Zt68eTz99NNkZ2fz2muvqeL9t99+a1a08aOAqX5qiHLdnZycOHDgAA0bNiQ6OpoOHTrk6cd6vZ4OHTqo4v2BAwes8hlfX1+OHz9Ot27d+Pnnn1mzZg3//PMP8K947+bmRvfu3QkNDUWWZYcqT1ESUGqL//LLLwXW7r5x4wZfffUVkZGR7N69m+rVq7Njxw6WLFli0/p9SjpijUbDtWvX+PDDD5kyZQonT56kRYsWHDp0iEmTJlGlShUaN27Mpk2bcHJyYvTo0UaDX4LiRal9ak06eUWgMef1Mrf/fPDBByxfvpy0tDTc3Nz46quviI6Otql4D/8er6D4SU9PJyMjo0gmVIwdO5YKFSrw5ptvPpQGNS0tjYMHD+Lv78+LL76oRuGbQ25/VsT7wMBAh8vmZCqW3NeO1L6/v7/63Ny3b5+ReJ8760dxoJTzSEpKokuXLg9F4lvLzz//rIr306ZNs6gNW9TGLin1tR8lQkJC+OCDD8jOzmbSpElcvHgxz/Vyi/d169ZFlmUyMjLsdl8+jti7r8uNPe+54ryfTc0EomQtKwr+N4mh5A0YCQQCgUAgEDwimBqBX6+QWvcSUBS54w4DdYA+kiRJsiwfAlZLkvQ28JQsy3PsuXONRsMLL7xgz10IBCZRUAS68llmZqbRQJlhZH5qaiparVZNQ+/q6moTuwobmMurbjjkRNkrKF/8lc8M21QEPcP182vTUZk3bx7Dhg0jOjqaMmXKsGHDhhIn3iclJRWYBcKUa2JtFgWNRsOBAwfU6PrAwEB27Nih2qKI9+fPn7dYvFf8TBHCMjMzcXZ2ZtasWdy9e5dDhw6xdu1aKleuTEJCAqVLl6Z79+64uroyYMAAIiIiWLFiBcOGDTNqt6T5bFGi1Wrx9vYmPj6eVatW0aNHD3VZdnY2N27cYOnSpdy+fVv9vH79+rz55ps8+eSTJCYmcvfuXQAePHhAYmKiup6lEVeKaDVp0iSys7PVd4EuXbpQqlSph/axbNky+vfvz8CBA7l9+3a+6fRLSgTYo4DSz5gabZwXhqK4OZFPuf3H1dWVnj178txzzxUo3MfHxxfYbn7+k5iYiCzLajSq8llh2xVGQfYUlKHAcN8KSnSbTqezWc1xR0Wn0+Hi4mLzjEGG5/XBgwdATjTwl19+ycCBA1m0aBGhoaHq9d6/fz9paWm0atWKsmXLcujQIVauXMmYMWMeilguyEcUf548eTJZWVkEBwfTrl07tcSEJVjq67bA0vvakvbthSLiL1u2DID+/ftbLd7b8poopYTWrVtHQEAA3333ndo//f333zg5OSFJUoFt5mWPYeT9hAkTaNu2LaNHjyYrK8usPs8WWb0cJTOYLYmNjeXAgQM2b7egNnNH2RdGSEgIsiwze/ZsNRK/WrVq6vKDBw+yfPlyI/Eect7nFXH2r7/+KtAmEbxhGrn70rye/YZY26/b856zVduW9KPlypUjISGh0LaLOuOBQCAQCAQCgaD4MHW0xZQixXZPqyTL8gNJklYBMvCRJEl1gXSgIpBS4MYm4Ofnx8SJE9X/J02aRHJyMt988w0jR47EyclJCC+CIsUaf8stphvWjffw8MDT05PU1FTc3NyKPZLdw8NDFYSVVHWGaceVvxWhuzhTkltzTZRBoLNnz9rImuLD0J9MnQBizbnLb9uoqCgaN25MdHQ0ISEh6iBcUFCQKt5HRUWZ7eN6vR6tVotOp1OPz9nZWfW9MWPG4OzszK5du9T6w15eXlStWpUBAwbg4eFBtWrViImJEWn0zaBv376EhISo1/S7775Dq9Vy6dIlFi1apA6G6XQ6Xn75ZX744QcuXLjAhAkTOH36NJGRkWo5BZ1OZ3UNyxEjRqh/jx49mkGDBrF69WoOHTrEzz//zLvvvsuwYcOM/KtVq1Zs2rTJKJ2+IuIbCpcC22PNgHBB23p7e6PX681+Zhr6z7hx47h+/bqRuFAQf/zxh+or5qRwzcvn7VnLVZZl3N3dqVKlisnn5VHMEFCQ/9hjkoLhNVWEZ09PT+rXr8/GjRvp2bMnq1atYuXKldSsWZPp06fTtm1bxowZQ2JiIqmpqcyZM4exY8cyb948k/Zp6M8RERG2PaBc2LuvVK6XJfd1YW0aYti+PTC8Jl9//bVd9qFgyjXJ7z5Yu3YtkCPid+3alSeeeAJAfccyd/JEbvF+4MCB6jKtVmtSn2ev50VJoiBxOj9RW5Zldu/ezUsvvWTz749+fn5mC+ZBQUFIksSsWbOYNGmSKtRv375dFe+PHz9Os2bN1G0M78tDhw4hy7I6Sbe4SyCUpAkDhvdBXn2pYZ9hq/Nq6b1X2Dueo1CzZk0SEhLo1auXkc8qfPXVV1y6dIm2bdvadL+OdA4EAoFAIBAIBMaY9K1LluU4E37+tLex/7PlDrAYmA4EA62BN2VZLnyqaiG4uLjg7e2Nt7c3169f59KlS7z55pvo9XouXLhQor5QCQS50el0uLu7qwNvGo0GDw+PYhfvFQwFYYHjk9ufigslEl9Jpx8UFGRU897StPmpqakPpfj/888/6devHz4+PgQFBbF161Y0Gg0tWrSgevXqxMXFERERgbe3N88884w6IL1w4UKbHe/jQLly5XjmmWfQ6/X069ePli1b0qZNG+Lj49HpdEyePJkHDx6wefNm7t69yyeffIJOp2Pjxo34+/urZQtsXR7Ezc2NFStWkJycTL9+/cjIyGDOnDnUq1ePOXPmGO0vdzr9NWvWACLNbknG2memi4uLyeI9lBxfsaQ8gSLaFffz41HlySefZN26dWo6/aFDh3L37l3ef/99dZ1hw4bh6urKli1brCotYS+Kyv/t/S7saO/a1mDtNTFMp3/58mUAi/oBQ/F+2rRpdOvWzWi5SItuX5TodUfqNwzT6Q8ZMoQvvvjCKG1+biE0932pHFNmZmZxmP9IkFdfV1LeYxyJVq1aAXD+/Pk8lyvR+X369CkymwQCgUAgEAgExUuJHE2QZTlDluX9wBtAmCzLv9ii3fj4eN5//33ef/99ZsyYQeXKlWnXrh0XLlwgMzNTCPiCEktwcDCff/55kdWN37VrF1WqVGHJkiWkpaWZJKQpgjDA3bt38fX1xdfXl/r166t/R0VF2dt0gYko9ejfffdd3n777WK3xVDEj46OpkGDBlbVvHdzc3togsKuXbvYsmULGRkZBAQEsHXrVh48eMDRo0f5/fffuXfvHp988gl+fn7ExMTw22+/AahpbQWmo9RWPnToEPHx8bi4uDBq1CgePHjARx99pK6n0WgIDw/n7t27DB8+HBcXF7v3E25ubixfvpzz58/TvXt3VcivWbMmf/zxh7qeIuJrNBpGjx7NkSNHhHApMBnFVx48eMCgQYOIiYkxa3ul5IytSU5ONrJHsdOUCONFixaxaNEiJEmiVKlSxR7p+KgRGhqKv78//v7+vPTSS9y8eZP79++zb98+tFotPXv2xN/fn4CAABo2bEhaWhrZ2dlERkYWt+kqI0eOFH2lA2F4v9vimigivoKp/YBSXzspKYlOnTqpKfgjIyMJCAhQ/R4Q/YodOH36NNOmTQNyslHpdDqbZJWYNm0aP/30k00mXRiK+OvXr38obX5BKMc0Z84cTp8+bbUtghyUPuPnn39m5MiRxW1OsSHLMgsWLODLL78sdN1+/foBEBcX99Cy7OxstUxYxYoVbWukQCAQCAQCgcBhsbxgoQMgy7Ld0vb7+Pjw2muv4eTkpEYJ/Oc//7HX7gQCu/LLL79w7tw5hgwZYvd97dq1S00XPW7cOLp06QIUnmZdEYSnT5/OqFGj8lzH09PTrAhGgf3ZsGEDkJPSrzhRRHwl+vqDDz6warKK4o8ATZs2xdvbGz8/PwYPHqzWrc6d1t/Dw4Pw8HDefvttEhISWLlyJStXriQwMNBiOx5XypUrR//+/dmyZQtvvfVWoX2XRqNh+PDhDBs2jHnz5rF+/Xo6depkVxvd3NyYMmUKb7/9Nu3atVOjAQ0zLjRu3JiAgAAOHjzIjRs3VOFSICgMxVfS09P5z3/+Y5bf6PV6OnToYDfbDO1R7DSlv33xxRftZtPjTOfOnTl37hy///47siyrAqZGo8HNzc3oM0NKly5Neno6vr6+RW1yvrRt25bmzZuLvtKBUO53W12TGTNmUL16dbXcjSkokbyZmZkEBgZy5MgRddKvIZ6ennTu3NlqGwXGNGrUiAcPHgA5fb6Li4tNJoQ3b96cOnXqkJmZiYuLi9XthYSE4OLiwp07d2jUqJFJ4j38e0wvvPACjRo1stoOQQ5Kn/H8888/cmVzzCE9PZ0WLVqYNPmpdu3aODk5cffuXRYuXMh7770H5Ij3ERER6PV6/Pz87GyxQCAQCAQCgcCRKFTAlyTJXZbl+5IkeciybHWdeUfG29ubuXPnPvR5bGwsZcuWFTNdBSUae0XjGWIo3ru4uJCRkcHXX3/Nhx9+aHIbPXv2NIrOEfXDBaai0WjM8jVTKVOmDOfOnTN5fZ1OR6VKlRg7dizjx4+3uT2PCxEREWbXWVaE/OHDh9vJKmN0Oh2hoaFAzsS/rVu30qVLF9q0aaOuc/78eTQaDV27di0SmwSPFl5eXqqPmYIi3isZQEqXLl2s9hhSs2ZNm9oiyKFZs2Zs2bLF5HrDiYmJJtUILw5sXddXYB3W3O8FMWjQILPWV4SvMmXKsHLlSqNljuzPjwpOTk60bNnS5u0GBgaqtedthTV9iD2OUZDjP49z367T6ahfv77J2UvGjh1LZGQk165dY+HChbz77rtERERw//593N3duXr1qp0tdnz8/PzyzFIAONSkRMixJ793spJma2xsbNEaJBAIBAKBADAthX5ZSZKGAC/kXiBJUm9JktZKkrRKkqTVkiS9bnsTi5/Y2Fgx01UgKIRt27ap4v3w4cPZv38/AHPmzHkkan8KipYLFy4UtwkWo0TvC79/9Fm4cCE3btzAzc2Nbdu2Ua9ePcaMGUNSUhIA169f59atW9SrVw8npxKd9EhQAlDE+wsXLuDv729z8V7g2IjSBIKi5tdffyU5Odnu+xG+/WiiRL4X5XUtyd8vBCUTc/svLy8vxo8fj0aj4dq1a4waNUoV78PDw9FqtXa22PGJi4tDluU8fxxNZI6NjX0kbM1vwoRAIBAIBAL7Y8po8otAKLBUkqQnZFn+x2BZK1mWeyn/SJK0EFhjWxOLjuzsbG7fvm30mfJi1apVq3y3U+rw5besoEF7MaAvsBcpKQ8nzDD8LHf6b1NQX3SawAAAIABJREFURCm9Xq9GeWk0GqPI+969e9OpUycyMjJ48sknuXHjBh9++CFvvPEGQUFBlh2MHVCOJT8sOT+PC/bwLYADBw4AMGzYMM6dO0eZMmXYuHGjOlBha/8x9IHcPl0Yuc+B4fapqakia0QJIj4+vsDl3t7eeX7epUsXzpw5A+QMtjVq1Ihq1apx69YtgoODOXPmDAsWLADgzTfftK3RRYil56ek7bMkkZiY+NBn2dnZauR9nTp1+O9//6u+uxqun9+5MzznpkZyW0tex2GIpdc5IyOjQB8qav8pSf6c1zVR/CElJYUKFSo89LniJ450HCXpnFtDfsepXJsaNWrYfDLhtm3buHfvHrt27VIn6/r6+jJw4EDKlStHSEhIntsVR6S8vfoYR+PAgQPIsqxGsxv227Gxsfj6+ua7LL8ghUcpgKGg51irVq345JNPis4YQaH3ZWGY8h5j7XaGzzcfHx/zjSyEgs5Bamoq7u7ujB8/nsjISPR6vRDvBQKBQCAQCB5jTFGPTwJhgHcu8R5AJ0nSK0A8UBUouMi1g+Pq6srTTz9t9NmNGzdIS0ujefPmxWSVQGAZeQmIthIV09PTuX//PgAHDx40Eu8HDhyorjdp0iTCwsJYsWIFb7zxRr7tFST4CiHd8bCnbyniPeQI7N27d+fbb78tcMDCFj5i6NOurq5mt2u4vYeHh/BbC7FmML2oB+IV8R5y3hUArl27BsCtW7eIiopi7969aLVaRo4cKSbsCczCHH82TJtfp04ddu/ejUajUUULc0Uzpd40oNa8tvT+elQEMkejKPtKxR9yT1jOy0+Kwh5B4SjXxtIJhQVdk3v37rFt2zYOHz4M5IijcXFxjB8/nmrVqhEQEICXl9dD25UvX94u/YjwnxwyMzNJT08HeKiefEHL8sPPz88uE68drc2DBw861ATzR4WSfl8aPt8sxdJz0LNnT9zd3fH09GTEiBFoNBrc3NyEeC8QCAQCgUDwmFLolHxZln+TZfmcLMvbJUl6NtfiwUBZoMP/fg+xg43FypUrVwCoVatWMVsiEDgOOp0Od3d39u/fb5Q231C8B6hWrRpPPvkkmZmZrFq1qjhMFZQgFPFeq9Wyfv16vLy8SE5Opnv37mRnZ9t134pPm1qf0NbbC0oWU6ZMKXSdt956i4SEBBo1aiTEe4HdMBTv/f39Wb16tdURtzqdDldXV9GfCYB//SF3Pyb8xHFRro2bm5vN2961a5cq3oeFhTFt2jSeeeYZJEkiJiaGhg0b0qVLlyJJrS/4F2dnZ3Q6XZ715AtaJhAIHqY4n286nQ5PT0/c3Nzw8vKidOnSQrwXCAQCgUAgeIwxd4SvnyRJGyVJag4gy3Iq8Iwsy1NlWV71v/8fKa5evQpYJ+Dr9Xru37+PXq+3lVkCQaHo9XrS0tLs4ncajYbz58+rUfXDhw/n448/znPdSZMmAbBixQqb22ErJk6cyC+//FLcZpQ4bOlb7du3V8X7NWvWULFiRb799ltVxO/Zs6fN9pUXd+7c4aOPPrLomCZOnMjZs2dF3ftHgA0bNrBhwwYePHiALMt5rnP//n3GjRtXaFu3bt0C4J133rGpjcXJokWLWLRokV33odfrjc7/tGnT1Kwcgofp2rWrWvN++/btNumD7ty5Q3h4uN0nThly9uxZJk+enO99Zw7R0dH4+Pjg4+ODv78/+/bts4GFtsHQn2VZ5sGDBw77/WDRokX4+Pjg6+tL7dq1eeaZZ9Tz6uPjw4cffujQdcmV85uYmMjo0aMLLHn2KGDYPys1l239TjJlyhQ1bX5YWBj+/v5otVreeOMNpk2bRrNmzZAkiTNnztCwYUOGDh0KOIavb9iwgY0bNxbb/u2NJEloNBpee+01Wrdurf7079+f4OBg2rVrR3Bw8EPLlL9feukl1q1bV9yHYXPatWtX3CYICiAmJoauXbvy8ssv06FDB1555RX156WXXqJjx47ExMSY3e6GDRtYvXq12e8UMTExDBgwgOzs7CJ7vp07d47p06er/0uShIeHh/hOKRAIBAKBQCAATEuhb8g/QCdgkyRJ9wAX4LjNrXIgEhIScHV1pWzZsha3kZaWptZLdnd3t5VpAkGBGKb0btOmzUPlIazl+PF/b/1ly5bRtGlTnnrqqYfW27t3L4BDD5y++uqrVKxYsbjNKHGkp6fTvXt3m0T0nDx5EoCaNWuq10Kr1fLyyy+zdu1abt++bfU+CiIhIYFWrVpx8+ZNnnzySbO2Ff7z6NC+fftC00L/8ccfJg0IyrKMJEmEhYXZ3M7iQpmQZc9JCampqUbnv3PnzkZ1twXGXLx4EYA+ffrYbLD3n3/+ISAggMTERCpVqmSTNgujQoUKvPTSS6Snp1uVjj039+7dY+/evQQHB9usTWsw9Gdr05zbm+vXrxe4fPfu3cycObOIrDEf5fxev369yP25OCiK/nnr1q1ATt9ct25do2VarZZevXqRlZWlToo9ePAg4Bi+3r59+2LZb1GSlJRERkaGRdtmZ2ezf/9+u0+YLWqU7xcCx2TZsmWcPn26wHXOnDlDtWrVzGq3devWPHjwwOx3itGjR/PTTz+xcuVKQkNDzdqnpTz11FN07NixSPYlEAgEAoFAICh5mCvgvwnUkWU5XZKkp4ApwCMftmrtgKhST1n5LRAUBUrKN51Ox/r1623e/v/93/9RrVo1hgwZQlJSEm+88QYeHh6MGjWKgIAAABYvXszq1auBfwcWHZH69esXtwklEp1Ox/z5822SXjA6OhpfX18uXbrEsGHDmDdvHosXL2bt2rUAREZGWr2Pgqhfv77FfiD859GhdOnSeHh4kJ6enq9f16tXjzFjxjB16tRC29uyZYtIn28mbm5uRmlLc4tEAmPWrVtHt27dGDNmDJIk0bZtW6vbrFu3bpGf96eeeory5cvb5HnSsGFDtm/fbgOrbI/heVWO1R5pzm3BxIkTmThxovp/YmIi5cuXL0aLzEM5vw0bNrT5JNbHlcOHD+Pl5cX9+/eJiIggPDwcrVZLWloaixcvJi4uDsiJIO3cuTNz5swBHMPXS5cuXWz7LioqVKjA999/b/RZbGwsfn5+ea5f0LJHhXPnzuHj41PcZgjyQcnK8c0339CqVSsgZyJKYGAgSUlJ9OzZk+7du5vdbvny5Qt8l88PJfvmzZs3zd6npVSoUEFMVBUIBAKBQCAQ5Iu5ynQ8UA1AluW/ZFnuBzw6uWGtoKA0+RqNBnd3d5EGS1CkaDQau6f0DgkJITY2lm+++QYvLy9SUlL4+OOP6dixI+PGjVPF+8mTJ/P888/bzQ5LsGeJgccFW/pYlSpVWLNmDVqtlnPnztGxY0cj/2nRooXV+xAITEFJPVxQ2swpU6YU2s7WrVsJCQmxpWnFii1Sm5uCRqNx6LTcjkbjxo3ZtGkTTk5OjB49mk2bNj20TkElIRwFU+47c1BSdjvycdsrzbkgB1v7lCAnyj48PBx3d3fu37/PJ598wrx58xg/fjxxcXFIkkSXLl24du0an332mVq3ubh8vST0A46CLMtkZGQ8cufK29u7uE0QmIGheP/qq68apZY3B9H/CwQCgUAgEAgeFcwNCxsGfCtJ0hngDFAVuG9zq4qJzMxM/vnnH6PPUlNT0ev1/PPPP9SsWTPfbUWafMGjQlJSUr7LUlJS8kx9GRISQkhICPPnz2f69OmkpKRw7NgxwDTxvqB9ApQpU8YEy83DsMRA7uwYyr1clPYIoGLFiqxYsYJ+/fqp18BR/acgCvKf/O4hBUfzrYyMDOLj4y3a9nEfNH1UxPvExEQg5x0p92dQcq5zYX78/+zdd3wU1fo/8M/ZTbKkN0LQGBJClRDpRaSEDoZ+gVAuXWy0iFyRdvOjiCCKgKAIiMBVQBEBEaT4pYlio3cEEsBIKAmE1E129/z+CDNsINlsn5nd5/16+ZLsZmeemT1zZjLPnOcoZTtKIyTx+/Tpg9mzZwMA+vTpIyZibt++DS8vL3h6eipmO43bmDXKmwrDnZk6FqQYZW/tsSm37ZBCaceJo/tnIYk/c+ZM5Obm4vr162CMoUGDBhgxYgR69uxpdqzGrI3VVDu4deuWOAJXCf1AdnY2Dhw4UOp78fHxDl13UVERtFotAMDLy8th6ylr+wSO3k57cZXtkIJxX1BQUAAAePDgAa5cuYJevXohKysLffv2xYwZM+w+rU558QgP9ufn54uvK+W6yRbW/q1HCCGEEEIcz6IEPuf8HGOsIYAOABoASAdQ+l/pCuTp6YlKlSqVeM3HxwcqleqJ1415eHjA398farVa/H3j9wiRgiMSgX5+fiaXO2PGDMyYMQNbtmzBggULkJycjM6dO9s9DnsIDw9HXl7eE8eswGAwiKX3aHRcSY5KMsfHx8NgMKBJkyZISUmBRqNx6A0wW7bDnvvAuK3JDedcnMvdVVl7Y05Ijk6ZMqVEOX1XG3kvJMGMR+U5OjHmDjdLbVHa/omMjMQvv/yCFi1aYPbs2fDz8xOP20qVKkGj0Zg8jqXY5+ask3Mu9o/m9kNeXl6oVq2ayXO8MympPYeGhpYZr9y3w7itmNoOV1JaX+zo/nnixIni/7du3YqdO3dixYoV4mh7c1lzbFsqPDwcISEhsugHzGHtNZc9rpUNBoNs+kx7E65f0tLScO7cOXh6elKCXULGfZSQnGeMoXfv3sjKysKoUaOwYsUKi9ujtX2+cTzCury9vR3alyrl/CT0049jjL0M4GUALjNFRXR0tDgNTGmioqKQmprqvIBsYGpboqKinBwNIYQQQmxlcXaZc64FsOPhf+QhlUplclQlIe6kd+/e6N27t9RhmFTeMWtqhD5xHJVKhZo1a6JmzZpSh+I0xm1NboSHC5Qwck0q7777LipUqICbN2+K1UhckSs/xOEqmjRpIo7Enzx5MoDieZ+VfPxaO5KersvdD1VdcC61Wo1//etfVs1PDTjn+2KMKaof4JyjqKjIoSPgy+IOfWZERAQiIiKkDoOUYty4cdDr9UhMTMSqVasAwOXboxIY9dMlnqLgnK8AsAIAGjdu7BLzbly7ds3kFCJK+juovG0hhBBCiLLQ8HBCyBOEpF16ejqOHz+OPn36OG3dhw8fBgC0bNnSaessjTAa+o8//oBKpZI8HmKa0GZ//fVXqFQqtGnTRuqQABS3561bt4o/FxUVwdPTEwCg1+vRrFkz9O/fHwBkOQL/4sWLaNGiBYDi6WFat25d6g0Mb29vjBs3Dl5eXg4dTSdXycnJUodALJCXl4dNmzZh6NChsq1+YS3jcvo6nQ7Z2dlSh2QTjUaDnJwcDBgwANevX5c6HJfz3XffoUGDBrIZDSjE88wzz1h0bF6/fh3Hjx9H586dXep4Lo/xKHYlcdT3Jbf2bKmUlBQkJibC29sbQ4YMQdeuXaUOyaH27duHOnXqoHLlyuLDCwaDQXEVAG7evInz58+jXbt2UoeiGELfVVhYCABi8n7BggWSxiXE487Jz5SUFAwfPly8fny4LwySBkUIIYQQ4sYogV8Ob29vFBQUlDvHMiGuRBgR/ODBA7Rv396p6xZG8ty6dcup632cSqWCt7c3+vXrJ4t4iGlarRarV6/G9OnTAQCLFy/G0KFDJY4KGDZsGDIzM8t8/8svv8SAAQNkW+VBr9fj7t27AIC7d+/if//7X5m/q9PpMH78eAA0+tFVVa1aVeoQ7OLSpUvo2rUrUlJSEBwcLHU4dick8RMTExVf2pQxhh9++AHHjh2TOhSXFB8fL6vrGyEe49HZ5tBqtWjbtq3bnXuE/WT8d2pWVhYCAwMljKp8jvq+5NaeLaXX63H//n3cv38fCxcudPkEfpMmTcR5xouKiqDVapGXl6e4kddarRZNmzaVOgxFEfquKlWqQKPRoEuXLpIl7w8cOIB3330XFy9ehMFQnKfes2cP3nrrLUnikdry5cuRkpIidRiEEEIIIeQhSuAbuXnzJt59910AxTcMExMT0alTJyxbtgzbt29H48aNJY6QEOcQRsPExcU5fRSE8OS7XMgtHlK6r776SkzeA8CECRMAQPIkvk6ng1qtxldffQUAKCgoQEpKCmbMmAEAmD9/vpThlatSpUpITEwEUPywQWZmJkJDQ7Fw4UKxb/jjjz+wZMkSFBYWwtvbW3EjAYn5Dh48KHUIdlG/fn0AQFhYmCJHr5qjfv36uHjxotRh2MWQIUMQERGBo0ePiq999NFHEkbkOgICAhAQECB1GCIhHmH0o7nHZo0aNRwZlmwJ+2f48OHia8OHD8eWLVskisg8jvq+5NaeLRUSEoIXX3wRKpUKnTt3ljoch/P394e/vz8AiNWpfHx8pAzJKtHR0VKHoDhC3/X6669jzJgxTq/ctXv3bkyePBlnzpyBXq8HUHz/LyIiAmlpabh06RL279+Ptm3bOjUuOZg/fz4aNGiAGzduiK/RNRchhBBCiHRcKoHPGPPinBcyxhi3ou7VvXv3SiRZfvrpJ2zbtg116tTB5s2bMXPmTLvHTIgcCaPPrTVlyhTMmzcPbdq0wYEDB6xejlAWPSAgQHHlFInzrFu3Dm+88QY8PDywe/ducM7RpUsXMYkvjAp3NmEUh6+vr1jJ4vDhw+K5RC5VAkwJDw/Hf/7zHwDAm2++iRdffBHnzp3De++9hx07dpQ4Lhljbjf60V0ptWzz41yxzRp/N640lUW7du1KlCemm8n2I8c244rHpiMwxpCXl4fjx4+L393Ro0ctGoUfHx+PgwcP4u233xYfZFciObZjS1WsWBGjRo2SOgxJMMbg5eWl2L/3hCkAPD09Fdv+nEno4znnTt1fer0eERERYqUOxhgiIyPx6quvYsiQIQCATZs24c0338RLL73kMg9CWmrAgAElfqZrLkIIIYQQ6SjzL6RSMMY6AXifMRZjSfKeMfYyY+xPxtiflStXxokTJ3DixAksWrQIly5dwtdff42+ffvi7NmzOHnypAO3gLga47Z1584dqcNxGiF5DxSP1rRlLnKhlH9eXp69wnMZ7tq+Hrdq1SpMmDBBTN43bNgQjRo1wq5du+Dh4YEJEyZg1apVksSm1WpLzKF49OhR9O7dGzqdzqrkvcFgQE5OjvhggKMYty3j8v8qlQo7d+5EnTp1cPbsWSQkJFgdS3nbcvr0acTExCAoKAhpaWlWrcOZpk2bBl9fX3z//fdSh+IUQulTrVZr0eeo33I8a78bczmrH7KUpW1Lr9ejevXqqF69ujj6Ti4e38dCfxgQEIA5c+bYfX2ObjNKJ/d+a+TIkQCAnj17omfPngBKjsg3pU2bNmJllXnz5uHNN9+U3bFtLqW2Y+P2lZWVJXU4NpPrOcLRhCkAioqKpA5FJPe+C4DTk/eVK1fGrVu3EBAQgE8++QQGgwE///yzmLwHgH79+qFWrVooKip6IpFNCCGEEEKIszErBqrLEmPsUwCNARwC8Cnn/AJjTMU5N/uvR39/fy6UVeWc4/Tp08jLy0O9evVw7NgxjB8/HosWLXLMBhDFY4wd5ZyXOs9C48aN+Z9//mnxMo3ntCxNUFCQxct05HKbNGkCYTtr1qyJv/76C5xzREREoF+/fvjwww/LjUeYj/jevXviCPzw8HCnjsgoKx6BtfvHWqbaFmB9+1KS0trsunXrnkjeGzt69Ci6dOlSZsI8JyenxDybQnvTaDRmtbey2oEQq8FgEOcM//bbb8VYVq5ciZdeeqnc5T/u5s2byM3Nha+vb6kVMqxtl5b2XQaDAY0aNcKJEycQGxuLt956C8OGDcPQoUMxZ84ccRRctWrVSt2PN27cQEFBAfLz8+Ht7V1ilOV7772HL7/8ssTxplKpMH36dAQGBmLixIlWbaMjLFy4EACwY8cO7Nu3T3x95MiRiI2NtTpW45KVpYmMjLRqufZkMBiQl5cHHx8fk8eKtedFYR+UNaKyrH2ghH1nLlPbkpGRgdDQ0FLf45wjJCSk3O/G2njKOnat+U5MbYepZQLWt62FCxdCr9dj5syZyM3NBVBcJWXatGnQaDRlHreOalulLVfYx8uXL8fGjRtL9IcA4OHhga5du2LZsmV2icfc49ldOOJ63hSDwYArV66YHDle1vc5a9YsJCcngzEmTskzefJkcM4xZ84cTJs2rdTPlZc0M3V/QK79rBLasdyu58urkhYfH2/xMnNycrB//35oNBp4eXlZtFxT8aSmpposVW8qVkds5+MsaX/79+83OVrfmv0DAG3btnVq36UktjwosGvXLllNaSFFH+zs86IZ8Zg8T1nzufKWactnHcHZ8ThqG8s7LxJCCCHEBUbgs0dX4z8BOArgCoAxjLEwWDhFQE5ODo4cOYIjR47g119/RUBAAHQ6HdLT0xEaGoovvvhCcU/1E2Iug8GA/Px8q0dMTJkyRUzeV6xYEZcuXYK/vz8YY0hLS8OmTZssXqZQyl+uN+KIdIyT91u2bHkieQ8AjRo1wpYtW8SR+OvWrTO5TKHig736eaHd5uXllXiQwJrkPVA8X6Svr6/kZctVKhWOHj0qjsR/POEljIIzVTlDo9HA29tb3JYLFy6gRYsWWLp0Ke7duycmqKpWrQqDwYA5c+YgIyNDdiO6jJP3sbGxAIDVq1fj7NmzUoblcCqVCn5+fg7vm+0xopJzjoKCAqffWJMKY8yh383jx67SGCfvfX194evri9zcXLzzzjuyucZPSUnBiy++iE8++aREfzhp0iSEhIRAp9Nh+/btqF69uljW1pZ27qzjmZQuLy/P6n5u9erVAIAGDRpArVZDrVajQYMGAICVK1daHdOUKVMs/ozQBqU6T1M7lgcfHx9oNBpxTntH45yjsLBQ8utDS9qfHEfruzJbq+z06NFDVpV63OV6lhBCCCGEFLMowS1HRuXyfwHQEsDvAHwALAegYowNA5Bjzkh8T09PhIWFAQCys7Pxzz//oGLFivjnn39QrVo1XL58Gdu3b0ffvn0dszGElOP69esICwsze4SwOYTRwhqNRhyNZinjsvkVK1bE3bt30aRJE5w8eRL+/v7Izs5GWlpaiVKdhFjr888/F5PGycnJyMrKwv/93/+V+rsFBQVITk7GjBkzMGHCBOzduxe1atUCAHH0iyA4OBjR0dHw9PR84vhSq9Vo27atxbHm5eVBp9MBsH3Oe+GBFqB49IWUo4mFcvovvvgizp07B+DRDSUhsefj41Pm54W5Ly9evIjhw4eLZfLVajU6deqEDh06AAA6dOiApUuXIiUlBfPmzcOwYcNQs2ZNR26a2YyT96NGjUKdOnXE11avXo1evXqhe/fuNq1DKKdr7lzGrkaj0eDWrVslKmWYS6fT4ebNmwgLC0N+fr4DonOegwcP4vfffxd/FkbAA0BYWBj+/e9/w8PDOZf0jDFkZGQgIiLC4s9mZWVhxYoVAIpvqGu1WrGfYIyhf//+qFKlil3jNfZ48j45ORkAxNfeeecdvPXWW1Cr1eUuKy0tzap9YMrFixcxYsQI/P333wCe7A+B4uk6bt68ic8//xwZGRlYsGABFi9ejDFjxohl02nueGXx8fEp8VCMuW0rMzMT165dA2OsRJnnAQMG4Pjx47h27RqysrKeOH+YM7XVvHnzwDkXr+3LcuvWLYSGhsLDw6PEw3vW9NlEWjk5OQBg83enUqlKjLy/desWwsPDrYrnq6++En++d++eWBVNpVKhS5cueOqpp8RkuLntztp47En428PT09Nu+4eUTiibb4vCwkK0b9++3AoIzsQ5FwdJ2PtahBBCCCGEyIviE/gAwBhTA8gB8BTn/HfGWE0AHQHsB+DDOX9gznI0Gg1iYmIAFCd9/vzzT3h5eYExhtzcXISHh2PLli2UwCeSWLhwIWbPno1u3bphxYoVpZbQtsaOHTsAAAMHDgQAq0bVCTf46tSpg3PnzqF169Zo2LAhoqKi8M033yAmJgYpKSk4dOgQNm3ahH79+pW5LLmNnJFbPKS4PKxgxowZFn32+++/t3qe8ooVK+LChQtmJXcEarXa6jnvy3Ljxg3s3r0bderUQYsWLeyyTGsISfw2bdrg2rVr4g1JITlvzrHTu3dv8abxsGHDUKNGjSf6trFjx2LmzJl48OAB+vTpgzNnzth/Y6wgJO8HDBiAOnXqAAASEhJw69YtnD17FgMHDhS3zVp79uwBAJN9pitjjGHv3r145pln0KVLF4s++8orr2Dv3r3w8fFBq1atMH78eNSoUcNBkTpOWlpaiblZS3P48GGsWrXKafH8+OOPqFWrFpo3b27RZxMTE8UHfkrzySef4MqVK7aGWKY33ngDubm5UKlUSE5OFvvy5ORkvP3228jNzcXEiROxePFik8v59ddfcfHiRXTo0MGuN867d++OgoICMMYwbtw4VKpUqdRrvaeeegqzZ89G9erV0a9fP2RlZeHDDz9Es2bN8Pzzz9stHuIcKpVKfOjCkuNr0qRJAICAgIAS1yVqtRoBAQHIysrCxIkT8dlnn4nvnTt3DocOHTIrrvnz55ebwN++fbvYP5vz8B6RL+E8s2XLFrst8+rVqxg1ahSioqKwevVqi/6meuONN3D58uUy31+/fj327t0rXnua0+5u3bqFI0eOoGrVqqhXr57ZsdgbYwxeXl42xVPe/iHFJk6ciLt379q8HDkNQBBKmZ8/fx6dO3dGjRo1sHfvXsnuWZw+fbrMKQqioqKQmppq1XKjo6Nx7dq1MpfrbFFRUSa3092V931Z2w4IIYQQosAEPmOM8cfqRnHO9QBuM8Z+YYz9PwBDASQD8AXwBmNsBue80JL1CCOZjBMSAQEBVLKKSEaY7+z777/HW2+9JZZNtZUwz57x6F5LValSBdevX0dubi48PDxw48YNNGjQQIxZuKDX6/X4+OOPy0xGGQwGXL58WValeYWRwUQ+lixZgt9++01MjhsMhjLn2TQeZZ+eno4//vhD7MeF0QvrKuPdAAAgAElEQVTCv4UbPI+XuN+zZw+uX7+Ou3fvolatWrh48aLZSfzU1FQYDAb4+PjAYDBAq9UiICDAppsskZGRaNSokaQ3HwUqlQoHDx5EYaFFp1jRvHnzkJSUBJ1Oh7Vr1yI4OBijRo3CU089Jf7Ojh078OBB8XN4H3zwgV3itodq1arhypUr+Prrr1GzZk0EBgbi3LlzYvn88ePH27yOli1b2rwMpWvbtq1YHckSwly5eXl52L17N3bv3o2AgAB07NgRU6dOLXXaDTmKiIjA0qVLMXv2bLGEq8FgEPuQmJgYTJ8+3anxNGjQAHXr1rX4s1u3bkWPHj1w9+5dcM7BOYdKpQLnHD4+PpgwYYIDIn5k6tSpWLZsGQwGA5YvX44xY8YAAJYvXy7uU3NKhzdt2hQ+Pj52H/UmlEDX6/VYs2YNmjRpgrZt2z5xbcY5x5kzZ/Dpp58iKytLnAZAq9XaNM8vkZ4lx9fcuXOxdu1aZGVlYdmyZWJ7XrZsGbKysqBSqTB58uQS/UWdOnVQqVIl3L59u9zlmzNS37h/tuThPSIfnHMUFRWJFdns6c6dOwCAa9eu4ZVXXsGnn35qdvtYtmwZXnvtNdy7dw+cc+j1eqjVarGdCQ8cCMnw8pbLOUdwcDBq164tm0pO4eHhePbZZ616uNB4/wiM/02KTZkyBR9//LFYDc1ajqwOZA3GGNLT0wEAf/31FxISErB582a7DfCwRGFhocm52K117do1Wd17pQS0aaa+L7o2JYQQQmyjuAQ+ADUA8QqcMaYCgIcl8vMADAEwlnO+kzFWD8A/libvAYjlVjUajZgcys7OppKARDJCwlCtVuOLL76ASqXC2rVrbV6uPW5AHz9+HBUrVsS1a9fQoEEDHD9+HIcOHcLJkydRu3ZtXLhwAR4eHvD29saRI0fKXI5Wq4Ver5fVRT6VopWfAQMGlCgXm5OTU2bfLLyXn58vlk0Wbm48/rkePXrgp59+QrNmzcRKKydPnsSqVavw9ttvY9WqVSWS+OYwbj9arRa5ubl2KS8rzHErB8ajBy3Vo0cP9OjRA0uWLMGSJUtw7949vP/++wgJCcHIkSNx7NgxcaT7sGHD0LlzZ3uGbpPXX38dy5Ytw9WrVzFnzhz0798fGzduBAC0a9cOc+fOtXkdxg8yuKtq1apZ9bkJEyZg5cqViI6Oxn//+1+sXLkSx44dw+bNm7F582Z4eXlh8+bN6Natm50jtj/hOBFkZGQgNDQUBQUFJcrpO8tzzz1n1ecqVKggVpUAirfD19dX3AZHn28rV66M6dOnY86cObh69SqWLVsGoHiUqEqlwvTp080qtatSqazeB+Ut18fHBxs3bsTixYuxZ88e/PLLL2jTpg1atmyJChUq4Pz589izZ484jcp7772H06dP43//+5/d4yHSMLdtldeek5KSwBh74prjn3/+KXfKjdatW5tVLtra/lluunTpgt9//x2nT592u3LUQgl6R2KM4fLly2IS3xxeXl4lqkekpqaKD+ZZQ9jOmJgYWT1kIkzrZanH9w8Aq6b6cnWVK1dGamoqnnnmGauXwRjD8ePH7RiVfTHGcPbsWfTs2RPbtm2TOhxCCCGEEGJn8vnrxQyMsa4ANjLGpjDGhgBi4l7I9i0H8C/O+c6H753knN+xZl0FBQUAHo3E9/LyMpkkIsRZVq5cieDgYKxbtw6jR4+WOhwAQEhICN555x0AxWXUnn76aRw/fhxqtRrBwcH4559/0KZNG3Tu3BlarbbMEuYajQa+vr6Sj8A3GAzIz8+HwWCQNA5iP+a0raVLlwJAidGs8+fPR2BgIF599VVcuHABFStWREZGBmrVqiWOhrU0Biov+6Tx48fj8uXL6NChAzw8PJCZmYn333+/RPLeEQmzxw0aNAiDBw82+/fHjBmDmJgYGAyGEsn7hIQEsz6v1+vRokULzJ8/X3yNc46CggJZjTpRooCAAFSpUgWpqalo3rw5vvrqKxQUFGDBggVQq9UoLCxE9+7drZ5SQwqPtw2NRlNi7mwlcvY2BAYGYvr06VCpVLh69WqJ5P3jc4Wbi3OOnJwcu10zxMXFYdWqVXj99dcRExODXbt2ITk5GZMmTcJnn32G3NxcDB48GAcOHMCAAQNklYwCgJ07d6JGjRp2LcVNSmeqPYeHhyM8PPyJaw5zKgjJqVy0o7Vu3Rq7d+/GvXv3EB0d7XaVtzw9PR3e//bo0QPVq1cXk/hS/H0lbKdQlctZdu/ejbp16zq8XT28LpDXyUAmbH0o591330VISIidorG/IUOGIDY2FhcvXkSfPn3o/gUhhBBCiItRzAh8xlhTAEsA/D8ABgBvM8ae5ZxP5ZzrGWNeD0faX3z4+0+U2i+PTqdDZmYmAIj/z87OBlCc0M/NzYW/v7+dtoiQ8hnPn1xUVASg+GGSgwcPonXr1li1ahUKCwvLnK81KCjIpnVasswpU6Zg7ty5yMnJgYeHB1q1agWNRoMDBw4gOjoaMTExGDBgADZv3oz58+ejUaNG0Gg0UKlU4sMxtpTxtydhpDSAJ+Kxdv8oTXmlNMvaTms/52jmtK0qVaqgVatW+Omnn/DNN9/AYDDghx9+wIgRI5CSkgIA2LhxI/71r38hIyMD4eHhpZbTL+thL5VKBb1eL5aDL42rtB9rxcfHo2vXrti7dy9+/PFHGAwGDB8+HLGxsQ5b58KFCwEUP8AhfM9HjhzB2LFjARTPn2nKmDFj8MknnyAjIwMNGjQwK3m/cOFC6PV6zJw5E7m5uThy5Aj27NmDhIQEeHl5oXXr1gDsWwFEmNKkLJGRkXb9nBz06tULS5YswcqVK3HkyBH8+uuvT/xO9+7dAcDqByZM7R9hpLywfK1WC41GI1aZsXTfabVa5Ofni6VghVLCUsvIyDD5nrAPSiPFNghJzyVLlgAofoAoMDAQ+fn5ZX6fprZDq9WK/bqlD/pmZGSAcw6dTie2QWF/BgcH45lnnsHFixdLlP8NDg5G9erVxXUKDx1nZ2eLn3X2cSn0o2fPnsXq1asBAH369IG3tzcSExMxa9Ysk5+Xcz9iD+X1o7Yoqz0DxQ8yuQJz+9nSlNW2Sqv2pdPpxJG67vAQXWkloe1RJjo1NRV6vR63bt0CUHxdPGXKFMycOROXL19GrVq1Si2nb+0o+9TU1HIrRgil9p2htLZlPAJ8//79dl/nw/sE5s3vpWBSXJNOnjzZqs8Zx/r4NaC1/Rbw6BpBuE+p1Wqxbt06DBo0COfOnUNcXBx27txZ6sN9rn6uJYQQQghxRYpJ4APwAnCAc/4lADDG9gP45WGefhrnvJAx1hpAA875YkuT90DxTY5OnToBKH5aOj8/H3Fxcbhx4wZatGiBjRs30gh84lTG7U0YMVChQgVERkbi6NGjaNy4MdatWweDwYCPPvrI7OU6Kkl48uRJVK9eHdevX8fnn3+OqVOnwtfXFzt37oS/vz/8/Pzg7++PP/74o0SC3M/PT1aJy/DwcOTl5cHHx0d2I9ukJMzhLsVoT1Ptw57v/e9//0PVqlUxY8YMxMTEwM/PD3369BHfV6vV2Lx5s5jEF8rpGyfxHdWe5XSMANbfBDL1uWnTpgEoP2lub0LyXjjeU1JSsHTpUjGJXxrjGC2N1zh5X6FCBRQUFIjVBhISEhATE+PW/Y+92tbs2bOxZMkSbN++HZcvXzb52e+//96h5fSF5Dtg3oMZpe0Dg8Eg2bnJ2u8kNDS0zM9KcSPZ+FidOXNmiffKSgxwzuHr64uIiIhS97vx92Ip46kQhKRPcHAwFi9ejOXLlyM/Px8eHh4YNmwY2rRpg6lTp+LKlSuYOXMm9u7diw8++EBsT/7+/iYTAo5mnLyvW7curly5gvz8fKxZswZbtmzBggUL0KVLF8nikzNrjwVT7dkUzjkMBgOys7NRq1Yt3L59G61atTJr5L27JIDS0tJcvpx+aclyW8rUC55++mlotVpxjm5/f3/ExMTg888/x4gRI0qU0zfuU6OjoxEfH2/x+spL3luzTEeyNh5Tn3s46tqy0mBuRLg1mJaWhpiYGBQWFs+w6efnh/bt22PmzJniKPvTp08jISEBjDH89ttvMBgMNl9zWXoNaIpwnhcGFlWoUAFhYWHYvXs3OnfujHPnzuHFF18sM4lPCCGEEEKURUlXdPkAwhljIQDAOU8H0AJAV8ZY4sPfyQCw2R4ru3fvHoKCgsQko5A8pQQ+kYuQkBD8+eefCA4OxhdffIEJEyZIHRJCQkLE8uPt27fHb7/9hnnz5pWYx7lt27bQarX45ZdfZFv2V6VSiRUByuKOZfaFygTmzJWp1P0TFRWF+Ph4pKen45dffkG/fv2e6PeFJL4t5fSJfBgn76dPny6WIxaS+PZmnLz39fXFrFmzMHLkSADAvn37sGPHjnL7H2u5W3n+gIAAxMTElJu8B+Dwcvr2KBVvzrmJ2J9w4z0vL6/U9239XoS2ARSPqHv22Wfx4YcforCwEMOGDUNWVhbWrFmDESNG4ObNm/jiiy8QFhaGX375Bc8//zzWr19v9bbZi3Hyvl27dhgxYgTmzJmD4cOHw9vbG1lZWXj55ZcRFxeHXbt2SRwtAYrbbWBgINLT02EwGNyubH553LGcvr0I5eofr1ClUqmQnJwseTl9qV26dMnu2/3w/ON+O9NCERERuH//PgYOHAh/f3/k5ORg27ZtqF+/Pp599lmMGzcO//rXvwAUPyCl0WjKPPdbwtxrQOE63Zr2oVKpsH79esTGxopJfHc8vgghhBBCXI1i7gByzo8C+BvALqPX0gEsA1Dp4c9nOed/W7uOO3fuYNmyZVi2bBnS09MRFBSEnJwcqFQqcVQMJfCJVISbIIcPHxZfE5L4QUFBWLdund1v4m7btg2vvfaaRX/8TZw4sUSZwNdeew3BwcGIjIxEcHAwvvvuOwDAhg0bFJ2E0Gq1GDduHGJiYqQOxeHGjRuH7777zqx55AVarRbffvstxowZ44QI7evzzz8X/92mTZtSf0etVuP06dPw9vZGRkaGVaMKv/vuO4wbN87qOInt/vvf/5ZI3gcGBpaYUzglJQX//e9/7brOFi1aiMn75ORkqNVqxMbGlkjinzlzxq7rFGi1Wly7dg3jx4/HiRMnLP78Rx99hA8//FBRDwD07dvX7N/t2bOnTetKSEhAlSpVxP8aNGgg/jsqKgpNmjQptbSuK4mLi8OkSZOkDsNmP/zwA/7zn/8AeHTj3ZoR9uYQphEQyuEWFhaib9++OHv2LNasWfPEegcPHoyjR49i8eLFCAsLE6dY8vCQprBaTk5OieS98TQicXFxmDNnDlasWIHAwEAxkb948WJF9SP2dOLECSQlJYnlxYn5bt26hapVq5bZz1apUgWdO3c2uYzZs2fjp59+KnddOp0OcXFx9grdrQjl6ks736lUKnz66aeoWLEiLl++jHnz5tl13RcuXMDcuXNx9+5duy7Xnpo2bWqXpLA745xj4sSJ2Llzp8Wf9fb2xvr16/HgwQPcvn0bPXv2hK+vL3Jzc7Ft2zYUFBSgYsWKGD9+vN3O/b1790bNmjURFRVVar8l9DXlPTBYHpVKhR07dqBy5co4d+4c3nzzTZtjJ4QQQggh0lJE9owx5gUAnPPXAdxmjB1mjFV++HYYgCaMMRWz8a6ot7c34uLiEBcXh4YNG6Jhw4ZITU3FU089Jc4zGRUVZcsqCLGI8Sjml156CR4eHli0aBHWrVsn/k5ISAg+/PBDAMCxY8fsuv7mzZuLI+YtcfDgQSQlJaFu3bqoV68e6tWrh9jYWPHfderUwYgRI+waq7NpNBps3rwZWVlZUoficAkJCYiPjxfnkTfnwQuNRoMOHTqgR48eTojQvqKiotChQwcAwKhRo3Dnzp0S7+t0OuzYsQPNmjUTyyEKiRdLtG7dGh07dqTRERI6cuQIgOIba8KcwUDxnMK9e/cu8Tv2Ur16dQBAxYoVS4xOq127ttVzo5tLo9EgIiICLVu2RM2aNS3+fKtWrdCiRQuLzwlSSk5ONjuxGR4ebvHyjasaCHMHC9eSzz77rPhvAG5xvsjKysLXX3+t+OTsCy+8ICYChQS7ox863L9/Pz755BOcPXsWCxcuLDdp0Lt3bzGR36lTJzRv3lySChvCg3oeHh5o165dqb/TpUsXDB48WPy5fv36iupH7KlmzZpo0aIFQkJC3Koiij2EhoaK+6tu3bol+lmh3P358+dx8eLFMpfRsWNHs9fXrFkz2wJWkHXr1mHt2rUoLCx0eJu8dOkS7t27BwBo3LixXZcdHR2NBg0aiNNOcc6Rk5Mjq2vtpk2bOuyBMHeh1WrRunVrNG3a1KblhIWF4aOPPsL58+dx4sQJ8Tzfr18/u577P/jggycqUhgTrjfs8cDgqVOnxAdY5DZ9BCGEEEIIsZw0QzUswBhTcc4LH/57CoAPAPQB8DFjrBBAPQB9Oec2/1Xm5+dXoqReRkYGMjIyEB8fj4yMDABAnTp1bF0NIWYTSpYDQI0aNbBr1y506dJFLJc/dOhQAI/mQLO3sLAwdO/e3eKSvyEhIUhOTkZycjIAID8/H5mZmQgJCRHLxCqdkqsHWMqa0eUqlQrh4eHo2rWrAyJyvL1796JevXo4deoUBg4ciA0bNiA4OBi7d+/GF198gfT0dDRs2BALFixAYmKiVfMZajQaMRnqKseFUpV2U83UjTZbrFu3Dhs2bMC1a9eQn58vfvcbN24E5xxVqlQp8TCBPTHG4Ofnh8TExPJ/uRT16tWDVquV7fQnpfHx8UFqamqJyjClCQsLK3MOdFOM5zUFis/HO3bsAFB8HSnMVZqQkIDTp09bvHyl0mq1Ns/zKqWAgADxQS5nqVatGqpVq2bx53r37o3evXujoKCgRFt0hpycHKxfvx4eHh7Q6XQ4fPhwqQnSefPm4eOPPwYArF69Gs2aNVNUP2JPPj4+6N+/vyTfl9J5eHigd+/e2Lx5Mzp16oSkpCRkZGTA398fbdu2RWhoKDIyMjBy5Ej8/PPPpS6jefPm2L59O7p3725yXa1bt8YPP/zgiM2QpcjISBQWFooP1nh5eTlkPVevXsXcuXOh1+uRlJRk0QMV5qhQoUKJvz2KiorEgRhyqaS4Z88eqUNQPI1Ggy5dutj1PBISEoKQkBDcvXvX7hVtqlWrhpSUFPFn4+tDY7Y+NHDmzBmMGDECOp0Os2fPtrmyFCGEEEIIkZ6sM1APk/eGh/9+D0A3zvl+zvk4ANMALADQlXN+1hHr/+uvvwAUJ04zMzNRqVIlVKxY0RGrIqRUj5csb9SoEXbt2gUPDw9MmDChxEh8R7BkxLUpGo0GFSpUcNubtUQefv31V8yaNcvs31+8eDGee+456PV69O/fH4mJiXj//fcRFBSEefPm4ccff0SnTp2sjseSKQmI61Cr1ahXrx4AYOXKlQAAvV6P48ePAwBefvllyWIrj3BjUWll4IWRmabcvHnTqoc27DG3vSui/eF8UrTFMWPGQKfToX379oiNjcXBgwefSErv2LGjRPK+Q4cOiuxH7I36DuvMnj0barUay5cvF0dVb968GTdu3MAHH3wALy8v3Lhxw+Qo/G7dupW7noMHD9otZqUQ5q739PR0yPKF8vZ6vR6TJk1Cz549Hd4PeHp6IiAggEa8uxilXo860okTJ0ok74WBHuSRqKgoMMZK/U9plVZdaVsIIYQQYppsR+A/lrx/H0AsAHEyYs75eXuvU6/X4/79++LPFy5cQHh4OIqKinDr1i2aB49Y7fG29TihzN/jhAS6MSGJL4zE12q1ePrppwEUjzLIyckpd7nOplKpoNFoXGLUuvH+Le01U/vcVBso77PuwBH758CBAwCKy6BPnToVQPGN3sWLFwMov7Tg4sWLMWHCBJw6dQqZmZmIiYlBcnIyQkJCxOoYQPF0F5Yee6Ud38R65Y2eNlWWPj09HZcuXXriNUfp3bs3Tp48iWvXriEzMxPbt28H59xhpfNJ+aytuJCZmQkAyM3NFcsOC1WbjKff0Ol0Jd4DTLdJW9qzsxlvk0DYL4C8YjW1X8saEacUQkLDUR7fdzk5Ofjyyy/h4+ODxo0bo1q1ajh79iz279+Ptm3bAigeaXro0CEAj5L3jyut/RiTU/spLCw02YYsidXR35cUnNFv+fn5oVevXti8eTOWLFmCmjVr4r333kNUVBRyc3PRuXNnbN++HQMGDMDs2bPx2muv2bxOdyHMXW8rYTqZW7duASieZmrfvn0lkvcJCQkWLVO4ni9rfdHR0aW+J1QesvdyASpPbopSr2GEh4Ly8/PF1+UUK/AoXmH6toKCAhw8eFBM3s+bNw+DBg0q83Nlkdt2OoLQN7kCV9oWQgghhJgm2wS+UfL+AwDPAujOOdcxxtScc70j1hkaGophw4YBKL4gWrNmDcaPH49evXrh66+/pvL5xOnKSgK2b98ev/zyC1q0aIG33npLbLeenp42lwe0JYls6rOukpwubf/KpSSjPVn7fcnxezZO3qtUKpw6dQoTJkwQk/hlEW7MnTx5El9++SXefPNNXL16FYMGDUKrVq2wdOlS8WaHSqUyqx3Icf8QoHLlyk/MCS/Mz+oII0aMwLFjx7Bt2zb88MMPYmn1nTt3Oqx8vrU35lzlhp6QXE9LS0N0dDR0Oh3CwsKsHnkvME74CiPBjF8T/i2UY1VygrgspW2TErczNDTU6e1dycfljBkzoNfr8eqrr6Jv374IDQ3FX3/9hd9//x2LFy/Gxx9/LCbvt2/fbtaoZ1clh+9LyR7ff2vWrMG2bdvw6aefomvXrsjIyBCnkYiPj8cPP/yAjIwMXL16tcxlCueE77//Xiyn37p1a7caee+oBLSQ9BYS+Dk5OSWS9wsWLLD7+uSUTBfaFrE/R/SlxtcrwmADb29vm69jTMVqy3YIcQlTKN65c6dE8n7y5MlWL5sQQgghhMiPrIfDMsaqAKgFoIejk/ePO3jwIBhjaN26Ne7cuYO8vDzExsY6Y9XEBRkMBvGJbntp0qSJWE5/7dq1T6wvPz/f7usk9kXfU/ls3UfGyftBgwZh48aNUKvVOHXqFMaNG2f2cgcPHoz09HR88cUXCA8Px6FDh/Dcc8/R3IIyxzlHQUGBTTdTHXUjdtGiRWCM4dixY+Cco1GjRg5L3pNHIiIicPfuXWRnZ9ucvLeGPdqkEihtG4Xvhc7H5snJycHWrVvh4+OD8ePHi68nJSUhKysLffv2LVE235rkvVy/E6W1bak5os/z8/PDoEGDkJubix07diAyMhK1a9cW3xcqPaxevbrcZXXr1g3379/H/fv33Sp570y//fabOOf9iy++aNUyOOcoLCyU/NiTSxzEfT3ep+7bt8/kyHtzlkEIIYQQQuRL1gl8zvl1OGHkveDGjRtISkpCUlISvv32W8TFxYmjSQBQAp9Y7dSpUwgNDUVwcDCCg4PtNsexUE5fUFRUBADQarXIzc1FXl6eXdZDnmQwGKyed+/+/fsYPnw4zp8/j9zcXGi1WjtHp2z3799HvXr1cPjwYbEtW7OPbt++XSJ5P3r0aISFhWHDhg1Qq9U4c+YMEhMTLVrm4MGDcfPmTaxYsUJM5APF5aLpYQx5yMrKwmuvvYaUlBRotVrk5+eX236ysrLKfM1R36larS5RQnbNmjUOWQ95UmBgIPz8/BySvM/OzkZsbCxiY2PRqlUr8d9ClQVz2yRQfIP19u3bePXVV5GSkmL3WB2FMWb2Nkrp008/xaeffgrg0fdC103mmTNnDvR6PfLy8hAXFye29QEDBkCtVuPChQsAihOoLVu2NLsfnTRpEg4fPgxAnt/J2bNn0bBhQ9StWxexsbGYMGGC1CHJlnB8WdLnWWLZsmVQqVTIz89Hq1atSlyTd+zYEWq1GpmZmbh+/Xq5ywoMDKQH6BwsKSkJ7dq1E/9WtVRRURG0Wi2Kiopw9OhRzJ8/384RAn379kXbtm3F/0aMGFHi53feeadEHKRsxgniw4cPY9KkSVKHZJbg4GAAj6omyZHQpxr/7WJJ8h4o7j+XL18u++s0QgghhBAi4xL6Av7wsVBnjbwXxMTEYODAgcjJycHHH3+MsLAwNGrUyJkhEGKWRo0a4ccff8SRI0fQuHFjAIBGowEA+Pj4SBmaS9NqtVi8eDEKCgqs+vwLL7yAgIAA+Pr6it8XKfbZZ5/h+vXrmDx5Mn766ScAcNg+8vT0tOpz/fr1Q79+/bBp0yZcuHABtWvXRm5uLgDQvPYy0KxZM1SoUEFsN2W1n6FDh+LHH3/E7t27ERERIT6od/bsWezevRsAMHz4cIfFuWTJEkRERCA4OJiSBy5g9uzZmDFjRqnv+fv7Izo6utw2aUy4Sdu4cWPFzJX97rvvIjAwEN7e3rI/t7Vv3178N103WaZVq1bYvXs3CgsLn3ivQoUK8PLywgcffICWLVuKSXhzppnp1KkTmjdvDkC+34mQKM7OzsaPP/4ocTTyJRxflvR5lvDz80PPnj2xZcsWbNy4EdWrVxfPozt27IBeX3zrwNlVVsgjsbGxeO211xAUFISOHTuiqKjI6utu4XOenp6oV6+e1X9/mfLCCy/gu+++MzsOUjbh+gUAmjdvLqsHsUyZN28e/vjjD4uS4c4m9KWXL18GUHx9aWm8nTt3RmFhodX9MmPsZQD2GZFCCCGEEEJMkn0C35kiIyOxaNEi8WfOOWbOnIn09HQsWrQIvr6+EkZHlKx+/frYv3+/w5bfqFGjEg+YqFQqeHt7i/O4EfvTaDTo27evVX/4BgUFYfTo0Q6IyjUIN3zu3LkjtmVrVKpUCXPnzsXUqVOxfv16AECvXr0wcOBA6PV6PPfcc+Lr1urXrx+A4lHaWq1W9gkrdxAYGFgi6W4q8TlkyBCsWbMG+/btw+rVqzFy5EgAj8rutmvXDkOHDnVYrB4eHpg2bZrDlk+cq0+fPn2MFewAACAASURBVOjTp4/4c0ZGRqlzqJqbjNdoNAgPD8eoUaOsrvjibIMHD5Y6BLNVr15d/DdjDBUqVKDrJjMlJCSUqCBSVlsXyvOam4Tv1KmT+G85fiexsbHYsWOH+G9SNuPjy1EPIH377beIiYlBSkoK5syZg+nTp+Pw4cPYt28fAGDkyJGIiIhwyLpJ+fz8/NC/f3/xZy8vL6uXxRgTP+/h4YEXXnjB5vge98YbbyApKUl80ODatWuIjo5+4vds2Q53YfzgDmOsRN8uZ02aNEGTJk2kDsMk4dwosOZvzxo1atgUA+d8BYAVD+OhOvyEEEIIIQ4knzsiMrRt2zYcPHgQL730EuLi4qQOhxAiI/SQhDI8//zzmDt3LgBg/fr16N+/v5i8X7x4sd3WQ+1BuRISEtCuXTsAxYl74+S9cYKKEGcTbtIqJXlPyOPkmIQnrmXs2LGoWrUqDAYDZs2aVSJ5Tw9ZEEsJDwrQedc2dP1CCCGEEEKIfdAI/McIczReunQJH3/8MZo1a4Z+/frRvMYypNPpTL4v57nLXNX9+/dNvh8UFOSkSMqnpFjLo9fry9weJW1HTk4OAIjzSnLOxdcA67dFSOJPnToVAOyevCdPunHjhsn3IyMjnRSJeYREvXDjn5L35inve5YTpbVJZ6P9QxzJVPsqa/S+I1nbd+l0OmRkZAB4VF1A+Bmg40QqY8eOxdKlS5GSkgLA9uS93PrDAwcOmHw/Pj7eKXEolan9l5qaWuooe1dTWFhYZrumfktZhHOOULHOYDDQeYgQQgghxIVRhtPI5cuX0bNnTwBAQUEBKleujK1bt6JixYoSR0aUTq1WOySRKqfkrMFgQH5+PjQajUuPtLJln8vp+5IjYX5c43klfXx8bGpPwk3N+Ph4vP766wBgl7nG6bssm8FgQEFBgVg201msvWE1ceJE8f9ZWVkA7NNGTKGba67D1Hdpy/cshzbCOTdrahA5xGouJcUqN9a2dYPBgCtXrpR5TggNDVXM9+Lh4SE+bCBsi7MfPpAzKb5HKc7hUuGci+Xd5Tyy2REPFDjqIYXo6Gh6AMIBlNKnA8qKFXh0zhGmmFOpVPD19S337y6lbSchhBBCCClGCXwjISEhSExMhKenJ1QqFYYNG0bJe0LMlJeXh9zcXACwes5yQowJySN7tSdXvaErN3l5eeKoEEfNe+so1EYIeUSr1YrHMiHWUvI5gSiLq5/Di4qKoNVqAdA87ISQYpxz2Z5jo6KirH7YKCoqys7REFuU912a+r5saQeEEEIIAVx3mKwVnnnmGSxcuBALFizA/PnzUadOHalDIkQxfHx8xKe/dTodBg8ejCtXrkgdlllmzZqF48ePSx2G1U6cOIHg4GAEBwdj7NixUodjM2HEvbe3d7kjP4n8+Pj4lPju5s+fj1OnTkkcFXG0ffv2ISoqClWqVBH/k6vMzExMnjy53Kl43JWwf9RqNfXDxGbG5wSdTofJkycjMzNT6rAAFJfEb9KkiSL6LSINOZ0vPD09UVBQgCVLlsgiHqXR6XR4//33y51GzRWdPn1a7OP69u1L7ccFCAlRb29v2V6rpaamgnNu1X+pqalSh0+MlPddmvq+TH2WEEIIIeWjBL4RlUrl0qW/XZHBYEBubi4MBoPUobg9lUoFb29vqFQqrF69Gjt37kRSUpLUYZkklP3v06cPnnnmGanDsYvvv/9e6hBsNmjQILRs2RLTp0+nPlmBVCoVKlSoIN5Y6tmzJ55++mmJoyKOdvr0acXciLl9+zZatWqFu3fvoqCgQDFxO4uwfzIzM0scy4RYw/ickJGRgVatWuH27dtShwWgeC5hYUSzEbrwIACKR7b+/fffaNmyZYk5pqXCGEN2djYaNWrklkloa3HOUVhYiHv37qFRo0ayeYBIKn/88Ycs2jOxTf/+/dG8eXNMmjSJrtUIIYQQQlwYldAnipafn4+cnBwAgK+vr8TREIFwY/bixYsSR2KaVqtFbm4uqlWrpuiy/3Xr1sWePXsUvQ3GoqOjsX37dqnDIHZSu3ZtqUMgTvDKK69g6NCh8Pb2Fkt4ynU0a+3atVG7dm0UFBRQifhSCPuHEHsLDw9Ht27dpA5DFB4eXqJCTEFBAWrWrKmWMCQiI1qtFpGRkahZs6ZsSlPHxMQgJiZG6jAURZh6IDAwEG3btpU6HEnUqVMHW7dulU07JrarUqUKvv76a6nDIIQQQgghDkYJfKJoQsLSVRKXxLmEUnNyLDlnCZVKpfhtIIQomxL7UyXGTAhxnId9gV7qOIg80DnCNXh6epb4vzuivxUJIYQQQghRJpdK4DPGGHdQHdTy5gnz8Ch9V1r7OWIelUpFI+9lRKiGUFRUBKC4ZKHwGgAEBQVZvMzySkRas0yBUPZf6ZQy/Yejyn06so0QIicLFy4EAOj1esyZMwfZ2dkYMWIEYmNjAQATJ06ULDbGmOJGdpkb840bN0y+HxkZaa+QyEPl7XNX4ai2RW3WOg9LEJc5L5dOpxNLTwt/chqXoqb96hhStWclntfc0YEDB0y+zxiDl5eXc4KxUXnbEh8fb9VyGWOKKbHu7OOdzpeEEEIIIUTOXC17zABYncBnjDkloS7Mu+0KiUMp0cMP8uPn5wfg0QgHxpj4mj0YDAZotVpoNBqbE9aulNRVq9UusT22boM92wexDd3schy9Xo+ZM2ciNzcXALB69WqMHDlSTOI7k5K+ZyXFKgUl7Z+HiVOX6eQ55+K5SykJFkvJrX1ZG4+HhwdCQ0MBiMl+8WfiOuTWXq1N2pJiStx/nHMUFRXB09PTLucFLy8v2bVrSxifJ92dkr9HQgghhBBiOZe5+cUYawvgQ8bYCMaY2VkgxtjLjLE/GWN/3rlzx4ERPiLM207zrro2KdqWqxPmrNdqtVKHIjlqX0+i9mEf1Lbkyzh57+vrK87lunr1apw9e1bi6MpHbYvYw8M+vsQ85UpuW1qtFvn5+XTukinjtpWZmSl1OMTFKLnvIo5TVFQErVYrVrWzhiu1LTpPEkIIIYQQd+USCXzGWCcAKwFcA/AGgPbmfpZzvoJz3phz3jgsLMyszxgMBuTm5sJgKLPCokne3t7w8/OjEfguzpq25WoYY2LFCWuPF2Pp6en48ccf6el7KLN9GbeFvLw8rFq1yq7L12g0OHPmDI4fP27X5bobJbYtd2GcvE9OTka3bt3Qrl07AMVJ/N27d0scoWlKbVuccxQUFIBzjm+//RbXrl2TOiS38uDBA/Tq1QsNGzZEw4YN0aJFC+CxecqV2raA4nOXt7c3Tp48id9//91uyxXa7dq1a5GXl2e35bob47ZVUFCAGTNmYMaMGcjOzpY6NLdk3J6FNm6PvzGkouS+S47y8/PxzTffiFNcKJWnpyeOHDlSYooOSym9bRkMBiQnJyMjI0M8Tzr6HkBeXh7Wrl0rXvMRQgghhBAiNUUn8FkxbwCDAEzmnC8E8CGAhoyxdoyxqo5Yr60j6IV526nEM3FVHTp0gEajwbBhw+w6KrqwsBBdu3alY0ehjNvC+fPn0a1bN7vOc6xSqVC9enVERUXZbZmEyMW5c+fEsvlJSUlQq4sHICckJCAgIAAAMGnSJMnic2XCyK9JkyYhKSkJY8eOlTokt7Jt2zYcO3YMd+/eFf+DiXnKlUaYZzsyMtKupXG1Wi2uXr2Kdu3a4dKlS3ZbrjvLyMjA2rVrsXbtWgCAj4+PxBG5l7S0NHTt2lVsz0LfTA+oEMFff/2FJk2aIC0tTepQbMIYw/PPP+/WI87Hjx+Pzz//HN26dRPPk46eZubSpUto27Ytrl696tb7nhBCCCGEyIeiJxHnxY/F5jPGrgAYzRi7BWARgI0AJgM4yRj7knN+0p7rFUbO0wh6QkrXvHlzpKenA4A4KsYeT8zXqlXL5mUQ6QhtQKPRoFGjRg5ZxzPPPOOQ5RIitTp16qBq1apISUnBu+++i+nTpyMwMBBLly7FgwcPoFKpsGvXLqnDdEkajQbTpk3Dpk2bAICmQHKyIUOGICIiAkePHhVf++ijjySMyDGefvppuy5Po9EgJiYGGo2G5sy1k+joaMycOVP8uWHDhhJG434iIiIAAJUqVQLw6LqSHqQggri4OHHueKXz9/eHv7+/1GFIQq/XY/v27QCKH9y5ePGiU+4D1K9fH5xzaLVaqvhHCCGEEEJkQdEJfMYYe5jE3wDAF8BrAFZwzv/DGIsBMAdALAC7JvCFEfSEkPKpVCp62IUAoLZAiK3Gjh2LpUuXIiUlBXPmzMHTTz+Nv//+GyqVCtOnTxeTG8S+Jk+ejE2bNiEoKAj379+nm7oSaNeunThdBOCaCXx7E0YsEvvx9/dH27ZtpQ6DPCS0carMRQSMMXh5eUkdBrFRUlISOOfiddfIkSPx888/O2XddO4khBBCCCFyori/dlkpdbM455c5528D2AzAlzHmwzm/CiAFQI2yPve4ixcvIj4+HvHx8WjXrh2++uore4dPCCHEhaSlpSEkJARdu3aVOhTiJsaOHYuqVavCYDCUSN4HBgZKHZpiTJs2Dd7e3hg8eDD0er3J3x09ejQ2btyIoKAgHDp0yEkREjmbNm0afH198f3330sdCiGEEDug63n50Ov1+O677wAAP/30E7y8vHDjxg1cvHhR4sgIIYQQQghxPiWOwFcD0AHFJfQZY2rOuXD39TiAlgBmM8ZSAfQD0E343fIWrNfrcf/+fQBAZmYmBg4ciOPHj6NLly4AgPj4eIuD9fBQ4i4mSiG017IEBQU5dZmm3rt//77JZZf1WWu2QSqO+D6k4ohtcdT2S7FfDxw4gDt37mDgwIHQ6/XYtWsX6tWrh8WLFwOw7nxRHiW1rxs3bph839nlnB0RjxTbOHHiRPH/o0ePhsFgwKxZsxw68l5u36W1Fi5cCADYsWMH9u3bBwBYv349NmzYgAYNGmDz5s1Qq9UlPvPWW29h48aNCAwMxKFDh2R1jLk6ubWr0tpP9+7dMXLkSMTGxorHZmmkOIbktv9MUVIf4+XlVWY8N27cMLktctoOpTG176zd76Y+k5GRgdDQUKvicYQDBw6YfN8R15xy46h98PgYj127dpV4zYxbSHblDt9lefr06QPOOaKiorBnzx60a9cOu3btQmJiIqZNm2byfGsNRx3PUpzblHQ+JYQQQggh5lHUCHzGWFcAGxljUxhjQwCAc65njAnbcR3AQQAFABoB6MU5v2Tu8iMjI7Fo0SIsWrQIK1euRMOGDfHee+/RnLKEEKsYDAbk5+fDYDBIHYrduOI2WcM4eV+rVi2o1WqcOnUKEyZMkDo04iZWrlyJzz77TJKy+ZxzFBQUOP3Gtq2Mk69DhgxBVFQUOOc4duwYYmJiMH78eHFEvpC8DwoKwtatW0tN3gv7wd37Q3dh3H5iY2MBAKtXr8bZs2fNXoZSjx1C3AXnHEVFRXSMEiIBvV6PEydOACiugAQAHTt2hIeHBzIzM3Hjxg265iKEEEIIIW5FMQl8xlhTAEsAbAGQCmASY2wuAHDODYwxT865nnO+jXM+DcDLnPNz1q5Po9HgnXfeoSQ+UYzynri2hk6nw82bN+22PCH5m5aWBp1OZ7flytXVq1eRm5sLrVYrdSg2uXnzpvh9abVa5ObmIi8vT+KopJOWliYm75977jksX74cGzZscGoS3xHHu6PcunVLVse7o+L5+++/XT4xl5WVhaysLGi1WuTn5yuqbzNOvo4aNQr169fH+PHjMWfOHDGRv3XrVsTExKBt27YlyuaXNfJe2A/u3B+6i8fbz8iRI9GuXTsAxUl8c8vpX79+HdnZ2Yo6dpxJbucLa+l0Oty6dUv8mXOOnJwcSjw5mLXtR6fT4dChQ9i/fz/27NmDQ4cOYc+ePdi/fz/279+PCxcuOCBa6xm3LXdUVFSEmzdv2ny9lZaWZqeIiL0MHTpUHH3v7e0tvt6hQwcAwNq1axV5zSVcPzuTq5xPCSGEEELcnWIS+AC8ABzgnH/JOd8AoDOAAYyxdwCAc17EGItnjL3x8PeLbF2hkMRv0KABFixY4PZ/LBP5OnLkCJ577jnMmjXL5mUZj7Du0aOHOMrMHoTkb1xcHHr06GG35crRrFmz0KRJE5w5cwYajUbqcGxSt25d8fvSaDTw9fWFj4+PxFFJJz4+XkzeCyXzw8LCSiTxyyv1aQt7Hu/O0LRpUwwYMEDSGIxHvToinvnz56NFixb4+eefXToxFx8fj/j4eGg0Gnh7eyuqbzNOvtapU0d83dvbG+PHj8fp06fRqFEjcM5x5coV+Pr6lls2X9gP7twfuovS2k9CQoKYxO/Xr59Zy2ndujVeeeUVRR07zuKo/lkKAwYMQNOmTcWftVotHjx4oMjEk5JY236GDx+Of//73xg2bBhGjx6NSZMmYfTo0Rg2bBiGDRuGTp06ySaJv3LlSgwYMACnT5+WOhTJTJw4EYMHD0ZRkW23e8wpV+/I63nypG+++QbAo9H3go4dO0KtVuPevXuKvOZq06YN2rRp49SHfF3lfEoIIYQQ4u6UlMDPBxDOGAsBAM55OoAWALoyxhIf/s4dAJsevm+Xq2ONRoOuXbvCYDA4/alZQsz1f//3fwCADRs22LwsIcmu1Wpx5MgRu/6hKSR/Oec4cuSI3ZYrR8J3cfjwYahUSupqn2QwGMTvS6VSwdvbW/HbZIsHDx4AgJi8F4SFhaF+/foAgMuXLzts/fY83p2Bc47ff/9d0hiMR4w7Ih7hhuMff/zh0om5jIwMZGRkgDGGChUqPDF3rNz5+fmVSN4bCwwMxJYtW7Bz504AwIwZM8qd817YD+7cH7qT0tpPQkICGGNmJ5I45/jzzz8Vd+w4g6P6Zyn8/vvvJa6fNRoNAgICFJl4UhJr28+9e/cAQEzYJyYmiv8ODw8HALtWJLPF7t27AcAljhNrnTlzBpxzeHp62rQc4XreFEdez5Mn6fV6MMZKjL4XCK8p8ZorMzMTmZmZTn3I11XOp4QQQggh7s5D6gDMxTk/yhj7G8AuAE0fvpbOGFsGoNLDn82fhJIQFyTM3WsLIfnkiCSUkPx1B/b4LggxhdqY+RzZrwGPvgu1Wk2JOYUTEmyUaCPEuVz54SfGGPz8/KQOg5Rj9uzZAIofVgsNDRVfX7t2rVQhPYGmYXiErreI0rjyeY4QQgghhDiGIh5fZYx5AQDn/HUAtxljhxljlR++HQagCWNMxeivOEJsRiOsCVEW42kv5EYu88ErdcQ4IYS4C+qfib3I5drD3jjnLrtthLgDZ53nqJ8ghBBCCHEdTO4Xd4wxFefc8PDfUwD8CqAPgAgAhQDqAehrj9H3jLEMANcAyCkLUhHAXamDKIUc45I6pijOeVhpbzDG7qC4bTmKCoAagB6P2q+U+0OqdbvqNpfZtgCntC9Amn3rDuu0x/pKO/4tWacj+y5LYxNI3Z9TDPaJQcrzYmkeb49y2L8CucQilzgA07FI3bbk0JbcYZ1SbKM5bUtOx4lAjjEBzo3L3GsOqfaVrdfz1l5TGXOHfkOqdUq1XmGdUp8XS4tJSu4cg3FfEWKHGEq0LcbYywBefvhjLQAXLVyeq96zoXVbvm6T50VCCCGEyDyB/1jy/j0AL3DOX3j487MAfABkcM5TpYvSsRhjf3LOG0sdx+PkGJccY5KSlPtDqnW74zY7ixTb5w7rdIdttIYcYqQY5BODo8hp2+QSi1ziAOQVS3ncpS93h3OkOeQYlxxjAuQZlxxjchZ36DekWqdU65Vje5ZDTBSDfGJ4nLves6F1E0IIIcQaHlIHUJbHkvfvA4gF0EZ4n3N+XqrYCCGEEEIIIYQQQgghhBBCCCGEEHuT7STXRsn7DwDUAdCdc65jjKmljYwQQgghhBBCCCGEEEIIIYQQQgixP9km8AGAMVYFxXMq9RCS95z/f/buPC6K+v8D+GuWY1lEQFFJEMSzA48UNfTrifeZUV5ZaqZdaodpaJl+Ucy00szjm0eolZpZmld+/WqadmgqaSCW9ksFQvMAQWCXhd39/P6gmRbc+5qZ3ffz8fAh7DIz75n5zGc+M+/5fIbpxY7Lw9aKHYAZUoxLijGJScztIdayfXGdPUWM9fOFZfrCOjpCCjFSDFWkEIO7SGndpBKLVOIApBWLNb5Sl/vCOdIWUoxLijEB0oxLijF5ii/UG2ItU6zlSrE8SyEmiqGKFGKoyVfv2dCyCSGEEGI3jjEmdgwWcRzHMcaYjybvCSGEEEIIIYQQQgghhBBCCCGE+AjJJ/AJIYQQQgghhBBCCCGEEEIIIYQQX+AvdgBSEh4ezqKiooTfKyoq8McffyAqKgphYWEoLCzEzZs30a5dOxGjJFKVkZFxizFW39R39erVY3FxcS5fplarhcFgwM2bN3Hz5k34+/vj/vvvF74PDAw0OV1FRYXwc1ZWFgCgdevWdk3366+/QqfToUGDBoiMjLQ4nTfhtwFjDOfOnQNg27ZzhqWyBbinfJkqI61atYLBYIBCoYBSqXTp8pzhaHmWmoyMDCgUChifh3h//vknACAhIcEdy3Wo7uK3e0lJCa5cuYKIiAghdp1OB3//qiZGVlYWgoKC0KJFC2FaKe2TiooKMMZgMBhw/vx5APIsP85w1zFkqWzVrVuXNWrUCKWlpbh8+XK18uPMMi3E4vDx5S11jDdxR5vL3H7m6welUgmFwvTbx/hpr1+/jhs3btjcHiPmXbx4ESUlJahTpw5q1apV7buysjLcvn0btWvXRsuWLV26XHeXrfPnz0Ov17uk/UzteceJ0c51V3veXP3DGAPHcR7fn75eH8qtPe/r9Pp/Bvk8d+4cdDodIiMjERkZCYPBgICAALPnflcs8+zZswCABx98UPjMz8/P6rTXrl3D9evX4e/vj1atWtk0rS3xXLhwARqNplo8Z8+elUzZMrW/GjRogAYNGkChUCAgIMBjscgRv/3u3LmDS5cuoV69emjUqJHwHV9+zp49C5VKhXvvvVeY1lzZcqY8U71F3MVam4sQQuSEeuAbeeCBB9inn34q/J6Tk4Pk5GSkpaVh4MCB2Lx5M9auXYuSkhIRoyRSxXFcBmOsg6nvOnTowE6fPu3yZebm5kKr1WLFihVYsWIF6tWrh59//ln4PiYmxuR0eXl5ws+xsbHCvKxNxy9PqVQiISEBt27dwrRp0zBz5kyL03mTvLw8lJeXQ6PRoG3btgBs23bOsFS2APeUL1NlJCcnR9j//GdS4Gh5lhqO4xASEoLU1NS7vpsxYwYUCgV0Op07lutQ3cVv9yNHjmD8+PEYP348FixYAAAoKChAREQEgKp9cv/992PXrl0ICgoCIK19kpeXB8YYtFqtkAiSY/lxBr8vGWNo3LgxANdsA0tlq02bNmzfvn04evQonnzySYwbNw5paWlOL9NCLA4fX/z2KS8v99kyIjXuaHOZO5fw9UOzZs3M3sTnp33nnXfsao8R8/r27YtDhw5h5MiReOihh6p999NPP+Hzzz9Hnz59cPDgQZcu151lq7y8HImJiSgsLHRJ+9nR9o/xdO3btxfa89OmTZNcG89dxGjnuqs9b6r++fHHH6HRaKBSqao9QOkJvl4fyq097+uKioqEn1u2bImbN2/i1Vdfxeuvvw6tVovIyEiXJ/CNl1mnTh0AVddOfP1Tt25dq9OmpaXhvffeQ/369XHx4kXh+/DwcKfi6dGjBzIzM3H79m3jGCVTtsztr1dffdXqtiP/bL9Dhw5hxIgRmDRpEt555x0AQGlpKUJCQgBUlcu2bdvi22+/FaY1V7ZMlWfj8mOpTFK9RdzFWpuLEELkhHrgEyJjHMcJCTFP0Gq10Gg0HlueVEmp97knebq8Ee8htVEbaqKyXUWr1YodgqRJuQwT9+HrB1ffwCe+R6lUguM4scMwSa/X+3wb35vaAvz5is5bhDhGoVBApVJ57Nyv1WpRVlbmkWVZItVzlDUqlUrsEAghhBBC3IIS+BYYD61n6ndCpIK/2cT3eHUX45tBERERuHXrltfc6LIHf4OP4zj4yigmcr2YlxtTPXKMh6WTsk2bNmHHjh0AIAzbylMoFFSGZICv4z2xr7KzsxEfHw+1Wu32ZfGcra/57UJl2fs5en73VHvMlxQXF9v0mRxwHId69eqhoKBAcu1nPz8/qFQqn0z4ekt73rj+kcLDCL5cH8q5Pe/L6tWrh5s3b3o0GczXP/Y+dMPHWK9ePbfExY/IRbzb+vXr8fnnnwO4+/rdEd5yPiWEEEKkhBL4ZhgMBqxYsQIBAQG4//77cfnyZaSnp6Nr165ih0bIXcaNGwelUol27drZPe37779v898a3wx66623cObMGYwaNcruZXqL1atXVxsyzFstWrTIoeH4xGBPeZYaf39/lJeXY9WqVZgyZQqAqpt9qampYIxBqu+Aa9++Pbp3744zZ86Y/D40NBTDhg3zcFSOkXP5cQWO4zx+vAcHB8Pf3x+DBw9263I4jkNZWZkwpDAvKysLjDGb11lO9SFxnKPnd2faY6S6cePG4dChQzhw4ACio6MRHx8PoOrhnwMHDgh/Izfuaj+74vwldsJXLN7Snpda/SO1eDxFru15AixduhSnT5/GE0884bFlpqeno6ioSOjxb6unn34aSqUSHTq4doTol19+GQsWLMCtW7dcOl8iLR06dECvXr2QkZFh8vuwsDA89thjds+XL8+EEEIIcR2vTeBzHKdgjBnsmaa4uBj79+8HUHVD94cffsCsWbMQGRmJ8ePHo1atWtiwYYNb4iXEGWFhYXjmmWccmjY5Odmh6Tp27IiOHTs6NK23cHfCSSrGjh0rdgg2c7Q8S8Hrr7+OtLQ0XLp0CatWrcJzzz2H1NRUlJWVoVatWrhw4YLYIZoUFhaGTz/9tNpnBQUFsuxxJefy4yqeOt7j4+Oxb98+jywLANq2bYuzZ89i3bp1ePHFF4XPt23bBgD46KOPbJqPe/6edQAAIABJREFUnOpD4jhHz+/OtMdIdU8++SQ2btyIw4cPIz09HRMnTgRQdXMYAJKSkvDkk0+KGaJD3NV+pvOX47ylPS+1+kdq8XiKXNvzBEhMTERiYqJHlzl8+HCHpgsPD8fUqVNdHE1VPDVj4t9rTrxHeHi4MHIer7S0FCEhIU7N19HyTAghhBDzvCaBz3HcYACdAAQCeJcxVmDjdM8AEK4s58yZI3zXv39/PPbYY1iwYAEuXbqEAwcOICoqysWRE29lXLZiY2NFjuZujDFotVpJv4+TmCf18iUGuZfpsLAwzJkzR7jp99prrwEAatWqhXnz5sHPz88jcdhbtuS+3YnnGJet6Ohojy778ccfxy+//IKcnByhF35WVpbw89ChQz0aD3EtqZ0TqV50DT6xyifxeUlJSR5LukqtbFlC5U5+5FS+nMWXT4PB4LH3iotBru15Ik8Gg0Go9z11XFHZIuaIUR4JIYQQb+cVCXyO4x4CsBLAGwC6A9jNcdxMAKcYY5WWpmWMrQWwFgCaNWvGFi9eDKDqfb2NGjXCnj17sGvXLkycOBG9evUy+T4zoGqoNEKMGZetDh06SO5FUFqtFhqNBkD1ITMLCsw/+yLXXrVykJeXZ9ff21K+rM0zJibGrmVKnbky7Q7u2rbGN/0MBoPHb/YB1ctWmzZtmLV19eR2J55n6ZwA2FfWa5YtpwKzU0VFBVq3bo3MzEysWbMGzz77rND7fujQoVCr1U73OvFmUj+f2FNveSJWqherc6b8GCfxAc8m7wHpt+eN2VrujOt1g6FqwDqNRiN8LvbxbA+p103WyKl8OUur1eLGjRsAzJdPR/aXFMuA1Nrz7ihb1obJdsfrhsRYptRptVqUlZUBgF1D8DtDzHqrtLTUOA4AQGVlpfC5nMqAN5ZnMcojIYQQ4u28JevcCsD/GGNbAGzhOG46gNcALALwk63D6YeHh1cb8ufXX3/FO++8gx49emDFihXuip0Qhzl6QyImJgYGgwFqtRrBwcE2Px0bEREh+Rth7uYr6y+n9eRjdaRMS8n06dOr/axQKBAcHOzRm332sLTd5Vh+fJkY2yAwMNCjyx03bhzGjh2Lpk2bIi8vDyEhIdBoNAgLC0NaWhqCg4PNTktlxDc4s59rTiv385FU8OfF6dOno7i4GEBVYkxu3FWHOFrujB/G5f9OpVL51EO63lSvS21dzMXDPyyiVCo9GY7Hya097+vESJI6s8ya04aGhjrd3pBTotj4YVt+pJmAgAB6CNdGlva1o+XAeDpXlEdCCCGEVOctZ9RTAFQcx90HAIyxpQC+B/A+x3HhtiTva1Kr1RgzZgxCQkLwySef0AUX8ToKhQIhISHUsCZew5vKdFhYGGrXri2Lc483bXfi3fz8/DBs2DAAwMsvvwwAePfddxEUFETll7gU1YuuFxYWJsvkvSdRuSNSplAoEBQU5FOvd5BTe57IE9X7REqoPBJCCCGu5y1n1b8A6AD05TiuHgAwxt4FcA7As7bO5LfffsNDDz2Ehx56CK1bt8b58+exadMmNGzY0D1REyJxmZmZWLJkidhh+JyxY8ciNjZW+OcKhYWFSElJMfsaEOK4xYsXIzMzU+ww3CIrK0soh4899hiVHx+3fft2fPHFF2KH4ZT3339f+Dk0NBT9+/cXMRr50el0SElJQWFhodihmGVcb8XHxwtDrxPxyaH8+Bp+KHNvSKp6c3vMG7ljf12+fBlPP/201aGpiWtt2bIFW7du9egy58+fjzNnznh0mURa+CH0vQGVZ0IIIYSYI9sEPsdxwmPMjLEbAFYAGABgDMdxrf/+6g8ANrfq1Go1fv75Z/z888/Izc1FnTp10LlzZ5fGTYicREVFYejQoWKH4XPccWP7xo0b6Natm9X3WRP7Pfzww4iKihI7DLc7deoUlR8fN2DAANknvP38/DBp0iTExcVh6dKlYocjOwUFBejWrZvwHmOpKykpwaFDh8QOg/xNbuXHF8yYMQOJiYkYOXKk2KE4zVfaY97CHftr/fr1OHjwIDp27EhJfA8aOnQohgwZ4tFlPvbYY2jUqJFHl0mkIyMjA7du3QIANGnSRORonEflmRBCCCHm+IsdgL04jmvJGLvIGNNzHOf39/8cY+wMx3FzUNXj/l8cxzEAnQAMtzzHf7Rv3x4//fQTAODYsWPo3bs35syZg2XLlrllXQiRuoiICISEhIAx5hU9c+Ri//791X53RS/8++67D/fdd5/T8yH/YIxBq9Xi3nvv9drjo3Xr1ti3b5/YYRCJCAkJgVarleU5gT9elUol5s6di7lz54odkixFRkZ6/Ca9vajekq7IyEgMHjxYtvWIN0pOTkZycrLYYTjMuG6ndq58MMYQFxcHpVLp0vnydYpWq0X37t1x7NgxxMTEuHQZ5G61a9f26PIMBgOaNGni8vJD5CEjIwMDBgwQfq9fv76I0bjGAw88IHYIhBBCCJEoWfXA5zhuCICzHMdtAQCjJD7jOE7BGDsDYA6ANwHsAdCHMZblyLK6d++OKVOmYOXKlfjuu++qfccYg1qt9qohmwgxRavVQqPRQKvVih2Kz/q7nnF5Xc0YQ2lpKQwGg6tn7TN84fhgjNG5jgjkXOblHLtUMcZQXl4u2TpC6vH5KjoWpUfOxwqVJ3ly137jy3BCQgKKiorQvXt3emWHmxkMBmg0Go9eU2q1WpSVldFx74P45L1Op0OrVq0AAJWVlSJH5TpiHE9SwnHcMxzHneY47vTNmzfFDscnxcXFgeM4k//i4uLEDo8QQnySbHrgcxxXC8BUAC8D6MJx3KeMsSf+TuL7M8b4F/PqGGO/A/jd3mVUVlbi2rVrwu/Tpk3Dnj178NRTT+HAgQNo1qwZAECj0aCkpAQAEBwcbHGe1t4X7O8vm11ARJCbmyv0KjHVS8lSj4K8vDyL87alNwL/VLuYT7e7Yj2kwtK6FBQUICIi4q7P/74x4XfXF07SarW4c+cOgKpetfaQ2j5xZLvynInVkePDOFbjXmP88S218mwwGKDVaoV35HojMcozP3R7ZmYmPv74Y9SuXRtz5syBn1/VoT59+nST04l97EnhnOAoOccuVXwC5sCBA6ioqEB2djY2bNiAkJAQvPnmm06VZ2t1tz3xARC1DnPHOcrUPI3PKa4Yucddah6L1l7NIqXzYkZGRrX2uL+/P15//XWEhYUBsK+sS2l/2XOsiH0eqonqdnly5X4zrkP4cjxx4kTExsZi586daNasGY4ePYo6deqYnN6eetaW6ZwhtePLFnwyHQBUKpXT87P06oPS0lKEhISYLD+lpaUW5xseHm738ixNJxbjePnrNKVSCYWi6nl/KcXr6LY1N51x8n7JkiXIzs7GuXPnoNPphP3v6PpLpRwYH0++iDG2FsBaAOjQoYP8nir0Ajk5OWYf6KSRswghRByyyR4zxso4jpsI4A6AHQA+NEri6wCA47i2ALpxHLcegJY52Y0gODgY7777LkaOHInFixcjPT0dQFWyS6FQIDg4WGgoE+IOYtx8luKNAV8QERFhctv//fS13pF5WtqXBoMBarXa6kNIxDRXHCdSSS5ZolQq0axZMzrXuUFmZiY2bdoEALhz5w5SU1Mxb948IekpFd5yThA7QSZ35s5ParUahw4dQnZ2ttBOLikpEbU8BwYGIiYmptp5zhfqMONzitR4Sz3CX/8BVQ9pl5eXIy0tDXPmzBGS+LYSc3/V3B9yPlaobpcXd9QFxg9B8Qnk0NBQLF++HEqlEp999hl69OiBY8eOSSq5KXf8tgwNDfVY/RESEkL70IirH56QMuPk/fLlyzFu3DjMnDkTQNXDdPZ2SJACU2XZ+HgihBBCCAFkNoQ+Y+wqY6yUMXYLVe+6V3Ec9ykAcBzXBkBzAJ8zxsqdTd7zEhMTMWHCBGzYsAHHjh0DUHXzhk/iE+JOSqUSKpWKepX4sL/rGZePoUb1mPjkcHwrFAoqI26QnZ0tJO979eqFWrVqoaysDKmpqdDrHXpehxCP488jxsl7KZVnXzvPyeGcIndRUVFITU1FamoqFi5ciCZNmsBgMCAtLQ3FxcV2zUtK+8vXjhXivWr2DlyyZAlGjx4tDKdvrZctsR/VH+JRKpWoVauWJM4j7lSz5/24ceOqfR8QECBSZK5HxxMhhBBCapJtq4AxVoCqJH4lx3EXAHwJ4EfG2A1XL2vWrFmIjY3FU0895dPDGRHP4zgOQUFB4DgOarVaSPjYa/fu3VaH5JOD3Nxc7N69W+wwXGLTpk1Qq9Vih+G0kydP4uTJk2KHIfj+++8xZ84c4d+iRYuEn2fNmoUvvvhC7BAFeXl5+N///kdDkUmIJ8rzgQMHhGRnUlIShgwZgnnz5lVLetri8uXL2LlzpztDJcQqV5bnHj16oH379mjfvj169+4t/Gzqn1ytWrWq2noYr2e/fv1w/Phxu+fJtw+N24xyJbf26tSpU6sl8f/66y+r09D+IsT9Vq1ahTfffBNvvvkmlEol6tSpg6KiInTs2NHuh20Aca536PgC1q9f79D18vHjxx0+n65fv97u6cSybt06VFZWyiLZu2PHDuTm5to93dmzZ9GnTx/hnffZ2dmYOXMmZs6ciX379gGAy9ff0fJDCCGEEOIOshlC3xTG2C2O4zIBDATQlzF2zdo0jggODsbo0aOxZMkSHD9+HH369HFqfowxaDQarx/mirjWxYsXMXDgQOTn5yM6OtquaXv27Inr16+7KTLPKS8vR+fOncEYk/UNz/z8fAwcOBAXL17EfffdV+0d6HLTqFEjycS+efNmzJ492+LfbN++HY899pjw7lmDwSDaTQ+tVouePXuKsmximifK86uvvgqgaojEwYMHAwD8/Pzw8ssvY+HChSgrK8P58+fxwAMPWJzP+PHjceXKFQwfPlwyxyDxPa4qzx9++CEuX75sz6Klf7fahDVr1pjtAXrr1i3MmDEDP/zwg13zdKZ9KDXG7VUpnKdt8fzzz2PWrFkwGAxYtGgRli9fbvHvvXV/ESIFfDvuxIkTOHHixF3fa7Va7NixA0899ZRD8+XrJXf3eGaMITEx0adHDMjLy8PQoUPx66+/ol27dnZt95iYGIfaxtnZ2ejTpw9yc3Ml/3qOnTt3YtasWTh9+jTWrVsndjhWJSUl4fr16zAYDHbtyw0bNgg/nzt3DufOnbvrb6KiolwWJ+B4+SGEEEIIcQdZJ/A5jqsDYBCAfoyxLHct56+//sKHH36Ibt26ISkpyen5aTQalJSUAPCu4Z6Iez344IN2/b3xDYbQ0FCEhoa6KTLPiY2NhUajgVarlew7w23B37ANDQ2V/DvQLWGMoW7dupIYtm/Lli2YPXs2/P39kZqaKtx0uXPnDq5evYqFCxcCgNAblH/3rFqtFu2deS1atBBlucS8qKgoMMZQXl7utgdrDhw4gNjYWNy5cwcrV67E1KlTUVxcjEWLFgEAmjZtajXZCQBXrlwBANnXh0TeXFWe3377bbRu3RrXrlU9i2vpQVe9Xo/Vq1f7uW4tPOfbb79Feno6+Dd9lZWVQalUQqfTISQkBBMnTrR7nva2D6XMuL0qhfO0NXq9HqmpqTAYDKhVqxaWLl1qdRpv21+1a9d26zmTEHs899xz6N69e7UHSxhjqKysREBAAGrXro2OHTvaPV8+QVheXi5cu7mTVqtFQECA5JPI7hQTEwMAiIyMhEajsWskzKioKIceAGvVqhXKyspQq1Ytu+P1tOzsbADA0aNHRY7ENuHh4QgPD7d7Xy5fvhyPPPIICgoKEBQUBIPBUK19GBUVZVM70x6Olh9CCCGEEHeQdQKfMXab47ihjLFyNy4Ds2bNQkVFBdLT013SgOMbnNQDn7gTf+MTkGdy2BQ+USyFhLEryH19pFLGtmzZglmzZsHf3x87duyodnP86NGjeOmllwAAixcvxpgxYwD8s82Dg4M9HzCRNHeX6+joaMyZMwdpaWm4fPkyli1bhqtXr8JgMKBp06aYMmWKXfOTa/1BvIOryrNWq8XgwYOhUqkQFBSEgoICREREmPxbxhhWr16td+V6eErdunUxY8YMAFWJoBs3bqB+/frgOI4SoDVI/TzNJ+/5ZM+8efPg5yfL50qcIpW2ICG8Bx54oFpCj0+68+cXZ3jq2k3u14iuZu/20Gq1QpLYnntutN3dz5Ft3L17d6Fjiice6nO0/BBCCCGEuIOsE/gA4M7kPQB88cUXOHz4MObNm4fmzZu7ZJ4cx0n2ZhTxHt54Acq/L9RbyH19pFDG1q1bZzZ5f/bsWTz11FPQ6XTVkvfAP9uenqonNXmiXIeFhQlJzz///BMAHEreA6CEHxGdK8qzPcfd32Xe4EisUqJUKhEYGCj796C7ixTP03/++afwAAZQ9TCJLyfvAWm0BQmxxJVl1FPXbnK/RnQ1hULhkUS8vcsh9nNkG3t6v9B5jRBCCCFSIvsEvisFBASgYcOGwu/5+fmYP38+unbtipSUFOh0OrPT+vub3pTmPifEFvzQcY5wx5B7eXl5Fr93Jl5PztNdxNg+YhBjPUxtW0s978+ePYvk5GTodDqsW7cOkyZN8mS4ZnlLGZAbqR2b06dPBwA888wzmDt3Lvz8/LB27VqPxkBsJ7XyI7V4HC3PluL0prrS0ro42lZz1/aRUztPrOPA+IGCuLg4XLhwwWry3plYpHa8S6UNaMyb6gtv54596a797031rJyEh4eb/a6oqAhFRUUOTevKaYhtHN22lqZz1/5y13wtlVd3LtcRcoqVEEII8SWUXTaDMYYXXngBFRUVWLdunaR6fxBCpI0xJgzzRr3qXIvftl9++aXwzvsNGzaYTd4vXrxYMsl7Ih1SOUajo6Px0UcfibZ84hy+HNE7MqtQeSZiM67b3SEhIQGnT592y7yJaQaDAeXl5aKfr4nrSKUNRog3YIxRO5S4nMFgEOppKluEEEKIuOhMbESr1eLixYu4ePEiVq9eja+//hppaWkuGzqfEG+Tn58vdgiSxL8P9PLly2KH4nW0Wi3Wrl2L2bNnAwBSUlJw584dHD16FEePHsUnn3xSLXlvPGw+IQBw/fp1lJWVQaPRQKvVih0OkZnr168LIzLxdb1arZZEPIS4UnFxMYqLi8UOwyY6nQ7Xr18Xjklvrdt98XhXq9XV9ilde8gff5zm5ub6XHmuicqz465du+bz5Qf454EYIn3WRt+QkpycHBQXF1PZIoQQQiSAeuAbyc7ORnx8vPD7v/71L0ydOlXEiAiRrhMnTuDChQvo06cPoqOjxQ5HUpRKJU6ePInLly9DqVTS9nEhpVKJ999/X/h94cKFJv+OkvfEnD179iA6Ohq9evWS9bsNo6Oj6cavCDp16oSOHTviiy++EMpPcHCwaPHs2bMHjRo1woABA0SLgXinnj17AgDOnDkjbiA2OHToEPLz8zFx4kQA3vveWl883oODg6FSqaBUKpGfn49Dhw7h3nvvRWJiotihEQfxx+cXX3yBmJgYnyrPxqg8O+err75CTEwMhgwZInYoouDvW3bt2tVrz3ne5Pjx4xg0aBBeeeUVzJ07V+xwrPr666/RsGFDDB8+XOxQCCGEEJ9HCXwjcXFxmD9/PoCq9xsOGDCAhgsixIxOnTohODiYktMmcByHrl27Ijw8nLaPi3Ech//+979IT0+Hv3/VKay8vBxBQUHC3wwYMABdu3YVK0Qicb169UL9+vWrlRk5OnLkiNgh+CTGGE6ePAmgqj4KCgoSta3Il2dCXK2goEDsEGzWpUsXXL9+XTgmvZUvHu8KhULYp9HR0WjXrh1atWolclTEGfxxmpSU5HPl2RiVZ+f06dMHkZGRYochmkceeQQDBw4EALpnKQPffPMNAGDr1q2ySOD369cPkZGRVLYIIYQQCaAEvpG6detSj01CbKRQKNCmTRuxw5As2j7u07JlS7z99tvC7wUFBYiIiBAxIiInzZo1EzsEl/DmJBWxnbeUZ0KcERoaitDQULHDcDs63kFtay9C5ZnKszNatGghdgiio2sB+dHr9WKHYBM6vqQhLi4OOTk5Jr9r3Lgxrly54tmACCGEiIIep3MAYwxqtRqMMbFDIcTjGGMoLy+n8k8khcol8WV8+TcYDGKHQkRCdSBxFypX0kDHOCHyZzAY6Dh2ksFggEajoTYvkTUqx8QWOTk5YIyZ/GcusU8IIcT7UA/8Gsw9EanX6+Hn5wcA0Gg0KCkpAVD1Xj69Xg/GGDQaDVQqFTiOqzYtP8wzIabk5eVZ/D4mJsZDkdhGq9VCo9EAkPdT37m5udBqtVAqlXcds4D0trs3sFbWgaob1Kb2i7Ve9t5SLglxBF/+1Wo1QkJCTP6No+cafjpzx6Yv1JWmhhI3/kwK24AvA0VFRdX2T839JoVY3a2iosLiOd4XtoGjTJX1GzduIDAwEAEBAbTtROTN7Rxb2oeOoLa+Zcbb3dQ53te3jzuo1WqHj2N3HSdSU1RUBIPBIJRH4yG8S0tL4efnh7KyMgCASqUSK0yvUlRUJHYIoissLDRZ5njh4eEOzbe0tBQAUFlZCaCqri0tLYVWq0V5eTlq165t9tqNEEIIIQSgBP5d+CS9qc/5RHxISAgUCgWCg4OFxp1ara6W1CfEG8XExMBgMECtVlcr/3LkjhuhdKPLeeb2S0REhNnt603lkriHtxyb5tbDuPy7izcnj6wx9fCQmK/tMFUO+DJQWFhY7XNf3W++ut7OMlWuGzRoYDYBKiZvqdet4dfTl9s5ju5rqgds56lt5SvHrTnBwcFo2rSpTx7H9tBqtSaT9CEhIQgNDfXZuhBwPJFMLDNX5pzFJ+cDAgIAABzHISQkBMHBwdBqtZK6d0xlixBCCJEmSuDXoFarTfaiN6ZQKO56SpJv5NFTwMQZ5no4Somp8i9HSqWy2v/E/Wwp347uF28pl4Q4wp7y7+h5hurM6hhjkjpP82Xg9u3b1T731f3mq+vtLOP6gUeJT2nwxXYOXx4NBoNDiTqqB2xH28ozXHUcy+GegTMslUdfrAs9zdwICN7MU3UgY0w4p6lUKp/ZvoQQQghxHLUWjBgMBpSUlAhPn9uD4zgEBwd75QUU8Zzdu3fjtddeg1arFTsUr8dxHIKCgsBxHGbOnIn9+/eLHZLX43v3aLVa7Ny5E7GxsXf9a9y4MVq2bInGjRtj586dYodMiNfJzc3F9OnTcerUKbum4zgO69evx6pVq9wUmXwolUpZnKcHDhyIQYMGCec6X5GVlVXtXDJ79myxQ5IN4/M0IWI4e/YsXn75ZVy/fr3a62EcYdzWX7lyJVauXOniaL3HqlWrsH79ep86V8jZww8/LJzj+Gsob6JQKFBUVIQXXngBGRkZYofjU1555RVEREQgKioKERERqFOnjtgheYRxQv29997De++959L5N2jQAADQpEkTamMRQgghxC7UA9+IQqFA7dq1qRc9EU2vXr0QEBBAvR88rH///ujUqZPYYXg94yfbO3XqhD59+uDQoUMm/zYuLg7t27f3ZHiE+ISoqCh06dIF8fHxdk+blJTkhojk5ZtvvkFlZaUsztPZ2dlihyC62rVro2/fvmKHIRvG5+kjR46IHA3xRS1btkSXLl0QEREhvNrOFUMM0/nLMto+8rJ06VL07dsXer1e7FDcpn79+ujWrRvuv/9+sUPxKS+88AIOHTqEP//8U+xQRNO/f3+Xz3PixIlITExEcHCwLK4hCCGEECIdlMCvQUrvICK+JzQ0FIMGDRI7DJ/Tp08fsUPwCXxPKACIjo5Genq6yBER4nsCAgLwxBNPODTtAw884OJo5KdFixZih0CsaN26Nfbt2yd2GLJkfJ5u1qyZyNEQXxQcHIyRI0cKvwcFBblkiGE6f1lG20demjdvjsuXL1f7zNt64fv7+2Ps2LFih+FzWrRogaysrGqf+UovfF6rVq1cPk9/f3+0adPG5fMlhBBCiPejIfQJIYQQQgghhBBCCCGEEEIIIYQQCaAe+DWYG4as5ueMMWg0GqhUKhgMBmGIP0J8WV5envAzYwxarRZKpRIcx6GgoAARERFmp42JifFEiIQILJVXW1CZdT3jfVITYwx169ZFcHCwS3rj2bJMgPYzcZwYZaugoABA1fFS8zN3LZM4Towy4kxbjciHtTaOr9cFxvWiKb6+fZzh6XqNX565tjztS88rKioSfjYYDMJ+4dvv4eHhYoXmMcbbwBRf2AbuQNvVfcxtW/4YjoyMdOk1OCGEEEJsQwn8GmxNxGs0GpSUlACoGurP3582JXGMt95U0Gq10Gg0ACAMxyol3rrdpUzK21zq5ZVU7aM7d+4AAEJCQkSORn4cPf6kfNx6ipy2AZ98LS8vv+szXxEYGCirfSammue+iIgI2nZeSOptHHeVOSrLlnnb9pF6OXeWXPeXVqtFWVkZAEClUln9e0rAeh5tc/dtA2/YtvwxrFar6RqcEEIIEYFXZZ05jlMyxrSeWBZ/8WHLRQghvkipVFb7nxApo/IqfUqlEqGhoQgODhY7FEIkj+oyYgs69/kG2s/EF1A5lybaL4TIG3/s0jU4IYQQIg6vGf+G47gkAJM4jgt0dB4XL15E79690bt3b/Tt2xfbtm2ztDwEBwfbPNQyIb5Cr9dj2rRpaNmyJdq1a4dWrVohPj4e3bp1Q3x8POLj49G8eXOsWbNG7FAJEXzyySdCWa35r2XLloiPj8fx48fFDtNn5OfnY+zYsRgyZIjwGcdxCAkJcdvQfXq9Ht26dUO3bt3Mvk6HEEetWbMGvXv3tjr0p6tQ+1R+BgwY4PH6Z+bMmTh9+jSVFy/3ww8/YM6cObSfzZg7d65H62dfUVxcjH/9618eaz8fOnQI48aNQ5cuXXD27FmPLJNYt3r1agwePNinh95esWIFVqxYIXYYXuePP/7AhAkTqO52g6lTp+Lo0aMAAIVCAZVK5dPHMCGEECIbyUpLAAAgAElEQVQmrzgDcxw3AMD7ADIZYxWumOfVq1fx5JNPYtOmTa6YHSFej0/cN23aFLt27YJWq4VWe/eAGCUlJaioqEBOTo4IURJi2vz581FRUYGKirtPIeXl5SgpKUFpaakIkfmW/Px8jBo1Cp07d8Z3332HzMxMjyxXr9cjISEBOTk5yMnJQUJCAiXxiUtt3boVv//+O7p37+6RG43//e9/hZ//97//uX15xDn79+/H+fPnPV7/9OvXD4mJiR5ZFhFPYmIi+vXrJ3YYkjRz5kxs3LjRo/Wzr/j444+Rl5eHefPmuW0Zu3fvxsiRI9G8eXM8/fTTOHHiBPLz85GcnExJfIn497//jTNnzogdhqj69++P/v37ix2G1wkKCsK//vUvscPwSoMGDRJl23Ic9wzHcac5jjt98+ZNjy/fkri4OHAc59C/uLg4h+bbuHFjs9M1btzYoeURQgiRH9kn8DmOawNgK4D5jLHvOI6L4DiuHsdxTWycXmggKJVKTJo0CZMmTcKsWbPQtWtXTJ48mZL4xCFSbny6kl6vx9ixYxEYGIhdu3aBMYaEhAS88MIL0Ol02LZtG7Kzs/Hdd98hKysLKpUKfn5+mDNnjtihy5qvlC9P+OCDD1BRUQGFQoGgoCAcP34c2dnZyM7OxoEDBwAA9evXR9++fUWO1DPEKFu5ublISkpC586dcfz4cdSvXx+hoaEeWTafvC8sLETdunVRt25dFBYWUhLfDXy53qpVqxYAoKioyK4kUUVFBZ577jn89ddfdi1v5syZws+vvvqqXdPKkdzL1muvvQag6ma0J+uffv36wd/fq96o5nJyL1sA4O/vTwl8E2bOnIlt27YhPDwcw4YNs7t+dgVvKF/mlJeXAwBu3brl0vkeOnQI7du3R1BQEB5++GGcOHECSqUSgwcPxv79+7F48WLodDqfT+JLpWzJqS39119/4aWXXnJ5zC1btkTLli1dOk8xSaVsRUdHY/LkybJ/z3xaWhoUCgWioqIkc7wMGjRIlPYhY2wtY6wDY6xD/fr1Pb58S3JycsAYc+ifpc5LluZ75coVs9NduXLFoeURQgiRH9kn8AEEAfgcwD0cx3UAsBnAewAOcBw3wdrExg2EgoICjBs3DuPGjcPEiRORn5+PLl26YPLkyfj444/duxbE60i58ekKxon7LVu2wGAwICEhAVlZWdi5cydeeOEFhIaG4v333xemef/996HRaDB8+HAoFAowxkRcA3nz9vJ18uRJj13AfvDBBwCqhje8c+cONmzYIHw3Y8YMAMDs2bN9prx6smxduHABPXr0QFxcHI4cOYL69etjxYoVyMjIsPjEuavUTN5nZGQgIyODkvhu4u31liV8/TF69GghSVRYWGhxmo0bNyI4OBhr1qxBTEwM8vPzbVrWf//7XxQXFyMsLAxhYWEoLi72+l74ci5bX3/9tbC/fv31V1nUPxUVFbh48aLYYXiEnMuWrU6ePCl2CB5nnLw/duwYVq5caVf97CreWL4YY0Ly3pX0ej169OiBvn374syZMzAYDBg2bBj279+P7Oxs/Oc//0F8fDzGjBlTLYl/6tQpl8ciB95YttwpPz8fMTEx+OCDD9CwYUOXnn8NBgM0Gg0MBoNd0+n1epw7d85lcbiKFMuWqW18/vx5ESOyjr8OffPNN8EYw7Vr13DPPfdItu1HCCGEEHHIvssFY+wkx3EBAEYASAPwOoC1ABIBfMZx3CnGWLYt84qIiMDQoUMBVL2zbd++fSgoKEDDhg3x7LPPAgDGjRtnclp3PJ2o0+ksfu/rPWZo+wB5eXkWv4+JibF7uoKCAkRERJj87uOPP0ZgYCA+++wznDlzRkhING7cGJMnT0bdunXx3XffCX/fvXt37N27F//5z3/QpEkTrFmzBn5+fnjzzTeh0WgAVPU2c5Sj6+/stJ6cpy0qKirMLttdy3SHpUuXAgBWrlyJy5cvg+M4tGvXDqNHj0ZISEi196Ebs1RmAfPbYO/evdi/fz8qKipQr149cByHNm3aYPXq1YiKikJiYiJ+/PFH1K9fH71794ZWqxXKa0FBgdnlORqPNWKVL3McjYffz9nZ2UhPTwcABAYG4uGHH0b//v2RkJCAgoICoY433taOHtOm9olx8j4kJASpqanYv38/ACA1NRWzZ89GYWEhGjRogIyMDPj5+dm8jr7CWhlw13zlUj8bl12+PKekpECr1WLnzp1o1qwZjh07dlfPoYqKCjRv3rzaZzqdDo0aNRJ+N/dA0d69e4Ue96NGjQIArF27Fi+++CLeffddPP/88w6ti9TqH0c52v4B3LOONffX/v37XVL/OLOe5vB1d3FxMdLS0mAwGJCUlITBgwcDAKZPn+5QPID0zl+e5unts3fvXmg0Guj1eqSmpqKsrAz+/v7o27cv+vTpgxEjRpid1tHjRIxjz9wy+eR9aGgodu7cCb1ej4KCApvqZ2fikRNnyuT169dRUVGBsrIyAFWJNVvacpaWGRsbe9dnlZWV2L17N+7cuYNly5ZV+65fv34oLS3FggUL0KVLF+zYsQMPPvig3etijtSuQa3R6/VmR5ZwR+9lU68dM/7MHcu0NnKGuWW+8sorKC0tRXp6OgwGAxQKBW7evInatWtj0qRJwoPeztBqtcLxoFKpLL6W7cSJEwgICMCiRYtw+PBhMMYQEBCA8ePHY+zYsWbLMU8uvdEd3V/m8Nv40KFDCAwMxEsvvYTMzEyEh4fjiy++ENpRPXv2dDRkkxwdseX8+fMmh6i/deuWcB/TXFvf1duOEEIIIdIm6wwnx3EKxpiBMfYDx3EGAN8xxr7kOI5jjH3Pcdx/Adz9Em7z8xMaSxERERgwYAD2798Pg8EgJPEVCgXGjx/vpjUi9mKMQaPRQKVSgeM4scPxGowxaLVaKJVKYbvq9Xp8/vnnyMrKuitxr1KpAEBIyvMSExPxzTffYPfu3YiOjoZGo8H48ePRunVrqNVqBAcHQ6EQbyAQU+spR/xQWXJeB55x8p4xhp9//hlnzpxBhw4dMHDgQCgUCpftM41GIyRsJ0yYAI1Gg969eyMzMxMHDx7E3r17AQDLli1D06ZNRS+v3sQ4eR8ZGYnr168LCYXExESEhoZWOx8DVeW8tLTUJfvBOHkfHByMuXPnoqKiotrfzJ07F/Pnzxd6wppLopEqcqxPjWN2B+OElHF5Xr58OQBg586d6N69O/73v/8hMjISHMdh+/bt1Ya/t9dPP/0ktIvuvfdeAFU3i9VqNU6ePOlwAp+4R839xbejXF3/GJf1iIgIhxNExsl7ADh8+DAACEl8ufu7fesVJ3pL+7hm8t7Pzw86nQ779+/HwYMHcf36dUydOtVjsfI9tj1x/jBO3n///fd3JTos1c/ENpGRkdBqtcKrYxQKhUMPDQFV7bXRo0db/Jtvv/0W8+fPR2pqarX9OXnyZISEhCAlJQXJyckWk/jezmAwCMlpTwgJCbnrMz8/PyiVSsldSxkn76Ojo5GcnIx169ZBo9Fg/fr1WLZsmUPnX+OyGBoaatO9D71ej8WLF+Po0aPC/ZbQ0FDcuXMH69evx6ZNmzBr1iyLD8zJjcFgENontpQNc8lpfhvn5eUJyXugKtn96KOP4ssvv/T4dZy5dXv33XexcOFCq9Pr9XqPxkyJf0IIIUSapNV6tgHHcfdyHNf57173wpU0Y+w4gD1//8w4jhsFoB0Ajek53a2oqAh79+7F3r17sW/fPpSUlGDgwIEoLy9HWVmZMJz+pk2bXL1axEEajQYlJSV3JY6Jc7RaLTQaDbRaLfR6PaZNm4amTZsiMzMTjDE0btwYaWlpePHFF4XkvSkqlQo9evRAdnY2Dh8+DH9/f6xevRoKhQIhISGiX8Abr6ec8ReHcscn7xUKBd58802kpaWhcePGYIzh1KlTaNq0KaZOnYrS0lKXrO/Bgweh0+kQERGBhg0bAgAaNWqE+Ph4fPvttzhy5AjuuecejB07VhLl1VsYJ++TkpLw2muv4ZVXXkHTpk2xd+9edOnSBcuXL79r+ECtVos7d+5ArVY7tfyaw+anpKSYvDni5+eHRYsWyWI4aymQY33qyZhrJn/mzp0rDNfcr18/5OXloW/fvnj11VdtGmLV3HD6n3/+OYB/et8b/7xt2zZHwyduYmp/Aa6vf1xR1o2T902bNsXEiRMBVCXx9+3b5/B8peTv7eP1T2oZJ+9r1aqFRYsWYcaMGahbty50Oh2WLFmC5s2bY+XKlR6JR6fTeaQuNh42f9euXWaTFTXr5+vXr7s1Lm/DcZxTI6zxDh8+jJYtW+Knn36y+HcNGzbEnj170Lt377teF1NzOP2zZ886HZccSeFasaysTPQYasrPz6+WvB8xYgT8/PwwefJkBAUFQaPRuGQ4fWv3PvR6PSZNmoQGDRrg22+/BWMM8fHx2LNnD3bt2oX09HQ0bNgQlZWVWLBgAe655x5hVBy543vOO1s2+G388ssvIzMzE35+fvj888+FV0k9+uijHr+Oq7luer0ePXv2tCl5D4CG0yeEEEIIAJkl8DmOSwawC1VD5X8EYArHcaF/f8cxxio4jvPnOG4cgDcAjGOM2fbC0BrUajWOHDkiJPE1Gg2uXbuGrl27YvLkydi+fburVos4QaVSoXbt2haTyL5Ap9MhJSXFofc1rlmzBk2aNEFsbCxiY2PRrl07tGzZEm3btkXLli3RpEkT7Nq1C4wxxMTE2JS4N9a1a1f4+/tDp9Nh7NixCA4OtjtGWxQWFiIlJcXqqxWMKZVKqFQqLF++XHhKW8x4HHX+/Hm0bNkSsbGxwjvb5WbAgAFC8n7OnDkICwuDSqXCiy++iLS0NDRp0gSMMezZswft27dHu3btMHjwYAwePBiPP/648PPgwYOxZs0am5Z56NAhAMBTTz1V7fN+/foJ7+605ebI2LFjheOHP4b4n/lXR/C9y8wNhWcLfh6VlZUOH+/uULP+4eM0lYQ8ceJEteQ932uzUaNGmDhxImbPno3ExES89957+O233wD8k6hUKpUIDQ21WofodDp07NjR4j4xfue9pZ4Nfn5+yMjIEJJoiYmJ9m8gH/HDDz/gwQcfFOoiU8Pd2osxhoULF+KXX35xQYT/4OtnPz8/qFQqt/XAN8W43srOzgbHcSgqKkLXrl1x4cIFBAQECEOqWxIXF3fXqBG7du0SenO3bt1a+Lx169ZQqVTQaDTYtWuXU/FXVlZixowZFl8jIhdr1qwxW0944nxqbn/xXFH/3L59G08//TQuXLjgVFmvqKiolryfMmUK4uPjqyXxFy1aZHU+zrRX3aHm+aJly5YA4NG75QaDQWgfeGr7pKWlCcn7efPmwc/PDw0bNsQbb7yBGTNmICYmBhUVFViyZEm1Y6LmcRIfHy+MwmCPXbt2YciQIUJ9OH78eDz++ONITk5Gz5498cQTT7i8/Tx37lzhIaYGDRrghRdeqNZ2NP5Xs37u3bu3R9rzUvXLL7/grbfesqkNa1ye+QfXHEnmT5kyBRMmTEBlZaUwmow5hYWFWLVqFerVq4dJkyZhxowZ1WKtmcT/448/7I7HksOHD+P111+3+e/FaM+fO3cOUVFRqFOnDgYNGiRKea5Vq5bH2ltbtmzB1q1bLf5NRUUF4uLiqiXvecZJ/Js3b7rttRkGgwErVqxA/fr18eWXX8JgMOD+++/Hnj17sHLlSmEkgyZNmmDLli1IT09H48aNodVqsWDBAjRo0AA///yzW2LzFKVSiX379mHHjh1Oz2vAgAFC8n7r1q3CduWT+CNHjrTpIVlHnTlzBv3790fPnj3Rs2dPDBw4EI8++igGDhyIHj16ICoqCr/88gv8/Pxsqhdv3bplteydOXMGCxYsAFBVnjQajVvXkRBCCCGeJ5sE/t897kcBeJox1htVifwYAK9xHBfG/r5KY4zpAJQASGaMZduzjPDwcAwZMkS4oQAAubm5aNCgATp37oxLly5h1qxZCAsLw/bt251KxBDX4DgOwcHBPj+sYUFBAbp164YbN27YnSjcvXu3TU/2nj17Fs8++6zdD0scPnxYuEmwevVqu6a1x40bN9CtWze7kgp8D5GHH34YUVFRosfjCgcOHPDo8lzl5MmTAIDo6GiEhYVV+06lUmHs2LHV9lFZWRmysrKQlZWFX3/9Vfg5KysLK1assGmZfLmseePjq6++AlB1o2nMmDEW58EYw61bt8x+r9frsWfPHpf0fuTncfXqVeF4lwLj+gf4J05TPeX5nlEcx6Fr1653fd+oUSM8/vjjiImJEW4+dO7cGaNHj8bVq1dtGgmhoKDApu18+/ZtvPLKKxbrP71ej1deeQW3b98GANy8edPqfH1Vdna2y9tFWq0Wffv2Rb169Vw6X75+LiwsRFBQkEfaEL1794a/v/9d9VbNbdavXz8UFxdbnZ9Op8OVK1eqfZaRkQGgarsZz6O4uFg4Jvi/cdTVq1fRoUMHsyMAyIm1dXD3+dTc/uKZqn/sad/dvn0bPXr0wMGDBzF8+HD89ttvDpf1K1euCHWy8ftj77vvPuEm9J49e6zOp+b5QmxmzhcevfOtVquF9oGntk9JSQkAoFOnTnc9xNawYUO8+eabNrX3S0pKhIchbbV582ZMmzYNmZmZ1erD7OxsnDt3DpcuXcKxY8fc2n6+ePHiXW1H438162e1Wu0VDy05ql69eujTp49NbSvj8jxy5EgkJiY69DDU999/D6CqvWjtoTatVgu1Wo3hw4cDAL755pu7RucbM2YMXnjhBeh0OpePpjht2jR8+umnNv+92O35EydOeLQ9++qrr6Jv375QqVQeG81s6NChGDJkiMW/uXLlinAtmJCQcNf3fn5+iI+PBwC3jcKh1WqxZcsWMMYQERGBK1euYOnSpSZfQQBUJfLPnj2LH374AUDVQ5XOPpgpNoVCgeTkZAwbNszpefH3E5o3b4769esDqNqPAwcOBFDVLnJ2JDdTDAYDfvzxR/Tr1w8nT57EL7/8IvzLzMwU/q+oqADHcejVq5fQWcAaa2WvUaNGSE5OBvBPj393rCMhhBBCxMPJJQn9dwJ/N4BtjLGNHMcpAHQDMBjAJcbYhxzHdQJQwhj71ZFl1K1bl/Xp0wcAcOHCBWRmZmL48OGoV68e9u/fD6VSiUOHDqFp06aYO3cuXn31VaEnIP9uU1ey9mS0O5YpJ1LbPhzHZTDGOpj6rkOHDuz06dMuX2ZeXt5dn5WXlws9ulq0aGF1uprvLS4oKBDeU1hzqOmXXnrJ7AWlKfv27RN65kycOBEfffSRPatnlan1N2bpiWVnpvXkPAHLZQsA2rRpw8wNX+uuHgOulp+fj9jY2Gq9+wDg2rVrSE9PF3qnBAYGYtSoUdi6dSt0Oh0WL16Mfv36CWWWv9GSnf3P81vmtsHTTz99V29w42H8c3NzER0dbXJafl8bH298EsP4GOIZH2eO9kzOzc21+I5xd5QvS3WXufLOr2uzZs1M3qhr2rTpXaMtMMbw22+/4eDBg8jJyUFMTAymTZuGgIAAvPXWW8KNxqSkJGzYsMHkNqwZj/G+KSsrE/ZJYWEhJk6cKDy4wXEc2rVrh9GjRwuJDL1ej88++wxnzpwRbuC3bdsW69evR2RkpLAMuRxf7mKtzouNjXWqbNU8P/GkVD87usya9cTKlSvxzjvvgDEm9Ja3ZNasWSZ7PNc8vgAIPaebNGmCS5cuObUurtwnznBlvcWvU2lpqcWHRdyxjqbqQ1P1T0JCAj788EMEBgYK5xtL8WRmZqJHjx4oKipCixYt8Pvvv8Pf3194B7Qj65KUlIQjR44AqGrT3XfffcIw7MHBwbhz547ZEU3EOP4ssRSPo/WWowwGA/744w+L73939fYx1f4BgKysLGzbtk2of8LCwvDOO++gf//+wnFfWFho8X3m5mLNy8vD5s2bMXv2bPj7+2Pnzp1o27YtgKr6MC8vD8nJydDpdHj77bfx+OOPW52nNbbUwba244y5qz3vrutFR1i6VgTMbwNnyrPxMrVaLYYMGYILFy5YjTUuLg716tXD6dOnkZSUhLfffhv33HPPXX939OhRPPnkkxg3bhzS0tKsxmOJcax8mzQ3N9emeYrRnm/Xrh3j6++a3PHe66KiIovfS2WZs2fPxttvvw0AGDZsGJo2bSp89/3334M/Hvfs2WP1gQBHYjUYDDhz5gz69OkDpVKJv/76CydOnLDYO/vBBx9EYWGhcJ1148aNauded2xbd9znckcZyc/PR+PGjaHX69GmTRssX74c69atw5YtWwAAqampmDNnjksfJCkqKsKPP/6Ihx9+GDqdDsuXL8e4ceNM/m1OTg6eeuopnDlzBu3bt7dp9ARTZc/ctuNflREZGSmbV/+JcQ/VURzHOfywuqVpnZmvI8tzZlp3xOou1tpchBAiJ/I4qwNgjFUCWAogmeO4bowxA4DvAZwF0J3jOBWAfwGw3BK04Pbt29i+fTu2b9+OzMxMxMbGol69eigsLER+fj6effZZ4Wnw3r17e3zYdsYY1Gq1bE6YRBz8sPC2DlHH90I3dQOh5vCtS5Yssfk9XDWT93xi1ZVcMSy5u8khRimIjo4WLqgvXbqEpUuXYuHChXj33XdRWFgIf39/zJgxA//3f/+HhQsXYseOHfD390dKSorDQ+7VHP53zpw51RIp5pL3xmw93iwdZ7ZyxTw8gY/T3I2DqVOnokmTJjAYDEhLS8OpU6ewfPlyrF+/HqWlpViyZAm+/fZbjB49Go8++igyMjLwwQcfoH79+jh8+DDi4uLQu3fvajdKTTG3b+rWrYudO3fi5MmTaNeuHRhj+Pnnn5GSkoLNmzdj8+bNSElJwc8//wzGGBISEpCZmYnt27ejQYMGLttOxDq5lHl7McZQWVlZ7bwwdepUnDlzBlFRUVaT9wDMDldufHwtWLAACxYsEJL3U6dOdTp2b9wn1tbJ0mtBnFWzPkxPT7+r/snKysLOnTvRoEEDm843BQUFQvJ+9OjR+Oabb1zyDughQ4agV69eAID09HS8/vrrQvL+3//+t8XXkVBbyDyFQuHxY6pm+2fdunWYM2cONm7cCI1Gg7CwMKxduxZZWVkYMGBAtWPE0X1pLnkPVA3vbS557yxr8dp73eSL7Kn3nS3P/P4KDAzEwYMH8d5771lNROXk5ODixYtYunQpNmzYYDJ57y6O1GneeB6VAkeGD1+0aBE6dKjK7+zevVt4yNGdyXtjCoUCCQkJiI2NhVartfm99qNHjwYAPPbYY+A4joZN/1t0dDS2bt0KPz8/ZGZmYujQoULy/q233kL37t1dntjOyMiwKXkPAI0bN8b+/fvx3HPP2ZS83717t11lT6FQeHSkC0IIIYR4hty6cH8H4F4AT/79zvtjALZwHPcMgCjG2DJnZl6rVi20adNG+L1hw4YoKysT3qM0fvx4vPHGGwgLC8NDDz3k8YsujUYjDHnorveIE/njbwoUFBSYLaPWepYY45P4fE/81NRUvPbaayZv1KpUqrt6TNuSvHe0ZxY/BCHg2PsVPcE4Rqn1QHOUPb1Ka7K0jmFhYZgzZw7S0tKEoY39/f3Rp08fDBs2rNoF7IMPPogdO3YgOTlZeO9bcnKycCPNeKhTS8vkb2Knp6dDo9FAoVAIr0qxZT35443YZ+rUqcJoB5999hlUKhVGjBiBxMREJCUl4c6dO9X+vlu3bnjjjTdw8uRJ7Nq1C4cPH0bjxo2r9Rw0fnclAIv7hu/5tG3bNmzYsAGbN29Gbm5utZspjRs3xosvvnjXfHnWhtOVy/FMrHN13a3ValFRUQGtVlutjNatWxcnTpzAypUrsWTJEodiBaofX0DVkKuTJk1CaWmpxXVxtMxaOhbc1ZPVkoqKCrPraU/7h2f8WhB7RiGylfH+4kePMVX/GNdp5rY5P2x+UVERHnnkEaSkpKCgoAD9+vVDaWkpFixYgEceeQQ7d+7Egw8+aHIelvbJkCFDYDAYcPToUeh0umrvULdEDu01X2Pc/vntt98AVLXjR40ahfnz55udTqfTmd2X5sqlcfJ+48aNaNSokfC3586dw4QJE6DX67FgwQK7k/fW2mq1atWyWPYcacdRe959atYVI0aMwLBhw8yOKgdUXT9s27YNDRo0sPg+eb5tWV5ebvN1gjn89JWVlXd95ug8SRVHe2bzw4cDsKujDf9Kr9OnT2P37t1o0qSJ0H6qef3pLps3b0a3bt2wZMkSfPjhhxb/NjY2FqdOnYJCocDq1aurrbe1jhbu6J0vNfXr18fWrVsxZswYlJaWAqhK3nfu3NnheZorkxkZGRgwYAB0Oh2WLFmC5ORkYZmWvPHGG2jfvj2eeeYZi3/HPzTpKWKMnEEIIYQQ62SVwGeMlXMctxkAAzCb47j7AGgB1AdgvaVkRWxsLFauXFnts5KSEnz11VcYNGgQIiMjcezYMXTv3t0jT+nXHAKef/dvcHAwPVUJeoUA4PjNgYiICLPTmvv8xo0bwo2R5cuXIyMjo9oN2wsXLuCZZ54RLniVSiV27NiBQYMG2RSTuWF5LWnWrBnUarVDx4Q7bqyYmqfBYBBidNc7gwMDAyV/o4jfvwaDwey+mj59OgBg0qRJGDVqFAYNGiQMAW1KTEwMfvzxR3Tp0gULFixASEiIUHZsuenILw8AnnzySWi1WjRp0gTNmzeHQqGweGPTkWPIWVLbx47Gw2/36dOn45lnnsFHH30EjUaDr7/+Go0aNUKdOnVMlpE///wTly9fRnl5ORQKBQwGgzDKx+DBgy3GU/M74+PyrbfeQlpaGv788088//zz4DgOmzdvRlhYmN3rZlyP+QI5lXUxjh9LQww3bNjQ7Llr8eLFSElJQbt27aqNNJGSkiIM9WqO8fG1e/duAFVJV7VaXS2xYe85V2r1j6McqbuN6wtXq7m/9u7di3feeceh+sc4eT969HnuxMkAACAASURBVOi7HgKZPHkyQkJCkJKSguTkZGE4fXtjffnll7F9+3YEBwdj0KBBVpP3gHPtNXeQWnn2dDw12z8nT55EixYt8Mgjj1idNjo62q59aann/dmzZ/HUU09Br9fjgw8+wJQpU+wuH5bqsoiICLPx2tNmqMlaAt8bWKorrXFmOuP61nh/McawceNGTJo0SUhSBgYGYvHixUhOTrbpPBYaGgqg6sEAZx9O4Kc37oFv6zzFqH/8/Pw8mnxzdln8UOBKpdLmOiEyMtKh88yyZVV9gPjh9Pl7Ge7seV9z+3Tt2hVxcXG4cuUKfvjhB4wdO9bstE888QQA4PHHH0dERES1Y6bmA9BS5q7y2LNnTwBAly5dcP78eQQEBAifuZJx8t5az3tTRowYgU6dOmHy5Mk4deoUoqKicPXqVQBVPe979epltt3piWPZkWOQEEIIIe5hVwaU47i6NvyZgTHm8DD21jDGbnMctw7AeQDPAigH8ARj7Lo7lrdv3z5oNBqMHDkS+fn5+P333/Hcc8+5Y1FWKRQKt/T8IcQWNXviJyQkICMjA//3f/+HiRMnCjezlEol5s6di9dff92u+TvSO0sOx4QcYvQEe3ow8ol5W3Ts2FHoiZ+SkgIAqF27tt3xuePCnli3du1aLF26FFOmTMGWLVuwbNkyfPjhh3juuefw0ksvQaFQID8/H6tWrcLWrVsBAA899BCSkpJw7do1fPTRR0IS3zghYU3N41KhUCA2Nhb79u1zan2M6zFCzLHlvFC3bl3k5ORg0aJFeO+99/D8888Lo43YatiwYcLPISEhuH37tvA79Yi2nafO48OGDau2z+xhLXnP43ukLViwwKEkPlC1PUaNGmX3NNQWkqaePXva1QayZ1/W7HlfM3lvPGz+tGnT7A0dgPW6jMqevFjaXxMmTMCYMWPQuXNnnD17FhUVFXjllVfw1ltvoX///pg2bRoaNmzo0XhpGHz3cKQ3vbPH+qJFixAUFIRr165hyJAhHul5b2zXrl1o27YtNm3aZDaBX1xcjOPHj0OhUGDjxo0AqI4zJzo62qbX4TmiZs97e5P3APDLL7/gk08+wZ07d6BQKITkvTsfHLGHoyNaEEIIIcT17O3CfPXvf5auVPwAxDockQ0YYxUAjnAcd6zqV+aWFz4xxrB9+3bEx8fjgQcewNGjRwFQoofIz+7du9GuXTunn/ivmcRv0qSJ8F1gYCDmzZtnd+Kex/dY/eWXX8BxHDp16uRUrFK3adMmPPbYY/Dz87Nr1AGpOX78OKZMmSL8btzDXqVS4aWXXsLIkSOF/euOHozGw+nrdDrhVSO29Pq31aZNmzBixAh6fYkbhISEYNOmTVi1ahUmTJiAr776CsuWLcN//vMfPPDAA8jKygIAJCQkoF+/fqhTpw4AoE6dOnj66aeFJP4bb7yBhQsXirIOarUa27dvF27g+EoPfF+0c+dOtGnTBs2aNfPI8mbPno3Zs2e7fL43btzAyZMn8eijj7p0vqtWrcJHH30EoKoOZowJ9W+9/2fvvOObqN84/r40XbSU0gIOpGWUYQuUylAoguylYJG9KTgBEWS0skQKCGUVWbKRISjzBwgCypChQNmULZSlyGqhK5Dkfn/UO5O2SZM06YB7v168aJIb37t7vuO+n+/zPMWKMXbs2ByFMbWEc+fO8dprrwEQEBBAdHQ0/v7+Dj1nXpKYmCgLo0WLFsXV1ZVRo0aZ3D4tLY1XX32Vc+fO0bp1a7Zs2WKUQkxBwR6sXr1abrvq1avH5s2b2blzJ5DeZ27YsMEuOe+l/tbV1dVu7zvW8CyMD0VR5MCBAzg7O/P666/ndXHM4urqyrFjx9BqtSxatIhvv/2WkydPsmLFClasWEGxYsV45513GDNmjOI1WoCR6vWyZcvo0qWLHD3B0YwZMyZXzpMVVatWlb3wV65cmaWIL82zdOnSJdvoN+vXr6dGjRr4+Tl0ava54/jx40ae923btpV/e/r0KYcPHyY0NDTTfnq9ni+//JLt27dz7do1o/QbL7zwAiEhIUycONHqRZWOYuvWrVStWhUfH0t8+BSyw9/f3+R837P8jqKgoKCgYB+sFfDPiaIYYm4DQRCO56A8ViGKovkkTznk/PnzXLt2TR7IHzlyhEKFChl5DygoFATeeust7tyxT5AKScSvWbMm9+7dw8XFhYEDBzJgwIAcTZhJOShLlSpVYMVsS7l16xYtWrTg7Nmzck7HguoBOWfOHO7du2fy98jISDp06CA/X0dNpkkifseOHeWJCnvlLZae18WLF/PNS/WziKenJ9OnT2f8+PGMHDmSdevWcezYMapUqcKCBQvYtWtXJg+AwMBAunfvzvLly5k2bVqeCfgXL16kRYsW3L5922HeHgr5g4EDBwLpC+MKcnug0Who2rSp3fvbb7/91mQOzXv37jFkyBAOHDhg13NmRKvVyv3SvXv3GDduHAsXLnToOfMSKVUCpHviL1u2zKr9Z86c+UzfH4W8wTCijRQpJyM5Fe/BOIe9Pd93LOFZGR9qNBp8fX0LlJelWq3mww8/5MMPP+Tq1ausXr2alStXcu7cOZYsWcLhw4fZunVrroj4DRs25I8//nD4eZ4nVCoV27dvJzIyktjYWBYsWJDXRcoV/ve//1G1atUsvfATExOJi4sz8r43R8OGDXO1PXxe+Prrr9FqtXzyySf06NHDKOf9jBkzmDBhAj/88ANNmjQx2i86OppvvvkGgOLFi1OjRg3CwsLo2bMnLi4uuXoNltC4cWPu3LmjLISyE9euXcvrIigoKCgoFGCsFfAtcZlxrFtNLnL06FEA2VPozp07vPTSSxblelRQyE94eXnZdeW6k5OT7P2gVqsRRZG0tDS7eDq//PLLdipl/kUS+IoXL17g82UvX76cb775hrS0NABSU1PlCUBBEOjQoUOulaVatWpcuHBB/mwvr3/peZUoUQKwr2e/QmYKFSrEtGnTOHfuHGfPnuXMmTNmBb99+/YB2N2T2BoK8sS9guUY5rq1Nfx4fkFaPGZv9uzZw+LFixFFEZ1Oh0ajkdtgNzc3m8KMWkvx4sXp1KmT/LeUL/ZZpXv37lSvXj3LiXpRFHn69CnOzs7yYo3Hjx/LqWbUarXDIyIoPJ8sX76c3bt3A+l2mJCQgLe3t2yHFSpUsPuCN3u/72RHyZIlEUURLy8vRFEssAuQXV1dKVOmTIF9H1Gr1XTr1o1u3bqh1Wpp1aoVZ8+epVWrVrki4mcUU0VRJCkpyepc7ArGnD17FkCOgvk8UKVKFV588UX+/vvvTF74kvd9586dLZqP9Pb2xtvb2yiXuULOGTx4MDt27Mi0MC0xMZHZs2cDMGnSJBo3biz3CXq9npkzZ+Lk5MTly5fx8vKSn0l+FO/hP/tRUFBQUFBQyHusEvBFUUyzxzYFhdjYWPz9/SlevDgAd+/elf9WUChoSKKjPcO1q9XpTYi9PJ2fNwy9hgoahvZkmLf0/v37+Pr65mHJ/sNRXv+KvecO0nMLDQ1lyJAhhIWFZQpJmJycTHx8PIIgWO11qqBgLRqNBgAPDw+Sk5NlET83wzXnd3x8fBgyZIj8Oas+wbD/cATFixdnwIABBbZ/tYXAwEACAwMt2vb+/fv4+PjYfUyooJCRBg0ayH9nbAukxb8F3QalMSEU3GhaBfl9JCNOTk5s2LCBtm3b5qqIb4hGo+HRo0cAynuCgtWMHz+ePn36GHnhS973trzvGOYyV8g5r7/+OhUrVuT8+fMcPXqUSpUqATB//nwSExPl9G67du2SvfCjo6NJSUmhc+fOeHt7k5qaqjwTBQUFBQUFBYux6U1GEIT2giAU/vfvkYIgrBcE4TX7Fi1v0el0HDt2jBo1asjf3b17V/bAVFAoaEgTTJIAYU9cXV1xd3cv0PkfFazDkfaU31HsPXdZvHgxoaGhbNiwgSNHjhj9JuXaDgkJUaLjKDgcSXAuW7YskyZNQqvV0rZt20x2qWAeR/cfKpVK8TTLhue5D1fIHzwrNiiNCZU2xzpu3bqFj48PLVq0sOtxNRoNGo2G9evXExgYKIv4er3erucxh6urK15eXsp7goJNlC1blhdffJGnT5+ycuVK4D/v+wYNGlj9vuPq6oqHh4fSRtmRmJgYANmJQfK+b9myJRMmTMDPz49JkyYhiqKR9/2UKVMA5ZkoKCgoKCgoWIe1IfQlRomi+KMgCHWBZsAUYC7wut1Klgeo1WrZw/7UqVMkJyfToEED+bt//vnHSNBXeP7QarV5XQSLyegRqNfrSUlJoVChQty6dYvr169n6X2VnQe1OU/DGzduWFUmS49p7rgFyfOxIJXVHKVKlTKyJ0OvFkc9S1ttyxw5OeaNGze4efOmSQ/GZ+VZ5wfc3NxYvHgx3bt3Z82aNdSsWZP27dvz8OFDPv/8cwRBYO3atblerpw8Y3O2l5M2+HnHEe2EhOQ1LtG5c2cAhg8fTp06dbIMp5/fnqWjzmfuuFn9Zth/OAJXV1f8/PwccuzcxFH2bK4PN9dP5zd7zgnSNdozOlVW983w+LbaZEHqL6xpCzK+l9g6PswLuytItm4OW68jJ23TtGnTSExMJCoqCr1ez/bt2ylXrhz9+vUD0sNTW4vh+Qzt6vTp01SvXp0TJ07QqlUrhg0bBtgn+sOzYgM5ISEhQf7bMEy71Kco4bdto1q1aqxdu5a6deuyfPlyIiMjiYuLQ6VSsXr1arP72nrPDZ+lQmYy3tdmzZoRGBhIXFwc//vf/zh69CiJiYm8++67xMXF0aFDB6ZMmcL8+fNJS0sjJSWFnj17ZkoVmZCQYPLeJyUlmY3g4Yj6pdRZBQUFBQWF/ImtscR0//7fCpgriuImIH8m77GR33//HUgPkQTpL3pKCH2FgoxKpcLT01N+qX5WPF8U8oaM9vQ8otSh3MPNzY0ZM2bI4fR//PFHevfuDUCLFi0K1OIqhYKJYZhkic6dOzNq1CjZE//EiRN5VLqChdJ/5D3KM0jH0f24Mk4wjWKDzyeG4n2pUqVQqVT8+eefcu7onGJoVyqVitjYWNkTX1ocoNfrlXppZ6Qw7co9tQ9BQUH4+/uj0WhkB6L33nsPZ2fnPC6ZgsTChQuB9Hz3P/74I6GhoZQvXx6Apk2b8uKLL7J06VImT56MWq1mzpw5eVlcBQUFBQUFhQKMrR74twRB+BZoDEwSBMEV2xcD5BuSkpLYu3cvgLwa/IUXXgDSXza1Wq0SQl/hmUEK2ZWWlsahQ4fk7x8/fkzhwoXlzxUqVKBkyZJWH//WrVs27WeOtLQ0bt26Rbly5ex6XIW8wVYbuXPnDr6+vqjVtnZh9imPVIcePHhAiRIl7F4eBWMkT/zw8HA+//xzID1v69SpUwt0CMLz58+zefNm+XNqairu7u5A+jX36NGDIkWK5FXxCixarZb79+/L47icYmhjoijKf7dt2xZPT0+GDx9O27ZtmTx5suwRa6/+VEHB3vZsCYmJiRw7dkz+/Czas6urK7/99pvdF99Iz0t6b7RXH3Xz5k0uXbokf874TF577bVnor9wxDuEguOw9HndunVLFu/Lli1Lv379ZEFfEvFt8cA3h0ql4qeffqJly5bExcXJ3ytpD+xLamoqWq1Wuad2ZOXKldStW5eHDx+iUqmYO3durpxXq9Uye/ZsHj9+nCvnK6jUrl1b9sIH6Nmzp/ybs7Mz3bp1k0Pm9+zZM9uoUzdu3ODChQvyZ8P3wadPn1K9enVlLlpBQUFBQeE5xVa1oQPQHJgiimKCIAgvAUPtV6y84erVq3Tv3l3+HBAQIP/96NEjAKNJEgUFiX8n8wvUIhZBEHBzc6NRo0bZhkKcNGmSHC44O0RR5OrVq/z2229UrFiRN954wx7FBaBWrVokJCSwc+dOKlasaLfjKuQ+v//+OxcuXKBx48ZWT9Ju3ryZV155hebNm9ulLHq9nlatWnH27FmKFy/OqFGjePfdd7Pd79ixYwwbNoxLly7h7e3Nvn37lNBzdsTFJT2wj+HEsCTi16xZk8TEREJCQvDw8MjLYuaYli1bmo0gsHr1ag4cOJCLJSr4JCQkEBoaSkpKCn/++acc1jUnCILAtWvXAIiPjyctLQ03NzfAOJy+OfHB2dmZK1eu5KgcCs8nO3fuJD4+ng8//DDHod4tpWXLlmbHh05OTly9ejVXyuIobt++TZ8+fex+3F27dnHr1i369OkjtxP2oH79+jx9+tTk7y+88AJHjhyx2/lyEyndwPHjx7l48aJN40OF3Mea8XyzZs3Q6/V4eXnJIfOLFClCZGQk48eP588//yQuLo7AwEC7llES8StXrkxSUhIrV64kOTmZ6dOnW51PXCFrtm3bBkDXrl1zfCwpHP/OnTsBnluv86CgINRqNVqtljfeeCPXbLVv375s2rQpV85V0Fm4cCF16tRBEIRMcwDSYjpBECzyvq9evbrZ/l0QBC5fvoyPj0/OCq2goKCgoKBQ4LBJwBdFMUUQhN1AeUEQ6v37dZr9ipU3+Pr60qpVKyDdI+7w4cMcOnSI2rVr89JLL+Hm5sa5c+fyuJQK+ZF/w+oWyBmAAQMGyDkBGzZsSPHixeXJxtTUVNavX8/w4cMBLBLxNRoNRYsWJTAwkOrVq9utnNu3b5dzhIWHhyuCVgGnVq1aFCpUyKbJ2QYNGtgtnYler5e9cgRB4O7du3z66aeMGzeO6dOnZzkRdejQIXr27Cl7wanVahISEqhXr54i4tuRHj16EBsby5AhQ/j+++/l71UqFe7u7iQmJnLmzJk8LKF9WL9+PR9//DFpaWkIgoBer5dDChcrVoyxY8fmcQkLFlJdlDyHsgp9byvh4eFAesSm8PBwFi9eLP/WuXNn/Pz82L59u/xdWloaer2eH3/8EYCwsDC7lEPh+aNmzZqUKFECjUZjV0HYHP3795fHfxnHh99//z1PnjzJlXI4kpIlSzJr1izGjRuHTpeeIe7evXs5Pm6dOnW4c+dOjo+TkbCwMH744QcA2rdvj0qlkp/JsmXLSElJsfs5cwuprQ4ODsbDw0MR7wsI1oznp06dSvPmzXn06BFbt26lVatW6HQ6ZsyYAYCHh4fdxXsJlUpl1GZt3LiRTZs20aZNG9auXasI+TnkrbfestuxNBoNn376KadOnbL7sQsaRYsW5e7du9SuXTvXzjlv3jx0Oh1//PGH/N3du3dz7fwFidq1axMcHMzJkyfp3Lkz33//PcWLF+fQoUOMGjUKgIiIiGy97yE9//zdu3cJDw9HpVLx9OlTnJ2diY2N5fjx44iiSP369Tl9+rSjL0tBQUFBQUEhn2GTgC8IQl9gIPAKcAJ4AzgENLRf0XKfl19+maioKCBduGzcuDGRkZH8/PPPuLq6EhISwuHDh/O4lAr5kX/DW+nyuhy20KlTJ/R6PREREezbt4+lS5dSr149+ffu3bsTFhYmT+JKYr8pJC/HGjVq2NVLbOjQ9CAfgiDIIcYUL/yCi0qlokqVKqSlpeHq6mqVrdgrhYKheB8UFMTWrVv566+/+Pzzzzl48CDdunVjyJAhTJkyha5du3Lo0CH69u0rh8qrUKEC0dHRhISEMGzYMFavXi2L+KVKlbJLGZ9nwsLCiIqK4sCBA9y6dUsWKdatW8fff/+Nl5cXjx49YtasWfTv3z+PS2s7wcHB7N69W64H9+/fl0OwS0ieiUpoUvNI4n1CQgKCICCKonzPcnrv4uLiuHnzJi4uLkycOJEhQ4YQHh5OdHS0vE1oaCihoaHy5ytXrsiifceOHY22VVCwBl9fXzw9PR3eBhi2NZ07d0av1xMZGcm+fftYsmQJ9evXB9Ij0Dwrk8itW7emdevW8mc/P78cH9PLywsvL68cHycj0dHR6PV61q5dy86dO9mwYYM8Jlq/fr3dz5ebGLbVVatWzePSKFiKSqWy+Hk1a9ZMXvz266+/Iooihw8fJjk5GQ8PD8aMGeOwcs6cOZMnT57g5+fH1q1b6dWrF7GxsWzcuBEXFxc6derEd999pwj5NmLPBTdDhw6VF1XodDo5jLhC7uDm5sby5cuNvitatGgelSb/M2PGDAYOHMipU6fo3LkzQ4cO5euvvwagS5cuTJgwwaLjvP322yxZsoQqVarQq1cvkpKSuHLlCkuWLKFjx45s2bKFmzdvMm3aNLunGlFQUFBQUFDI39ga8nsgUBOIF0WxARACPFPLMt3d3eVQblLIo1q1anHs2DGzoW4Vnk/+FR/1eV0OW+nSpQtff/01Wq2WXr16cfLkSfm34OBgNmzYgFqtZvjw4SxcuNDssaTQ/PYU77dv305iYiJFihSRhfzevXsb5SHOb/z8889UrlyZW7du5XVR8i2St5VGo7Foe1EUSUtLs8tzz0q8V6lUlCxZktWrV3Po0CEaNmzInTt36NatG66urtSpU0feftOmTezatYuQkBAAJk+eTKdOnWQB8cGDBzkuowKMGDECgCFDhgDw5MkTZs2aRbVq1Vi7di2A7LlVULGkzbS2rjyPPHjwQBbvO3XqROXKlQH79Ul9+/YF4LPPPqN9+/ZMmTKFAwcO8Nlnn5GWljkIVUJCAm3atCEhIYGOHTsyefJku7VfEmfOnKFKlSry4lOFZxdHjK10Oh116tRh0qRJ8ncZ25quXbsyceJEtFotvXv3zpQrPj+Pw55FNBoNo0aNol27diQkJPDuu+/K0akkCuozcYSNKzgea8fmQUFBcjSb3bt3G4n3jhTPZ86cCcCiRYsoUqQIGzZs4PTp01SvXh29Xs+qVatwcXFRoh7lMX379mXlypUULVqUBQsW5HVx8hypXuXl/KNer4cClioyt4mJiaFq1arodDoj8f7999+3+BiDBg0CYOnSpUD6O2+/fv0oVqwY77zzDl999RUAUVFRyjyDgoKCgoLCc4ZNHvhAmiiKaYIgIAiCqyiK5wVBKPCusHFxcVSpUgVIn0SoXLky/v7+xMTEcPnyZTp27EhMTAxxcXGKZ4DCM0eXLl2A9DBfYWFhLF26lKCgIABeeeUVli5dSs+ePXn//fd58OCBReH07cGWLVv4/PPPgXQPxtKlS6NWq7l58ybz5s3jiy++oFChQnLIaUPM5W4FTHpJG+5n6I0mTSqa2m/atGkAnD17Vg6t7Ofnx8iRIylSpEiBWi1t672zBms9Yw1DYVsaQvj69euZnp+heF+pUiW+++47Hj58aLSfm5sbderUISEhgWPHjslhN8uUKUPTpk25e/cu9+/fN9pn+PDhaDQa2SPOVDh9W+9dbjyT3MDcdWT0Pm/ZsiXjx4/nwIED7Nixg1OnTnHjxg1at27N5cuX8fX15f79+/Tv3z/X8zVm9zyyQmpPkpKSKFasmMX72cuL3BSmrkUURe7cucMLL7yQpaiSVbQAw31xwIRfVmU19LyXIsZIfZphPbW1jsybN4+bN2+iVqspXbo0W7Zswd3dnW7durFixQq6d+/OjBkz5HZJEu8fPXoke96npaVZ1X5l1XZJREdHs2LFCrndOnPmDLt376ZZs2ao1eoC1dc4gidPnmSyE8O+3B4e1hmxpl3LSG633dOmTUOj0TB+/HiSk5M5dOgQO3bsoFWrVri7u9O4cWOjtkZKJRMZGUnbtm1ZsmSJLCbcuXNHzk9sz77N0rYyt++dOdsyV9Z79+6ZjThk6XVIz2Xq1Kk4OTmxZs0a3nzzTTZu3IgoinKb7YhnIpHf7Fkqa1bjdXPlcdSYypaxgSNx9Ngxq7G5ufY3NTVVFvHXr1+Pi4sLQ4YMyVa8z8l19OvXjydPnuDr68ulS5fkFFiQPs4MCwtjwYIFxMfH8+WXX7Jv3z45rWJ+6k/zm22ZIykpSc5l7+rqavSenpSUhKenZ6Z9+vfvz8qVK/H29mbv3r1yCP2nT5+SlJQkb2cqVZm0mCmr85o6Z3a/WYK9U6cZXquEXq+Xv8/tVG3/LugzWUF1Ol2mhWSGFJTUcuauISsbkewsNTUVd3d3YmJiGDRoEH/99RdvvfWWVeI9pLdhJUqU4PTp02i1Wj755BPOnj3LO++8Q+/evQEICAjg8uXLvPbaaybLm5CQYLLuge3Pw9z9yclxFRQUFBQUFLLHVgH/piAI3sBGYKcgCA+B2/YrVt4hDXBSU1M5ePAglSpVQhAE9uzZI4c+PXLkiCLgP6eo1bZWmfyFqUmO4cOHI4oikZGR9OrViw0bNhAcHAxAvXr1WLZsGb169ZLD6WcU8R0xaXf48GH5xahixYpyeovt27czb948OXR2Tl68zWGtaGwo3kshvqOiohg5cqRDyleQyIl9lCpVCr1eT0pKiskFG1mR8fllFO+3b9+e6Vi3bt1i9uzZct712rVrExoaypkzZ9i7dy/Tp0+natWqTJw4UV70JRETEwPAhg0bqFevHnv37sXd3d3qNAHPK76+vkZ2otfrmThxIn379mX+/Pk8fPgQPz8/ypQpQ2pqKr169WLq1Kn89NNPeVhqy5Hs0dPT02R9yE8LMTQaDU+ePLEp73Z2E372IqN4L9VBqb82JzRZyty5cwFo0qSJ3J4AVKtWDYAVK1YwdOhQFi9eTFpaGmFhYbJ4v3r1agCr26+s+p4LFy7Qu3dvbt68KV9jcHAwsbGx/Prrr2i1Wll0UDDG8H46AlPiYU5wVFug0WiIiooiJSUFNzc30tLS+PXXXwFo1aoV5cuXz7RPREQEkC7i9+7dmxIlSgCYXNxjjzKmpqY6zOvQnvfWknbd2gU8hpg6ptS2rFmzhrCwMPR6PU5OTpQoUYInT54UqJQr9ngetizyVLCNjOO0jH1bRqHZ8Nn06NFD3n/RokVWndfWdnbbtm1AevS2jP3AP//8Q4UKFfj000/ldzjD9lDBNNkJdqmpqSQnJwNkGwZ/wIABsuf90aNH8fHx4eLFiwA4Oztb9Z6v0WgsPm92mBNCHYXhtUp27uLi4rC5DjD/UEfIEAAAIABJREFULP9NB1MgU0U6EsnOqlWrxksvvQRAbGysVWP9jPe9bdu2zJs3jxkzZrBjxw4qVapEbGysfKyUlBTUajWJiYlMnDiRyMhIs2WDnNeB3EYQhA+ADyBnKY1Kly5NfHx8lr/5+/tz7do1m4+toKCgoKCQ29g0ChVFMUwUxQRRFL8ERgGLgHftWbC8wNXVlYCAAAICAihfvjyiKPLXX3/xyiuv8PjxYw4ePEiRIkU4cuRIXhdVQcFhvPfee4wePRqtVktYWJhROP2goCCjcPqSwOlI1qxZA6R730s0adIEtVrNw4cPuXnzJoUKFXLY+V1dXWUBNjsMxfuGDRsyZswYypQpg16vJyoqSgmnn0NUKhWenp5WTaAYPr+MYfNXrlxpdKxbt27xxRdfUK9ePdasWUOtWrWIjIykXbt2vPTSSzRp0oQRI0bQvHlzLl26RKtWrejTp0+mPMCjR4+Ww+nXr1+fv/76Swl9biMqlYo+ffrw4osvcuXKFR48eEDTpk3lCa2XX34ZHx8ftFotEydOzOPSZo817Ul+wNXVFRcXF5vK++8+Dp3wMxTvO3XqxOjRo+1+jlOnTvHw4UPUajWNGzfO9Hvt2rXlcPo9evTgzTfflMPmG+a8t7b9MrSVCxcuUKdOHZo0acLNmzdxcnKiRYsWTJo0iS5dusjhiPft28fPP/9snwt/xnB03SsoaS50Oh3jx48nJSUFDw8PvvrqK9l+fv31V7Zu3WpyX8Nw+rdvp6/bdtTCNOl5FYSFs5bYlqPsLzo6mo4dO5KQkEBKSgo6nY4nT54UCFu0NwWtf31WsKRvs9ezsaWdjYqKQqvV4uPjI4tspjAM759de6iQPa6urnh4eGT73AcMGMCKFSuMxPvcOK8lSELo89aeGvJv3S6wqSIdRVZ2ZstchSGSID9t2jTc3d3x8fHh9u3b1K9fn/r163P79m3ZkWzEiBEmQ+nbsw7kNqIozhdFsYYoijWKFy9u83Hi4+PlyEQZ/5kS9hUUFBQUFPIrOZ4VEUVxrz0Kkt9wc3Pj5Zdf5tatW5QoUQIPDw+GDRvGa6+9xtGjR/O6eAoKDsPV1ZVu3brh7u5OZGQk77zzjslthw8fTsOGDXnhhRccUpaIiAjZ+z6jp/Nbb73Frl27+PDDDzl+/LjZ4/z888+8//778uSzNbRs2RL4z3vDHEuWLAGgQYMGstdG//79mTFjBjdu3KBKlSoFMmfZ0KFDadiwIS1atMjroliNlFN15syZxMTE8PTpUwIDA9m6datR2PyoqCjmz5+PWq2mU6dO9OvXj4MHD2Y6nru7O02aNKFJkybcvn2bBQsWmPXQSUhIoE+fPvzyyy92u6b4+HgaNmzIxIkT6dChg92OmxfMmjULQI6kYYopU6bQrVs3VCoVFSpUMPqtQ4cOzJs3j/Hjx5v0RHAUUrSG7du3c//+fbM5YGNiYggLC8v3noHlypXj6dOn9jqcQyf83nvvPRISEmjdujWTJ0/OlNbCHkjhw6VoNFnRrl07jhw5InvEtm7d2ki8twWp7Vq8eDFffvklkO6FNmjQILy8vIw8aiTRQfIcvHjxYqZ68jxx+vRpI6+dzp07M2nSJIfWPWmSNCEhgdq1a6PTmV67IpUnt4mNjaVevXqyeC/lnLbGfgzD6TuC7NqfqlWrsmXLFoec2xIy2pZUnuxsS6rPACdOnGDp0qVERkbaZfwstTVr1qwhJSXFrilXvv76a+bMmWN2m1dffTVfLBwSBIFRo0bZNF7dtm0bv/76a47b7YzYuT/NMbk9nr9z5w4TJ06kV69ecsSanODq6sqcOXOYO3cuT58+5eTJkxQpUsTsPlI+akvHywWlP23VqlWmBcT5DZVKhbu7O4MGDZLzepsiK/F+//79ANmmV8jqvK1atcp2fsBW5s+fT/v27R1ybEM2b97M3bt3gfRIEfmVEydOULRoUflzbt0fR9KwYUOz9uPu7s7mzZupXr26Xc/r5+eHh4cHycnJtGzZkh07dlCmTBleffVVAC5dusSpU6coW7Ysf/75J40bN+bYsWOZjiPVvdjYWBYsWMCYMWOyXcBkDVOnTgWQ01wqKCgoKCgoOBabBHxBEGoAIwB/w2OIovhMxZUvVqwYt27dIi0tDV9fX65fv07RokW5fv16XhdNQcFhSJOMXbt2JSgoiFmzZvHXX38BoNVqZW+o5ORkXnnlFbuEJ86KiIgIeYK7V69emX6X8hcGBgZmeyzp5WLVqlVERUVZNRFw9uxZi7ctXLgwjx494vDhw7Ro0QInJycSExNlz/vXX3/d4mPlJ5o1a0atWrWA/8JX6vX6XAslmBNmzpzJzJkz5Rz2AD179jQqu16vZ9myZQAUKlSICRMmZHtcd3d3Bg4cyC+//MKJEycoUaKEPBGfsZ507NjRrl6KP/74I0+fPiUmJqbAC/gNGza0aLuuXbvy0UcfkZSUxNixY2XhKTExkfnz5wMQGhrqyKLKXL9+nYkTJ7J27Vru3bsHpE+UlC5dOlN4yz///FMOYVhQUu9ER0fz2Wef5XUxLCI0NJRLly6xb9++bHMz2krHjh05c+YMsbGxBAcHExQUJP8miiJnzpzh22+/5eTJk3h6epKUlCSXJ6f5IFetWsWXX36JIAhym3X79m30en2mkJh79uwB/rPF5xl3d3cCAgKAdMH1zJkzDj+nNHYqVqwY7u7uJCUlIQgClStXNuoTTp8+zalTpxBFMVfTqrRv3561a9cC4OPjQ0REhNFYyBr76dq1K4GBgVJYXbtirv1xcnIyu6g0t7G1PBUqVKBOnTp2HT9HR0fTpUsXvLy8jBYL5ARD8d7X11e2V8Px37179zh37hwXLlygYsWKOT5nTjEcr1pDaGgozs7OgH3HufmtP7X1/tiKr68vderUsYsAntV4Xkr3Zo7Q0FB27NjB/PnzGTlyZLaCP8Du3buB/N2fSuGfDRe451dBPzQ0VBbwS5YsiY+Pj1H/U7RoURYuXGgk3n/33XfMmDEDtVpN3759gf/C2Xt5eWVbN6XnXKRIEcqUKYNOp8PJyQmtVsu5c+fQ6XS4uLgQEBCAk5NTtnMDly9flnPQ22Mxijk2b97MgAEDSExMlL/btGkTM2fOdOh57UHZsmWpUaOGUeqBgkjNmjVlAb9SpUo4OzvLNpKWlsb58+dp3rw527dvt7uIn5KSgpOTE2XLlpWFeKn/dXNzQ6VSERISwp9//pntArFXX32VN998k5x4smdFs2bN7Ho8BQUFBQUFBfPY6oG/EhgKnOYZDqckTbY9ffoUFxcX+XtH5WNUUMhvVKtWjYULF8qf79+/7zDB3hBD8T48PFyeiJdISkoiPj4eQRD47rvvzB5r27ZtPHr0CEiflBs0aJDDXoBHjhzJ2LFjSU5OZuzYsQwePJjx48ej1+spW7asRV78+RHDsNFS+MqUlBSH5uLLKVFRUURFRckhD0uVKsXixYsZMmQIs2bNol27dvK2MTExaDQaBEHg0aNH7Nixg6ZNm2Z7jgcPHnDixAlUKhV//PGH/GLvyHoiiqLcBzkyn7MjMcxhaskCHInRo0cb1a9BgwYxYcIEuX452gPws88+Y/HixTx+/BhIn9itXLkyXbt2pWPHjplCPX///fcMHz4ctVrN+vXrKVeunEPLZy/atm1L27Zt5c9Z2bOUz1mj0fDiiy+aPFZOchdawldffUVqaipr1qyhXr16bNiwIcuy5iQv+ciRI/n111/ZvXs3ixcvJjw8nMDAQM6fP8/PP//MjRs3KFWqFJMnT+a9997jiy++kMuzb98+m3M7r1q1ioiICNRqNRs2bKBYsWLMnj2bNWvWoNfrqVWrFo0aNaJo0aLMnj2bP//8E5VKxciRI43GrM8jAQEBcuhjR9tgRtRqNQcPHpRTOwQFBTF8+HDZLv38/OSJ7dyIxhEbG0v9+vVJTk5GEATGjx+faULdFvsJCQlxSHktaX/ykipVquQ4rHahQoUcsvjOns/EULxfsmQJjRo1kn8zfCYzZ85kypQphIeHc+DAAbud31aySnNiCV5eXvK+9hzntm3blrCwMHnM4+/vn6Pj5RRb74+tqNXqHNu6qfF806ZNiY2NJTEx0awo//PPP1O2bFmuXr1KVFRUtiL+rFmzuHr1KiqVioiIiHzdnxYuXNioPcrt/s5S2rVrR1JSEoMGDeLOnTvMmzePunXrmtz+u+++Y+DAgajVarZv30758uWB/8LZW1I3Y2JiCA4Oxs3Njd27d5OUlISnpyeTJ0/mzJkzTJkyhbFjx5KWlsbq1avlc1hTHnuzfv16+vbtK0eI8/b25ptvvqF///4kJiayZcsW3n77bYecOydUq1ZNXvQikZqaKi9gLohMmjSJlJQUVqxYwZ07d9i7d6/ReF6yCUnEN+wjc8LcuXMRRZEqVaqgVqspV64cV65cQafTIYoiV65coVy5cly+fBkg28UDhQoVkiMn2QNp/BoYGFggHDkUFBQUFBSeFWztde+Kovg/URSviqIYL/2za8nyASqVSl6pKw1QRFE0GxZTQaGgotfrSUpKMhsCWkIURdLS0kxuq9Pp+PTTT/n777+tLoeheL9582Yjb0cJKc98SEhItivmhw0bBqS/yEP6CnZHLcJxcnJizJgxcuizcePGodfrKV26NB9++KFDzpnbSHksCxUqlNdFyZKoqCjc3NwYNWoUGo2GUqVKsXPnTg4cOEDFihUZNGgQN27cYN26dUC63c+bNw8nJyd5YYel4eCkPJmtW7dGpVKZrRP2QqPR5KtwrLZgSw5TvV6PKIpG9SsqKgq9Xk+ZMmXo16+fw8p79epVihUrRkxMDI8fP8bd3Z0RI0Zw+fJlfvrpJ7p27ZqteO9ob53cJj/lpzbMAd2mTZtMnvgpKSkkJibmqG6+/fbbNGjQAEAOab9w4UKSk5Pp2rUre/bsoVOnTjg7OxuVp169ejalTVmwYIGReB8cHEzJkiWZMGEC+/bto3r16hw+fJiJEycydOhQWXyNiIiwyLswJ+Skf39e8Pb2Zt++fXh7e7N69Wq++uoro99VKpXdvdKkMZxe/9+66nbt2lGjRg2Sk5Px9/fn3r17mULfZxTvrbGf7MaC9iQ3z/W8ExkZaVK8z8inn36Ki4sLN27c4Pz586SlpRnZYEHE3uNcW8Y89qYg1p/sxvNt2rQB0qNqZWd3/fv3p0yZMuj1er766itmz57NvHnzmDdvHlu2bJH/njBhgpF4n58WDxV0evXqxfTp09FqtYSFhREbG5vldhnFckOBUsrrbUnd9PPz48033+TOnTty9JnExETmzJlDy5Yt6dOnD+vWrePu3bt06NBBjpZnTXnsxZ49e/Dx8eG9997j4cOHeHt7s3z5cq5evcrbb78tpxsbMGCA3c/tKPJDDvaEhATCw8O5fft2pvGRJXzzzTd069aNhw8fZhrP9+jRg5iYGLRaLc2bN+fIkSN2KfPkyZON/i9fvjwajYbr169z48YNnjx5QoUKFeTomIYOCbmBtIgmL/szBQUFBQWF5xFbZ17HCIKwEPgFkHtvURTX26VUecSTJ0+4ceNGpu8fPXokh2sz9H5UUCioZGXnlnpUwn+TUYCRB9m0adPQ6XSyl+zs2bONJoQHDx6c5fGmTZsGwJYtW+QV3OHh4Vy8eJErV67w8ssvy9smJyfL3vfS5I0pxo0bR2JiIoUKFcLZ2ZkyZcpw9epVOnToQHh4OB9//HGW+927d88o5C1glFvZnEelJOKPGzeOx48fU7ZsWT788MN8IXTZAyk0a26vus7KZiW+++479u/fz65du+T22cfHh/DwcNzd3bl06ZKcckEURfz9/Zk0aRJeXl5cuHCB1NRU2rVrR5s2bRg5ciSJiYns2LGDixcvmjxn4cKFOXbsGCqViunTpxvVCXNkl6PbnG1JOdalRWR6vd5iu8xPmMvPa+r+pKWlkZycLOdtlupXmTJl6Nu3L1qt1qyNgOn7Y26/rLyZUlNTGT9+PJs3b2bhwoVy2F2J9evXM27cOLPivTk7uHfvHp6enia9xvPDc5bagZx415gac0lYc53R0dHodDrWrl1L3bp1jRZqSQvT0tLScuSdJnk9SZ5cXl5edOrUiQoVKshRXiQiIiLQaDRs3LiRcuXKyWKuIaY8iw0975cuXcorr7xiZC9ubm40adIENzc39u/fj16vx8nJieHDh+Ph4UFSUpLd7qshtvbveYFWqzW6Zxk/23IPzN1Tw6giUp2VRHwpMgSkRxGB9LbbcCLYHuWRxnBSn9eqVSuj3+Pj42V7e+ONN2jfvj27du3KJN6npqaavNaMNmvY72XXFuS03TI17lQwjbl+5v79+/j4+GSyW0PP+48//pjU1FS2bNlitK/UF0s0a9aMzZs307lzZ0aPHk14eHiW3rHm6lBOIi3YO0qDvce55sY8GTHXL+akDpmqP9nZiLn7amt5zJ3TmvF8o0aN2LRpE8eOHWP9+vX069fPrFf2Rx99xNy5c7l27Rp//vmnye1sWcyUWxjeO2kxRob7ma9dYqWUeIMGDaJ58+Zs2LDBaIz8/fffM2zYMJNiuRRO3NK6OWvWLIKDgxk5ciQBAQEsW7aMxMRE3n33XU6cOIGzszNff/01Q4cO5e233+aHH34wyhOeXXlygpS25tChQ3zxxRdA+rvl0KFDKV++PC+++CInTpwA4JVXXsHT05OEhARmzZrFyJEjTR43u3RSOU3tZCnSs3IE2V3jvn37iIiI4Ny5c0B6u7JgwQJKliyJi4sLb731lsXn+uabb9DpdHz//fdUr16dffv2UbRoUSA9wopGo2HYsGHUqVPHpI2Yu+cZryU+Ph4nJydq1qzJihUrKFKkCM7Ozpw9exZRFHF2dsbLy0ver0WLFhZfiz0w1Z9J6SVMkVt2p6CgoKCg8Kxiq6LUG6gEOPNfCH0RyDMBXxCEavy7mEAUxXO2HEOr1WbpUaTT6UhLSwPSJ90UD3yFZxFpIO7t7W1yUkb6Xq/Xk5KSQqFChYxeog0n91UqFXq93qJwhZBZvJc87ytXrmwULu7dd98FoE2bNvTu3dvsMVesWAFAhw4dSE1NpXfv3owePZrY2FizIR09PT3liXAJSyYHDQWMoUOHZrt9fiY/iISWMHPmTKZPny63y9JEnzQBc/HixUwvjU2aNGHhwoX88ssv/PTTT6jVapYtW0ahQoVYsmQJbdu2ZejQoWYnSCRv/c6dO1O6dGmTdcKeSDYoTZyrVKoC6R1ki4jq6upKt27dKFeuHCqVSq5fhvfdlPeMLdy4cSOTAJaRU6dO0bNnT6ZOnUrlypWB9Mk+Sbzfv38/r7/+utXn1mq1uS5Umavvtv7mKEydc82aNXTs2JG1a9cSFhZGiRIl5O1zmodTatsHDx7MH3/8QXh4OHFxccyZM4fy5cvj7++fadJOaiM2btwoh9PPbgIrY9j84OBgo9/1ej0xMTHMmzeP1NRU1Go13bp1Y+7cubi5uZGSkmKTx78l5KR/z23UarVR25jxs73RaDR4eHjg5eVlJCCVKlVKDne6YcMG2QYdUR7p2AMHDsw2Xc/vv//O1q1bGTJkCACHDx+W7decyOrr62tU/+zV/lrSxuRGH2sJLi4uNrV7jmor7SnqGor3ffr0ISAgIMuFiZcvXzbKaf7WW2+xbds27t+/z9WrV3M9QlNGu7SU/PhMHEGpUqVyvf7Ycg9sGc+HhIRw7Ngx5syZY/a9a/Dgwej1ej755BOuXLli0lvW2dmZzp0759uw+Yb9hrToJkNfYj4sXS5iarzz2WefAekiflhYmCx6fvfdd7JYfvDgQWrWrJnjc3p7e9OgQQN2797N1q1bWbt2LaGhoUYh8AMDA4mOjiYiIoJOnTrxv//9j5IlS9qlPNlhKN536dKF999/H4Br165l2nbYsGGMHj2aSZMmmX0/zQucnJzyhUCbkJBAhw4d5PotCALFihXj7t27vP/++6xatUp+N8gKU9cgzSd9//331K9fn6NHj+Lj4wMgP7Nhw4bJ4fRtXeixaNEiRFGU08t17twZNzc37ty5w759+xBFkYYNGxIeHs6qVavkaLGWXkdOyQ/PWEFBQUFB4XnF1je4YFEUa4ii2FMUxd7//gu3a8msQBCEFsBm4BPgR0EQzKt6OUDxwFd4VpE8TizJE6xSqfD09DQp3nt4ePD1119TtmxZeZI/MTHR5PFMifcZefDgAceOHUMQBKZPn262jOvXr5dF+CpVqgDpwqe/vz+iKLJ69WqT+0rhM/My7JuCeWbOnElAQABTpkxBp9Ph4+PDkCFDGDFihJH3RFZUqlSJUqVKsWXLFjkEtjThHBYWRtGiRXn48CGnT5/Ocv+kpCTi4+NRqVQsW7YMyLpOKNgPUx5xjrjvo0ePJjQ0NFsPj9KlS3Pv3j1at27N1KlTWb58uVHYfFvEe0gX95T2x3pUKhXTpk2Tw9dLETSs6dss4fXXX+fs2bMcPHiQwMBALl26RFhYGI0aNcoUEnbMmDFG4fTN2ZQ58V6v1zN9+nReffVVpk+fzpMnT+jZsyeJiYny4iOpLtjrOg3JSf/+PODq6oqXl1eWwqWPj49ROH1HcebMGapVq8a2bdsssoGQkBBEUaRDhw42TzbnZr+n9LH2x3CsmzHnvSQgWIqUW/27775TnlE+JD/Xn5yM5zt16oQgCFy/fp3Hjx+b3Va6B8HBwfTt2zfLfz179sy34r2FFAgvE8Nw+s2bN2fUqFFGYertKZYvWbIEQRCYPXs2SUlJ9OzZM9M2gYGBcjj91q1bM3PmTIeVR8KUeG+KN998E09PT5KSkti4caPdy1OQSUhIoGnTppQpU4YjR44gCAKNGzdm586d/PDDD1StWhWdTkeXLl24e/eu1cdXqVTMmTNHDqdfo0YNo8WynTt3Ngqnbyo9RHZIC3/Hjh1r9P1bb71FWloaGo1Gjh6g0+nMRhxRUFBQUFBQeLaw9S3ud0EQrHuzdwBCOp7AAKCfKIoDgL7ACEEQPrLwGB8IgnBUEISjlmyv0+kUAV/BIgxty5aXhdxAp9Px5ptv0rx58xwfq2zZskYhrp2cnOjXr588yT9hwoQs91u0aJFF4j1Ax44dgXTv+6xWHBsi5ZyX9pGQXpCPHz9ucl97Cz6OoCDYl6MICgpiypQpPHnyBD8/PwYMGGDRRJ+EIAg0adKE1NRU+aXckEWLFgHpglpWEVfmzp0LpL+wZ2eHWaHValmxYgV169Y1ii5hKZJXtqM8SvOLbXXv3p3g4GCr8+wlJiby8ccfc/XqVavP2bhxY5YuXSqf3xzXr19n/PjxvPPOO8TExDBixAicnJysznnfqlUrSpcuTVBQEEFBQdSrV4/q1atTuXJlgoKC6NKlS4HPKSxhaFunT5/Gz88PPz8/AgICOHTokF3OIeWgdzS1a9fm7NmzbNiwgfLly8tCfsbIDVJ5EhISqFq1qnzNISEh8t9+fn5ERETI+3Tp0kW2h6CgIAICAmThvl27dpw9e5alS5dm6+n67bff8u233+b4WgMCAmzq33MTQ9vKGIUgJSXFrue6evUqH3/8sbxwQRAEs+KYFE5f8l66d++eXXNSz5kzh1atWpGSkkLJkiUtSmdw/fp1PD09WbNmjcltbLWfjPenoJNf+sSc8O233xq1NyEhIfj7+1OhQgX8/f0tznlviiZNmuDk5MSDBw+4fv26TeUx/Ozn50fZsmWN2kHpX3BwsN36i/yAqX4xt0MjDxw40Og+v/nmm0afs4tKZAs5Hc87OTnJEZBat25t9/Lldx4/fmz0jPgvMiaQv9suQxF/1qxZDssx7+/vT926dUlNTaVSpUpG3veG1KxZk3Xr1vHXX3/J4xxH5bz/559/rBLvJYYNGwak51+35L2gf//+7N271/aCmiG/2Na6detk4V6lUtG+fXt27twpv5MBxMTEyCJ+165dbT7XN998I4v45cqVw9/fH39/fwIDAxk1ahSQ/o7ftGnTbBeBZ0Sn03Hjxg2cnJxo0KCB0W81atSQ/65evTq7du0C8l+0F4lZs2bRsGHDvC6GgoKCgoLCM4WtAn5d4IQgCBcEQTglCMJpQRBO2bNgliCmkwQcBbwEQXAWRfF3oBMwXBCEzEtsMx9j/r/RBGpkty0gr3x9+vRpzgqv8MxjaFvFixfP6+JkQqfTUb16deLj44mLi+Pnn3+2+ViHDh2SJ+wGDhxoJGpKK91NpZ6QJni9vb3Nivft2rXjwoULODs7Z+t9b45nJQVGfrcvRyJ52QwePJj9+/fzwgsvWH0MKa9g7dq1M4lgYWFhlCpViidPnjB27Fgjm5k1axZ///03Tk5Osve9JWi1Wr799luaN29OQEAAX3zxBdevX+fUqVNWCzk9evRg5MiRDhPN8oNttWvXjr179/Lw4UPeeecdq/d//fXXbQo/L6XL8fLyyjZEpV6vx83NzWii+ccff7RKvAf4+++/0ev1WXqPaTQa9u/fT8uWLZ8JET+7MZe9BM3o6GgiIyOZOHFijo+VHdWrV2fHjh0ULlwYSPeEvn37ttE2Y8aMsehYUvSFjBQuXFgW7qdNm2ZxiOpGjRrZJMZlRLLN9u3bW9W/5yaGtiWFNgV44YUXuHLlil3T2ri5uVkdYUMS8YcPH87o0aPl8OXWLlDKyMqVK/n6668B6NevH4cOHTKbY9qQ9evNZz6z1X5suT/5mfzQJ+aE3Iget3XrVrkdsGVhY1YYppORSElJ4eHDh2zdutUu58gPWDsX4Sh27dpl0ov98ePHJqNS5YQnT54A8Oqrr9o0nk9MTOTs2bMAvPjii3YvX35m3Lhx8rjDFPm97erRowczZsxg7NixDhPLAapWrQpkL3jWrFlTDvH/8ssvU716dfR6PUlJSXk+BhdFkZMnTwLp9VEqmzlatmxJaGioo8qTL2zLcPy5cuVK5s+fn2Uf9NVXX2WmZSsTAAAgAElEQVTa3ha++eYbvvzyS8qWLZvpNy8vL1QqlU3zEh988AGiKGYZ7cHZ2Zm1a9eydu1ajh49yvjx4wH4+OOPrb+AXODLL7+UHWX0ej2pqal5Xn8UFBQUFBQKOrYK+M2B8kBT4B3g7X//zyv+BhoB7gCiKB4FugMDBEEoY88T+fn5IYpipslZBYWChCTeP3jwQBa5pFyottC3b18gPcTYnj17jH5bvHgxkB6uNSsGDx6MWq0mISGBv/76K8tt2rVrx+HDh1Gr1Rw4cMCiyUHJayyjd5lUnoy5hRUKFp6enkyfPp0ff/zR6n11Op38YmlqEvjq1at4eHiQnJwsi/izZs3i6tWrqFQqo5X95liwYAGBgYG4urry0UcfERcXh6+vr7wyvU6dOlYJOaIo4urqyvvvv++QkI75AcP6rlarOX/+vFXPuUiRIvTq1ctiDy5D9uzZQ9GiRXn06BG1a9c2u225cuX4/fffZc/FxYsXU7lyZasF6F9++UX2zG3ZsiW//fYbZ8+e5ezZs1y8eJHAwEDi4uKeGRFfokqVKly/fp3r169z+fJlQkJC7CJoSnz88cc58rSxFKk/ffz4Md7e3qjVambPnm20jeSZM2DAAE6ePMnFixc5fvy4fP3Xr1+XF9OdOXNGfv7Sv5MnT1os3BsuCAoICCAgICDH1zh//nzAdH9qqn/PD+zcuRNvb2/WrFljNxH/pZdeolevXhQpUsSq/by9venXrx+tWrWyS6qelStXEhkZKXv+t2/fHvgvAlF2NGnSxOizXq83WkRjq/3Yen8UHINGo6FLly5cvHhRbm8ytj+ffPIJAL179+aXX36x6vhbt27l119/BdIjaZUsWdLktlL79MEHHxidP2N5DBdfrVq1Sm4LpQg5zyqVK1eW+4ht27bl+vkLFy4s32vDsYiUisze/Pbbb6jVas6dO0e7du2s2jcxMZGoqCj0ej1lypQxG03kWaRt27aZxgoFDY1GQ6tWrXj//fcdJt4DcsSOjJ7NWTFs2DBcXFy4ceMGcXFxaDQaHj16ZNdIPiVKlJBF2FWrVrFgwQKz24uiyOzZs1m3bh3vvfcewcHBnDhxIlsRv2XLlqjVaruVOz/SoUMHBg4cCKRHxjPlkCJFPLDEBrJj4MCBxMbGEh8fL4/dpb/v379PXFwcXl5eFgvXOp1OTotgKtWSr68vFy9elK+jQ4cO+VbAN1wkodFoSE5OtnskLAUFBQUFhecNqwR8QRCOAYiiGJ/VP8NtcgPh3/jWoijOAQoB8wRBKPKvJ/5+4BSQc1cuA8qUSV8PcPPmTXseVkEh1zAU7318fDh37hxFihQhMTHRJi/8Q4cOERcXR1BQEK+//jp//PEHDx8+BP7LFS4IAu3atTP5EiPlzpTEAEOmTZtmJN5b6mHRtm1b3N3dSU1Nlb1GDMvTpUsXq69VIf/g7+9PaGgoQ4YM4dgx67qd1atXI4oi/v7+JgUGJycnxowZI4v4w4YNk8X7kSNHWiRMDB8+nA8++IBz587h7e3Nxx9/zB9//EFsbKws2nzwwQdWCTn28trMr2RcrCMJoUOHDpU9tbIjJ6Gp1Wo1x44dw8fHh4xhuDOSkpJiJN5LITqtfTaG4bXXrFljlPtQpVLx008/PbMiviH2EDRzm4z96fHjx+nYsSOrV6+WF3pK+Urd3d0ZPHiwyWu0tW5fvHjRqG44oo3Irj8117/nNRnrlz098XNCVql6JPHSEiTxXq1WM2jQIKPfzAmoEllN6qekpNjVduyZJkAhe/755x/++eefTN9b0rZGREQYifhxcXEWnTOjeG8ukhZY3j517dqViRMnotVqCQsLkz1PJZ5V2xIEId/3g9K9t0eb/+KLL3Lw4EHUajWHDx9m4cKFFu2XUbzv379/jsuikPu4urri4eHhcHu/du0aALVq1bJoeylUfZcuXXB1dcXLy8viyEeWUqNGDTnS16pVqxg7dixbt25l69at7Nu3T/5769atTJgwgXXr1tGuXTv69evHsWPHqFatGidOnKBatWqZ6uLz4vUsXefo0aNlEb9Tp06ZUqwkJiYSFxeHIAhERkba/fxZ3WdJuLZkPPXhhx+i1+upVauWyfmFQ4cOZRLvTaVtMkSn03H48OFst3MUUh23d/1RUFBQUFB43rB2Sear2YTKFwCHulsIglAR8CE9bL4e0AGIothREITVwAzgd0EQ1EB9wK4xA6VwSRcuXKBWrVryxFt+Wt2aXZjE/FRWBcdx48aNTN8Zig2enp6MHTuWbdu20bFjR+bPn8/AgQOZMmWKyRW9WR1TCqE7YcIEfvvtNw4fPsyOHTto3bq1PBETFBREWloaKSkpeHp6ZjpG3bp12blzJw8ePODatWty6LEFCxYQHx+PWq3m4MGDVodHfPfdd/n+++9Zs2YNAQEBcnmqVq1qVgzMKvys4Xf5NedYfiArG5G4d+8enp6euLq6GokWEubua8ZnotfriY6O5rPPPpPDAL/22muZ9nv69KlRCFZD7/tu3bqZvRZJxP/yyy9JSUmxWLzP6toePHjA3LlzOX78OD/88AO//fYbLi4usie+peHepUmu/Dy5mx2mbEQS7wVBoHLlyjRt2lTOu52cnEyVKlUsWsEvCQRg+X01xMnJidjYWLmtNIUUMWTx4sU0btxYFhKkZ2OuLty/fx9fX1/5s7e3Nzt27KBp06ayF4Zh2PXly5fTpUsX4uLiqFy5Mj/99FOWESAKctskCZrZYc19tRfXr19Ho9EYtV2m+tNKlSqh1+sZOnQoPXv2ZNu2beh0Oj766COcnJxMRu6wpm5v2bKF1NRUtmzZwu7du43aJnd3dxo3bmz3NsJUf1q5cmWz/butmHvO2aHVajP1GRs2bKBNmzayl2Z0dHSW++Z2HZKe5dmzZ+VFjD4+PoSHh1O2bFnefvvtTPsYivdLliyR71VCQoLF4fO9vLwyfVeoUCG7ioeGbfHzQE7aJlvtbtq0aQBG9iMJ6e7u7rz99tsWt60REREAzJkzh0WLFtG9e3cqVqyYaTudTsfp06dZs2aN/Hylc6amppq8D/fv30dKb2GJjUkRVCIjIwkLC2Pp0qU8evQIgNTUVP755x+cnZ0RBIGSJUtaJGbkBjlpu8C2cYutGLYX0hhG+s4wr7U0t3D//n2ePn3KkydPeOmll0y2+dbUBUnEr1OnDteuXeObb76RI7sZotPpSE5OZtGiRcTHxwPI4r2h3YmimKm/Nle/bK23jqrTzxMqlSrLtEHmyC63uBTRypBHjx4hCAI7d+7Mcp+MIeAbNWrEpEmTiI+PZ9OmTfTu3duqMlqCs7Mzb775JuPHj2fEiBHs2bMnUxRDQ0qXLs0nn3yCIAjs27ePqVOn0rlzZ06fPo2Pjw/r1q2Tx5cVK1YkOTkZwOr7a28Mn5der5frptReZ/W8LEUSySE9bDuk57v/4osvGDt2rLxgQ+rb6tevb9c0qNL5s3rvt3RMHxsbK89jjBo1Sk7xB+kp1kqXLp1JvP/oo49IS0szWRd+//13nJ2dmThxIr/++iuiKFK1alViYmIAeOutt6y+1uxISkoy+11+6Z8VFBQUFBQKKtYquZUs2MZhiTAFQWgLTABu/fvvqCAIS0VRfAQgimInQRDCgZeBYKC1KIoWu8q/8sorshdLYmIi48aNo1mzZjRp0oT9+/ezYcMGKlVKvwVXr14lNTVVWU2oUGAwFBs8PDwYPXq0LGJXrFgRd3d3UlJSOHz4sMUhuY4ePcqlS5eoUKECISEhhISE8Pfff7NmzRrGjRvHyJEjEQSBZcuW4ezsbLK+9OjRg4cPHzJ16lQ2bdrE/v37adeunSzeX7t2zSKPsoxMmjSJn376icTERLy8vLhx4waCILBx40az4c+zmpBxhCj0vGGYz9TaCcqM91+tVlOyZEmWL19O9+7d2bBhA6GhoXIIYYmME2yffvopoihSvXr1bMMMDx48GIDPPvuMqVOn0rt3b5vy2hny+++/c/fuXZKSkmjYsKFVE3zP8mSgJN5D+uSr4QSGNHGcmprK0qVL6dWrV5bHkO6PXq8nJSWFQoUKWTRhYOq+/vPPP5QoUUL2rv79999xcnJi6tSpsuf95s2bsxTYALOTyb6+vpnOW7JkSU6ePElwcDAbN27E1dXVSGT8+eefadasGefOnaNly5Zs27atQE+IuLi42N2ms7qv9iDjohBz/am7uzu1atXi4MGDvPHGG2zatAkPDw+mTJli9LxyUk5D8R7SbT4qKkr25ipfvrzNxzaFqf5006ZNaLXafDUeVqvVmfoMX19f9u/fT926dbMV8bMiJ8/L3L4ZxXsnJycePHjAlClT8PX1pXz58kYiqqF4v379eqpVqyYv+vH29pave+rUqaxdu5bDhw/z7rvvsm7dOvr27YtWq2Xp0qVyRDFDVCqVzbaT1TUatsUKjsPQfiB9UZkkqJuyPVPfz549Gy8vL77++muWL1/OkiVLaNSokfz79u3biY6OJjExEYCiRYuyfv16WRAwJ4aaa59NfR8REYGPjw8ffvghvXr1koUYd3d3SpQoIXuD23sBUV7hiH7RHIbtpOH4JOPv0uJ/X19feUxja73Oyg5KlSrFtWvXKF26NNeuXeN///sfa9eulX9/+PAhvXv3lheOqVQqo8+GdpfTRZxZkdU4Li94Vt4DciLa2oJWq8XFxcWkN7ThYhWJ7t27s3jxYkaMGOEQAV8K5d60aVPatGlDZGRkpgVvoiii1+s5cuQI165dk8Pt79mzhx07dnD37l3UajWJiYm89957soj/wgsvWPUelFsYCu45WVgg2Y+Xl5fRdc6YMQM3NzcmTZrEmDFjWL16NTVr1uT8+fOoVCrWrl1rUfo7c+c0JOP5bWHChAmIokhQUFCmPqx06dIkJSXJ4n1ERIScXsaUeK/T6Zg0aRJ79+6VF2UJgsCpU6cYOHCgLOLbm6z632ehT1ZQUFBQUMgvWDXSMBU6P8M/h8SWFwTBGegI9BFFsRGwCSgFDBMEQXaHFEVxsSiKUUA3URRtTgZ26tQpebUipIeVdHJyomTJkhQuXJh79+7l+YpWBQVLyRjmd9iwYZleYDp27AhkznFrDinEnOEkeL9+/QBo3rw5AK1bt6Zw4cIUKVLE7MvNwIEDcXFx4fr16zRr1kwOo33w4EGbxHuJyZMnA+nCLUCbNm1sfnlTyBlqtdruoUHd3NyYMWOGHE7fXK50nU7Hpk2bAKzKo+rs7ExERIRF4v3w4cOz3ebzzz83+v95xzBsfnb07ds321D6KpUKT0/PHE9aSZ74Ujj9N954g+joaKOw+abEe0MsDRmsUqnw8/MzGe5bpVKxatUqAgMDZRH/WQ+PmV8wDEFtSX8qCV5Lly5Fq9UydOhQu06iGor3kqe2JOJLwpojyKo/VavVuLm55atJYlN4e3uzadOmfBVO31B8bdiwIZMnT6Z58+ao1Wru379PkyZNCA0N5cKFC5k876tVq2b22JIdrlu3Dnd3d8qXLy+nQKhRo4ZjLwz7tcUKpsloP1JUn8WLF9ucE3vixIlG4fR/+eUXtm/fTpUqVfjggw9ITEyUhfsHDx44xJvv/+ydeXwM5x/H35vNLRISShFB0FYcJQTRRIs66r7jbl2ts0XQEpTGfbalbsXPfcZ9lFDqijrjaB0JItQZicglu/P7I53pbpLd7G52czDv12tfZHfmmWdmnnmeZ57P99Ckf//+Ujj94OBg4L+ILfb29jg4OMhGIjmIeO3N/VyXLFlSK5x+hw4diImJoU2bNlSrVo3z589jZWVF9+7dSUlJ0Rlu3xLpeN709FVvMidOnACMFxN79OiBjY0NDx8+5MqVK5aomoSXlxc7d+7kt99+0/ocOnSI0NBQ7t69i6urK8uWLaNfv37s37+fGTNmUKNGDXbs2CGlQmzfvj0qlSrPjr3mTpmQ2XlOmzZNK5y+OD61b9/e7Os/2b3OKpVKmstPmzYtw++nTp2iZcuWgLZ4r6usvn378s4773D06FHJKGDXrl1s3LgRpVIpifgyMjIyMjIy+Y/8FkvdGagAnAC2A0+B5kAXYJFCofABUgVBOA8YlixXgxcvXrBz504gbUGkePHikmCTkJBA4cKFUSgUlCpVikePHuWqBbaMjKGo1Wpq1qwpiQ3nzp1j7dq1GbarUqWKlON2x44dtG7dWm+54eHh3Lp1izJlylC9enXp+5IlS9K2bVs2bdqEQqFg3rx5Br8wDRkyhNmzZ3P9+nWTw+anp1mzZjg7O0thN6dOnYogCPLzmwMcPnyY3r1768xR6uPjw4YNG4xK63H/fkYbMXt7e8njbMSIEUydOpW2bdsCad6NorHVyZMnEQSBatWqGZTD3limTp0qCVz6OHr0KDY2Nnz22Wdmr0N+o0ePHlo572vXrq13e5VKhY+Pj5aHviVJH05/0aJFwH9h8w0hPDycn3/+me+//15Kw6MPMWe3v78/GzduJCQkhIoVKwJpXkRif3rt2jVat27Nrl27TDy7/M/ixYsBsoymkV00Q1DXrl07y/G0cOHC1KxZkzNnzuDg4MC4cePMVpepU6dqifdeXl54eXmxYMECIiIiCA4OZuzYsdja2prtmCLpx9O5c+ea/RjpEQSBv//+m9atWxscjv3WrVs0b94cSLt3/fv3p1WrVkDG58vW1pbg4OBcmROcPn1aS3wV6/zpp5/y6aefcvToUQ4cOEBUVBSffvopkNYnbdu2LVNPzPQeWYULF8bb25uwsDA8PDywtraWPFV79uxpyVN76zl8+DBz5syR5pupqanSXOfVq1eUKlWKlStXZiutma72AxAaGsqKFSvo27cvdevWNbpszXD6mt6nLi4uzJw5k379+mVZhjn7Z81w+vCfx6ylxGRz0a1bN44fP675VZ6rqOhdbglSU1P56quvGDt2bKZRP9KjGU4/LCyMatWqAWlCWevWrdm8eXOW75QxMTFMnz6dyZMnG/18BQYGsmnTJp2/29jYSNEYNZ9pQRCoVKkSM2fOlN8vc5BJkybRsmVLrXWI9GzYsAGAd955x+jyRS/8Vq1aERERYXI9s4urqys3b96kQoUKkuGKt7c3kydPxs7Ojq1bt9K+fXtiY2Pp0KEDz549y5N9YnBwcJb3yxxohtMX5zwLFy606DFNoWfPnjq97y9fvpyp531mLFy4UNoW4IMPPmDGjBlSmU5OTqxfv54uXbpw+fJl/P39OXr0aI60ETFtgrOzc55skzIyMjIyMvmFfDOKCoLwGpgDtFMoFH6CIKiBP4CLgL9CoXAA6gEP/t0+c8VID69eveL06dOcPn2aly9fUq9ePem3x48fU6pUKQCKFClicI7JvIIgCCQkJOgU0mTeTNRqNZ999pnUXt3d3bVCamkSGxsrLeCcO3cuy7L//vtvAKKjozMsGn/00UdAWng4Y6ydv/zyS6pVq0aJEiXMIt6LzJkzhzJlyvDFF1+QkpJi1EJVp06d6NSpE0lJSfLzYySXLl3Se83Onj1rcF8aHR1NQEAAvr6+AJKgKWJvby+1l6dPn/Lrr7+ybt06tm3bxrp161i3bp3UZi9dukRAQADR0dGmnJZOjBFSK1eubNZj51cuXbok/d9QUf7y5ctSWP2cQBTxy5cvT4kSJQwW7//8808aNmxI+/btOXr0qFaI46wQRcaPPvqI5ORkwsPDCQ8P5/r161qeQHfu3DHllN4YJk+ezOTJk3P0mI8fPwbSxkl945sYOaZmzZpmXbQS+xl7e3tJSID/clqq1WqLtgtxPO3bt2+ORLNJTk7m4sWLWUbe0CQxMVF6Zi5fvszgwYNZv3699Lv4fCmVSkJCQnLNq/LgwYNAmggpzps0adasGbdu3SIwMFAyyGjevLkkaol4eHhgY2NDx44dGTt2LA8ePJB+a9KkCe3ataN169bs2bNHar/iWCpjGebMmUN4eDhXrlyR+m6xTUZERHDs2LFsv0uKIoW3t7eWeN+8eXO8vb0BGD9+vMnlf/vttwwcOJDixYtTqFAhlixZQnh4uBRhKyvM3T9369aNJk2aAGnja37g+fPn6b/KcyHANEPOm5s1a9Zw8OBBg6JTiYgivkibNm24evWqwQbhjx8/xs/Pz6Tn68CBA3p/f/36tdZ8TPz/lStX2LRpk+yhn0Oo1WoSExNp166dtD6nC/H3GzduZJqnWx/iOPn06VPTKmpGRBFfoVCgUCgk8R7S3lO2bt2Kk5MTL168YNKkSblc28zp0KFDlvfLXHz//feS8ZqTk1OejL547do1AGrUqJHhN9FQo1atWnrFe0iLyiVSsmRJhg4dmsEgoGjRopLh3fHjx+ndu3e26q6PESNGSEanYtqEhIQEix1PRkZGRkbmbSDfCPj/chw4CPRQKBT+giCoBEFYR1rO+xKCIMwVBOEfUwsvWbIkU6ZMkT7ipD0lJYXbt29Luaryo2V1YmIiL1++tNgLukzeQxTvr127xgcffMC0adN4/vw5n3/+OYsWLeL69euSuBobG0twcDBqtZqyZcsa9OLXoUMHOnfuzOvXr/H399cS8QsXLgxg9EuanZ0dmzdv5tSpU2YT7yEtv9yxY8f4/vvvjQ6rOGvWLIKDg+XQiSYwbNgwbty4wd27d7l37x4XLlzg3r170ufu3btZhqW/d+8eDRs2pG7dupw8eZJ33nmHn3/+OYPn56hRo9iyZQuFChWiUKFCpKam0rJlS06cOMH169e5fv06ERER/PzzzxQtWpSTJ09St25dGjZsyL1798xyvsePH6dIkSJZbufm5sbZs2fNcsz8TlhYGBUrViQ1NdUgL72SJUsiCIJRYrg5UCqVhIaGcvr06SzF+1OnTuHl5UW7du24efOmydEeChUqxLp167hx4waXLl3ixo0bGZ4hMRy2TM4hLrQNHz5c73aiZ545w/hCWj9ToEABkpKSmDhxIiqVKkMY7fQGTuZEHE+zIwwag52dHW3atCEiIkKr7eujcuXK0rizc+dOrK2tGT16dAYRXwy7be57ZCjjx4+nbNmyCIKgN/3B0KFDuXnzJr1792bnzp1MmjRJyziuevXqHDt2jM6dO7Nhwwb8/PzYunUrMTExFCpUiHr16nH27FlCQ0MBLLpwK5OGeH/E9nrhwgV2794t9QvBwcEGpeXRh0qlAsDT0zPDb+J32TU8/fbbbwkLC+Py5csGC/eWROzb8otB7b59+7TmvIAqt+uUHjHkvCUQIyXcunXLqP003wFnzJhhlPH1+++/T4sWLUx6vsLDw7XGGc0516VLl6Q82AEBAVq/ValSBci9seRtQxQFPT09KVq0qN5tR48ejZ+fH2q1mhUrVhgl4gcFBQH/Rf7IbVxdXbGyskKhUGRoa0qlknnz5gGZh2PPC1SqVCnL+2VOxLXcvJr2dNWqVcB/USJEHj16xPXr11EqlVy4cCFL8XvPnj2MGjUKOzs7oqOjGTBgAF27diUyMlLaZv/+/SxevJhq1apRuHBhVq1aZVAkHVMICgqSIpmIaRPkNDcyMjIyMjLZI1sCvkKh6KpQKDYoFIq1CoVinUKh6GKuimWGIAhJwFrgEvCdQqHor1AoegFFAeNMao0gMjKS1NRUKZdkfsTBwYGCBQvm2QmsjHnRFO+9vLzYt28fXbt25ciRI0yfPp1Xr16xbNkyfvzxR86ePasl3g8ePNjg48ycOZPOnTvz4sWLDCK+KYihMC1lJGNq+ZbIp/g2kJ37KQr3ZcqUITQ0VBLu//zzzwzpHSZNmsSGDRskr0oxh/iGDRsyGKO0bt2ac+fOSUJ+aGgoZcqUMYuQr1Qq+eefrG3IHj58mCc9AXIDe3t7Dh06xOzZsw3yUhYFKDGUfV5CFO59fX25du0aFStWJCQkhPnz52erXLn/yVuIQvmOHTskAS0nUSqVTJgwgQIFCvDq1SvGjBmjM4y2pRAEIcei0pgyjogeagAffvgh27Ztk0T8bdu2Zbp9bjF48GDKli2LWq3WK+IrFAomTJhA7969Wb58ObNnz9a6/qIRsijknzlzhqlTp7J161Y2b96sJd57eXnlyLm9zaRvU9euXaNNmzZSHvcePXrkSj1yAzmCVRr/3gt1btcjPZopYvIilp4DGTqeFS5cmN9//13n+wXkjeftbcDYXOrHjh2jRIkSRon4t2/f5p9//sHGxibPCPhZ4enpSfHixUlOTs7Sa1sm96latSrFixfn9evXWum41q1bB0Dbtm1JTU1l4MCBWZY1evRoIiMjGTNmDDY2Njx8+JDevXvTtWtXVq5cyYwZM6hRowbTp0/n1q1buLq6smzZMouJ+CJWVlY4ODjI4fNlZGRkZGSyiemJ99KoLwhCgPiHQqFYAKzXs322EQQhRqFQLAWuAV8CSUB3QRAeZbdslUqVqQAZHh6OUqmkbt26qFQq6QVPc+FWV461rML8Zif3oTEoFIo8afmYmpqKIAhSnur0L745dX0sTUpKipSDKzMyy2UKZNhHzFNoZ2enc5FAU7x///33Wb16NTExMdLvjRs3JjY2lhs3brBnzx7J6tdY8V5k5syZAGzcuBE/Pz9CQkKk/LhJSUlaIQx1naep6LumWaEvtOKzZ89wc3OT/s7ri1tvCnPmzAHSLMlFsaFAgQK0adOGTz75BG9v7wz3bdKkSWzfvp1ChQrx+++/Y29vj52dnZTjePv27UDGMLIfffQRY8eO5ezZs4SEhBAaGoqHhweurq707t2bd999l44dO+qtb2bt2RBh3sbGJstt3jY6duxIq1atqFChgt7tHBwcKFKkCJcuXSIyMtKoMcJc/Y/YDx86dEiKavPLL79w+/ZtIC1MYUBAgOTlKoaCNbU/zIn+R3z2rl69yq+//krBggX59ttvpcXRrLzNc5LM+u6HDx8Cac+WoeNpegy9H66urtSoUYPz588zfPhw3n333UyF/KyMebJTH1HEnzhxIq9eva6us7MAACAASURBVAKyL94bM55qhlzOqm1mVq7mXKZ06dLGVdQERBG/Xbt2/PDDDwC0a9dOms9bcp5iCF999RWLFi0iMjKS4OBggoKCcHFx4eHDh1qhUSEtXHpkZKS02DtixAit+aC9vT0jRoygTJky7N27VysUtSHivantUtd+hsxb9ZWbn9BsR+L737Nnz7h27Ro9e/ZEpVIxffp0unQxr737P//8w40bNzJ8pw9991nfPRN/U6vVmS7IZ9Y/P378GFtbW739c1aI5Yr9jlqtztXnVt/1S/8OkROknz97enpqiT66xnDNa5i+PxS950G7PYvou+aZ3a+nT59KeeN17ZtZ+3n+/DmCIPDixQtKlSpldiHImPFMFPHr16+v9X4hXh9DzlEma/Q5BMTHx+Pk5GS0U0qnTp3YtGkTDx48YMWKFfTu3VsKM65Wq0lKStLafuzYsQB07drVyNr/hyHnoQsx2oMudKVKGjhwIOPHj2fixIkMGDDA6HLzClk5heg7D9FA4/Xr10Ba3/bs2TNsbGywsrLSuW92jmkq48aNY9CgQaxatYr27dvz+PFj9u7dS5MmTejWrRt79+5lzZo1BAcHa7WX9O1HFMpHjhyJn58fmzdv5n//+x8PHz5k1apVeHh4SGkXLl++zK+//kqXLl1YtmwZYWFh/Pjjj1JZYkouGRkZGRkZmbxDdtVRO4VC0RyIAkoBOeLeLQhCCnBEoVAcS/tTMIs1e6FChWjTpk2G7zdt2kT16tVxdnYG/rOuzqselPlN9BbD+wN50sggL5HVIkN68X7//v0ZFjrEvHH79u0jMTERKysr+vXrZ5BHq67FiA0bNuDk5MTy5ctp27YtU6ZMkepoyCJWdhc5dC02mlqum5ubvPBiIvqumyHXVFO8t7KyIikpiYiICD744IMMbWnUqFGSeH/79m1sbW2Ji4vD2dmZ0qVLc/v2bTw9Pdm+fTt2dnbMmDFDa//79+8TERFBUlKS9Jw8f/6cWbNm4erqStWqVXnvvfeMvQQIgoBKpaJ48eJS3sQiRYrwzz//5NlxIyfR1w4EQWDlypX07dtXEkVLlizJkSNHpD6vadOmrFmzho0bN9KtW7ccr2t8fDxxcXG8fPkSa2trFixYQEREBAqFAkEQiI+P5+bNm9jY2ODs7CzNHczRH1qyX9IMwx4XFycJiXnN8z+zayj2+/oWQzUxVFQUSX/df/vtN9zc3NixYwfTpk3L9LnWNJwzN6IYM3z4cPbt24daraZVq1ZmKz+z66N5DdRqNQkJCTg6OpokphiSczk7bd3W1jbD/u7u7pw8eRJfX19++OEHnJycpHPLabFNk/79+xMXF8fAgQP57LPPOH78OFOmTOHOnTts3Lgx0+skGmqsXbsWe3t7xo8fr9WOo6OjOXnyJBcuXADSzm/t2rVS/nBj0WwPxmKMOJbf0WxH4rtYdHQ0vXr1QqVSsXTpUvr27Wv24xYvXjxD2gyx/zHF8z05OZkCBQrg7OycoU8Vx7+EhIRM+9vMnqV33nnH4L5WF2K5omhnZWWVq8+tSGZ9ZW69Q2jOn2/fvs2CBQv48ssv9a4LpDdWTv+d+H+xDEOveWb3y8nJSTLYN6Q+mt8lJSWRmJios91l53p7enrqHM8yK9fd3Z1bt25Rvnx56f1CvD6GnKOMaajVapKTk3F0dDRJSJ07dy5z586lXr16nDx5kmXLltGgQQN++uknSpYsqbXt1atXefToEXZ2dlJY+pxErVYTHx+vd45VpkwZnd+XLl2ae/fuMWfOnFw3wM0NgwGxj9A0mBcEARsbG5OeTbHtOTs7m92AqGvXrkybNo2oqChOnjzJ/fv3USgUTJs2jUKFCjF06FCmTZvG8OHDWbJkibSfk5OTzmvbtGlTmjZtyvLlywkODmbixIncvXuXqKgo+vbty9GjR7l//740P7h8+TJDhw7lxx9/NHmczi+GITIyMjIyMvmV7M5ABgKFgc/+/dd4991sIAiCylzivS5iYmL4+++/qV27ttnKFASBhIQEOZzgv8jh/Q1HXxjB9GHz165dq/WSoVarmTt3Lh988AFz584lOTmZnj178vLlS7OEo162bBkdOnTgxYsXDBkyJNvlGYO4QGyOHPViKEW1Os9FuXzj0Vx87NOnD2PGjKF27dqEhYUxYcIExowZQ3R0NJAm3oth83///XdcXV1xdHTE2dlZMgRydXXVCqc/atQoIG1BfcyYMcydO5ewsDBq167NmDFjmDlzJs2aNcPa2prnz5/z6aefUq9ePf7++2+jz0UMp9+zZ0969uwpi/dG8Pnnn/Pq1SuqV6+OlZUV0dHRVKxYEW9vb8aMGSNFRlizZk2u1E9sZ5rivZWVFePGjWPYsGGUK1eO/fv34+vry48//phl7sK8gKZ4/8knn1CgQAESEhKYPHlyroSJNxYXFxdcXFwMFhizO2a4urpSt25d1Gp1htyV2cWYMUipVNKiRQuziveQ9fURxRhTFzJzKy1ErVq1tMLpi8ajuYnmuHXs2DH8/PxITU2lTJkyesPpd+jQQQqnP2nSJARBIDo6moCAAOrWrUtoaCjFihVj3bp1PH361GTxHrL3vOi71zmZiiG3EMPmT58+3SLifVaYMpe1s7PTmktpkn6eZQiWSo2VF9qOOd8/soPm/DkgIAArKysiIiJYuHBhltEAc4rs9PvivpYw9DdlPHNzc9MKp3/lyhWteuY1w8c3ATHvfXaftePHj/PZZ58BaWm5KleuTLFixWjdujXXr18HkIyDxffGnCY5OVkylDIFMUJPesP1txWFQmFUyoX0iG3PUu9z4v2aOnUqa9asoUePHpQqVQqAkSNH4ujoyLZt20w6flBQECdPnsTGxoZ+/fqxbNkyrl27xsiRI3F1dWXRokUolUrCw8P5+uuvzXpeMjIyMjIyMubDKFdthULRG1grCEKyQqFoDRQHwgVByJ1V9Bzg7NmzAGYV8DU9zuVQynk3vL85uX79OjVq1ADSPHEnTpxI3bp1jSojLi6OsWPHcuLEiUx/f/bsGYIg4OXlxZ49e7S8/6ZOncqvv/5KUlISSqWSDh06sGrVKrNf99mzZwOwZcsWACm0r6Wxs7MjISGBjRs30qtXL6P337lzJ9WrV8fd3V1ajNPl5SFjGb777jst8b5SpUoAtG/fngYNGvD777+zceNGNm7ciIeHB7du3ZJy3otW3+IinCbiNv7+/mzYsIEzZ85w//59IC0UcePGjSlcuLC0faNGjWjUqBGHDh3i8OHDREVF8emnn+Lu7s62bdsoVqyYweekVCpZtWpVtq7L24qdnR3nz58nNTWV5cuXs3jxYi5dusSaNWsk4f7q1auMHTs2U2EgLi6OoKAg3nnnHbPXTWxnv/zyiyTeiyGvXVxc6N27N/fv3+fq1avMnj1b6mfzqhB+4MCBDDnUmzVrJoVnnzhxIiNHjszlWurHWAPAlJQUNm/enK3cj7t378bNzY0LFy4QEBCQLQOdx48fs3jxYsaOHUtKSkquj0EqlYqtW7fSp08fs5YbFhYGgI+PT655Y2uG009NTc11ET/9uCWOV8ePH9cKp58ehULBhAkTAFi+fDl79+6VUkkULVqUH3/8Mduh2sX7VatWLQCDF7/j4uL4+eefM40eIAgC9vb2fP3119ja2mYZiSG/IobiFcV7c4fNNxRDRMnY2Fi2bdvGF198AaS1LV19T2bzrNxATL8GuRvZwc7OjjVr1uTa/YW0UN/p588VK1YkODiYO3fusGTJEoOFyJcvXzJu3DggzUBCvLamGLJqIghCttIBifvmpTzKmuH0xeddTrlmXtRqNUuWLKFr165Sv5Nd4wgrKyv27NlDSkoKQUFBrFy5kidPnnDs2DF8fX2xtrYmNTUVOzs7s3qvb968mUOHDlGwYEEgLby7uA6oVqvx8fEhICAtM6mdnR22trYmr9NUrlw5T3nhZ5e7d+9y7tw52rVrZ9L+CoXC6PeEP/74A5VKRf369aU2Z6n1yipVqkj3CyAhIYGRI0dKbaRo0aLcvXuXwMBAfvnlF6PLr1WrFidOnKBevXr069cPW1tbihYtyty5cylatCjr16+nS5cuhIeH880333Dx4kVzn6KMjIyMjIxMNjE21vrXgiCsUCgU3wOfAKeAdgqFoiDQThAE/Qn38iG3bt0C4P333zdbmeIEUvY4f3tITU2VQmk/ffqUwMBAnUK8LrZu3cqOHTuy3G7Pnj1aCxzR0dEsXLgQgBo1arBu3TocHR0t8hKiUCiYM2cOBw8eJC4uju3btzN37lyzHyez4967d49mzZoRHR2dIRReVnz88cc8evQIwOIvaTIZ+e6775g2bRqQlqNXFO9FChcuTJcuXZgxYwafffYZt27dwsHBQUu814co4vv4+BAZGQmkCZX169fXuRDdqFEjFi9ezPz585k3bx5RUVHUrVuXkydPUrx48WyesYyhWFtb8+WXX/Lll18SGRnJ+vXrWbt2LdeuXQPgf//7n859d+/ebbH7tX37dm7fvq0l3mtSqlQphg0bxpUrVxgzZgwXL140Ksd4TjJixAgAnJ2dpdDcSqWSb775hsmTJ/Pq1SuuXbuW4bnMC5QtW9ak/caOHcuOHTsoUaIELVq0MKkMV1dX6tWrx4kTJ5g4cSITJkyQRHyVSsWePXsAshyPHj58iK+vLyqVisePH/PTTz8BuTsG3bx5k1atWvHgwQOjx1N9lCpVyiKeuMYiividO3emdOnSuV2dDBw7doz69etz7Ngxg0T8y5cv8+eff2JnZ8esWbNo3bq1WUJ4i/fLWFHq559/ZvHixVmW/fnnnwPZF2TyIlWrVuWff/4hODjYYuKu+Gzu2bOHmjVrZtr/iF58uoiJicHHx4fk5GQqV64sGWvkRdRqNdu2bQPSjJaTk5NzPWzvgwcPaNWqFTdv3uTDDz/MlTqIIb69vLykcdrFxYVOnTqxYcMGbt++bVA5lSpV4syZMzoNT401UlOr1ZJB97NnzwgICGD27NkGjymmju85SeHChTl27BiffPKJlG9bxjyo1Wpq1qxJZGQk9+/fJzg42KxrZ7a2tsyYMYMZM2bw+PFjgoODWb9+vbReY07v+4MHD9K/f3+926xevVoS8PUZStnY2JCUlMTSpUszNUJVqVT0799feufYsmVLvhfwk5KSaNiwodH7NWrUiPnz55vk3NGtWzfi4uL48ccf6dmzJw4ODhY1IFq/fj0fffQRgiDojOxl7NqhJqKI7+Pjw+vXryXxHtAS8S9dusT27dtp27atyceSkZGRkZGRMT/GCvgp//77GVBXEAQVgEKhaA78AphmFpmHERc+Hj58SPXq1c1S5tvgcS6jTdGiRaWXMnt7e3r27Gl0GV988QVFixaVwrulZ/Hixbx+/ZqHDx9qLY4sWLAApVKJSqXi/PnznDx5kkaNGpl2IgYQGhpKXFwckPbyPX78eCZNmmSx44lkZ+FMM091XvTyeJNJL957eXnp3Pabb74hJiYGa2trKXSloRQqVIizZ8/Sq1cvzp8/T2hoKEeOHKF69ep6vWcHDx7M4MGD6dixI2fOnMHX11cW8XMJa2trevToQY8ePYiLi6Ny5coArFq1SnpeBUHg+++/5969e6SmpuLr60toaCgeHh5mrYvomdyzZ89MhTWRypUr07VrVy5evJhn03IcOHCA0qVLExcXx/z58xk8eDCxsbFMnToVgHLlyuVJ8R7g999/N2k/cRHs+vXrJgv44vFdXFykSAWiR7QYvaBAgQIsX75c5/4PHz6kXr16UnSGXbt2MW/evFwfgywlRJUoUcIi5ZrChx9+qOVVKuayVqvVeWL8//333ylXrhyRkZFZivjLly+nWrVqpKSkZKs9p8fU+yV6Rg8dOlQShNVqNcOHD+fZs2d4eHjQq1evN9pbVTSctSTLly9ny5YtJvc/MTEx1K9fXwpJHR8fb5F6auaJNxUxTVh0dDQKhQJBEGjcuLHBhpyWQnzfskS0H0PZuHEjLVu25OrVq+zZs4fmzZtz9epVSQRq0KCBQeVs3ryZI0eOSH+/fPlS8hYGqFixosF1Eu/Xw4cPcXZ2xs7OjpMnT1K3bl18fX1Zv359lsZTpo7vOU2hQoW4cOFCblfjjUKtVvPxxx9LRteWjtRia2vLpEmTmDRpEikpKcTFxVGkSBGzlB0fH0/Xrl2BNPG9QoUKTJgwgdevX0vjX4cOHbSiwelj8+bNtGzZknXr1gFIIr5KpWLq1KmEhoZKqUVq1arF5s2bzXIeucl7772HWq0mMTEROzs7g+doderU4Z9/TPMvE8PVi2HlTVm7M4ZKlSoRERHBn3/+KX2XmJioZbRSs2bNbB2jVq1aKJVKBEGQxHuRokWLMmHCBMaPH0+fPn1kAV9GRkZGRiaPYewKVZRCoVgJvANIswlBEPYAed9M2gRE629DrddlZDKjaNGiDBkyhJEjRzJkyBC9go8+WrRowciRI6VPYGAgQ4YMITAwkJkzZyIIAoGBgdL20dHRbNy4ka5duzJw4EAgTSQ9dOiQWc4rPSqVSnqR/O677wBYuXJlnvU8lcldNMX7Xbt26RXv586dy5kzZ7C2tjZZQHdxcSEkJITLly9To0YNBEHg/PnzjB49mrVr1+oNcb5582Zq164ticJ37tzJs4Ls24CzszPt27cH4NKlS9SvX5/69eujVquJiIhgypQp+Pj4kJqaSoMGDbh7967Zjr19+3ZiYmJwcHCgSpUqRu2bF3M+lyxZkqCgIKysrIiMjGTu3LkEBwejVqspV64cgwYNyu0q5lmUSiUTJkygQIECkoimKZ5peuWnRxTvU1NTqV27NjVq1JBETpmcRzN9Tl5h8ODBlC1bFrVaTXBwMLGxsZluV7hwYWlMGzZsWA7XUje1atWifv36+Pn5MWPGDJ49e4aXlxe///57njCSMDc53b9np/8RxfsXL14YLByZSnbzxIti8LVr1/Dy8iIyMpKAgABevHiBv7+/FL78baVFixb07t0bSDOiXrFiRYa0OIbyySefSJ969epp/S0aK4jtXNccOP39unz5MufOnePHH3+kaNGinDx5kjJlytCwYUMpZLSMjIgo3oeHh0siek5G7rG1tTWbeA9paThVKhX+/v789NNPXLt2jbNnz1K/fn0aNmwoHcvQ6CctWrRg4sSJAKxbt47FixcTHBzMp59+yuHDhxEEAR8fH+7cucPBgwdNXnPKa4h56E0dR4zF0dERa2trrK2t+frrr1m9erXFj1moUCEplV+jRo345JNPtP62tLGan58fTk5OxMTEsHPnToseSx8KhaK/QqH4U6FQ/PnkyZMcP36ZMmWk6FPpP+Z2CLAkHh4eOs8jq09unKe+616mTBmT9pORkZF5kzB29eRz4HegNbBVoVAMUygUjRUKxWj+885/oyhXrhwAERERJpchCAIJCQl5asHenKjVauLj42UxSw9WVlYWCRGquSjWtm1baWEkOjoaSPO+Bxg0aBDffvutloi/e/durbKyex/VajWdOnXi9evXlC9fnoiICFq3bg2kvWzqW+yReftIL97r8xpcsGABN2/ezJZ4r0mhQoUICQlhzJgxeHh4aAn5V69e1bmfpojfoEEDKcWKpZH72Mz54YcfUCqVLFq0CLVajSAIzJ07F3d3d9q3b8+WLVu0RHyxX8wuovd9586djdpPrVaTlJSULSHDUri4uEgi/v3793NVvM9v7T29iCaKZ6NGjdI577t//76WeL9582Z+/fVXAHbs2EFqamq266VSqShbtixFihRh+/bt+e665jR2dnY4ODhYNEJWdHQ0rq6uNG3a1KB7kZqaSt++fQ0S8TXbjz5jNF2I7cPc7ypqtVryCPby8sqQ5smS5HSbz65QbQq6+h9RvM/s/J89eyaJ9wEBAbRq1Ur6LStx1hTs7Oywt7dHEASjy1Wr1Xh7e0tisNh+ZsyYoSXiP3/+3Gz1zY94eXlJIr44jzVWvDcUfcZOuu4XQNu2bSUhv1ixYlJ0pEaNGln0Oc2tsU8ecw1HvFapqal4e3sTHh5O1apVcySSiSUZOHAgDx48oGDBguzYsYOAgAC6d+/O7NmzpQgTa9asATDK49nPz08S8Tds2CAJ915eXuzatYsDBw68McK9iJ2dHQUKFMjRlDuOjo7s379fEvGXLVuWY8c2BnP2NWLqCDHFUW4gCMISQRBqCoJQM32kgJzg7t27CIKQ6efOnTs5Xh9TuXPnjs7zyOqTG+ep77rrc8TQt5+MjIzMm4RRIfQFQYgDfgVQKBQdgS9JE/VjAONWsvMgKSkpmXoKFy1alCtXrphcbmJiIi9fvgTezLzaCQkJxMbGolardZ6ftXXmTU3X928adnZ2JuVZzSqHqVqtJiEhAUdHR6ysrJg7dy7du3cnKCiIunXrsn79emrXri2FC/b09KRBgwaEhobSsmVLVqxYIYXTF4WlpKQkChcujJ2dXaaWi7rqFBISwtmzZwG4deuWlrgZExNDxYoVefnypc6cbqaQnRyv5sgPayxZRSLIjTrlJHPmzAHS8rWGhoYCacYkN27cYM6cOXTs2DHDPh07diQiIgJra2vu3LljdD5mfdd08uTJTJ48mdjYWJo1a8apU6dYsWKFZFAg1leTTp068eTJEyIiIvDy8pIWIDWfladPn+Lk5GT0M6SrfYjPZrly5cz6/GSXnG7PmZXXrVs3Vq9ezapVq4iKiuLSpUt06tSJkJAQIE1kf/r0KREREZQpU4YTJ07w7rvvGlzX9Oe4b98+YmJicHFxoXz58kbVX1xYcXBwyHM5n0Wv7/79+zN+/HiUSiVLlizJlbokJCQQERGBg4ODzvDa5mxbSUlJ2bof4rUbPny4JKAsW7aM5ORknj9/nqENaXrelytXjk6dOkkhTj08PLh79y7t27fn/PnzJtVnzpw5qFQqyRMXoF27djg4ONClSxe+/fbbHLmuliwzO+RGfebMmUNsbKwU2eLAgQNUqVKFAQMGYG1trTPqQmBgIAkJCXz77bd8/PHHHD9+nClTpnDnzh02btyYITSuZvs5d+6czvpk1neL44yDgwMVKlTI3gn/i6Z4/+GHH3Lu3LlMxfuoqCiioqK0Qq1rjp2m3LOoqCitc0rf5i3RDjw9PbXm5OZC31jbsWNH3N3dtfqfFStWoFQquXnzZoa+VNPzPiAggBkzZjBu3DipPE1x1lzzDdETSl+5mZ1jek/u9MYfM2bMANIELE9PT53h9E251/fu3cu0LWanTEsi9iFt27Zl9+7dvPvuu1JKBX3oOw9dv6nVam7fvs3z58+JiYnR+l7f/RL5+++/cXNzk0JbHz582KD+0FSymlM8e/YMV1dXnfdb13XQd+2ioqK4ffu2Sf1PfnpXzCr6hS6P4fT7iWtl7dq14+rVq1StWpUjR45IKR3MYdRoSj2zw969e1m/fj2Qlo4ifaST7t27Ex0dzR9//AFAr169sLW1BdKuj75rK0bFqFGjBosWLSImJoa9e/fmmmivUqmk+qrVaulZEp9/U65vdu6JOe+nt7c3+/fvp2nTpvTr14+EhAS6d++udY7x8fF6x0t99TH1N802kpiYKBnviSH3Tb0Gfn5+uLi4EBMTw9q1azMYgeVmyhoZGRkZGZm3GZNXFwRBiBMEYaYgCF0FQRgkCMIdM9YrT+Hu7p6tEG8ODg4ULFhQK4fRm4Sjo+MbfX55GSsrK5ycnKQXpG7dulG8eHFCQ0PZu3cvkDH3YfPmzWncuDGgHU5f9D4DjPYgUqlUdOnSJcvtHj9+bHCZMm8m6cV7fWHzxbzz1tbWnDhxwmjx3lBcXFw4efIko0ePBqBly5YZIlRoMmjQICpUqKAzPHtqaqpZvfBywjM0v7JgwQKsra2ZPn06Bw4cwNXVNUOOwEGDBlG+fHlSU1OpV6+eyfkQ4T/PhNmzZxu9r5WVFfb29tjb2+fZsG4lS5Zk+fLluSbeQ9qcIqeMHFQqldmeVaVSyapVq1i1ahU2NjY4OTlluM+a4n2ZMmUyRDgQoztcvHjRJC9qQEu8L1CgAD179sTBwYHExERWrFhBrVq12L9/v2knKWMSmuK9u7s7VlZW3Llzh8WLF+vdT3OOd+zYMfz8/KS2k5knvth+Lly4YHT7EccZcz53w4cPlzzvdYn3mpjbg90S56SP9HPynESz/xHD5qc/f03xvm3btpIAroml5hvGlmuoGDxjxgzatm1r9nD6uRFNwRy0aNGCRYsWGSTem4o4l9Ec3wy5X+Hh4fTp04dffvmFiIgImjZtyqhRowzuD03FkDmFJe53Tvc/+RkbG5sM4r1m+8lvDh/x8fFakU100bVrV27dukWxYsUk8d4YWrRowe7duzlx4kSe8bjP6VD3OYG3tzfbt2+XPPFXrFiRp87R3NEJ5s+fD6SlcZKRkZGRkZHJG+Sv2XAu4e7uzpUrV1CpVDpzCepDoVC80cKLlZXVG31++Y1Zs2bRvXt3zp8/j6+vb6a5Ldu0aUP58uX55Zdf6N27N+3bt6dEiRJAmqeCnZ0dSqUShUJBp06dsowe0KBBA1JSss6iUbt2bXIjl1VeQdO77MGDBxYTpPMqpor35gibbwhiSP/p06fTsmVLvXUcNmwYq1at4syZMzRo0ID58+dLBjBxcXHY29tjY2ODQqGgRo0aJi2sREdHU7JkSRQKBfb29nk2Z7AgCERGRlK2bNkcF6adnJzo2rUrq1evJiEhgU6dOmU6Tg8fPpyVK1cSFhaGr6+vSW1q3759xMbG4uLiQuPGjY3Oh2hlZZVnhfu8hCgOiDx69Ag3NzeLLOAqlcocW2B/8OABH330kRQ2v2XLlhm2KVCggORF/fnnn/O///3PqGOkF+/FMNrVqlUjPDycjRs3EhsbS//+/XFxcWHWrFk0btxYGpdkzE90dLQk3otpKURBPyIiggULFhjscXrs2DH8g6f8vwAAIABJREFU/f05fvw4wcHBBAUFaY0tmu2nW7durFu3LstxQ/P50hWZwVjEsJVizntDw+bb2dnx6NEjs3p+i+ckjqf5HWP6Q83zj4mJoVatWqSkpODt7U2jRo2kEM5///13hn3MPd8wply1Wk39+vW5e/cubm5ujBo1iuPHj0u/29nZ4ePjI5U1fvx47Ozs2LBhA35+fhw5ciTbOazF/lD8901pP5Ygq/sVHR3NoUOHOHToEM7OzjRs2JBPPvlEmjMHBQWZ1B8aSvo5xV9//cXDhw+lv8XocK9fv8bBwQFfX1+zzDdM7X803xUfP35ssfmPuRGNZ4z10FWr1VSvXp379+9TpEgRxo0bJ3nenzlzxuz1zAk++OADg4zoxD64du3aere7d+8eRYsW1fJqz0s8fPiQ4OBgACpVqkSzZs3eiDllfHw8hw8fBtKiFE2YMIFx48YxcuRIQkNDqVSpEgCvX7/GxsZG2q9Ro0bUqVMH+C+8vbkj82iiVqt58eJFphHmTKFFixa4uLjw4sULdu/erTfNoYyMjIyMjEzOkPffBvIApUqVksLrlylTJrerIyOjl27dujFgwABevnxJ5cqVdW737bffcuPGDQ4dOsTWrVt1brdw4UJu376t95jHjh0zqG5Pnz4lLCwMHx8fg7Z/0xA9PB48eMDx48d57733pBe8twFRvA8ICNApjM+fP5958+aRkpKSo+K9yLRp04iKimLdunWsXLmSsWPH6lyMmjdvHp999hkxMTF89dVXOsssVqyYlF7CUE6fPs3ff/9No0aN8vyicWRkJAcOHMDLywt/f/8cP/7ChQtZvXo1CoUig/e9Jlu2bKFp06Zcu3aNbt26SYsyhvDixQu+/vprAKpWrUp0dLRB+82fP1/y1jeXOPa2sWvXLkqVKkXTpk3NVqavry87d+7kgw8+yLH78vnnn0thYPv166czEoS/vz//+9//2LJli9ECfp8+fTKI9yJVqlTBx8cHa2trRo4cSWxsLP369SM4ODhTYwIZ89CkSRPUajXOzs5SxAUXFxe+++47Jk+eTEREBNeuXZMWgrMiKxFfbD8hISEGhUG3xPO1ZcsWIM1Axpic9wqFgt9++83s9clP42lWmHq/AgMDJUPbc+fOZZpioVevXtSpU4f+/fvzxRdfZLuupooVK1eulCIbPXv2jF69emXYpnPnzsycOVP6e8aMGaSkpLBt2zYaNGjA5cuXTav0v2iKr29S+7EEhtwvSHOI2L17N7t27dKK2ufi4sLYsWMlEb9Xr16sWrXKInX966+/pCh0uihUqJDOdAymYGz7Ed8VwTL9s6XYs2cPkLYOYQxLlizh/v37QNo6QWbp1PKTo8i5c+e4f/8+1tbWWYb+L1y4MDExMRnClGty8uRJLl68yEcffUSFChXyZMTLR48eaUUmmzZtGl9++WUu1ij7FCpUiLi4ODp06JDp7/v27WPfvn2Z/jZ79mwuX76Mu7s7ycnJJCUlAVgsDd7+/fuJiopiwIABerdTqVSo1WqDxub58+fTo0cPxowZIwv4MjIyMjIyeQBZwDcAMaSVIR7GMjJ5gVGjRjFu3Di2bNnC2LFjM91G9IaAtBdj8eVYc2Lv4OAgiVb6KF26tEFpJmxtbfH29jb0NN44RGv0QoUKER8fr9fA4k3E09OT27dvs2nTJipWrKglOhw6dIjvvvtO6mfd3d3Ztm0bxYoVy9E6nj17VsorbGVlxcKFCxkwYIDWQl5MTAwhISHSs+Hr60vp0qWl+5uUlCQt/K5atYqEhASj6+Hj44Ojo2O+WCwuW7YsNWvWpEaNGrlyfEdHR5RKJWq1OssoOS9fvgTS8sQaihiaNykpifLly3P69Gn8/f2pXr06jRs3zjTKSWbtObNwxTJZ88knn1C0aFGzljlr1ixmzZqVo0YVixYtolWrVsTFxdG3b18cHBzo3LkzVapUkba5evWqJNqb4oUoGpY0b95c57PQtGlTmjZtyldffcXevXsJCgoCoEePHkYfTyZrZs+eTdOmTYmLi2PPnj00b94clUrFvHnzgDSveUPFe5Fjx47h6elJRESEloh/7do1qf0MGTLEINHD3M/X5s2bJfFJpVLRuXNnaUw1BEs87/lpPM0KU69PUFAQxYsXl6LAaM5TXrx4wc6dO4E0sfH06dMMGDAAX19fhg8fbvLi/V9//WXSfh06dCA6OprExEQEQcgQvWbTpk1s2bKFiRMnarVx0cj+xYsXHDx4MEuh1lDepPZjCcT7JYpU4nukeM/Onz/PlStXiIqK4sMPP6RKlSp0795dGqMEQeDo0aMIgoC1tTWrV6/G1taWpUuXmr2uoud9sWLFJFFc81m4evUqf/75J/7+/mYT8Y1tP5rRHyzRH1qKjz/+2KT9Pv/8cxwdHbl06VKmUaocHR0JDAzMZu1yjg8//FBKW5QVMTExODg4SOlvMqNOnTrY2dlRoUKFPOvVbm1tLb0L1a9f36C0inmdM2fOSPNj0Payf/LkCadPn5aiDQmCILVdpVJJly5dcHd3B9KeY1tbW4saofj7+2tFFdFFz549EQSB999/P8ttxXFf7NdlZGRkZGRkchdZwDcRtVqtNVmTkclLBAUFMXHiRJ4/f87Dhw8zhNQKDw9n4cKFAAwYMIDvvvtO+u3Zs2e4ubkZdbwLFy5QpEgR6UVGFzt37jQpDcWbgqZHT9WqVXO5NjnPwIEDWbBggZbocPbsWX777TfJS8Hd3Z0VK1bw3nvv5Xj9zp49S7169Xj9+jVLly4lPDycxYsXSyK+IAgcPnyYsLAwIC134cCBAzMsymk+Q9u2bTOpLlZWVvmmjSgUCmrVqpXb1ciS69evExUVha2trcF5/TTz6gYEBDBjxgyio6P55ZdfWLduHefOncPHx4eGDRtSuHBhDh06lGfa85uCp6en2cvMjWgI5cqV48qVK+zfv1/ygF+5cqUk5FtZWbFixQogLS3N5MmTLVqfkiVL4uDgwOvXrwkKCsLGxoZRo0ZZ9JhvI02aNKF3796sWLGC0NBQBEEgLCxMK1KCKQwaNEhrPO3UqRMbNmwA0tqPpneyPsz5fCUmJjJy5EggLUJNYGAgZ86coX379pw+fdogry9LPO/5aTzNDM2Q2qZen7Jly2r1Kenn+qGhoaSkpLB9+3bmz5/PiRMnOHLkiJSLevTo0UyZMsWoY5razzo7OzNu3Didv7u5uTF37lyCgoKYM2cOALGxsSxbtoz333+fv/76ixEjRhAeHm7S8dOT39uPpdF3v8S2m5CQQO/evTl//jyXL19m9OjRVK9enYCAAHbt2sXx48fx9/enUaNGzJs3j2XLlgFYRMSHNEO2H374Acj4LIwaNYoNGzZIIr4oxJmKse1H813REv2hpXj33XdJTk422MNXxN7enp49e1qwZjmLUqkkLCxMyzhTH+fOndO7NmJlZZXnnR8qV64spT14U7C3t2fWrFnS3/Hx8To96PX9ZmVlZTHPexFnZ2ecnZ31bqNSqaQ5opgyUEZGRkZGRib/kPeSKOUTUlNTDbKslcmImAtKrVbndlXeaBo1agQgCQIiV69e1Snem4qrq6tBYkOTJk1MKt+QNhMcHMz7779vcGhrmdxh0KBBlCtXDrVazaRJk9i3bx+pqam4urry22+/ceLEiVwRO4ODg6lTp44k3vft2xcPDw++/PJLXr58yQ8//EBwcDBhYWHUrl2biRMnMnnyZNkjKx/Rt29fAL755huDtn/+/HkG8R7ShM/JkyczbNgwateuTVhYGFOmTGHEiBFGt+fXr19Tq1YtunXrZlC+TJn8T9OmTQkPD6dr166Sl9bKlSu1xHt94VTNiZWVFSEhIVhbWzN69Gjmz5//Vs3NunbtanS4X1Pw8vKid+/eABw5ckRnmgNj0RxPNcX7nGo/6WnVqhVqtRpvb29iYmIIDQ3F2tqas2fPWiy9ytvwTiGG1E5OTrbYMfz8/EhJSeHx48csXryY2NhY9u7dS4ECBVCr1UydOtUs7wvm4Ouvv8bBwYHt27dLEY5+/fVX4uLimDNnDi4uLsTGxnLw4EGL1eFtaHfmQGy7jo6OhISEcOnSJdzd3REEgfPnzzNq1ChJvG/VqhUFChTg5s2buLq6smzZMmrUqEFsbGyO1nnGjBkEBARIBpzPnz/P0ePnV5KTk3n16pVF+6n8QuXKlSUDEX1MmTKFDz74wCJ1UKlU+Pr6Mn369GyX9W8/J68bZ5Po6GgqV67MgQMHcvzYPXv2RK1W4+vra5JBgVqtJjExUR7zZGRkZGRkcgnZA1+D5ORkbt26leH7R48eAWkTF5VKhSAIKJVKbG1tpQV3a+u3+1LqEx7S/5aQkMDLly9Rq9U4Ojq+9dcuKipK7++mWv5/9NFH/Pbbbzx//pw7d+5QrFgx/vrrL9asWQOYT7wX+e677xgzZozZyhOJiooiKSmJxMREHBwctDx6Vq9ezR9//MGhQ4ckj9fSpUtL4WRNCUFsSH30Yer9evbsmUn75UcGDRrEwoULuXXrFq6urvTu3Zt3331Xr9Cp7/roixqh77fM2s8777zDs2fPJK+u9KEr7e3tKVu2LE5OTjrr9OTJE+n/YlQKzW2z681jLFm12TeJGzduZPq9IAg6ve8zu4+anvdt27Zl9OjRGbZzcHCgbNmyXLp0iVevXgEY3J53795NfHw833//PQkJCfz555+sX7+e6tWr88UXX9C6dWud+1qi/ViqX8tp9J1HVtFlTL0Gph6zUqVKeHt7c+HCBbZu3UpiYqKW+Jqde/LPP/9k+iwUL15casdieOqSJUuyatUqevbsyZAhQ4iNjc3UGy6/tIGsEPv2+fPnExkZCcCpU6ekfsES8wb4T8Tftm0btra2BAYGZine62sD4pxIHE+fPXtG9erVc028//jjj4mIiADg1q1bTJw4kXnz5lG5cmUuXbrEiRMnqFOnTqbh9E2J/AT654emlpkVKSkpeu+LJZ4TzZDa6TF1bpSewYMHs2/fPpYuXUrDhg0zjTA3bdo0yXMvq4hblsTKyoqvvvpK8sL39/dn4cKFVK1alTt37tC5c2eWLFnC0KFDmTVrVpZ5gU3h9u3bmbY7kTehv8zOeCqSvu0WLlxYyo29dOlS7t69C6TNvRUKBTdu3GDlypXUr1+f7du3c+HCBQoVKoSHhwdDhw7NND+6iL5rLj4nYhqlpKQk6TvNObvI6NGjSU5OZvv27Xh6euoMp2/qfTbHtTUWlUrFixcvTNrXkFQC6e91fHy8zm31eSxnh6zOzxwpEQwlKChIbyQRwCJGUUePHkWlUtG+fXtiY2M5deoUly9fpl+/foDuVAf6rt2/Tks5GkIxL93L7HL06FGePHlCly5dUKlUNG3alClTplC3bl3A9PQTukj/7Gl6369bt05vtAR7e3ut/QVBID4+nuTkZJKSkihYsKDRz66p/Y6MjIyMjIzMf7zdymk67OzsKF++fIbvRY9eKysrlEolCoUCpVJpkPD8tojTmouQgiBIixqZLQA5ODho/StjGXr27MmLFy+YNWsWO3bs4Pvvv5dyeQ0YMIBffvkl0/2ys+h08eJFqlevjiAIhISE0K5dO9RqNatXr87Wy0lmi5c//fQTc+fOlQxEXF1dcXR05P79+1J49ryGMddWM2Tqm4KmMGIpkUQTQRB4/fp1pulO0rcfNzc3fHx82L9/P8uXL6dPnz7069ePChUqkJycTEBAAI8fP+bIkSOsXbuWgwcPolQqdQqt4uKbeFxDFuPy24JvXqxvxYoVM/1ejBDy/fffZ1nv9OL9jz/+mGGbHTt2sGjRIp48eYJCoaBBgwb8+uuvlC5d2qB6xsfHM3HiRBISEihQoABFihTh7t27nD9/ngsXLnDo0CGmTZuGo6PjW5mqxxJty83NTW+52TF00eyvNe+XvmOOHTtW+r+Yt9xc9SlevHimz4KDg4PUF4lzNDc3N/z8/Fi9ejW9evWSwum/CTlMdSGK92KY38jISObPn29wag1j0Rzvli9fbpYye/bsKbUtY8dTcz9fiYmJkngPSB6zsbGxXLx4EUh7Hzpz5gwdO3bMIOJn9WzqQ5e4nZ0y8xqGjivp0XcN0n/v7u6Os7Mz586dy9aYY+o1N3a/WbNmsWTJEkJCQnjx4gWJiYk0bNiQxMRE3nvvPRwcHEhISCAsLMwkAT+r+ty7dw/I3KjibSA7z5c49o0dO1ZKXbVlyxaaNGlCxYoVCQsLIyQkhAoVKuDk5MTFixe5e/cuI0aMYO3ataxatQoXFxepPHH81Re6XRz3ChYsCKSJVJrz8szm6OLcb/v27VI4fUNFw6yujb7xPT/1XaaKqE5OTvlKgDWVp0+fUqpUKZKSkhg8eDCCILBgwQIcHBwk45XMyM610RTvCxQowKtXr1i3bh2AJOIby7/9nE5vHaVS+UbcT33nYOpvgJZ47+bmxrNnzxgzZgwTJ07Ez8/P7HVNz4ABA1Cr1fj4+ODi4kKZMmX0bq8p0CsUCpycnHB0dCQ5ORlHR0eT6isjIyMjIyOTPeRQSDJmJzExkZcvX+pMMaBQKN5aUSKnGTp0KLa2tty7d08K32puz3tNXF1dpfynbdq0Qa1WU6dOnWxbFov5ABUKBT/99BPly5dn1qxZqFQqXF1dCQwMZOzYsQwbNoyyZcuiVqsJDg7O1+H0cyJk6ptOcnIyKSkpWtcwfftxc3MjMDCQMWPG0KhRIzp16sStW7dYunQp5cuX5/nz5/Tp04f169dz+PBh7ty5Q4MGDXjy5AlDhgzB29ubHTt25OJZymTFgwcPeP78OXZ2dln2felz3o8fP17r9x07duDt7c2QIUN48uQJDRo04M6dOxw+fNhgkUWlUjFx4kStMNpDhw4lODgYDw8PBEFgx44dVKpUicGDB8uh9fMBb0J/XalSJa1w+uvXr8/tKlkETfE+KCiIoKAgrKysJBFfxnh8fHyy3EYMpy+K+OZCc34okz0+/fRTkpOTDbqfuR1O38rKipEjR5KamsqRI0fw8vKiVKlS0u+dO3cGYOPGjRY5vtzuzEOtWrU4ceIENjY29OvXjw0bNrBp0ybKly9Pnz596N69O9OnT6dGjRooFArOnz9PlSpVaNOmjWQoJI6/YjoFczJ+/HitcPqyJ6mMMSiVSg4fPgykzT0WLFgAwLZt26TIb+ZEU7x3cXFhx44dTJkyBUjzvF66dKlJ5f5rGCPHTjeB6OhoSbyvWrUqW7ZsoWvXrgBMmDCB48ePW/T4KpWKrVu3ArBp0yaTy7GyssLBwUGnkZSMjIyMjIyMZZFHYANIn+tHXkzXj4ODAwULFpQ97E1g3759BAYGkpSUZLbwlEOHDpX+b0nxXmTw4MGUKFECSHtxNacI0KFDB2bNmkVKSgolSpRgyJAhjB07lnfffVfr+O7u7qjVaqpUqWK2Y2dGYGCgRY7h6elJxYoVqVatmk6P4reZKlWqULp0aelTvXp1rb/FT8WKFfnoo4+oWLGi9J3YfkqXLs2QIUMYM2aMVvvx8fGhU6dO3L59m5iYGPr06cOyZcuk30uXLs3hw4c5deoUvr6+kpA/bNiw3LgURtOmTZsM14k3YC6gUCgQBCFDrlSVSiVFG5kwYUKW5dSpUydDznuRvn37SsK9r68vp06dMkq4F/Hz8+PVq1fY29tr5cB2cHBg6NChzJ49mxo1aiAIArt27aJGjRpGlW8KgiBI487IkSPZt2+fxY9pKcRz2bt3r2RQZgx3797F09PTqIUuOzs7HBwcWLp0qdlF4EePHvHNN99Insz6EA0IsloYVqlUbNq0iVevXmn1oy1atJD2HT16tJRC6k1h0qRJREZGolAopFQ7Li4uBAUFoVAoiIyMZNKkSbldzUzZt28fI0eO1HpW8wLHjx/nypUrWW63ZMkSTp48CcCZM2eYN2+eWeshXh9LEx4erjV+tmjRIs/ck+bNm+Pt7W2yyCimwXr48GGW206bNk1nypqcYty4cVI6u8aNG2v9VqVKFRwcHEhMTCQsLMxidTCmf87PBAYGUrlyZYu0cVHEt7a25uzZs7i6utKnTx9sbGyAtHfJbt268dNPP9GmTRtJyK9atSoXL16Uxl9DPEPFyIirVq3K8h1C/E0MPf3ixQvat29v1nPPyfZz8eJFChcubNAns1Qn2WHnzp0MGTLErGVmxccff8x7773H8+fPc/S46alUqZJWxKWgoCCqVatmkegdfn5+kuf91q1bUSqV1K1bV0vEN6TfHjZsWIY2kZsMHjw4S6/xvEqVKlVQqVS89957UlSPfv36ERAQAKRFhrMkEydOlNayDXVsiY2NlcZUcxupbd68OU+1LRkZGRkZmfxCvl+0zwkiIyOxsbGhdOnSqFQqwsPD9ea2fduRPexNp169ejRo0MCsnnxDhw5l586dLFu2LEc8ZsTw+du3b2fXrl1Z5ng1hs8//1z6/4MHDwgJCckQ6SE2NlZ6Qaldu7bZjp0ZmzZtyiAYmoOZM2eavcw3iSZNmhi0XcWKFfnggw+oUqUKVapUoXz58iiVSkqVKsXmzZspVqxYpvuJ99TDw0NLvNekZMmSbNiwgVOnTgG6c6/nNWbPnp3ZM5mjeQ0tQcOGDQEIDg6W7p/o6Z6YmIiTk1OW/d9PP/0keXClzwEeFRXFwYMHcXFx4ejRo6xfv56SJUuaVNeWLVsCaTlY//rrL63fxDyFFy5ckL6rX7++SccxBk0P8iZNmlCvXj2LH9NSiOfi4+NjcF+hyebNm3n9+nWmqRN0IXpjNmzYkAYNGhh9TH24ubnh6+ubpTGXWq3m7NmzgP5FOpVKhbe3N7GxsTg4OFC5cmWqVKmi1VeWK1cOf39/i+ThzU3EBUlBEPjjjz+k7//44w9JmDKlzeQE9erVo0mTJnku2sOcOXMM2q5OnTqsXLlS+tvf39+s9RCvT06iVCpp2bJlnrknV69e5cmTJyZ7CteoUYPixYsbtK2NjU2uCypWVlZSGGFN73sR8bvLly9brA6G9s/5nU2bNhEXF2exNl6rVi327t0LpOWAP3jwYIZtHjx4QEJCAoIgYGdnhyAItGvXjkuXLmFvb2+QZ2jdunX55ptvpLEu/diX/pN+XGzXrp1ZjRjyYvspV64cNWvWNGuZH3/8Mc2bNzdrmfpQq9WEh4fz+PFjatasmesifmBgILt27WLXrl2MGDHCYp7M4vvFq1evtAyXRCMUpVJpkNHxwIEDM+1Tc4u1a9daZL0lJxAj2ty6dYsnT54AafNw0VDa1dXVosfv1KmT5FRVr149PvzwQyIjIzPdNj4+nkGDBlGmTBnOnj2LlZUV33zzjVnrU6dOHbPN1cqUKYNCodD58fDw0Lmvh4eHSfvJyMjIyMjkFm9HgvZscuXKFd5//33s7e05d+4ccXFxObKgLvP24ezsTLNmzcyS+1wzJ++HH35ophpmjXhMLy8v7O3tzVp2ixYtaNasGcOGDWPHjh1ERUURFBSEh4cH/fr1IyUlheDgYNRqNWXLlrWoF6klPa3atWtHu3btpL9NzX/6pjJr1ixmzZoFpImgjx8/5p133pHa28iRI9m4cSOPHz9m+/bteHp6SvueO3eOHj160LlzZzp27JhppJBDhw4BsHv37izrYqqIm1t4enpqvbgL/2fvzuObqPb/8b9OkjZNC4WWXSlFUFEKqCxeVARkEy3uINddq+BXxeUiXBbxww9BroqKoOJFLxVFWdSroCIKCshFcQFFEK6grBVlK0tpm6RN5vz+KDM3LW2aJpnMTPJ6Ph48aJMm856ZM2fOzHvOOVIiOzvb8sPKfPrpp2jTpg127dqFKVOmYPz48Zg+fbo2TH3VofCrM3PmTAAVc6S+8MILlR7eGDVqFICKXvwZGRnwer1h12/jxo3DihUrsGrVKuTn5yMvLw/nnHOOlrhX65YuXbpg7ty5leZ61UvgPNL9+vXTfXl6inRd1O2vJgrq8jBi+/bt67y82mLx+XwYMmRIrXE88cQT8Hg8aNKkCdavX4/+/fuf0rNFTd4fOXIEGRkZ+OKLL1CvXj2kpKSgsLAw7hL2VXXv3h15eXnIz8/HypUrtdfVn++44w5069bNqPCCSk9PR79+/bTyaZa5t1euXImkpCSUl5cH/butW7dqo6Hk5+dHfWQRdfvorWPHjli6dGml14zcJ4Ft/bS0NJw4cUIb7nvNmjV1nkv7999/R/PmzXH48OGgf7dr1y4kJydHEnpccDgcuPHGG40OI2b0LOP9+/c/pX7Ozc3F77//juXLl2PLli1IT0/Ho48+irvuugtLly7FmDFjcP311+P9998Pqaw7HA6MHDkSI0eO1F6reu4LPKaOHDmivefxeLQHdaJ1fetwODBkyBB4vd46tzfq6vzzz8eqVasAVCS41XWsLpGsKArcbneN74cicBnp6ekYOHBgRPHXhdfr1erDo0ePomvXrli/fr2h87T36NFD92WMGzcOmzZtwsKFCzF+/HhMnToVCxcuxKZNm2C32/Haa6+FNHT/WWedhc2bN1d6zQw9pRVFsdwQ7p9++inOO+88bNq0CTfddBMWLFiAYcOGadMc6DXNi6pDhw74448/MG3aNDz33HPYs2cP8vLy0KJFCzz55JM444wzUFxcjDFjxmDr1q0AKh6Ou+GGG/DKK69EtSMOAGRlZeH111/Xrs9dLlfYZWvPnj1h34/bvXt3WJ8jIiIyirVaQLUQOlz1FBcXY9euXejUqRMAYM2aNQCi33OESBWteRWN6hGkDmUY7k2eefPmYd68eTW+b7fbMXPmTOzcuROdOnWCEAJ79uzBhAkT8MQTT2jJ+xEjRoS7CiExuqcVVXA6nUhOTq5U3qZNm4ahQ4fi2LFjuOaaayr1ROvSpQvmzZuHw4cPIz8//5ReaitWrIDP50NmZiY6dOgQs/Uwysl6Ji7mNRwxYgTOOOMMKIqCKVOIE1LcAAAgAElEQVSmVJpjvrYbEDNnztSmVhg+fDiWL1+uDQtdUFCAdevWoUmTJrjhhhsiqt9UgwYNwmWXXQagIpn197//HT/88AOklDjjjDOwefNmfPDBBzFJ3gPxNZ9vtNZFvYlvpFDP44qiYNq0aXA4HMjLywOASglqoCJ5P27cOBw5cgSZmZnYsGED6tWrZ5pEcKzk5ORU2kaByfuzzz5bl3mUo8lMx+r69etRVFQUUmIiMHlv9YeEqjJyn1StI+rXr6+1f3r27Fnnnqd2ux379++v9e+s9vAiRYfeZbxq/fzYY49h+vTp2LlzJwYNGoSvv/4aDz/8MNLT03HTTTfh6aefhs/nw/XXX6+NQBOpms67kV7f1nV5eqptPmuv14uSkpKIYorGd4TL6XRCCIH09HTcdtttWhLf6J74sXDvvfdqw7OPHz9eS97Pnz8fp59+ekhTTZiV0W3ycM2YMUMbSv/GG2/UkvfqNAexMHr0aOzfvx+PPfYYkpKS8OeffyIvLw8DBw7EVVddha1bt0IIgf79++PgwYN49dVXdYtNfeAw0a4/iIiIIhFvPfDrATgR7ofLy8tPme/zp59+gpRS6wH75Zdfol27dpXmTCYySkFBQY3vFRcXG3JzXr2RWRfqEKxLly7VbqbPnTsXubm5cLlcGDRo0CmfsdvtuPHGG3HrrbdW6rnapk0bPPDAA5GvSA0KCwsBVO6Br74GoM69nSgyQggkJSWdclNRnYZg0aJF6NGjB5YsWaL1vGjdujVeeuklDB8+HLNmzUJeXp6WKF2xYgUA4JZbbgm63MB9DlTMOa2+pg6RB/yvnLCMhCZYnQbUvu1GjBiBl19+GTt37kT9+vXx+OOP13oD4uOPP9bmY7799tuRkZEBl8uFsWPH4qGHHsKcOXMAAP/3f/8XVv1WE7VeW716tToSAoYNG4bMzMyYJe5DUbWsVxUv5VldT3VaFikliouLUVJSAiC89Yx02wWOJhDse59//nmUlpZi8ODBSE5ORpcuXfDtt9/i4osvRsOGDeH3+/H000+jtLRUS97b7XZtPuBEoyaJXn/9dQDAXXfdhZycHPh8Pl1ubkdar0VbuPFU/dzjjz8OoKLeVHt2BhOPyXujFRcXw+fzwe/3a+2NsWPHwuv1YvHixWjbti3WrFlTbc/TmvZzrBIK0VTdNEZmfxjH7Ko7f8WiLavWz/n5+fB4PEhOTsagQYNwySWXoLy8vFIMAwYMQHFxMSZPnoyLL74Y77//fsSjzgWed9XzP3Dq9W202kY1neeNFI2YjFiv4uJi7We1Ppw6dSrKy8uxcOFCnHnmmVi/fv0pw5ar90xqYmTP/XDce++9ACqugZOSkvDWW2+hSZMm8Hg8KCoqqvYztW2DWAvcl6ry8nL4/RWDxoW7T2qbXiac7w1lypqZM2fi4YcfxubNm9GwYUO8++67sNvt8Hg8QT8f7bI3atQo9OvXT+sw4/V6IYRA3759MXbsWNjtdt3bAOoDRERERBS6uLlzJ4QYCOBeIcStAEpliOPpCCGGAxgOAM2bNz9lzq81a9YgOTkZV111FYQQ+M9//oObbropYW961iTY9kjUbRVYtoINga7XDZDGjRvH/KZwJMsLTN4DqDR8Yk3f+9hjjwGoeKrY7/fjt99+Q7t27cKOIRTVDTEcjWGH67rtQi1f8SLY9qnpPXXOv0WLFuG6666rdBO7T58+ePXVVzFixAi8++67WLRoEd599134/X5kZWVh9OjRQeOpus8dDkel19Sf1QcLjByaOlHKljokauDQqKH48MMPtVEX1GH8evXqhU8//RTr1q3DN998g+bNm0d1VI+qsZaVlRk6HHGszhV6l61I1kM9RtWbSna7HY0bN9Z1mdH4XkVRMHv2bNjtdkyZMgVutxtXXnklevbsiQMHDuCBBx5Aly5dtOT9wYMHq705Z/UHMUItW4H1g/pwjlmZfZ+sXbsWTqcTffv2xY8//og///wTV199Na6++mq88MILeOqpp7Se9x999FG1D2NGwqh6y0z7JbCOCmxvqFPCLF68WBtOvy6JACkl/H6/Npy+w+HA7t27Tdvzvro5xPXsaRrNMmDWNpde1zvBBNbPEydOxJ133onVq1fj3XffxerVq2G323HNNddU+sywYcMAAJMnT9aG06+axA/nGgLQb38YVXfFMhGt99ze1QlMQKv1Yb169fDKK68AqLguVIfTj0V8RiT+e/furf2/YMGCSu8FSxTXq1evTvHqXW9V9zBBenp61JcTC+o++emnn055L5Tkf13Vth979+6N3r17Y86cOdi1axdatWqla9Leag/AEBERmVFcDKEvhLgCwOMAZkkpS0JN3gOAlPJVKWVXKWXX6ubf2bBhAzp27Ain04mNGzeiqKhIa4QRBRNYtpo0aWJ0OKYWmLzPy8urNHziRx99BEWpfYRvu92ue/LeTFi+QhM4nH7Pnj0rXSifd9552nD6Q4cO1Xph5+fnGxWuKSRa2fr8888BQKt3gIq5Kl0uFxYsWAAppTZKiF6sNpewlBIej6fOcw8mWtmKhRdeeAFutxvXXXedlrA6/fTTMXToUCxcuBCdOnWqNGy+FXvXhoJlK3zhHM+bNm1CcXExunTpor3WoUMHPPDAA3j//fdxxx13VBo2P9rJ+1iyatmaOHFije2fUKjD6Z84cQKHDx82bfLe6qxavvTWqlUrrFy5Ert370afPn1w6NAhPPjgg+jSpQuWLFlS6W+vv/76SsPpb9y4Mebxhtsu0hPL1v9MmzatTsPpK4oCt9sd0j2IRGTVssX9WtkZZ5wRt9cFRERE8cTSCXxRoTWApQBmSilXCCFOE0JcfPJfRGN2nThxAtu2bdN65a9evRpARc88IjM5fvw47rvvPuzatcvoUOps3rx5lZL3OTk5leZAXL16tWl7yZlhDlqqXWASv3///pXe69KlC+bNm4fdu3fD5/MhKysrrAdB9HiCPtGtXbsWo0aN0nUZL774otb7PnBqHJfLhQsvvBClpaVo3LgxbrrpJl3jsIrZs2dj9uzZhszZGivqELnR7mmoV3lWe9ouW7YMOTk5uPTSS5GTk4MPPvgA5eXlOHHiRNwn761k1KhRWLt2rdFhaEaNGoVVq1bV+Xh+9dVXAQDr1q2rVO7mzJkDm82mDanPYfNjQ1EU+Hy+U14PbP+Esx/sdjvq1atnqmldqnP8+PFTXvN4PAZEEp+MvN5p1aoVvvjiC6xbtw4XX3yxlshv1aqVds146aWXYsqUKQAqprS69tprqy0Telm7di1GjhwZt+0iqyoqKkJ2djays7PRvn177cGPo0ePom3btsjIyEBGRgaysrK0nzMyMnDWWWfh4MGDKCkpidv9+eKLL+LFF180OoyQRLP+8Xq92n4dMWIEvvzyy6h9N1BRF5x33nlh3RfQIx4iIiKKD5Ye2/xkT/vdQojnAIwXQuwE8AyA7QB6AZgrhHhFShnWFZw6p3bnzp0BVMyv16RJk0o3+YnM4i9/+YuWeJBSwuv1QlEU2GyWfk4HAJCUlGR0CNWaNWsWE7cWMW3aNKxfvx47duw45T117lS73a7NiVwXTZs2RUFBAUaPHo1p06ZFHCtV6N69u+5z2Aa7KbR582YAqHU6hUTSt29fAOacszVabr/9djidTlxwwQVR/V61PKvn52htu1tvvRULFiw45Vxvs9mQlpaG1q1b4+OPP2by3iQGDBiA7t27Gx2GZsCAAbj00kvh9/vrVCavuOIKfP3116ckN4QQcLlcSE5OxnPPPYd+/fpBSoni4mKkpqbGRZvUbBRFwZVXXgm3240ePXoE/VspZVw9fNq3b18sWLAAU6ZMwYQJE7QHDZYuXYqCggIAwNVXX21kiHFBvd6J9vmrLk477TTMnTsXhw8fxrRp0/Djjz+eMg99/fr1UVJSglj3CO7evTtKSkrgcrnisl1kFYqiaOXzmWeewd///vdT/iY9Pb3GeeADJScnx/X+HDBggGXuFeXn5+PYsWOV9m+4Aq9frrzySlxyySXRChMAMGbMGOzduxdz5szBo48+WqfPDhw4EJ07d7bEPiEiIqLYsnQCXwhhk1IqUsrRQggFwLcAHpFSzhRCdAKQD+AHAMvD+f7169cjOTkZHTt2BAAcOnQITZs2jVb4RFHToEED3Hnnndrvau/I0tLSaucQM5PbbrsNc+fOxcqVK5Gfn6/1vFeHMe/ZsycGDx5sZIg1ys3NNToEqoPq5kNdsGABxowZA4fDgYULF1Y7j2ptPv/8c/Ts2ROLFi0CAIwdOzbiWAlwOBwYMGCArssYMWIE/va3v+HIkSP4888/tQf0/vjjDxw5cgQOhwP333+/rjFYyZlnnqn9rD4wFm8aNGiA4cOHR/171fLs8Xjgdruj9r1TpkzReh56PB4cPHgQTZs2jdv9Y3V612l1pcZT1wclc3NzK7WB9u/fD6fTCZfLdUrZ83q9WsLE7G1Sq1GT91u3bkVOTg7eeuutSu+PHj0aixYtQsOGDfHuu+/C6/XGVd0wf/58fPPNN9i1a5eWxF+7dm2lkb147R459ViP9vmrLtRr28aNG2PGjBmV3issLIz6qDl14XA4cPnllxu2fKqg9q4GgKFDh2Lo0KHae8XFxTWef4K9F69atWql9UR3uVxGhxPUtddeCwBwu93a/g2XzWbT1vfKK6+MOLaqDh06BABh1ZN9+/ZFSUkJHA6H6fcJERERxZblHu0TAd0GpJSKEMJ28ucxAHpJKWee/H0TgDUA0sNd1oYNG9CxY0ftSU31piiR2ak3UatLWJpRbm4u+vTpA6Aica8m7/v06YPc3FxTrocZ5zqkunn//fcrJe+7detWp8+rZaBBgwZYs2YNGjZsiEWLFmHSpEk6RRz/jDiu1GGF1XoHgDYSQ9++fUOuf7Zu3Rr94MhwapmM1nyZ6vlZj15dTqcTycnJcdtjzKoSob2g3nCuruw5nU6kp6ebsi1nZVWT90uXLq3Ua2/SpEla8v7LL79EixYt4rJuGDFiBM444wwoioInnnjilGm5KHr0PH9FuuxEqGcpOKfTibS0tGrLCOc+ryzYtjIrq8Vc1zJntfUjIiKi2LFiD3w7gEqT/AX0xP9PwGu3ARgA4KVQv9jv9+Po0aMAKp7E3bZtG2677TbttUOHDuH888+PwioQhUYd/rGqwCEMqxsKUwiBlJSUmA+/VVO8qqysrBrfU3t3qDfe1OQ9gLDXY+/evUG3U7B4aqP2BAHitydqtAWWj+rKcCT7oyaBw2uq88MWFhbi/fffx+TJk+FwOPD++++HVbcHloGGDRtizZo16NmzJxYvXgwAmDhxonYjMTAOPdYzXhhxXPXo0QMrVqzAkSNHsHv3bkgpceTIEdjtdvTo0aPG+uf5558HUNF2mDRpEkpKStCmTRs88MADAICRI0fGJH76n9rOmW3btq3z+STaI9qo52c9CCGQlJQU1hDZVbdd1Tpaj3orkjaD2QQrewUFBVrZqcu+D7Z9qvY4jcX+CiZYuRZCJFzvxmhSy0HgPpZSasn7du3a4c0339SuV4GK5P3ixYu1tknDhg2NCj8mRowYgZdeegm7du0CoH/y3oj6srZ4gl0bRise9Tg/fPiwbtdXtS27JsHaj/F0rrGK6qaYCxwCPTMzM6LvDfwutV0XrJ1WXl6OsrIyALB87+bapu8Lpb4P7IluFaHGHGz76DHaQnFxMRRFQXl5uXbdX15ejqNHj8Lj8aB+/fohLTNa+yTY+iuKguTkZE5pREREZDGWSuALIa4AcLcQYgOA36WU8wJ74Z/8GyeAywCMBzBYSrkz1O93Op3a8MkrVqyAlBKDBg3SXjt06FDM51Qjqo56k6JFixZxcVNUTXSNHDkSx48fBwBtHstI6JEMVG/yKIqC0tJSXgCFKVaJ2sAEh8NRccpbvny5lrz/+uuv69zzHqgoB1XLQFZWFnbs2IG2bdti8eLFlW5sGjm0p5W0bds25sfV7bffjmPHjuHZZ5/FkiVLtJsv999/f6XhN6sTmLwHgJ07d+Lll1/WkvjxIB5ubIeShK9pPQOP87rSa9sF+95oLZMPqUWH1+tFvXr10KxZMzRt2lS3eq0u+yvcMhKLckc1U/exoii4/vrrteT9Z599VqlcjR49Wkve79ixI+xEmVXodQ1RF2aoL6MdQ7BjOnAo/Vitb231T7DrstoS+NGOh6oXOMR9NL9LTXrWq1evxuR1enp6jeUj3h9wUllpPfWKNVgZieQ73W639oAIUDEtUUZGBrxeb9Drh1jvE6/XC4/HA4BTGhEREVmJZbJOQogLAcwE8AGA3QBGCSGmAqcMpe8FsAFAPynllnCX980338DpdGq9MtWnKDmEPpmB1YbIr4sGDRpE7cabnkM92mw21KtXj8n7MBk5DKc6bP77778fVvJeVV0ZyMzMrDSc/okTJ6IRcsIw6rh66KGHkJycjL1796KgoADJycl48MEHg5bPwOR9WloaHnvsMdhsNi2JT+YRyTkzUet6I+voeOJ0OpGamqpr8l5dDvdXfHM6nXA6nVryPicnB/Pnzz8lea8Om79mzZq4T95XFc1riLoww/EXyxjMsL5VJeq52kqiOUR4Xb+L5YP0pJbHwBFJ1B71ZipznNKIiIjImszTmqhdMoDVUsq3pZQLAFwO4K9CiCcBLYnfWwjxoJTykJRyX10X8NtvvyE3Nxe5ubmYP38+zjnnHO2p8iNHjgAAe+CTYY4cOYIxY8bA5/MZNkR+qPbv349+/fph1apVhsahbie/348xY8ZoxzEZ7+jRo5g4cSL8fn/Mlqn21Ihk2PxQVB2ylkl8a3jooYe0nx955BGkpKQEHYp88uTJWvJ+4sSJyMzMxIQJE7Qk/uWXXx6LsKkGmzZtwjPPPAPAuGllrGrXrl0YNmwYHA5HWMPxh2PlypUYP358TJalJ5/PV6m9Ea2yt3LlSmRnZ6NVq1Zo1aoVLrjgAu3nVq1aYciQITHdXxR7Qgj0798fW7du1X6/9dZbtWvXSy65pFLy3kq9La1KPd6PHj1aa5tBb0IIOBwOjB07VvfrHbVeE0JUuj41u6r1M8XGjz/+iMmTJ0c1oWmz2TBt2jT89NNPUYjQmnw+H2655Rbs2LHD6FBMyefz4ZFHHqk0jZ1e1LKt3js2y/VGYWEhHnnkEa1+tsKDLEKI4UKI9UKI9Rs3boQQotp/2dnZRoeakLKzs2vcJ5H8C7Y/gy2T5YCIEoV5z9yncgNoJoTIBAAp5X4AFwO4QgihjnF7CMDisBfgdmPz5s3YvHkzSkpKUFhYqA2lW/V/olg7ePAgLr300phchERi//79uPjii7F9+3bccccd+Pzzz40OCYWFhbj00ktx8OBBo0Ohk4woz3/5y1+QkpKia/Je1bBhQ7Ru3Vr7fdu2bboujyIXmMAfMWJErX+vPpgxceJE2O12ABW9/4YPHw4A+Oqrr3SIkkJ12mmn4aqrrjI6DEsaM2YMli9fjrfeeitmy3zwwQdjujy96NXe+Pnnn4Neg3z//fembx9S5AJ7l//888/473//q127FhQUoGnTpkzex5DZri+MiMcq16eA+fZXomjZsiWuv/76qH/v4MGD0bJly6h/r1Xk5+fjk08+wSOPPGJ0KKZ06NAh9OrVCwcOHIjZMh977DH06NEDN998c8yWGcyBAwfQq1cvHDp0yOhQQialfFVK2VVK2dXv90NKWe2/3bt3Gx1qQtq9e3eN+ySSf8H2Z7BlshwQUaJwGB1AqKSUG4QQvwP4FMCFJ1/bL4R4GUDTk7+HPWQ+AHTs2BFLly4FACxYsABjxozBqlWr0KdPHzRr1gz169fXej0Qxdo555yDc845x+gwglKT9z6fDxkZGTh69Cjy8vIwe/ZsDBw40LC4mjVrhkGDBhm2fDpVrMuzlBKTJk3CU089FZMeUoMHD8bGjRu13++++26sXbtW9+VS7GRnZ2PPnj1YuHAhbrnlFu31d955B0DFTRwyTuPGjdG4cWOjw7Ck3377DQBicsNPSgmv1xs3I5Xo1d548MEHMXz4cDidTgghUFhYiEaNGkV9OWRun3zySaXfg5UDKSWKi4urnfOZosNs1xdGxGOF61Og4nho0KABcnNzOVJJjDVp0kSXUSzbt28f9e+0EvVBlG3btkFRFHi9XlNNa2EkRVHQsGFDXHPNNTE9/w0dOhRDhw6t/Q9jpH379gl/nBAREcUDS1zNCyGSAUBKeT+Ag0KItUKI5iffbgKgmxDCJqJ4NXbDDTcgKysL06dPh5QSQgi0b9+eCXyiGuzbt09L3l944YX46aefcP/99wMA7r33Xnz66acGR0iJzOv1wu12w+v16r6swYMH47vvvoPD4cB3332nza3OXvjxJS8vD0DF0KDqVBB//PEHjhw5AofDgXHjxhkZHpElqHUzBRfLcxjFB6/Xi6KiIpSWlhodCpHhWIdSPPN6vSgpKWH5Ponbg4iIiOKJ6XvgCyFsUsqykz+PA/AcgOsBzBJClAE4D8BgKaUS6bKOHz+Ojz/+WPu9Z8+eePvtt/H000+jQ4cOyMnJqfQ+UaIpKCio9vXAnvdnnnkm7rzzTnz88cfo0KEDLr/8cnz22We49957kZSUhH79+lX7HVlZWXqGHjU1bQMgeE8owDrrCARfT6DmdYlk+4S7zFCoPRKi1TOhpljV5L3NZsOkSZOwfv16XH755fjoo4/w17/+FZMnT8Z9990XlRjM7PnnnwcAbNmyBa+//jrq16+PCRMmaEPNjxw5strP6VkGalLdsK+Br9W0TLvdjqysLBQUFODtt9/GkCFDMGfOHABA7969ox5npIzYtnoIt46JdHjfaG8fs+2PwO2jKBVNarfbrb2u17Enpaw0d3Iox14k9Di3xUJdz2GxLl+Rbp9w4jHiGCorK6txuW+++SZcLhdWrFiBzz//HD6fD3l5ecjJyQFQ83kPiKztVBOn04n09HSkpqbW+bPhMlu9FoyVYlXbVAAwa9Ys7NixA3369EFubi4AYMiQIWF9r17bQI/vjfQ7o30dEIwZy5bf78exY8eqfc9sU27UFCcAFBcXo169ejGMJnzB1uObb75BSkoK5s2bh3nz5sHn8+HJJ5/ERRddBCD4dURxcTEAoLy8HEDF6BLl5eUQQmivxVKwsgXUXL6CfSaSzwGxPd4jEe42MJt4OWaJiIjMytQJ/JPJe+Xkz88AuERK+Q8Aq4QQ5wJIBVAopdwdjeUpilKpF1CnTp2wbNkyfPzxx2jTpg3at2+P/Px8HD58mMOyUkyY6eZRTQKT923atMF9991X6TgaMGAAysvLsXLlSuTl5SE/P7/GJH60mWX7qUMEK4qS0MOYNmrUKOg+0SNBEssyEJi8nzBhAlJSUuB2u9G7d28sW7YMhYWF2LlzZ8ziMdqWLVuQn58PACgqKsKkSZMqzRdfG/W4UYeM1kt1iZFQkiW33347Bg0ahPPPPx+bN2/Gs88+i2PHjiE5OVlbb4qt2uoYqllgmVfPUy6XS9dh2hs1aqQd59XFYSV6lLtg31nb8goKCmJWh1KF1atXY/Xq1ZUeSMnPz6+UxA9HsHrNbPVdopQ5o7b7yy+/rLUjV65cCQDIzc2Nejy1XbeEUv+YidmOk0SgV+KxXr16lklqBrNgwQIsWLCgUsJ9/PjxmDp1qpbEr4maDE1KSgIACCGQnp6uX7AWE+vyYbbyaFQ8gdM4JPL9LiIiIj2Y9sxaJXn/LICOAHqp70sp/yul3BCt5H11HA4H+vbti7179+KXX37Rbr5wGH2iCoHJ+wsvvBAPPPBAtX+Xm5uLyy+/HEDFsNOff/55LMM0nDpsoxWHMZVSwuPxQEppdCimFjhs/qOPPooGDRpUel99aOX11183IryYC0zeX3bZZUhLS0NJSQkmTZqkDTdfm1gOd6qW87rKzMxE586doSiKVsc9/PDD0Q6PQqDuQ7X3eKTfE4s6j/WrOYbQr8t+sNI+S6Qho43cLzNnzsSZZ56p9bpv1KgRRo0ahT59+gCoSOJv2bIFxcXFQesnK5WtmiRSmYs1NXlvs9nw17/+FUBFEn/p0qVRX5Ye1y3RLN/xcKyYgdp5JdJ2k17MHl9dqOsybdo0NGvWDG+++SbKy8vRokUL5Ofn4+abbwZQkcRft26dwdGGL572WaxZfduFM23ByXU1bU6CiIjILEx7sgxI3j8HoD2Aq6SUPiFEaF33oqRr167IzMzE8uXL0b59ewAViQmiRHfw4EF0795dS96/9957Qf/+mmuuwf333w+gIom/atWqWISpGyklfvnlF/Ts2ROdO3dG586d0bdvX+3nbt264emnnwZQMXyby+WK6TCm0eL1evHBBx/Uuee4lBK//vorlixZEtZy33jjDRw5csQSN+eGDBmiJe+//vrrU5L3ANC/f384HA4UFhbi559/NiDK2Fm2bJmWvO/Tpw8GDRqEiRMnVkrih+LgwYP44osvYjL8YSRJRHVdFUVBcnIyhg0bFs3Qokq96f3GG29Y8oGiqr777jt89913AEJLOKjrX1RUhCeffBITJkw45d+4ceMwefLkiIfcD4Ua89GjR/HGG2/ovrxQBfac1TtJop4fjaCWn7okHb1eL44cOaJNl2Fm6rZdtGhRTI/3oqIiXHvttbjgggu0NlHgzw8++CCKioqiusxt27bh3//+t+6J4//+97/aunTs2BGtWrXCs88+i7KyMmRkZGDUqFEYP348WrRogdzc3EpJ/A8//DDoflDL4Zw5cyxbP6tlzul0VqqfzW7v3r348MMPTZsYnjVrlpa8nzBhArp164a8vDwAFUn8xx57LOJlBO6vaF63qO2NaD7c8dtvv+GDDz6wxIMipaWllc7vUspaH+bRw88//4yzzz4b5557Lp544gkA/0u4mbW+8Xq9mD17No4ePWp0KBGbPXs2srKyMHXqVJSVlfSLtiwAACAASURBVKF58+bIz8/H/PnzccYZZ2DYsGGVkvjLli2r0/cbmfhVy9bZZ5+Ne+65B/v376/zsblu3TqsW7euzkns0tJSvPbaa5ZOfKvmz5+PrVu3WqJeq47T6URaWhp+//13dO3aVSsTF1xwgfZz1X/t2rUDgJje3yciIrIi0ybwAUAI0QpAOwBXq8l7KWVoXfeixOFwoH379ti7dy/S0tIghMC+fftiGQKRKf3rX//SLpT8fj+OHz8e9O/9fj/++OMP7fd//OMfusanN6/Xi3/+85/YvXs3Dh8+jMOHD+PIkSPazwcOHMDLL7+Mffv2QQiBlJQUSw4n5nQ60bdv35B7Tau8Xi+OHz+Oiy++uM7L3LdvH/r06YMtW7ZY4iL222+/BQA888wzaN68eY1/17VrVwDAbbfdFpO4jKLO85uenq7Nz2q32/HII48AAEpKSkIaycbr9WLAgAExGYZXvVndunVrnHHGGXX6bGZmJrp37w4hBB544AFTz7fo9Xqxc+dO9OnTB9u3bzc6nIi1bNlSGxo3lISDmkCYPn06Zs+ejTfffPOUf/Pnz8e8efPw4Ycf6h6/GvPevXtxxRVXmKZ9edNNN8HpdOKiiy7SvTeten7s06cP0tLSdFtOddTyE5h0rI3T6cTvv/+Oq666yjT7qyZCCBQWFuKKK66I6fG+ZMkS/PDDDygsLNTaRIE/L1myBP/+97+juszhw4dj3Lhxute/Pp9PW5fAdu8dd9yBRx99FC1atKj097m5udrQxlOmTAlaPzmdThw9ehRXX321Zetn9XgWQlSqn83O6/Wid+/eph1BYMeOHQCAG2+8UXtINCcnRxsdcMaMGREvI3B/Reu6Zd++fVr9U5d6tjZSSvTr18/U7S3V9u3bK53fvV4vioqKYp409/l8OHToEPbv34/p06ejoKBAS7iZ9QHzQ4cO4brrrouL6ceefvpp7Vr6nnvuweuvv37K9cawYcO0aYQeffTRkL9bSlnnns/RpJatQ4cO4YMPPsDSpUvrfGxmZWWhVatWde7F/d///hf9+/fHr7/+arp6u64efPBBDBs2zBL1WnVsNhtcLhdeeukl7NixQysThw8f1n6u+u/w4cMAENP7+0RERFbkMDqAYKSUe4UQV0kppRHJe6DiadYNGzYgJycHhYWFkFLizDPPjHUYRKYzfvx4HDhwAIsXL8aGDRvQsWNHZGdnY9iwYZV60/n9fixcuBA//vij1qOlc+fOpuptGA6n04mnnnoK3bt31+Z6dLvdlda9d+/eOP30040KMSqEEGjatCmaNm1ap885nU506NAhrIvQ008/HVJKNGnSxBIXsffffz9mzZqFkSNH1jjvnJRSe5hj48aN2Lt3L1q1ahXjSGNj+fLlaN26NYqKivDSSy9hxIgROH78uPbQTps2bbQRbYI566yz9A5Vo96sXrNmTViff+edd6IckT6cTifatGkDp9NpmcRKMKeddpr2cygJB7U+KSsrAwA89NBD6NatG4CKERRGjhyJwsJCZGdn484779Qv8Coxn3/++bovqy5GjRqFUaNGVZrPWm9z587VfRlVBZaflJSUkD4jhMCFF16oV0hRp7ZB6noOj8Rtt92G0047Dd9//z3s9oqOVX6/X/v53HPPxaBBg6K6zN27dwOA7g98NW3aFIMHD4bdbofH48HHH3+MP//8E2+88QbsdjsGDBigTZkDAC+99BKKiopgs9mwYsWKoPWTEAJt2rTRlmN1gceX2antDfU6xWxtzz59+mDlypVYuHAhUlNTkZOTg6VLl2qjAi5cuDDiZeixv6rWP6HWs7U5++yzo/I9sVD1/O50OpGenh7zpHmzZs1w6623AqiY1kttA7pcLtM+YK5eJ2VnZxscSeSWL1+OIUOGYO/evfjXv/6FN954A7fffru2T4CKKbgKCwtht9vx2WefhfzdQgikpaUZVm8Flq2cnBxcd911df6Oli1bAtCGVA95Xbp06VJp7nWr27Vrl2mPx1DNmDEDXbt2xZ49ewAA5eXlSEpKqvHvn3vuOWsPnUBERBQDpk7gA4A8eSVtRPIeANauXQu3240BAwZoPQZDSTwQJYIZM2bg+eefx9/+9jcsWbIEe/bswYQJE5CdnY28vDwsWbKkUuK+S5cumDt3brVDjFuNmnhR56EEgMLCQu3J+USnbh+jPh9LY8eOBVAxxGleXh5uvfVWXHDBBZX+5pdffkFBQQH+8pe/4Ntvv8Vdd92FL774wohwdZeVlYUJEyZgypQp2LVrF6ZPn44//vgDiqKgTZs2eOCBB4wOMWFZ6bjSQ2DvUADo1q0bevXqBUVRkJubi8LCQi0xYvUbaNGQ6OWFwte3b1/07dvX6DCirlmzZto5HwAef/xxbNu2DXl5eSgoKMCyZcuwYsUK9O/fH7/88ot2M37ChAmWf6AzEZi1zlNHM1q5ciXy8/PRvn177b5EXl5e1B+IIf0IIVCvXr2YL7dFixaYMGFCzJdLFc4++2z89NNP2Lp1K26++Wbs2bMHc+bMwZtvvonbb78d33//PTZt2gS73Y4FCxbU+SFbo6YiAqJbttRe3Hp/hvQVONpgcXFx0Drvueeei0VIRERElsa7k0G43W58+eWXyMnJQcuWLbWn3JnAp3inKErI8/PZ7XbMnDkTO3fuROfOnSGEwJ49ezBx4kT88MMPkFIiOzsbzz33HD744IO4SN6T+dSlzOph7NixuP/++wEAb731lna+ACp6dH322WfIzMzEDTfcgObNm2PVqlXYu3evIbHqJXAfNGjQABMmTIDNZsPvv//O5D2Zlpq837JlC5P3RCZh9Dm9Ltq1a4evvvoKDz74IDIzM+Hz+bBs2bJKyXu92r5W2k4UmdzcXPTp0wcAKiXv1WH0rY5lObEk6v5u3749Nm7ciFmzZqFFixYoLy/HnDlzKiXvmzRpYnSYcW/fvn3IzMzEwIEDE7IcEhERkbWYvgd+LGVkZGDIkCHa7zNmzIDb7ca0adPQoUMHjBkzBtnZ2YY8NU3xa+/evdqwX9UN/RnrYY4LCgrg8Xi04eCr9kQJFs+GDRvg9/tx++2345NPPkH79u3xySefWC5prw6JX5OatkE8DEmtCnddItkG4X42kjIbruq+8+WXX0Z6ejqeeuop5OfnIz8/H/369cPKlStRUFCAZ555Bv3794fT6cTDDz+Mm2++GQsWLNA91kiUlZXVejyoAvfBkCFDkJWVheHDh+P//u//YLfb8eqrr9b6HUasv15lvep2CxyOXAgR83U1W9kKVzTXIzB5f/7552PDhg0xS96bbX/oFU919UfgsVDTVCIFBQUh1z11YcS5LVzhbjsg9vFGsrzq9nXg+SSW06nUJjk5ucZ1nTlzJmbOnImff/4Z11xzDcrKyvDNN9+E1PM+3O23Y8eOGts+kXxvuIItr7ZjWo9YCwoKTjn36r3MSNTU5lLbVCNHjsSkSZPw559/YtCgQRH3vI+k3R3udq2pHKjHfJs2baq912K2fRWMGWO12+01TvMVa8eOHYPb7UZJSQnS0tJO6T1tljgjFWw97rvvPtx3331hnS+Aivarz+eLVqg4duxY2J8Nt2yFu58jKR+rV6/GoUOHcNNNN8Hv9+Ozzz5D9+7d8fzzzyM5ORm9e/cO+7ujRVEUyz1IHGyfxMvxTEREZCQm8GtQVFSE1157DQMGDECHDh0AVDztzt73FG1erxdutxtA9OYGjJQ6h1g4c4nZ7Xa8/fbb0Q6JKKhIymw0/eMf/8DRo0cxe/Zs5OXlIT8/HzNmzEBWVhZuuOEGFBUV4brrrsOUKVPw1VdfYd++fXEzrG51++D000/HnDlzjArJVMxY1yc6dc77nJycmCbvE13gsUB1kyjbzizn9HB06NABO3bsiMmyrLydYiXezr0TJ040OgQA0d+uahmO9dzwZAzWXRXCPV94vV6Ul5frEFF8C0zet2vXDr/99hu2bNmC0aNHY8aMGUaHB6Bi33JKACIiIgrEBH4Ar9eLnTt3AgAWLlyIoqIiPPLIIwAAv9+PX375Bf379zcyRIpDgRewPp8PhYWFaNasmaExqXNAmiUeIx0/fhwALDeKQKJRy6wZ9tf48eMBQEviA8Ddd9+Nr7/+GkVFRUhPT0dubi7mzp2LkSNHYtGiRYbFWpsDBw5g2rRptf7dueeei0GDBsXFzXE97Nu3D6eddhoA3qw0AyklAHDO+xhT6+f09HQAdTsW3nnnHezZs0eXuKxAbY81bdoUQPzWIwcOHECjRo3gcDh4PglB4JztZmj/hCqW1xfqseLxeOD1ek29fdQ2lxACN954Y9BRNowWeP0a7sOogce7WpZ5Lk4MgfOWFxQUmHLUAjNzOp1ISkrS5bt9Ph9efvllnDhxQpfvN8q+ffu05H2nTp0wY8YMLaG/adMmPPzww/jpp5+MDjNu23dEREQUPibwA2zfvr3SsEn9+/fXet/v2bMHXq+XPfAp6gJvvn3++efYt28f7r77boOjqmC2eIywfPlyAKg0vQaZlxn2lxACjz32GOx2O2bNmgUAmDNnTrU90b///vtYh1cnBw8exIsvvhjS3x46dAh33XWXzhFZz759+/D555+jXbt26N69u9HhEIA1a9YAADIzM5m8j6HA+rkuydnXX3/dNL1OjRLYHovnxPZHH32Eli1bYuDAgXX63Omnn459+/bpFJU1mKH9E6pYXl+o11kfffQRAHNvn8A21yuvvBKzkRzCoW7Xb775Btu2bUO/fv3qnMQP93in+PHEE09g+vTp+OSTT3DRRRcZHY5l2Gw2nHfeeQCASy+9NKrffc8992DJkiVR/U4zuPzyy+H3+9GoUSOtt32TJk3w9ttv469//Ss2bdpk+IirLVu25DUJERERnYIJ/ABZWVkYPXo0gIqL0sDG8K+//goAyMnJMSQ2SgwXX3wxDhw4YHQYGrPFE0vq3I6XXHLJKXM7knn16NHD6BA0Y8eOxX333VepB7vH49GSL4qioHPnzpXmETUbu92OjIyMWv/ukksuwQ033BCDiKzn9NNPxwUXXKA9EEjGKykpAQDccsstvFEWQ+HUz1JKXHfddSgsLMT8+fO11w8fPhzN0EwvUdpjl112GZo0aVLnz61atQpSSng8nmrn5E4EZmr/1EYtz7HcX1bYPmqby+Vy4eGHHzY6nJBceOGFSE1NDasHfrjHO8WPBQsWAAC++OILJvDr6LrrrsMVV1wR9e/95z//Cb/fj2+//RZARTssHtpczz33HAYOHIjCwkK89tprGDZsGPx+P+69914AFaPXnHPOOYbF9+effxq2bCIiIjI3JvADNGzYENdee221723fvh0A2AOfdJWenq4NLWsGZosnltS5HTMzM+O6t1u8adGihdEhVNKgQQNMmTJF+72wsBCNGjWq9Dcej8e0cxq3a9cOixcv5jEQoU6dOhkdApHhwqmfvV4vpJQYMWIERo0apb1u5qGl9ZAo7bG2bduG9bmUlJRK59JEPGeZrf0TTHp6OpKTk2O6v6ywfazY5rLZbGG3ccI93il++P1+o0OwND3qipSUFMybNw8A4Ha7UVJSgrPOOsvyT7tefvnlmDp1KsaPH4/58+dDURQsW7YMx48fR4MGDTB37lyUlpaiXr16hsRnpXqfiIiIYsvyDbFY2b59O7Kzsw1r0BFRbDmdTrhcLlP2iqb4YuayZrPZTBkXESUGM9ePZC4sK9bC/XUqtrmIyEycTifS0tIAQDE6lmi46KKLMHXqVADAwoULteT9e++9h9TUVKSmphocIREREdGp2AM/gDr0YnW2bdvG3vdkOgUFBUHfz8rKilEk8Ued27GqwsLCoJ+Ll23OshU7NZW1qozYJ0KIsIa2Dfc4YbkjvQSWSUWpuA/pdru11/UoWyzPkQu1ftRbbfuyNtzX+jNLWTELs7dXo7W/gh2b1Y16ZGY1tbmM2JfxtF3JXIqLi7WfpZQAgPLycu31hg0bGhJXPAjcttWp67a12WxwuVxB/8bv9+PYsWNRW6be1CT+Cy+8gJSUFOTn58NutwMAp9UKItg+Bsy3n4mIiOIJE/gBkpKS0Lx581Ne9/v92LVrFwYNGmRAVBTvjL6BVpXZ4jECt4G1mG1/BYvHbLHWJjk52XIxmwW3m7kEJhvUG3Qul4tJCJ2Fexzw+EmcbcAyEj4rbQMjYm3UqJGltpFV2lyRbFcrrB/pK3BES/WBlaSkJI50GSI9EqWJknzt3bu39v+4ceOMDQaJs92JiIgoMnzEMAQ7d+6E1+tFTk6O0aEQEREREREREREREREREVGcYgI/BNu3bwcADqFPprVnzx60bdsW77zzjtGhJJRRo0ahY8eORoehu44dO2LUqFFGh0EnWe14D7f8JMrxRYmB5Tl+vPfee8jOzkarVq2q/ZednY333nvP6DCJNIlS/yRCe/Wdd95B27ZtsWfPnpgtM1HKD1E8ad26NUaMGKH7cjZu3IiMjAxkZGQgMzMTCxcu1H2ZZKxevXqhV69eRodBRESUMJjAD0FJSQkADnFE5vXuu++ivLwcM2bMMDqUhPLOO+/g+PHjRoehu+PHj1smWZwIrHa8h1t+EuX4osTA8hw/Nm7cCCklGjdujI4dO1b617hxY0gpsXHjRqPDJNIkSv2TCO3VGTNmoLy8HO+++27Mlpko5Yconhw/fhxvv/227stxuVw4//zz0bRpU0gpsX79et2XScbatGkTNm3aZHQYRERECcNhdADRJIQQUkppdBxEsaYWe7fbbXAkicnj8cDpdGrz+MWrRFlPs4v3411KCa/Xa3QYRLqQUrIOjRPTp08/pQfSl19+idtuuw3A/+oyp9NpRHhEPJ/GIbXtZ8QtD9ZpFE2KohhSjim62rVrh1WrVuGLL77A4MGDjQ6HYsjtdsPpdMJmY79AIiIiPcVNAl8I0RPAxUKIrQB+lFIWGB0TESUG9WZaSkqKwZHoK1HW02rUG6qKopjuAjqcG3NerzduH04gY5khmeX1elmHJgjWZWS0RC2D8fqglJTS0IRnopYn0ofX62UCXyeKohgdAiUAdaRal8tlcCRERETxTcRDo1kI0QfAOwCeAnAZgG0AvpNS1joBkxBiOIDhJ3899+RnzdTibQzgsNFBVMOMcRkdU7aUson6S5Wy1Q4VZUsvNgB2AH78r/wauT2MWrZRy7UByNRx2ZXKFhDz8gVUbNsjiG39aMT+jPUyo7G86o7/uixTz7qrrrGpmgI4GMFyo8Hoc0o8xGDkebE6VctjrLevDTUfB2bY14B54gCCx2J02Qq1LAXb55HiOVIfoZQtMx0nKiPKYChiua1CbXMYtf8ibc+H26YKFOm6h1OeEqGuMnK56jKNPi9WF1Nt4u0caZYYAuuKaNyjCFa2zgGwHXXbj4l4nyoelx3q8RtJe74wyGdjyQz1icossZg9jlPaXEREVhUvCfy7AbiklC8JIbIB9ARwKYAvpJSLjI0uMkKI9VLKrkbHUZUZ4zJjTEYycnsYtexEXOdYMWL9EmGZibCO4TBDjIzBPDHoxUzrZpZYzBIHYK5YapModXkinCNDYca4zBgTYM64zBhTrCRCvWHUMo1arhnLsxliYgzmiaGqRL1nw2XH9rPRZJY4APPEwjiIiGLHXGPths8PIE8IkSGl3APgUwD/AdBNCNHU2NCIiIiIiIiIiIiIiIiIiIhqFxcJfCnlXABfABgvhGggpTwEYC2AzgAuMDI2IiIiIiIiIiIiIiIiIiKiUMRFAv+kd0/+/7gQIlNKuQvA9wDONDCmaHjV6ABqYMa4zBiTkYzcHkYtOxHXOVaMWL9EWGYirGM4zBAjY6hghhj0YqZ1M0ssZokDMFcstUmUujwRzpGhMGNcZowJMGdcZowpVhKh3jBqmUYt14zl2QwxMYYKZoihqkS9Z8Nlx/az0WSWOADzxMI4iIhiREgpjY4hKoQQAkBXADcCGAhgMYB7AVwipfzVyNiIiIiIiIiIiIiIiIiIiIhqY6kEvhCiK4CjUsodtfzdUAASwE9Sym0xCY6IiIiIiIiIiIiIiIiIiCgClkngCyH6A/gMwAcAxkgpfzM4JCIiIiIiIiIiIiIiIiIioqixRAJfCOEC8BCAPwF0AtAUwBNVk/hCiL4A+kkpx4WznMzMTNm6dWvYbLZIQ6YEtGHDhsNSyibVvde4cWPZunXrGEdEevH7/VAUBTabDXa7XfflBStbAMtXvKjpfKwoChRFgd1u1+X8pEfdFbguavw2m02Lv2LWG4p38XJeVMuzoijw+/2nHIssz7EXL2WLgqvuvBh4HOrRBtPznFjd+RBgHZIo9GrPG3GckPnwvEjhqu267YcffmDZSgBSSu3csXnzZgBA586dtff1aKuw3qJIBGv/bN68uVBK2bi6z7FsUSRqa88T6cFhdAChkFK6hRDvANgtpZRCiFcAPC6EeFJKuT3gT78HEHbP/NatW+P777+vMUHCmysUjBBiT03vtW7dGuvXr49lOKQTNXnvdrvhcrlOqS/0uEkWrGwBLF/xwufzVfu6Wt7q16+vSwJfj7orcF2qO14cDks0PyhC8XJeLCsrA1Bxk0Aty4FtwuTkZKNCS1jxUrYoOK/Xe8priqLA4/EgJSUFLpcr6svU85xYU/uR58TEoFd73ojjhMyH50UKV23XbUlJSSxbCaCsrEy71snIyAAArFu3Tntfj+sd1lsUCfUaPVBAGd5d0+dYtigStbXnifRgma7mUspd8uTjVVLK+wB4ADwmhEgTQtwihLhOSlkkpQz7QKraG4KIqDo2mw1paWmsLygmrF7erB4/kUoIgdTUVD7QSWQgm82G1NRUS55TeD6kWLHycUJExuF5KrGp1zpEVsUyTETxyBKP+wsh7FJK/8mfM6SUR6WU9woh/gFgHYAGAK4wNEgiIiIiIiIiIiIiIguaOnUq2rVrZ3QYREREBAsk8IUQtoDk/WQAG4UQi0++9iuALAA9pJRbjYyTiIiIiIiIiIiIiMiKHn30UaNDICIiopNMPS7SyeS9cvLnZwBcCmCJlNIvhGgIoBmAXlLKLUbGSUREREREREREREREREREFCnT9sCvkrx/FkAOgH5SSt/J944JIZ6VUpZHc7lSymAxRXNRRIbx+/1B37fb7TGKhMiafD5f0PcdDtOeXi2L25yMUl4evKmZnJwco0iIKBq8Xm/UvzPYOcrn8/EcRWSQ2o53p9MZo0jiC9vlREBZWVnQ93mNQEZguSQiii+mbVUHJO+fA3AugKtOJu/t6pD60U7en1xetL+SiOIIH24gvcTTja54WheipKQko0MgSkjxklhzOBw8L5Ju4uU4ISJj8PxEAJO6ZD0ss0SUKMw+hH4rAO0AXF01eU9ERERERERERERERERERBRPTJ3Al1LuRTU974mIiIiIiIiIiIiIjFReXo6vvvrK6DCIiIgozpg6gQ8A8uSk9LFK3peUlEBRlFgsishQiqKwvBNFgMeQ8bgPKFaklCgtLcXJZikRxQFFUVBaWqrbOYTnKCLz0fu4T0Ss6yhRBV4fHDhwAJ06dcLx48eNDovoFLyWJSKyLk52FEBRFBQVFQEA0tLSDI6GSF9utxvFxcUAWN6JwsFjyHiB+4BzoJGeAstaamqqwdEQUTR4PB5dj2ueo4jMR+/jPhHxmogSVWDZb9mypcHRENUssKw6nU6DoyEiorpgAj+AzWZDeno6XC6X0aEQ6U4t5yzvROHhMWQ87gOKFZY1oviTkpJS6f9oY71BZD56H/eJiHUdJSqWfbIKllUiIusy/RD6sZaWlgabjZuF4p/NZmN5J4oAjyHjcR9QrAghkJqaCiGE0aEQUZTYbDakpqbqdg7hOYrIfPQ+7hMR6zpKVLw+IKtgWf2fzZs3QwhR47/WrVsbHSIRUSXsgU+UgOx2e43v+f1++P3+sD5LFIzP5wv6vsNhnVOSlWKNF4myzePpOIkXwYa+LisrQ1lZWVifJTIbr9cb9P14GXJTj/XQq27mOYHiiRF1TLzUW2bDukcfrPOtRa92frBrCz2XS5QIysrKIKWs8X0+5EBEZsNHZImIiIiIiIiIiIiIiIiIiEyACXwiIiIiIiIiIiIiIpPweDzweDxGh0FEREQGYQKfiIiIiIiIiIiIiMgkfv75Z/z8889Gh0FEREQG4QRKREREREREREREREQmcfbZZxsdAhERERmIPfCrKCkpgaIoRodBZChFUXgskO5YzohCw2PFnBRFQWlpKaSURodCFBVqmWZdY048F1C8YF1DVDvW+SSlhMPhQP369Y0OhSxGSsnrVCKiOMEEfgBFUVBUVAS32210KESGcrvdKC4u5rFAumI5IwoNjxVzKi0t5X6huOLxeFBcXMy5Vk2K5wKKF6xriGrHOp9YBihcLDtERPGDQ+gHsNlsSE9Ph8vlitp3Vve0m6IocLvdcLlcsNvtUVsWUbSox0A0jwWz8fv91b6uHp/16tWDzcZnnPRkdDnz+Xzaz4H1srrfHQ6eIs3E5/NVu59U8by/jD5WqHqpqanw+Xxh7ZeysrJqX5dSwu12Iz09necgirmUlJRK/0eL1+s95TVFUeDxeJCSksK6LUSJei4IbK8Bp7bZ4vn8rycjj0u96hqieFKXOl9RFJw4caLaayQV60pzCbwWUNv/LpcLQgiUl5cjKSkpYc/78aTqNV/VfZ2cnKzLcll2iIjiB1twVdSrV0/3ZbjdbhQVFcVseUR1YbfbYbfbkZSUZHQohlCfVLXZbDw+o6y6mwZ6XbDUlbrfASAtLc3gaKgmibCfarq5ZpZjhf7HZrOhYcOGUf1OtYw7HA6egyjmXC5XzG70qT1w1eVS9aqeE3guSIy2gFH0Pi6dTqf2M497olOFW+ero0IBrBetKPC8lpqaiqSkJG3fB9abZH1V97UeWHaIiOILE/gG4JNwROalHpd6NabJnFgvWwP3E8U7NZUfDwAAIABJREFUnoMoUbAHLoWLbQH98LgksqbU1FT4/X7WixbF81ri4L4mIqK64ticBrDZbEhLS+PQqEQmxOMzMXG/WwP3E8U7IQRSU1NZxinu2Ww2lnUKC9sC+uFxSWRNrBetbd68edi5cyeEEEaHQjpTr/W4r4mIKFTsgU9EREREREREREREFEPdunVDmzZtjA6DiIiITCguE/hCCJuUUjE6DiIiIiIiIiIiIiKiqs4991yjQyAiIiKTipvxlYQQ2UKIHABQk/cihDFphBDDhRDrhRDrDx06pHeYlEBYtkhPLF+kF5Yt0gvLFumFZYv0wrJFemL5Ir2wbJFeWLZILyxbREREp4qLHvhCiBsATAXwpxDiTwCLAHwupSwWQggppazps1LKVwG8CgBdu3YN9qeco4bqpGrZ0mMZfr8/6Pt2u12PxZIJ6F2+fD5f0Pcdjrg4fVA1YlF3mQnLeuwYWbbKysqCvp+cnByjSEgP0ShbXq836PtOpzOcryWLS7RzYqIwy7mf5Sv+mOVcwrIVGrPUBVbC9jzphfUW1UVt9UEgIcRwAMP1i4aISD+Wb40KIdIA3A7gFinleiHEwwB6AWgqhHhbSllicHxGLp6IasCHG4g3ZKyF+4viCW8wUiLhww8UCZ7/9cHjkii+sK60Fl4LJAbuZ3MIfDhECMGHQ4jIUuJhCH0FQEMAbQFASjkDwHcAzgHQGwCEEPGwnkREREREREREREREREREFMcsm9gWFexSSjeAFwH0FEJ0Pvn2QgB/oqJnPqSUSijfqSgKFCWkPyUyBUVRUFJSwnJLMcHyRvGKZTsxSClRWlqKYNMlEVWlKApKS0tZPxDFObYFSA88h1gT6wPzKywsxCuvvAK32832PRFpTtYFls13ERFVZckKTQhxDYB8AP8SQlwC4FsABwBcLYToIitMA9BYCNEm1O/1+/1wu936BE2kA7fbjeLiYpZbigmWN4pXLNuJgfuZwuHxeFBcXIzS0lKjQyEiHfEcQXpQzyEej8foUKgO1PqA537zSkpKQseOHVl3E1ElJ+sCzplKRHHDcpMkCSHOA/A0gJEAsgH8E8DjAP4DoCeA/yeEWAPAB6A5gGOhfrfdbofL5Yp6zER6Ucsryy3FAssbxSuW7cTA/UzhSElJAQCkpqYaHAkR6YnnCNKDeg5R/ydrUOsBnvvNKz09HT169ICUEm63m3U3EQHQ6m+/0XEQEUWL5RL4qEjK/yKl/AQAhBB7ADwAYDYqkvl/ATAcwAkAt0opj4T6xTabDTabJQcloARls9mQlpZmdBiUIFjeKF6xbCcGIQRvxFKd2Ww2pKam8hqBKM6xLUB6UM8hZC1qfcBzv/mxfU9EgYQQAMD5T4goblgxgb8RQJEQ4i8AvpdSfnKycp4G4B4p5YdCiM8ASCllmZGBEhERERERERERERERERERhcoSCfyTyfoUACVSyvVCiN0AhgI4IIQoOJnEbwtgiBDiGymlN4JlRSdoohiw2zmtD+nD4bDE6YEoYizriSE5OdnoEMjknE6n0SEQUYzw3E964bnEWlgXWAvb80SkYn1ARInC9K1VIcQVAGYCWAWguRDiNynlSCHEPwE8BOADAP8BIAE4pZTSuGiJiIiIiIiIiIiIiIiIiIjCY+oJnYQQdgB3AHhCSjkcwK0ALhJCvCql/H8AjgK4VwjxKYD7ALxqXLREREREREREREREREREREThM3UPfCmlXwjxY8DvRahI4H8thJgmpRwthMgA0AHALinl74YFS0REREREREREREREREREFAFT9sAXQpwd8Os+AGOEEK0CXrsaQFshRHsp5VEp5X+YvCciIiIiIiIiIiIiIiIiIiszXQJfCDEIwEYhxEIAkFK+hYp57r9Sk/hSysMAygDUNyxQIiIiIiIiIiIiIiIiIiKiKDLVEPpCiDQAIwA8AuBiIcQCKeVNUsrHhRAA8JEQYhaAxgDOA3Aw2jFIKYPFF+3FEREAv98f9H273R6jSIgi5/P5gr7vcJjq1Gsq3HZEtSsrKwv6fnJycowisR6v1xv0fafTGaNIiCLHcyZFgvUhJQrWlYmDbWSyEpZXIiIKhal64EspSwDkAZgPYBSAJCHEgpPvPQ7g/0NFzGcAGCKl3GVQqERERERERERERERERERERFFlqgQ+AEgp/5BSFp8cJv9eAMlqEh/AdgCfSCnvkVL+rMfyS0pKoCiKHl9NRLVQFIXHIMUtlu/wcLsRVU9KidLS0qCjR1HNFEVBaWkp6xaKOzxvUqhYD1KiYf2YGNhGJqthmSUiopqYLoEfSEpZiIokvkcIsQ3AEgDBx9qOgKIoKCoqgtvt1msRRBSE2+1GcXExj0GKS2r5Li0tNToUS2G9QFQ9HhuR8Xg8KC4uhsfjMToUoqhie4NCxXqQEg3bTonB7XZj5cqVKCoqMjoUopCwbiIiopqYfrInKeVhIcQmAFcA6C+l/F2vZdlsNqSnp8Plcum1CCIKQj32eAxSPFLLdWpqqsGRWAvrBaLq8diITEpKSqX/ieIF2xsUKtaDlGjYdkoMZWVl6NatG4qKitCgQQOjwyGqFesmIiKqiekT+EKIDABXAhggpdys9/LS0tL0XgQR1cBms/EYpLillm+bzdSD35gO6wWi6gkhmKCLgM1m4/ajuMT2BoWK9SAlGl5XJIaGDRsaHQJRnfC6joiIamL6BL6U8qgQ4v9n787Do6jy/Y+/T2dfYYSIskQE3BUVUcDdGa8iKqCIIqgg/PSyeEV03B1xmBEFZwZFr4CKcpVFGBgZRMFtRMAFWYILuG9solEGQtKdtc/vD+ieTkh3kt6783k9Tx5Iurvq21XfOudUnTqnLrXWal43ERERERERERERERERERFJWglxW74670VEREREREREREREREREJNnF/Qj8aDPGxDoEkWYnJSUl1iGIhE1qqqrWYGnbiTQsPT091iEkrIyMjFiHIBI2qjMlFCoPpblQWdl8qI0siUT5KiIijdHolqwx5qBGvM1trd0dQjwiIiIiIiIiIiIiIiIiIiLNUlNuRd2x/yfQEPUUoDCkiERERERERERERERERERERJqhpnTgf2atPTnQG4wxRSHGIyIiIiIiIiIiIiIiIiIi0iw5mvDeXmF6j4iIiIiIiIiIiIiIiIiIiNTR6BH41trycLwnUowx/wUcCTistY8bY4y11sYqHhERERERERERERERERERkaZoygj8AxhjbjPGzDPG/N0Yc3u4ggoijjOBuUA5cJUx5nHgDGNMgzcoGGNuNMasM8asKy4ujnSo0owotySSlF8SKcotiRTllkSKcksiRbklkaT8kkhRbkmkKLckUpRbIiIiBwqpA599o92vttYOBNqEI6AgnQY8Ya2dCZwP7AGuAE5t6IPW2qestd2ttd0LCgqw1vr9EWmKurmVDGpqagL+SPQkY341d9XV1QF/okW51fxEK/d8c6t169ZUVlb6/RFpCpVbyamioiLgTzQkY27FS3tDkjO/mrt4KLdAuRXPEr0MVm4lrkDnXvFw/qXckqaI51wWEQmnUDvwjzPGDDbGXAccaozpE46gGssYY/b/9yOgpzHmyP3T+P8JcAJDohmPiIiIiIiIiIiIiIiIiIhIsELtwH8b8ExT/xrQOsTlNZoxpgdw+v5O/M37f840xhxqra0AJgCnGWOGRSsmERERERERERERERERERGRYIXagd8buIh909WPsNY+H3pIDTPGXAj8H1Bu9/kRWA2cAfQxxhy9fyT+y4A7GjGJiIiIiIiIiIiIiMSjvXv3MnPmTLZt2xbrUERERKQBqQ2/xT9r7dWe/xtjbgk9nIYZY3oCs4DB1tr1xph8a22JtfYlY0wxcBlwnTFmIzAIODcacYmIiIiIiIiIiIiIxKOcnBy6du1KmzZtYh2KiIiINCCkDnyfZ96nAt1CD6fB9XUEzgRWAL8YYw4DHjLGlAF5wG3W2tuMMWcBRwGPW2u/jnRcIiIiIiIiIiIiIiLxyuFwcOqpp8Y6DBEREWmEUKfQL9j/kwXcGXo4/u2fNn8m8C/gHWAc8C7wAfA08Cnw7P4R+austc80tfPe7XbjdmvGfRF/3G43ZWVlOk5EIkzHmsRCNPPO7XZjrY34ekQkObjdbpxOp+rFCFG7QyQyVHZJY6gMllix1uJ0OnVeJglPuSwiySroEfj7R98X+/zpWGNMmbW2JPSwDljXBcAk4CBggLX2XmNMOvC+tfbp/e/ZAXQCKoJdT01NDS6Xi5ycnHCELZJ0XC4XpaWlADpORCJIx5rEQjTzztPmys7Ojuh6RCQ5lJeXe8snlRvh51v+p6enxzgakeShsksaQ2WwxIpv7mVkZMQ4GpHg+eayiEgyCWUK/YI6v6cBN7HvGfRhY4w5H3gS6Ad8BbxqjDkFmAak+Lz1HPZ14GcRZCd+SkoK2dnZGGNCC1okSeXm5uJwOMjOzsbhCHUCDxHxlZr6nyo5Ly/PWyfpWJNI8+ReNPMuNTWV/Px85beI+OV7ITktLY20tDTVi2Hg297w8C3/RSR4dTvAVHZJXSqDJVbquzkkNTWV1NRU5Z4knLr5rFwWkWQVdAe+tfb/6v7NGPNFaOHUKwW4zlq7yRjTEvgM6GGtXW+Mqd6/3huAMcAQa+3uYFfkcDh0UiUSgMPhIDc3N9ZhiCQ9HWsSC9HMO7W5RKQpVC9GlravSGTo2JLGUJ5IrCj3JFkol0UkWTW6A98YsyTQ69bavtbaVaGHdMByX9u/foe1drcx5hVgljFmlbX2E2NMDnAEcLW19rNwr19EREREREREREREREQShzHmRuDGWMchIhKMpozA7wVsBeYBa4CozjNvrXXv/3e5MeYp4BJjzGZrbZkx5i7P6yIiIiIiIiIiIiIiItJ8WWufAp4CMMbYGIcjItIkTZm79BDgHuB44DHgv4BfrLXvWGvfiURwAXwEXMz+mwjUeS8iIiIiIiIiIiIiIiIiIomu0R341toaa+1ya+1QoCfwNbDCGPM/EYvOfyyLgB1A+2ivW0REREREREREREREREREJBKaMoU+xpgM9o18vxroCEwF/hH+sALGYOw+V0ZzvdYGnmHFmKg+UUAkLtXU1AR8PSUlJUqRSDyqrq4O+HpqapOqJJFmR8dQbFRWVgZ8PT09PUqRiDRORUVFwNczMjKiFIlI6FT3SSAq7yQUKl8iR+1nkcB0jIiISGM0ujVqjPk/9k2fvwz4o7X204hFFYBtqCddREREREREREREREREREQkATV6Cn3gWuBIYCzwnjGmZP/PXmNMSWTCi09ut5uysjLcbnesQxGJezpexEO5IBIaHUOxYa3F6XQ2OBuTSDxxu904nU6VF5K0VCdKXSr3JFQqVyJDbWmRxvMcLyqHREQEmtCBb611WGvz9v/k+/zkWWvzIxlkvHG5XJSUlOByuWIdikjcc7lclJaW6ngR5YJIiHQMxYa2uySi8vJySktLKS8vj3UoIhHhKZudTmesQ5E4oXJPQqU2X2QsWrSIr776SttVpBHUvhEREV96oFMQsrKyav0rIv7peBEP5YJIaHQMxYa2uySizMzMWv+KJBtPmZydnR3jSCReqNyTUKnNFxlnnnkmKSkp2q4ijaD2jYiI+Gp0B74xZoO1tluo70kGDoeDnJycWIchkhB0vIiHckEkNDqGYsMYowsoknAcDofyVpKap050OJryVEBJZir3JFRqa0fGIYccEusQRBKG59xT7RsREYGmjcA/xhjzcYDXDdAixHhERERERERERERERERERESapaZ04B/diPfUBBtIvLDW+v27MSbK0YhIKGpqAhdJKSkpUYpEElF1dXXA11NT9RSaaNL+EIDKysqAr6enp0cpEhGJtIqKioCvZ2RkRCmS5kX1rSQTlSMSqEyrrq5WmSZxR+c70hDliIhI89Holqq19odIBhIP3G43bre73mlqjDHqwBdpQLx3iLvdblwuF1lZWZqOKgYS+eKIcic++e6X5iCRj6FIs9bicrlITU0N+zGqCyCSaJKtQ8rtdlNeXk5mZqbq4CiItzaP6j4JpKHyrqKiQmVIMxeoTEtNTVUZEyFqPwfPc16TlZWl69BJLNhjxO1243Q6lR8iIs2Ezl581NTU4HK5Yh2GiESIy+WitLRUx7k0mXInPmm/iIcnF5xOZ6xDEZEwKy8vp7S0lPLy8liH0iyobpVkozKkeVOZJolGOSuBOJ1O5YeISDOiW019pKSkNJtRfCLNkef41nEuTaXciU/aL+LhyYHs7OwYRyIi4ZaZmVnrX4ks1a2SbFSGNG8q0yTR+Obs999/D0DHjh1jF5DElezsbKqrq1WmiYg0E+rA9+FwODSlmkgSczgc5OTkxDoMSUDKnfik/SIexhiys7PVjhNJQg6HQzfnRJHqVkk2KkOaN5Vpkmg85zUABx10kKZJl1pUp4mINC9hu8ppjLkzXMsSEREREREREREREWmO8vPzycvLi3UYIiIiEiNBj8A3xizw/RU4CZgUckRBMsacCxwMpFpr58YqDhERERERERERERERERERkWCEMgK/xFp75f6fgcCb4QqqqYwx5wHzgELgVmPMk8aYtrGKJ1LcbjelpaW43e5YhyJyAOWnxJpyUIKl3JFkpvyWWFMOSqwo95KL9qf4o9yQRKOclXikvBQRiT+NHoFvjPkt8Im1tnj/n/5c5y33hi2qJjD7HgZ0ETDZWjvFGPMEMBO40xgz0Vr7kzHGWGutn8/fCNwIUFhYGFfPFqobstPppKSkBICcnJy4ijUQP5veK1G+R1PVza1kUFNT4/e1srIySktLAcjNzY3KOgFSUlKCei3RJWN+Bau6uhr4Tw7W1NTUes5hampwk80E+zlPPOFebrTEa25FartVV1f7zZ1IrTfRcyRY4cit9PT0cIaUdCorKw/4m9PppLS0lOrqalq2bNnoz/mK9+0er+WW7LNnzx5KS0upqqqq95mdGRkZ9X7O398BKioqqKio8Pt6oM82RXPMrWSpgyJVv4ezDm+O+RUMz7Huqc/qliXhOt6TSXPLrb179/o91iF5yrVIaKhMq6u55VaklJSUeNvn9bWNot32jodzgXjOrXjYPpFeX2VlZa3zxrp5Ge/ngyIiyaopI/DfBD4xxuwwxrwO3GSMGWqMOdkYk2Gt3RWhGAPa3zG/ATjKGNPGWlsO3AC0Acb7vMff55+y1na31nYvKCiISszBysrKIj8/n6ysrFiHIo2QSLkVDp78rO/kQ8KvueVXY2RlZZGbm6syMkTNMbeUO9HRHHMrHjSH/FZuxbfMzExyc3PJzMyMdShNptxKbPFe/im/miaRy5Joa265Fe/HejJpbrkVKcrZAym3Yk95KSISf5rSgX8zsAOYyr7R918ApwB/A34If2iBGWM6GGMyjDFZwPtAHtDVGJNlrXUC1wM9jDF9ox1bpDgcDnJycnA4QnnygUhkOBwOcnNzlZ8SMw6HA4fDEXBEnkh9VL9KMjPGkJ2dnbQzHkn8czgcZGdnq4yVqFP9nlxUlog/OtYl0fi2z/fu3RtXU5bHWzwSPTpvFBGJP41u3VprnwDOACzwKFAFjLXWnmetPSRC8dXLGHMxsAx4HHgWqATmAbcAZxljDrXWuoC3gMDzb4uISFKw1nLhhRfSu3fvBh/dISIiIiIiIiISK2vWrKFt27b85S9/iXUoXhs2bOCzzz6LdRgiIiICNOlBUPs7xScZY6YBdwAfGmNustauiUh0dex/3n174GHgJuAzYCiwBugFTAOu2f/e7cBg4JnGLn/Xrl3MnTsX2HcH7/nnn0/r1q3D+RVERCRCli9fzvvvvw/Aa6+9Ru/evWMckYiIiIiIiIhIbWvWrOHiiy+msrKS7777LtbheB133HHk5eXFOgwRERGhCR34xpizgGOAo/f/ezCwF2gVmdAOtP9Z9luNMe8DXwI/W2snG2OqgPeAnsAG4FTgROB31tovG7v87777jiFDhnh/79KlC2+//Tbt27cP59do9txuNy6Xi6ysLE1xJo2inJGGWGuZMGECHTt2BGDChAlceOGFMZ36S3krDVGOSLyw1npzUVMmSqJwu92Ul5eTmZmpMlSiRnV34lKZIdI0+6dR18ESAZ7O+4MPPpi9e/fGVYe570A2zzlCamqqys16aPuIiEikNaV2eQcYBewERllrT7HWnmutfTUyodVmjLnUGDPOGJMG5APD9nfoY62dAkwHHgR+tdb+01o7wVr7RVPWcdxxx/HFF1/wxRdfsGzZMn766SfOO+88tm3bFvbv05y5XC5KSkpwuVyxDkWAV155hVdfjcphHDSXy0VpaalyRvxavnw569at4+677+auu+5i7dq1vPbaa2FZtsvl4m9/+xs7duxo8ueUtxKIckTihXJRElF5eTmlpaWUl5fHOhRpRlReJi6VGVJUVMQzzzyT1I9bs9byzDPPsHHjxpCXtb+cSwl5QVLLBx984O28f+ONN8jNzY11SH556jyn0xnrUOJSNLbPli1beOihh9i+fXvE1iEiIvGrKVPojwJOAC4GbjPG/Ap8sv/nU2vt4gjEB4Ax5gLgT8Cd1toqY8xdwEpjTI21dtL+t80D7gEqg11PZmYmXbp0AfaNvl++fDm9e/fmvPPO46233qKwsDDEbyIAWVlZtf6V6PNcuFi4cCGjR48GYPr06d4ZKHJycur9XE1NTUjrTUkJ7txPOSOB7Nmzh/Hjx1NYWEi/fv2w1jJx4kTGjx9Pr169aNUquIlidu/ejcvlYvDgwaxYsYL//d//ZcmSJbRr1w6Ali1bBvy88rbpqqurA76Wmuq/2RLotXDG4zvyLj09PaTlpqWlkZ2dTVpaWq11ReK7JIvKytrNPN+R49XV1aSlpfn9bLD7q+46fVVVVUVkndGWTOWVtZaKigq/r2dkZEQxmsBcLlfA0aD+Yg30/QJ9LlIaiidSMjMza/0r4eGvLna73ZSVlZGTk+N3lFm06uJIrzMQf3V3rOIJVqTKkfqW6zvyPZh6JlA9DI2PNVxlRryVwRJYSUkJDoeDNWvWMHDgQPbu3cv69euZOHEixpgGz+kSxe7du7HWcs899zB9+nTy8vJYtGgRp556KtDwuWt99h+voV0ECqOGyoKGRLtdXl+8npH3BQUFLFu2jIMPPhjYV05WVVV53xcv5xCeMjs7OzvGkcSnULZPRUVFwBnQNm3axGOPPcbcuXOpqqri6aef5qWXXqJt27YAFBQUNHmdoZzXiohIbDT67NJaO8P3d2NMe6Ar+zr1BwAR6cA3xpwOvABcaq390BjTGtgG9Ade2T99/lLgdKAb0BL4dzjW3bNnT28n/u9+97uoT6efLFOY1v0eKSkpcX2HaXNQXl7OrFmzuOOOOzj33HMBGDlyJECtx0jU5a8DPpJTSaakpJCSkqKGpPj11ltvUVRUxNSpU70XzG677TbGjh3Lv/71LwYOHBjUcj2d9++88w7jxo3jmWeeoW/fvixevJjWrVuTn59fb777XriNlxPvZBPOMqepF9o9d9lD8PtXORI+vvsj0vVEIkwzH2w+ZWRkJE2Hg9vtxu12J8Q0lp7RoJDcF0YjkVueZSbDTSeJwuVyUVZWhsPh8HuzbzyJVEd6enq6t6zVdPqN41vWBXPMhtJWqlv+RLrMcLvdlJaWkp2drZyIokDHu8Ph4MMPP2TgwIEUFBRw+eWXM336dAAmTpwYrRAjzrfzfujQoaxatYoBAwYwd+5cTj/9dL+fa0RZ6Q5roM2Y77T5y5Yt47DDDvO+5nA4YnrNK1A5myznCKGIxPbxPY/1PQ/YsmULkydPZtasWQAMHjyYc889l//5n//hsssuq9WJH6z6zmvT0tJ0bUJEJA4FfUZhrd1mrX3VWjvJWnttOIOq41egCjjUGNMK+DuwDLgOeAY4BRgHjAGut9aGpfPew9OJr+n0JZksXLjQ23m/YMECFixYwLnnnsvIkSOZPXt2k5enqSQlVqy1TJo0icLCQgYNGuT9+6BBgygsLGTSpElBTZHo23n/xBNPcP/997No0SKKi4vp378/X3/9taaRiyLPBfL9z2GMaZmTlZVFbm6uOo3iREP7w1qL0+kMy1SpqusSQ01NTcJMj5yZmUlubm7Io0HdbjdOp9NbRopEQlZWFjk5OfWWt57R+c0tB1UvNE64yrq64rHsKy8vp6SkROcJceTDDz/kiiuuoKCggCVLljBlyhRGjhzJ9OnTueeee5JiOn3fzvuRI0cyZcoUlixZQkFBAYMHD+a9996LdYgxEc7zgFD5dt6/8cYbIXfASuKrex67ZcsWbrrpJo499lhmzZrF4MGDWbNmDY888ggXX3wxCxYsoLi4mMsuu4xvv/02pLpP7RcRkcQR97cE73+O/cXAFOAjYC5wIbAZOAi4y1o7CrjAWvtJJGLo2bMny5Yt47vvvuPyyy+PxCpEomb9+vWMHj2aHj16sGDBArKyssjKymLBggX06NGDUaNGsX79+iYtUx1aEiurV69mw4YNXHvttbXuWE9PT+faa69l/fr1rF69usnLvfXWW1mxYgV/+ctfGDx4MACnnnoqCxcuZMuWLdxyyy1JPVoy3nhG/XlOMGNZ5nhGHmpUVXwwxpCdne13RHw4L06orksMKSkpCTOlusPhCMsoTT3XWaLB4XD4HWneXJ+Rq3qhccJV1tXlKfviKe8yMzPJz8/XeUKc2Lt3L1dccQW5ubneR6EZY5g4cSJDhw5l+vTpzJw5M9ZhhmzmzJnekfeeRwO0a9eOJUuWkJuby+DBg9m7d2+swwyroqIi7wxS/n4++OCDuOik3Lt3L2effTZ79+7lm2++oWvXrhxyyCG0atWKVq1aUVpaqnPLZsj3PHbjxo0ce+yxPP300wwYMIDNmzfzyCOP1JoFuHv37syfP5+tW7cyatSokOo+tV9ERBJHQrQQrLUfAZcAD1lrn7aTDcx8AAAgAElEQVTWuq21TwFdAM9DX3ZHcP0sWLCAmpoafvvb30ZqNSJRcdhhh9GpUyc2bdrEJ5/8556XTz75hE2bNtGpUyc6duzYpGWqQ0ti5eijj6ZTp05MnTqVtWvXev++du1apk6dSqdOnTj66KObvNxzzjkHYwxLly71nvBba1m8eDHV1dWcddZZyvcoqjvqT2WONFY4L040dLOAxAeHw9HsyoZIjW4VaSxPWdvcOi3VHoktT9kXT3nncDjIzc1VTsSJnJwcunfvzs6dO1m5cqX37zt27GDVqlXk5eXRvXv3GEYYHqeccgp5eXmsWrWKHTt2eP++cuVKdu7cSffu3RPi0SdN0alTJx5++GG/rw8dOpQjjzwyLjopc3JyeOmllxg+fDhjx45lxIgRXH/99YwYMYIRI0Ywbtw4hg0bFtMYJbY6dOhA7969AVi+fDmzZ8+mpKSk1nustSxZsoTq6mp69uwZUt2n81oRkcQRmQfDRYC1djP7Rt0DYIwZALQGtu9/PSJzIllrufXWW5k6dSpjx47loYceisRqRKKmdevWvPrqq/Tp04d+/frxz3/+E4B+/fpx8MEH8+qrr9KqVauwrtMz/bUuZki4eaZC7Nu3LwMGDGDRokUADBgwwPtaQUFBA0s50KBBg9i1axc33XQTQ4YMYc6cOfzpT39i2rRpjBo1ivHjx4f7q0gAgUb9JQvf5+hK+HguTkSKZ2pO3+cHikSbZ3RrPHG73ZSXl+umgmYimh3Zeu58ZPges4myXSM1sl+Sh8PhYM6cOQwePJgxY8YAcPbZZ9O3b1+Ki4tZtGgRJ510UoyjDN3JJ5/MwoULueKKK+jbty9Llixh5cqVjBkzhnPOOYc5c+Yk1XFirSUtLY1bbrmFcePGxTqcBjkcDvr06UOfPn28f6uqqorpM+8lvrRq1YqFCxdSVFTEgw8+yB//+EceffRRRo4cyQ033EBeXh73338/M2bM4L//+7954IEHkuqYFhER/xKmA9/D7Ls6ej3we2CgtfanSK3Lt/P+5ptvZsqUKbo4K0mhXbt23k58z6wSnTt35tVXX6Vdu3ZhX59nWk3PiASRcPJMD9i3b18uuOACYN8d+Z5pEoPlmTr/pptu8j6jbtSoUTz44IOqCyTsPOUk7HsEhCSGiooK7ywd8daBKhJLnqmtAd2YJGHlW18m24jSWPI9ZlWfSTLJyspi7ty5DB48mNGjRwOQl5fHokWLOPXUU2McXficdtppzJkzhyFDhnD88ccDcO655zJ37tykq4d96wGVV5JMPDfjFBUV8cADDzBp0iSmT5/Onj17APjv//5vJkyYoOtRIiLNSMJ14O/3LXC5tfbzSK2gbuf93/72N1WQklQ8nfieqbpmzZoVkc57+M+FW51cSaR4OvH/3//7fwA888wzYcnnwYMHY61l2rRpnHfeeTpZkojxlJPJdoEt2WVkZJCSkqL9JlKHZ+S9RuBLuKm+jAwds5LMPJ34I0eO5LvvvuOvf/1rUnXee5xxxhnMmTOHe++9l8MPP5zp06cnZVmpekCS3cknn8ysWbNYt24dTzzxBJs3b+aSSy5h/Pjxuh4lItLMJFwH/v6p8ldEYtnbtm3j9ttvB+Dbb79l8eLFjB07ViPvJel4RqsceeSRvPfee43+XEpKSlDrS0lJ0fRgEjEtW7b0/vv++++HfbljxozxTrkokZWa6r9ZEui1SInUOv0tVyPvGxZoG0Vq+8VinRI8YwwZGRmxDqNRgo0z3r6fv3h0YT0xJUJdHMuyNxbbIBLqO27DccxGonxKlDJP4pPvuaLn8YHJyPM9L730Ui699NIYRxMZvmV/IhyHOoeQQBrKgTZt2nDxxRdz8cUX43a7wzJlvvJORCTxJMfZZ5gUFxfz1FNPAfueUXTnnXfy0EMPqfNeRERERERERERERESiRs+7FxFpvtSB7+Pkk09m3bp1sQ5DRERERERERERERERERESaId3CJSIiIiIiIiIiIiIiIiIiEgc0At/Hrl27mDt3LrBveprzzz+f1q1bxzgqERERERERERERERERaSxjzI3AjbGOQ0QkGOrA9/Hdd98xZMgQ7+9dunTh7bffpn379jGMSkREREQSmdvtpqysjLy8vFiHIhIy5bOIiIiIiCQCa+1TwFMAxhgb43BERJpEHfg+jjvuOBYtWgTAt99+y1VXXcV5553Hv/71L9q3b48xJsYRisS3mpqaA/7mdrtxuVxkZWWRlpYWlmX6vpaSkuL39UCvSWDV1dVA7f3ncPznqSupqdGtPjzx+BNMPJFYpuxT37b15FJaWhrp6el+Pxdou2ufSGVlZb1/t9bicrnIz8+vVVbFUnFxMQAul4vrrruODRs2MH/+fLp37w5AQUFBLMNrlioqKg74m9vtpry8nMzMTLKysmIQVWLYunUrAOXl5YwYMYKNGzfywgsv0K1bNwA6dOgQy/Bizrfeq6/tFIn6KxbtGLWdpL5ytCGNKWcbWm5GRkaT1yv7WGsPOHY95VReXl7ctJukYbE4Jxb//J2XePg75w31s4ki0He01kIEHutbd52ec8SsrCyMMUmxXRsSbG41h5wUEUlEaqn7yMzM5Mgjj+TII4+kd+/eLF++nJ9++onf/va3bNu2LdbhiSQkl8tFaWkpLpcr7Mu21lJWVobb7Q77smWfSO6/eOMZUah8igxPLvleoNU2l3Dx5JfT6Yx1KLW4XC6uvfZaVq5cSU5ODldeeSVr167F5XIp7+NEeXk5paWllJeXxzqUuFdeXs7w4cNZvXo12dnZXHPNNWzYsCHWYcWdZG47qd6WYDS2nHW73TidTuVXFMRru0maRmVy4rLW4nQ6PR3Zzc7+NlLER9wkc5ssEpp7XoqIxCN14AfQq1cvdeKLhCgrK4vc3NyIjGpTYzzyIrn/4o3yKbI8ueQ7gkrbXMLFk1/Z2dmxDsXL03m/atUqHnvsMZYvX05BQQFXXXUV7733ni6ax4nMzExyc3PJzMyMdShxzdN5/+677/KXv/yFJUuW0Lp1a3Xi1yOZ206qtyUYjS1ndUNV9MRju0maTmVy4mru+25/G8n/dJthXE+ytskiobnnpYhIPFIHfgN8O/HPO+88du7cGeuQRBKKw+EgJycnIlPzqTEeeZHcf/FG+RRZ9eWStrmEizGG7OzsuCmrampquO6667yd94MGDaJt27a89NJLFBQUcMMNN/D555/HOkxhX9kUT7kTj9xuNyNGjPB23g8cOJBDDz2U+fPnezvxi4qKYh1m3EjmtpPqbQlGY8tZ3VAVPclcTjUnKpPjh9PpZPbs2Y2eDcF3340cOZIlS5ZEOMLY+vXXX+nVqxcZGRlkZGR4yvmITx3hOUfUI3Ebx5OXZWVlPProo1RVVcU6JBGRZk+t9UbwdOJv27aNG264QVPJiMSYZ6o4QBcempFITxGoC1nR19A217SQkqhKSkp47733uOiiixg0aJD3723btuWhhx6itLSU1atXxzBCkcYrKytj48aNHHzwwZx55pnevx9yyCH06tWL0tJS1q9fH8MIJVr1pdpK4ivcU97rhiqRpol0mbz/2NYB2QglJSUcccQRlJaWNur9no7lF198keeee44hQ4Yk9Tnv9u3b+eWXX2IdRrMQyjT4nrz84x//yJ133sns2bMjEKGIiDSFGmKN1KtXLyZOnMjSpUt54YUXYh2OSLOmaZ2aJ+335kf7XBLVb37zGwYPHswbb7zB9u3ba702a9YsWrRowfXXXx+j6ESaJi8vj+eff56ysjKuuuoqfvzxR6y1/PGPf2TevHkMHz6cESNGxDrMZk31pcSCprwXSW7Rek55MsjPz+fwww8nNTW1SZ+78847AaisrOTBBx+MRGhxoWvXrnz11VdUVFR4fyQyQm0TbtmyhVmzZgHw0EMPaRS+iEiMJU0HvjHmv4wxY4wx/7P/97DPj3PzzTdzxhlnMHbsWHbs2BHuxYtII2mquOZJ+7350T6XRDZ27FgAHnvsMe/fPv74Y5YvX87IkSNp0aJFrEITabJTTjmFF154gV9++YUrr7ySUaNG8eyzzzJ8+HDGjx+vqUljTPWlxIKmvBdJbtF6TnkyCKYenjdvHj/99BNnnHEGKSkp/O1vf0vqUfgSHaG2CSdPngzA448/zg8//KBR+CIiMda0WwPjlDHmTGAucBdwvTHmSGC+MeYDa211U5blb4oZay0Oh4Nnn32Wk046iSFDhvDKK694K0RdtJJ4U1VVhcvlIisr64Ap1WpqakhJ8X8jtb/Xamqif+7mb52ZmZk6uUky1dX+i+vq6mpSU1PJyckJaplut/uA48GzzHBrzPfwJxLxJDLPtJCNEWi7g/9tG4v95bvO+nJTeRB9lZWV3v9ba737xNO+S09Pb/Iy27Rpw6BBg5gzZw6jR4+mXbt2TJ48mRYtWjBs2LCAny0uLgZg3bp13HzzzYwdO5arrrrK+3pBQUGT45Ha+9mX2+2moqKC1q1bR3Xq5kCjjyorKwPmXUZGRlDLbeizgXg68S+77DJ++OEHdd7HWGVlJRUVFWRkZOBwOMjIyMDtduN2uwO22UNp/0Sq7STxpbFlk2fK+3DwVz4DDY7+C7ZMiwXfbet2uykvLyczM9Nb90T7u9RtB9dtlyb78R7s+UOk1hlvZez+vNRFl0bwTD3eWLt27eL222/HGMNjjz3GpEmT+Pvf/84f/vAHbrvtNg455JB6PxeorITA5yyRON9pLiorK+vdZh6R2HbB7uum5qLHrl272LZtG7NmzWLw4MEMGDCAZ555hgcffJA+ffrQoUOHJi9TRERCFz8tw9CcBjxhrZ1pjJkD3Adcwb47Rd8P9EFjzI3AjQCFhYUNXoA64ogjmDFjBkOHDqV///4sXrxYIx2kXnVzK9o80yYBTe70DFagmwIiscyUlJSIrDMRRDq/4unCAeyLJ5SY6jseQl1msgpHbgXb6d0c90csyupYCUduRePCku8+CaVjonXr1tx///28+OKLPPPMMwwfPpzXX3+d8ePH06lTpwY/v27dOq688krKy8u5+eabsdYyaNCgoONJZo3NLX/543Q6qaiowOl0kpubG5EYE53nol2HDh3YsmULxhjatWuX9J33jc2tWNRfVVVVOJ3OJt3sFiq1ncIr1ueLwUhPT49IJ3Nz7DjyPIIAQmtv1KdubjX2Rtbm1C5NRJEof5u6zEQstyIllHJr8eLFFBcXc9ZZZ1FYWMikSZP4xz/+wZNPPsnvf//7MEZZv3Cd7wTS1O0T7+eK0dhm4RDsNkhJSeGJJ54A4JZbbiE1NZU77riDIUOGsGjRIm655ZZwhikiIo2U0FPo+0yT/xHQ0xhzpLW2HPgT4ASGNLQMa+1T1tru1trujR3NdM011zBz5kzefPNN+vfvr2cNSr2Cya1wiuZUmm63m7KyMo2Ij6JY51ckRDKPNLVs4yVLbiVKudSccjNRciuc+6SwsJBhw4bx3HPPMXLkSFq2bMmYMWMa/Jyn876goIDVq1dz9tlnM3bsWF588cWQY0pGoeaWZxroeL4Y53a7cTqdcVGmdejQgfbt2yd95z3Ed7kVSlmVKHVksovn/IpX8VQWhiqSjyAINreaU7s0nsVzGa1yKzw8MxhNnToVgNzcXAYMGIDT6WTKlCkRX388HuvxnlvxuM3Cadu2bcydO5chQ4bQrl07AM4//3xOOukkpkyZ0uBsOCIiEhkJ24FvjOkBnL6/E3/z/p8zjTGHWmsrgAnAacaYYZFY/7Bhw2p14peXl0diNSJB84zGicZUsJ47UZ1OZ8TXJcnLk0eRuCkqmseDxIdI5lM4KTfjj2fawXB1Tt5xxx1UVVWxceNGxo4dS4sWLQK+f82aNd7O+5deeolOnTrx/PPPezvx58+fH5a45D8800DH83HoGampcw7xCKX+SJQ6UqSuZCoL47HuUbs0PqiMTm5z5szh559/5swzz/R2lAI8/PDDpKSk8Pjjjzfq5o1///vffPTRR0HF8N5775GWltYsbsYMl3CfI8abxx57DICxY8d6/2aM4fbbb2fLli08//zzsQpNRKRZS8hWuTHmQuD/gHK7z4/AauAMoI8x5uj9I/FfJoLPaxo2bBh33303b7zxBqtWrYrUakTinudO1HgeuSbxL9nvaJboUj5JvCgsLOTuu++mZ8+ejRp9P3XqVEpLS7nvvvto27YtsC+fJ02aREpKinekjjQvkRypKc2P6khJVCoLpTlQGZ3c5syZA0CrVq1q/b2qqorMzEycTifffPNNg8uprq7m6KOPbvL69+zZQ9euXfnpp5+a/FlJXu+88w6/+c1vDrhBoWXLlhhjeP3112MUmYhI85ZwHfjGmDOBZ4FR1tr1xph8AGvtS8BzwLHADGPMY8BNwNpIxWKt5Y033qBjx46ce+65kVqNSNyL9J368TyFnIRPcx3xofyOjEjkk/aVBOuBBx5gxYoVpKWlYa0N+N5JkyZx+OGHM3bsWNatWwfAjh07uPrqq8nMzPSOjpDmJZiRmsk01bQEx1+91VzbXJIYApVd8ThqXZKT2+2mtLQ0JnWoyujkNnv2bFq2bMnixYsZN24csG80fY8ePSgrK2PIkCEcccQRDS6noKCAjIyMJq+/RYsW5OXl0b59+yZ/VqLPWovT6WzwHDJUTz75JE6nk8suu4wdO3YAsHbtWq666io6duzIX//614iuX0RE6peIrcGuwLvAr8aYw4DpxpinjTEvAt9Za28D7gM+Ac6w1n4WqUCWLVvG2rVruffee0lLS4vUakSaPU0hJ8lM+Z04tK8kFI3Nn/bt2/PSSy9RUFDAlVdeycsvv8xll11GcXExCxYsoHv37lGKWBJdMk01LcFRvSWJSGWXxAOXy0VJSYkeEyhhd9BBB7FmzRpatmzJnDlzuPHGG+nRowe7d+9myJAhTJkyJdYhShyJVluue/fuLFiwgOLiYi677DJefvllrrrqKu9j3XTDh4hIbCRMB74xposx5ljgH8B7wCj2deR/ADwNfAo8a4zJt9austY+Y639OlLxWGv54x//SMeOHbnuuusitRqRiKs7MieWd5r7oynkJB415VgJNHJb+R15jd1XDY2w175KLtGu75qSP23btvV24o8YMYKdO3cyf/58jjvuuLiqnyU8IjVSPpGmmo7H9mcyCEe91dxmn1Eu1haLmTyiWXZpf4s/WVlZ5Ofnh/yYQH85lmxlq46lpvnNb37j7cRfvHhxyJ33nlHa2v7xI1zHRDSvQXg68Xfu3MmIESO8nfeex7qJiEj0pcY6gMYwxlwCTAR2A18As4AaoMha+9T+9+wAOgEV0YjJM/r+6aef1uj7EDQ0BVDdZ+9IeKSkpJCSkgL8525Oh8NBbm4uZWVl3kZmTk5Orc/V1NR4PxftWHWcJb/U1OCqpOrq6oCvBbvchtbpOVZqamoOOFbqrrO0tJSysjLy8/PrjSc9PT3sMTY3gfbznj17/O4r38969lNKSgq5ubkR21eRyPV4XG4kVFZWBnzd3/6p73NOp5PS0lKqq6tp2bJlWOJrKJbGTnNZUFBAQUEBK1eu5MsvvyQ/P5+jjz6akpISMjIyAm4HlSf+BTPNaCR54vGMqklLS/NenAslVt/PNuViX0VF4NMofzEF+znfz3qOx6qqqlqdJfG2z6It2DZOamqq97W6ZUJTy/S6dWOy27t3b6PaDMnM97irr3yK9DqhdtkVqXKgoqLCb9kTaL2hlHnxJpHyORLt1YY+E2ybyjfW+s4ZU1NT6y1bG4on3trs1lpvm9S3Xe05lpp7mzRQe71FixYUFBTwzTff8NRTT5GSksLtt9/u/VxT2/qlpaU4nU5SU1P91tXNfX+EItC287e/nE4nJSUltY6JpizX97Vo1CsFBQUAXHTRRSxfvpydO3dy4oknctRRR4W03GDP30VEZJ+4b60bY04H/gJcba0tMsZMBwZZa//HGONbg53Dvg78LCLcia/R9+HldrtxuVxkZWXpGV8REmgbexqSnn89F0s0wlSSneeO6GCfo9mUY6XucSbR1dh9pf20T6LVy9Zab7xNkQj1Xfv27b3TFXpGb+iGtuSTrGWP2+2mvLyctLS0BssSz0jbRJgtIF54Rm9GuqxO1vz0JxHqhmhK9v0frrLHU96pDJO6/JUpoRxb8dhWV9kZnIMOOoi77rrrgL/7nt80ZmBTspfViSgrK4uamhq/x4S1NqTrUZF05pln4nQ6lU8iInEg7jvw93vYWlu0//9/AGYaY9KttRUAxpgRwM3AYGvt7mBXUlJSwmuvvQaAw+GgQ4cO3krUWuttNK1Zs0aj78PI82wxoN5RDhI6zyh7OHAbe0be+/6u/SDNgcvloqysDCCoEWVNOVbqHmcSXY3dV9pP+wSqM+KRb7xNGZ1gjEmoixKe/GxoFIMknmQtezzPsU5LS2vw+zkcjoQ6HuOBZ/QwRLasTtb89EfnQrUl+/4PV9njKe9AHZhSW0VFBQ6H44AOulCOrXhpq+/Zs4elS5cCUFhYSNeuXWMWS7zbs2cPLVq0aPT7Pfu4vLyc7OzsBm8OSvayOlGUl5d7ZxA1xpCZmen3BgyXy+Vtx8XbvlM+iYjEj0TowF/DvufbY4xJATKADkALoNgY0wk4DrjKWvt5KCv66quvuOiiixr1Xo2+Dx/dqRt52sYiB8rKyiIlJUUdBiJ1JFqdkWjxijQXnovNqmcjIyMjA4fDobJPJA5oFhGpj7WWCy+8EIB33nknbI+IjJe27zfffMOAAQO8v7/55pucddZZMYwoPu3Zs4dPP/2Utm3bcvjhhzfqM559u2nTJowxdO/ePZIhShhYa7n44ovZuXMnr732mncWNX+ysrJITU1VO1lERAKK+w58a20NULL/VwPsBnZZa4uNMdcAJwAPWGtL/C2jsQoKChg4cCAAP//8MwsXLuT444/n1ltv9d49tz8mjj/++Kg/CzxZaZRD5IVzG8fjdG0iweSl7iqWZOHJ/7y8vLCUy4lWLyfaSPpICPYxAiKB+E4JHUzZ4hnZqvZi6Opr5yRaWS2SzBozkt/tduN0OoMuUyXxrkUsX76c999/3/v/xg4Yaki8lP/5+fmceeaZAPTp04fTTjstxhHFpxYtWtCxY0fatm0L/Kfdnpqa6jePPec3oT5/XKJn+fLlrF69GofDwQUXXMDrr79OmzZt/L7fGNMsrkc19XEQIiJSW9x34Puy1lYDpcaYrcaYh4ALgOvD0XkP+6Z8euKJJ7y/z5o1ixEjRjB37lwWL17sPSErKyujpKQEl8sVF41mkWiKl+naRHwpL6U58+R/SkpKs7gIIAcK9jECkviWLFnCvHnzeOSRRxoc6dNUvlNCN/ebZGJN7RxJJi6Xi1tvvZVzzjmHQYMGxTqcqHE6nSpTQ5RIZaG1lgkTJtCxY0cAJkyYQO/evZOqA6tLly689NJLsQ4jIbRr1877f08ep6amNnjulp+fH+nQJAystfz5z3/msMMOY+bMmVx22WVccMEFvPrqq94yoLnyLbdV94mINF1CdeCbfS3dNOCs/f/+zlr7VaTWN2zYMABGjBhBv379WLJkCVlZWXEzXZVIOHlGBHim4/SnMfnvcrmYNm0agwYN8t5lLBIOnjytO6JP5XJi8rc/E8327dt5/vnnGTJkCIWFhVFfvyfvdULcPFlrcbvdZGdne3OhsrKS+fPnAzBo0CDS0tJiGaJEwK5duxg7diyzZ88GYN26dbz99tth7cTXlNDBWb9+Pe+//z6jRo0K24xtwbZzrLUsW7aMbdu2ccMNNyRVx5FER1FREevXr2fEiBFhyR+Xy0Xfvn158803mTFjBuXl5d7rLomoKTOVZGdnU1VVpTJ1vx07dvC///u/lJeX1/t6ZmYmY8aMqXU9IZHO+ZYvX866deuYMWMG1lpGjhwZ8ij8RJuBQOoXi3O3ZDnvjlee43369OmcddZZLF26lEsuuYQ+ffrw+uuvN9g+T+b9k0jltohIPEqoDnxrrQUqjTF/AtaGu/N+06ZNnHDCCcC+qWxuvPFGRo0ahdvt5oYbbqBv37689NJL5OTkeBta+0JCF0MkJqqqqvyewNXU1Pi9aFhTU3PA38rKyigtLSUrK8vv3exut5u0tDS/r5eVleFyubjyyit5++23efLJJ3n11Ve9dxv7+1x98fiKp8dV1I217kl0PMUaiurq6lq/1/2eqan1Vx91P1f3NX+fAwK+5lmuJ09ramq8+VRRUUFKSgoZGRm43W7cbrf3czU1NQGXG4i/7+J2uykrKyMnJ6fek6tA2wACf89EEuz39P1c3f1ZXV2Nw+HwW641Jkf8vRbu7b57925gX+d93759+fbbbxk/fjzXXHMN48aN45hjjjngM77HUXp6ethi8UyjmWwn++FUVVUV8PVg90dlZeUBf/OdFtOz3PqmDgx2nXW/S3l5ubdM2r59O//85z959NFH2bJlCwD33Xcft9xyC1dccUXAaRzDmZPNTUVFxQF/8+3UCeaClcvl8tspNHnyZB599FH27NnD0KFDOfnkk7nnnnvo2bMnU6ZM8T4SrLGxelRWVtbKg8ZMCR2q+o4hX4kyo8SuXbuoqKjg448/ZuDAgezdu5ePP/6YSZMmYYyhZcuWIS2/vumSA7WfS0pK+Ne//sXkyZMpKioC9nXETpw4MSzxRFOk2pbi39atW4F9N6Nce+21lJaW8sEHH3D77bdjjKFLly5BtTlee+017r33XjZs2MDgwYPZtGkTw4cP5/PPP6d3796ce+65Yf4mTSvzGsu33HK5XDidTqqqqrxlvb9yKxplarzztJ+3bt1K//79+eGHH/zWkS6XixdffJElS5bQrl073G43+fn5cT/yHvY983z8+PEUFhbSr18/rLVMnDiR8ePHc/rpp9OqVauglltWVkZZWRlut7ve7aYyz7+G2hv+yoJgPxeIZ3r8YDMHg5YAACAASURBVMrRQOc0VVVVfm/a9cwAUl1dXet6tuf8pLq62u9n6y637nlNJM4hrLVUVFTUO/V6oO8J0T+n+fXXX3nggQfo0KEDffr0YdeuXRx55JHMnTuXq6++mgsuuIBXXnnlgE583/ZNffsnEt8jEvncED3uTkQkNInauvs/6+k5D6PMzEzv84W2bNnCzTffTEVFBePGjQPghhtu4PLLL+ef//yn7hwLE934EJpAU8ilpKQ0qTPZ94KDv881tExP5/2KFSv4/e9/z4wZM+jTp0+tTvxkk0jT+IUiXr5nfXfvpqSk+L1YkZqaGvYLGZ4LdWlpaZquPET17c9I5Fok8gD+03lfXFzMCy+8wL/+9S9mz57N7Nmzuf7667nzzjtrjcj3/W7BnBxH6qJcIl3sC/aiQjRHoHv2s++NGuGcOrDud0lNTcXtdrNgwQIeeughtm7dysknn8zDDz8MwCOPPMKtt97KlClTuOeee7j22ms1Ij8KfKefD+a8ob7p63ft2sVtt93GvHnz6Ny5M5MmTaJLly7Avk79O+64g3HjxtGrV6+gRuKnp6cH1WEeSid7stw4UlFRwerVqxkxYgQFBQVcfvnlPP3006SmpvLggw8Gvdymls+eEffjx49n48aNFBYWMnXqVDZv3sz06dMBmDhxYtDxNAeJVCdGkqfzvnXr1lx66aXMnDmTsrIyxo0bh9PpbHIb2OVyeTvvL7roIubNm8ehhx7K8ccfz+TJkwEi0oEfSLBlnm+5lZqaSlpaWqOfa58oNyVF0vbt2+nfvz/FxcUsW7aMU089td73ffjhh1xxxRX07dvX24mfKMfnW2+9RVFREVOnTvXu89tuu42xY8fy1ltvceWVVwa1XM8Nu/EyAj9SnbfJIthtE4lt2tB5d1PODaI1JXqiTL2+YsUKNm7cyJQpU2rNsNKjRw/mzZvH4MGDufjiiwOOxE/mUeqJVkYcdthhfvsqDjvsML7//vvoBiQizV7sW3xBiETnPUDnzp1ZsGABCxYsYNWqVQwYMIDbb7+dKVOmMHToUGbOnMlbb71Fv379cLlckQhBpEmysrLIzc0NSyPPM7In2JsqfDvvp02bxgMPPMDixYv5+eef6dOnD9u3bw85xngUzn0Qz+Lle8bDSGPPtvB3EukZoe87E4DUr779GS+51hDfzvtFixZxySWX8Le//Y3169dzzTXX8Nxzz3H00UczZswY70joRPluEhrPfva9SB+pfV9VVcVzzz3HqaeeyujRo2nVqhVz585l+fLlnH/++Zx//vksX76cuXPn0qpVK0aNGsVxxx3Hs88+2+CsBBKazMxMcnNzg54que7nly5dSrdu3fj73//Otddey7Rp07yd9wDHHXcckydP5t///jfnnXce27ZtC8v3kMb5+OOPvZ33S5YsYcqUKYwcOZJp06Zx7733EqHTVy9rLa+++iq9evWiX79+7Nq1i6lTp7Ju3TquvfZaJk6cyMiRI5k+fTr33HNPxOMJJ7Wros+3837+/Pk8/PDDDB8+nBdffJEnn3yyyXWZZ9p8T+f9smXLOPbYY9m9eze//vqrtxN/1qxZkflCEeQZVR8PnamJoG772V/nPcBpp53GwoULKS4upm/fvglzPcFay6RJkygsLGTQoEHevw8aNIjCwkImTZoUdBkcD+fCzZm1FqfTmVB1qIdnFLTv9b5gz0+idU6bCOfO1loeeeQRCgsL670xp3v37ixdupSff/6ZCy64wG/7vL79I7Hx/fffY62t9+eHH36IdXgi0gwlxu2rMZCWluZ9puTtt99OmzZtGDZsGMYYhg8fTr9+/TQSX2KuurqaFStWsGjRIt58803atWvHKaecQrdu3ejWrRtdu3Y94E7aXbt2sXbtWjZs2MD69espKiri559/9ruO1q1b07dvX6644gp69uxZ7wj8r776iqFDh/LBBx/w5JNPYozhhBNO4O6772bx4sX079+fPn36sGLFCr93nHpGDD388MOUlZXRv39/rrjiinqnoY6l3bt3s2rVKt555x1WrVrFzp076dq1K926deOUU07htNNOo23btknX8K5v6tZANmzYwJ///GdWrFjh9wQ3LS2NI444gmOPPZZjjz2WE044geOOO4727dt7t19xcTGbNm3ik08+YfPmzWzevJnPP/8cp9Ppd90tW7akc+fOdOnShS5dunDUUUdxxBFH0KlTpwM63a21VFdXU1VVhdPpZMuWLXz//fd8//33fPvtt/zwww98//337Nixg3bt2nHcccdx7LHHcswxx9C1a1c6d+7sPSb27t3L5s2bWbt2LZ9++inffPMNX375JW3btuWee+6hd+/eSZcXe/bs4fHHH2fOnDn89re/PWDEuT/WWpYvX86DDz7Ipk2b/L6vbdu23HrrrVx33XWNGhWwZ88ennjiCWbPnt2keDzcbjc1NTUB17V9+3ZmzpzJtGnTKC0tZfz48cyYMYPrr7+es88+m379+vHwww9z3333MWnSJJ577jmee+45evfuzYABA7j00kt10S0GysvLWbNmDStXrmTlypX88MMPDBs2jDFjxtCiRYugl7tjxw7vMleuXMmPP/7o9715eXmceOKJdOvWjZNPPpmePXvSrl27JpUL1lq+/PJL7/pWrFjBTz/9RPfu3Xnsscfo3r07aWlpvPnmm0yZMoXWrVszY8YMzj//fM4991w+/PBD/vznPzNq1Cj+9Kc/MWDAAAYMGECPHj2C3gaybzrKt956i0WLFvHWW2/RunVrjjnmGG99cdJJJ9WqLxqjpKSE9957j5UrV/LOO+9QVFTECSecwOLFiyktLcXhcLBx40ZefvllPv/8cy688EIuv/xyJk+ezN13302vXr0YP348Q4cOJS0tzVuffvzxx9769KuvvqJz584MGDCA/v3713rOcLS43W7WrFnDP/7xD1555RVuuukmRo8eHfU4gvXpp5/y1FNP8eyzz9KmTRvvKFH4z0j3adOmeevLgw46KKzr97SfJ0yYwPr16+nYsSMzZsygb9++tW4eMcZ445k+fTqff/45o0ePpl+/fnE/MqoxM/Ns27aNyy+/nA4dOnDvvffSrVu3aIaYNKy1PP/889x00020bt2ap556ismTJ/Ppp58yYcIEAO8NYI3JZ09+3nfffRQVFXHSSSexbNkyunXrxoMPPsjXX3/NHXfcQXV1NZ06dWL48OFs3ryZ+++/P6RZrqy1bNu2jU2bNvHRRx/x2Wef8dlnn/Hdd99xzDHHcPbZZ3P22Wdz2mmnBT0ifseOHSxevJhFixbx73//m5tuukkz3ATgr/08cOBAv48DSU1N5cYbb2TevHlcffXVXHTRRbzwwgucc845EYvT7XaH3E5/88032bBhA1OnTiUtLY3Ro0fz+eefc8011zBmzBjuvPNOrrrqKkaPHs0555wTsB1oreXnn3/m66+/5quvvuLLL7/0/n/Hjh306NHDe36Rn58fUtzJyu12s379ehYuXMi7777Ll19+ya5du0hNTaVdu3aceOKJ/O53v+Oqq66idevWtT77yy+/MH/+fN566y0++ugjtm/fTlVVFXl5ebRr145jjz2WM844gwsvvDBq1612797N6tWrWblyJatXr+arr76q9wa3qqqqgI8QaUhaWhrp6en15meHDh04/fTTOeecczjrrLPo2LFj0OsJpKGp110uFyNGjPDWL57roD169Ah7e6uukpISlixZwrx58ygqKuKuu+7iscceY+nSpQBccskl9O3bl86dO9OzZ0+WLl3KJZdcwtFHH+233vG9Pnb00Udz4oknHnB9LFystfzhD39g7ty5dO7c2Xve4lln3WNBRERixyTinYOR0r17d7tmzZpaf6uqquKcc87hhx9+4IsvviA/P59Zs2YxYsQIfve733k78ZOtU0aazhiz3lrbvb7XunfvbtetWxeW9VRWVvLGG2+wYMEC/vnPf7Jnzx5atmzJBRdcwE8//URRURElJSXAvin6TjzxRE4++WR+/fVX1q9fz3fffedd1uGHH84pp5xSqwPBWlsrn7/55htee+01Kisrad++PVdccQUDBw6kZ8+eWGt5/PHHueeee0hPT+eBBx7gtddeY/ny5d7Pz5gxgy5dutC/f3/atGnD22+/XasT31rL0qVLmTBhAuvWraNjx460b9+ed999F2stxx9/PAMHDmTgwIFBnRRZa9m9ezd79uyhQ4cOTX5GvafDfsWKFaxYsYKioiKstWRkZHg7XzwXhjwnTm3atOGUU07h5JNP9nYcd+rUiUMPPTSoCwKBcgvCm18ewT7f3NM59PLLL9OyZUuuvPJK70lX3QsiTqeTL7/8ks2bN9e6iSQvL4/OnTuzfft2iouLa/39qKOO4rDDDqt1Uc93udZa9uzZw9atW/nhhx/49ddfa8XXsmVLqqurqa6uprKyMuBorpycHNq1a0e7du0oKCjgl19+4euvv/aOpoZ9x9iRRx7J7t27vc8L9Wyf3Nxc3G431dXVOJ1Ounfvzv33388ll1wScp2xe/fusD2/Npiya8+ePUyZMoXHHnuM3bt306tXLzzvGzZsGHfddRedOnU64HP1He99+/b17j/ffblp0yaKior45Zdf6NixI3fffTfXX399vRdG9+zZw6OPPsqjjz7K7t276d69Oxs3bsQY453Kvr54PDZt2sSsWbN44YUX+Omnn8jLy6N169a0atXK+2+rVq34/vvvWbp0KW63m86dO1NRUcG2bdto0aIFp59+Ou+++y4lJSW0aNHCe+PTkUceyYwZM1i4cCHbtm0jPT2dCy+8kCuvvJK+ffsmzMW28vJyiouLyc/Pb3SHd7TqxfpUV1ezevVqb9n9wQcfUFFRgTHG25H6xRdf0LJlS26++WZuvfXWRn2vHTt2eJe5YsUKvvrqKwBatGhBjx49OPzww72dZnXLvF9//ZWioqJa9cXBBx/MKaecwoknnshvfvMb8vLyyMvLIzc31/v/1NRU1q5d613nzp07ATj00EM5++yzufrqq+nduzcA8+fPZ8qUKWzcuJG2bdvy448/ctZZZ/HCCy+Qnp7OQQcd5O1QmTlzJq+//jqVlZW0a9fOW9f27NmzVtxut5sff/yRb7/9lm+//ZatW7dy8MEHe+u2Dh06RL3DIlButW3b1o4YMcL7u2+svvsnVJ722N///ncWL17Mnj17aNGiBRdccAElJSV89tlnB9QXRx11FIWFhRx88MEUFBR4//X83ze/ioqKcLvdZGRk0KNHDy6++GJGjRpFSUkJf/rTn3j11VfZunUrubm5dO7cmY8++ojc3FwGDhzIddddxx133MHatWs59NBDqf7/7L15WJTl+/7/moGZYd8REAFRFERFEXHDXUrcS01zzb00tSxNszQxNS3TcktLDbe03MJ9y3BJVFQQFzRlEZF9G3YYhvn94TH3h4EZNN/17vP5/jyPg0Nktmee537u+7qv87zOq7JSZz21srKiWbNmeHl5ERMTw507d5BIJHTq1Inhw4czZMiQ5ybzqxNld+/e5c6dO6SmptK4cWN8fX1p3rx5rURgVVUVly9fZu/evezdu5cnT54gl8txcHCgpKSEuLg4FAoFJiYm/3Wx9POOraqqKn7//XciIyORy+UMHDiQ0NDQWudNo9GwcuVKvvzyS0GIDhgw4D8+To1GQ3h4OEuWLOH69es4OTkxbNgwVqxYgUwmQ6lU6o15NRoN3333HZs2bSI5OZl69eoxbNgwgzGFVCrF1dVV3EPu7u4GY8CCggISExOJj48nISGB0tLSWvOZ9v8ymYyioiIKCwspLCzU+d3ExIQpU6aI+LGiokL0wK0ZR1dWVpKenk6PHj14/PgxxsbGlJeXM3DgQD799NM6q3u1KCsro7Ky8h9vi/RvxPN/BU+ePGHKlCkcO3aMwMBAhg8fzooVK8jLy8PBwYH09HTGjRuHlZUVGzZsEAKxgQMHivfIysoS88CdO3f4448/uHnzJpaWlsLBUDuXaQmMe/fusXz5ch49eoS7uzvJycm4uroycuRIce3Lysp0/q3LQaakpIR79+5RWFgo/ubo6EiTJk1wdnYmMTGRmzdvivm1Y8eOdO/enW7duuHj44ODg4PBMZ6amsr+/fv5+eefuXTpEhqNhubNm6NQKLhx4wYeHh7MmzePiRMn/q9aF/+tsaVUKjl58iS7du0yGD/XFQsnJSVx9OhRWrRowYwZM/jiiy9ISkoSv+sT9GjjVXh63eta8wsKCrh27RpRUVFcvXqVq1evkpeXx+bNm3Uq5/8q3n77bX766ScePnzI2bNnGTlyJPXr1yc1NRUzMzMaNmxIcnIyRUVFNG3alH79+lFaWkpBQQFKpRKlUil+z8nJEQImeEpoWlhYYGRkhEqlQiKRUFRU9I/uL/7NsZWfn0/NHG11qFQqcnJyyM7OJicnh7y8PJH7ycvLIz4+nuzsbJ2CAoVCgbW1NZWVleTn5+vkAxQKhchVpaSk6BDgUqkUW1tbsX5Vvy7w9NpYWlpiZWWFjY0NDg4OODk5Ub9+fTw8PHB1dSU5OZkHDx6QmJhIamoq2dnZFBQUUFpaipGREebm5tjY2ODk5ESDBg1o3LgxPj4+WFpaEhkZqTcf1axZMzGfavced+/e5fTp07i4uODs7Pxc57p6HrCgoID4+Hhat25N165d0Wg0Yv1VqVQ8evSIixcvolQqAWjSpAndu3ena9eudOjQQcchqi7UNbYCAgI0kZGRel+nUqmorKxk8ODB/P7774SEhHDv3j29uU6tiFYbx9jb2z9TNJOfn09WVhZZWVlkZmaK37U/qampXLp0iYqKCqysrJDJZOTk5CCRSIQo+sqVK2g0Gnx8fBg2bBiDBw+mvLycPXv2iDGnLz/24MGDWvkxKysrvL29MTY2pqKiQvyUl5dTUVFBZWUlY8eOZfny5c/Md1ZUVKDRaJg9ezbr1q2jZ8+eFBcXExcXJ/LI8HT+bNWqFQMHDvxL+4L/BFVVVeTn5/8t4ou6xpZEInlhY2eJRPJ/0oHjJf4+PCuef4mX+CfwksCvBn0EPjwlpDp16sScOXNYsWIFQC0S/39zP56X+O/g79jYXLhwgfDwcIMBQUZGBkeOHBGk/aBBgxgyZAjBwcGieqaqqor4+Hhu3LihU2Vva2tLYGCgCGLbtGmjNzBSq9W1gr6CggKOHDnC3r17BZnv6upKvXr1iI6Opm/fvrzyyit89tlnlJSUUFlZiZ2dHbm5uYB+Et/V1ZXjx4+zaNEioqKiBEFnYWFBbm4u7du3JzIykr179woyv3nz5vTs2dNgQkSlUpGdna0TaGdnZ4skj5WVFV27dqV79+50796d1q1b1/qudRH2HTt2pGvXrnTr1o327dvrJASKi4u5efMmMTExXL9+nWvXrnH37t1am0VPT0+xeWjWrJmo6HZ0dDQ4Lv4vEPg3btwgNDSUQ4cOYWNjw/vvv8/06dN1CLHKykqDCbHs7GxiYmL4/fffuXbtGomJiaK3vVqtpri4mLy8vBdqX6LtzWdkZIRGo0GtVlNZWflCVqxSqRQ7OzssLS1RKBRUVVVRVlaGWq2msLBQZ9Pj4eFBs2bNOH36NM7OzkgkElJSUggMDGTRokX06dPnLxP5lZWVLFq0iGXLlvH+++/z9ddf/8digL8ydymVSr799ltWr15Nfn6+SJD7+/uTnJzMl19+ydatWwGYOHEiH3/8Me7u7oIwrHm/16xU0o67jz76iLVr1wJPFf7W1tbcvn2bhg0b8umnn4qKfKVSyZo1a1i1ahX5+fn0798fR0dHwsLC6NOnD/Xq1WPXrl21jgeeupHs3r2bsLAwrl27hpGRETKZjLKyMhQKhbBAl0gkqFQqiouLUSgUODk58fDhQ1QqFe3bt2fcuHG4ublx8+ZNhgwZws2bN/n11185duyYIPQGDhzI4MGDsbKyIjw8nAMHDuiQ+U2aNDF4fdq1a8ewYcP+UaFgeXk59+/fF1W5WvGMdh7NzMwUSSqJRIK/v7+YR7t06WKQ+Pm3En6lpaUMGjSI06dPI5VKadGiBU5OThQWFnLr1i2Ki4sB8Pb2pkGDBvz222/Y2NjwwQcfMHPmTJ15qy7CvmPHjjg5OVFRUUFcXBw3b94EEMmuoKAgunXrVuv8FBcXExsbS2xsrFgvqpP6huDi4kKPHj3o3LkzXbt2xcvLSyQRjh8/Log8d3d3Zs2axdChQ9m/fz+zZs2iS5cuhIWFicpgLQoKCjh69Cj79u3TIfODg4PJysoiISGBxMTEOit4jIyMcHd3F2ubpaXl81+sF8SqVavqTMpUF3XVjKmqk5G9e/fmzTff/Ev314MHD1i6dKkOaT9gwACGDh1Kz549daqZCwsLuXfvnkjGVb+/srKy9JJQ2nhDe521FaLnz59n8+bNhIeHU1FRQYsWLejfvz/du3dHoVDw4MEDtm3bxh9//IGNjQ2zZs2iWbNmon2Clkhv3LhxLeeHe/fusX//fg4cOCDI/KCgIAIDAw2em/z8fEHaVyfK6tWrh6urKw8fPqxFoDVv3hw3NzfOnj0rSPtXX32VIUOG0K9fP+Lj4+nYsSMff/wxU6dOxcLCAltb22dek+joaP744w+mTJnyH1eTPyvhV/18NG3alClTpjB27Nhn9mVOTExk3LhxxMbGMmzYMEJCQmjevDnNmjX7S/eM1ip/0aJFXLt2TcQaWvHs3LlzCQ0NpaioqM4krqWlJSdPnuT777/n2LFjBuO+mvePkZERHh4eQhBTWFgoxD3Z2dnP/T2eBX9/fw4ePIiHh0edMWlSUhKvvPIKycnJSKVSKisradq0KRkZGSiVSgYNGsRnn32Gv7+/eE1ZWRmXL1/WEXgZGRmxceNGxowZ87d9h5r4T+L56sR4YmKiwfVCJpMxceLEOuOKmtBoNGzbto3333+fiooKPv30U65du8bBgwfx9fXl66+/xtPTk+XLlxMWFoa7uzsLFixg7dq1xMbG0rt3b8rLy7lz546OUMjMzAxLS0uys7ORSqVMmjSJbt264eTkVOsYVCoVBw4cYMeOHahUKhwcHMjKykKhUCCTyZDJZEilUp0xbWhukkgkmJiYCIKzqKiI3Nxcnf1g+/btqV+/PhUVFdy/f5+YmBidc2pra1tLZBUXF8fFixfFnlTrYOPt7Y1Go+HkyZMsWbJECFSrx6t/B9RqNfHx8WItqSlSrmtd/G8S+PHx8Rw+fJjDhw9z/vx5KisrsbW1xcXFhQcPHujEz4MGDXqmSOvYsWN88MEH5OTkMH36dCoqKtiwYQONGjWie/fuOuRa9XhVC0tLSx2hnKOjIyqViqioKO7fvy/mOHt7e1QqldjLrVixgjlz5vzl+Fuj0dCgQQMCAgLYtGkTHTt2xMTEhPPnz3P79m22bdvG/v37KS4uFoKolJQUzMzMUCgUYi1Rq9XCIa7m/rdBgwZ4eXlhbm7O8ePHUSgU+Pn58fjxY1JTU8X+Ys6cOXTp0uUvHb8+1DV3mZuba7RFFsbGxnz++ee88sorL/xZ+fn5hIWF8euvvxITEyMI4heFlpBv3bo1PXv2ZNCgQTp5l6qqKqKjowkPD+fSpUvcu3dP3Fv29vY0a9ZMtKbx9/evJXC9fv06ERERXL16lXv37pGenk5ZWRkqleq5SD7tntPW1pby8nKUSqXIp9WETCYjKCiILl26iPiwpkBFpVKxe/dupkyZQo8ePThw4MBzCyFVKpWYr6oTvNOnT+eLL76oFV+p1WpiY2M5d+6cEE1r4763336bjRs3PvMzX5TALygoYPjw4fz+++/88MMPYu3Ozc0lOjpa7LGuX79OQkKCzmstLS11Cmzy8vIM5g9rwtzcHHNzcyEWrE7aDxo0iH79+gnBRHp6OkePHuXXX3/l6tWraDQafH196d69uzjPdTl+lJaWijYzOTk55Obmolar0Wg0VFVVCedAtVpNRUUFJSUl9O/fn927d9cpSCwvLxfXdsaMGXz11VdiP/nkyROxZ9G6gGVmZop9wbBhw/4xMj8hIYHhw4dz7do1IQjR/rzI570k8F/in8JLAv8l/g28JPCrwRCBDzBhwgR2797N7du3xYa4Ool/6NChZwZGSqWS69ev06NHj/+nK/bj4+MBaNy48b98JP9d/CdERXFxMfPmzWPdunXI5XKDyUczMzP69u3LG2+8QXBwMEZGRoJ4uX//PikpKaSmppKenk5qaippaWmkpaVRWFhIx44dWb9+Pf7+/gZt6kCXwH/8+DE3b96kadOmomKxuLiYw4cPs3fvXu7evcu0adM4c+YMR48excnJiYyMDIYOHcr69et55513OHjwIPCUxG/ZsiW9e/emXr162NnZCSJv/vz59OzZkxkzZnD8+HHt+SQoKIihQ4fSpUsXLl26xC+//EJ0dLTBYzcyMsLBwUFnk25ra4tGo6G0tJSSkhIuXbrEn3/+CTxN4HTp0oUuXbqQmZmpl7D38fHB3t4eLy8v5HJ5rYRZSUkJaWlptc55eno6lZWVovrM2dkZqVTK48ePSUhIID4+vlZiu3qlWnXCZ9SoUf9rCfznIe6rv6f2dUqlkvDwcG7fvs3du3drVSrK5XKcnZ1FosXe3l7n9+qb1ZqiE5VKRWlpqajUKS8vF9dfrVZjamqq82NmZoapqakga6u/rxZVVVXk5uYKgYh2c6f93dnZGX9/f/z9/fHz86NVq1ZCIPPbb78xbNgwTE1NxVqSlJT0l4n81NRURowYwfnz5/Hy8uLhw4e8//77rFq16j9aU+qauxo1aqRZsmQJAPfv32fNmjXk5+czaNAgPvnkE/z9/VGpVPzxxx/4+/tjbW1di8gfO3YssbGxdRL3WuTk5DB27FhOnTrF5MmTadGiBaGhoQDMnj2bgwcPivcZMGAAO3bsEMczZcoUli9fzoULF+jZsyfnzp2jYcOGVxVUigAAIABJREFUrFq1imPHjonjGTduHHl5eRw6dIiKigr8/Pxwd3fn+PHjuLq6MnDgQCorK3n48CH379/XcVaApy4OY8eOZfjw4aSmpvLtt99y8eJF4Kn7xqpVq+jbty9yuZzffvuNffv2cejQIeGaMGDAAAYPHoydnR2//vorBw8eNEh6qNVqSktL6devH5s2bapFvr4INBoNhw8fJioqSlTIPXz4UMxtUqkUZ2dnnUSng4MDCoVCqPzj4uJ0Ktq1hH5NUVRdc9fzzFsajYaLFy/i4+NTp8ipOrR9ds+cOUP//v3JyMjg2rVraDQaXF1d6du3L3379kWlUjF58mSMjY1ZvHgxp06dIjw8HBsbG9555x1ycnJqEfZdunTB1dWVoqIi4uLidNaL9u3b07VrVwDOnz/PlStXxPnREvpNmzYlMzNTrBMZGRliza6srMTExIR69erh4OCAra0tNjY2WFhYYG5uTuPGjXFyckIikejMzyUlJWzevJnr16/j4eHBjBkzGDFiBMnJyYwfPx6FQsGbb77J/Pnz6dKlS53xallZmVjfL126JIhuNzc3qqqqSE9P586dO8TFxeHh4YGfnx+urq6YmpqSlpZGfHw8iYmJLyS0+qsoKip6rrGl0WjIysoSFcHVf/7880/S09Of+/5Sq9WsWbOG+fPnI5PJGDx4MMOGDSM4OPiZiRyFQoFGo+GPP/7A1NSU1q1bI5VKUSqVOsSDra2tEAhqCbE9e/bwyy+/8OjRI2xsbBg1ahStW7c2WN304MEDjh49KsbzzJkz8fb2Fo9XT0pqq+7d3NzE3xITE0VlfPVKppowNzcXQkStGLF58+bIZDJu3LhBUFAQGRkZOtW4d+/eJSEhgY4dO/LGG28wYMCAWjaiQ4cO5eLFi8TExFCvXr1n7q8iIyPp3bs3hYWF+Pn5ERYWpkPW/lU8K+FX/f/Nmzfn4MGDNGnShPz8/Drf18bGhoqKCpYuXcpXX32lc5+4u7uL8+fj42NQGF5SUsKmTZsEQThz5kyOHz/O6dOnmTRpEhqNhi1bthASEsK6deuwt7ev83hSUlL48MMP+eWXX+o89oYNGxq837WJcE9PTywtLcnLy+Phw4dER0dTVFQkiFAHBwdsbGywsrLC3NwcIyMjSkpKKCwsRKlUihhLmyjWViL+8ssvYm6tiZSUFLp3787jx49RKBQcPXqUW7duMWvWLJo3b84rr7zC1q1bRZzQqlUrzp07J9YvqVSKv78/bdq0ISoqipiYGCZMmMDatWufS5yvUqk4ceKETjxfF54Vz1ePuaoLZGoS41pSWx/KysqQyWQsW7aMmTNnPtP5q3rVfefOnRk1ahShoaFkZ2czffp0pk+frrMvvXz5MrNnzyY5OZlp06ZhZWXF9u3bxRg2MzMjJSWFy5cvk56ejkKhYMKECcybNw93d3ciIiLqPB4vLy9mz57Nzz//bPA5z+oTXHM/qHVTcnR0xNzcnOjoaM6fPy/WdysrKzp27IirqytWVlbI5XKKi4trCRmdnZ2FU42np6fez9YS+UuXLhXx6osQ+RqNRjh8aMfBvXv3dMR05ubmOuegrnWx+tiyt7fn1Vdf/VvzUffu3WPr1q2ipQuAr68vgYGBXL9+ndu3b+vEz76+vn/p/fPy8pg3bx6//PILrVq1Yvr06Xz77bfk5ubWElrI5XIqKioAxO81K2kBAgICcHd3JzExkXPnzlFcXEy7du2wsrLizJkzwFMSct26dc8UaFXHjRs3CAgIYP369SQnJ7NixQrCw8N15rGCggKOHTvGpk2biImJqfUelpaWuLu74+bmhru7O15eXjRp0gQvLy88PDx01sW7d+8SGhrKgQMHsLe3Z8SIEUgkEvbt20daWlqdbgX68PjxYyFU0aKuuavmugjw2muvsXfv3uc+b7/88gsbNmyoRdibmZnRrFkz2rZta1CQZmRkhI2NjbjP69Wrh5OTk4inqx+DdlwYgqEc3Iu+rqSkRLQ7SEhIID09nfr169O8eXP8/f31ipm0qKys5P79+0Lwu337djIyMp45t//4449MnTr1L5P3oEvggy6JP23atDpzDkeOHGHChAmo1WokEgmFhYU0adKES5cu1WnF/iIEfmlpKa+//joRERE65H11yOVybty4wfTp07l27RqtWrXC29sbBwcHKisrRbvE9PR0bG1tdZyxtPnDkpIS8vLyyMjIEG0VtftlIyMjOnXqJCrr65rf1Wo1ZWVlouWKvnv+eWFubo6FhYVwNtL+XlhYyMmTJwFo1aoVx44d00t6azQaZs6cWYu8rw4jIyOx3ykrK8PBwYFXXnmFW7ducfv2bZGnHTx4sMExLJFI6Ny5s87+oi4cOHCACRMmUFVVxWuvvUZeXh4XLlyo5fAQHBzM66+//lzr6UsC/yX+Kbwk8F/i38BLAr8aZDKZxlCiw8zMjOzsbLp27cqhQ4fE38PCwpg0aZKOnX51aDQaCgoKWLNmjahYfO+990Tw808Q+c+6pv/kZ16+fJnevXsDcPLkSTp06PCPf6Yh/Lc/UyqV1plMNiQOCQ8P54MPPuDRo0dMmDCBkSNHinFUUFCgY39WWloqSCXtT80qDBMTE5ycnLCwsMDR0RFjY2PS09OFlaWW6OrcubPe48nNzSUrK4u1a9eye/dukejVVo/7+vrStGlTvL29yc3NJTQ0lIqKCjw8PLh//z52dnY4OjqKwCY1NVUktrSV+K+//jq2trZ89NFHjBgxgnXr1vHVV1+hUqmYOXMmgYGBnDt3jpMnT/LgwQOhau3fvz+dO3cWAduzzs/du3dJTk4W58fKyoq33nqL3r17C9JY2zdMoVDQrl07unTpgqenJ+bm5vzwww/8/vvvBq95ddja2mJtbS2Il9LSUqHeTUpKQq1Wo1AoCAwMpFu3bnTu3BlHR0cePHjA/fv3uXfvHgkJCcTFxelLBNYZIAQEBOgdX3VVvINhG3x4mgA0BG2v9xUrVnD8+HGsra159913mTJlClKp1GCCIDU1FZVKxbZt2/jxxx8pKChALpeLfvU5OTnY29tjZ2eHtbW1zsbU2NiY1q1b633fjIwMg5uHsLAwg99FS7oaws6dOw0+duHCBYMb4r1799b6m9beT6PRsHXrVgoKCli5ciXJycm0adOGuXPn0qtXL4MW3qdOnWLUqFGUlpbi6upKQkIC9erVIzMzk6FDhzJt2jR69Oih97XPEmPIZLLnTsr07duXuXPn4ufnR1paGgcPHuS7774jJSUFKysrxo8fz1tvvYVCoUCtVvPNN9+wY8cOXFxcmD17Nm+++SZlZWV6x0hiYiK9evWioKCAJk2akJycTFlZGZ6enmRmZlJaWsqqVatwcXFhxYoV3LhxQxxPVlYWEyZMoLy8nPHjx9O5c2f+/PNP1q5dS2FhIePGjWPGjBl8++237NixAysrK4YNG0afPn10rF9rwtvbm8mTJ1NYWEhGRoZo6xEbG8uOHTtEotzBwQEzMzOePHlCWVkZtra27Ny5U8xPKpWKa9eucfbsWS5evEhRURFWVlb06tWLPn366PQN1N4H8FQ4cvbsWdFD89NPP2XWrFkG17e67un8/Hw0Gg3z589n48aNGBkZ0ahRI3x8fHB2dsbX15cmTZpgYWFBfHw8Dx484OHDh6LfY0lJiXivoKAgYW2bnp7OxYsXuXbtmr4q7ReqqsjKyuL8+fN89dVXREdH4+npycGDB0UiwhCZv2vXLlasWMGtW7ewtrZGqVTSuHFjAgICyMjIwNnZmaqqKp48eUJ+fj7169fn6tWrFBYWEhoaSqdOnVi5ciUnTpwQCf1OnToBT5Nw+/btIz4+XvQnbN68OVKpFD8/v1qJBJVKRV5eHkVFRVy7do3Y2FiRALSxsUEul+skX0xMTASZVVRUREVFxXO7jtSvX5/JkyczYMAAFixYIKw5JRIJarUaExMTHBwcePz4MV27diUsLKzW/JWUlCT+VlVVJUQaV65cISYmhoqKCqRSKW5ubri6upKVlcWjR4+oqKhAIpHg6+tL+/bt6dChg858XNf8/KKPAQwaNMjg2JLL5Zrqr7W1tcXV1RWZTIaLiwsjRowAnibUDh48yObNmzE2NmbmzJksXLhQ7/21Z88eVq5cye3bt+nQoQMffvihTkKyrkrncePG1ar+0cLd3Z3Bgwfj6uoq1rycnBxiYmI4c+aMGDPaClRbW1tMTEx45ZVXhJuIPsyfP9/gYzUhlUpp2rQprVq1wtPTU8TxNZGUlGSwx6mh9UeLumIptVqtI/q9ffs2AwYMYNasWcycOdPgZ0ZERHDnzh0++ugjbG1tGT16ND/88ANKpZIxY8awZs2aF6rGNzExMTi27OzsNNrzU1lZyYkTJ1Cr1UyePJnOnTvTs2dPve+Zmpoq7i+NRkNeXh4FBQVink1OThZODc/qV+vu7s7s2bNp1aoVr732Gkqlkj59+oie7zdu3OD48ePY29vz008/4ePjU+s9Tp48yfHjx4Wldc+ePQ06HahUKhFbl5WVIZFIaNGiBUFBQbRv357s7Gz++OMPLl26JOxe69WrR7NmzbC1tUWpVIoKsrKyMnJzc3XiEisrK0xNTXFwcMDa2hobGxuSkpK4e/cuZmZmlJaWsnz5cmbMmKFzb6akpBAcHMyjR4+014aSkhLkcjnGxsbk5eUhl8s5ePAgFy9eZP369ULk0blzZxwcHHBzcyM8PFw4EPj4+HDv3j08PT0JDw832LorLy+P3bt38/XXX+uIT58DdcbzNWMuS0tLmjRpgp2dHU2bNsXDwwMPD486KzsLCgrYsWMHV65coWXLlsybN48hQ4bUep5Go2HhwoVs2LCByspKRo8ezaNHjzhz5gyNGzemX79+escOQFFREZcvX+bAgQPUr1+fcePG8eeffxIREfFMF4ZRo0bRvHlzvY/dvXtXJOu1tuHaue/y5ct1vm9dqN5SpTq0JH1xcTHx8fE6IgntPtrPz4+GDRvSsGFDmjRpIuLXmvNWdWjtf3///XdWr17NzZs3cXNzY8aMGQwZMqROsdiTJ0+4cOGCeB08rbZu0qQJ1tbWopWYo6Njrfhg7Nixzx3PT506laVLlyKRSF64JZdWtBQVFcWQIUMoKysjKCiIkJAQlEqlcLmwsLDgtddeo0OHDigUCkxNTWnVqpXB99WK//Xh0aNHhIeHk5eXxzvvvIO/v78gSPXFq/A0j+fm5kbLli0FCa5UKvnpp594HgF8SEgIe/bsMbi/rRl7h4aGEhoayqJFi1iyZAkBAQFMnz5d5zkpKSk4ODig0WhISkri8ePH2NraYmdnx969e2tdE41GQ3l5OWVlZaSkpIh2cGq1GgsLC0xNTYWdfmZmJk5OTkyaNIlHjx6xc+dO3Nzc+OKLLxg+fDjwNM6r3pZEqVSSmprK6tWr2blzp77qY4Njq3nz5pqffvoJeNqSbMaMGeTm5mJubs7XX3/N+PHj9Z637OxsDh06xGeffSbWDlNTU5o2bUrDhg159dVXqVevXq3XPXz4sE579tjYWIOPubq6MmjQIL2Pbd261WDOwMHBge7du+t9LDQ0VMxbGo0GlUqlE3u88847Bo/njTfeMPhY165dmTFjhvh/cXExmzZtIjIykrZt27Jv375axPjOnTuZOnUqfn5+fPLJJwb7rBtCVVVVrZZzGo2Gr776il27djFt2jRWrFihsxaXl5fz1ltvceTIERo3bsysWbOwtbXl888/5969e8hkMn7++Wf69eun9zMVCoXBsdWmTRvNhQsXdP5WWlrKsGHDiIiI4JtvvmHYsGG1Xrd+/XpOnDjB9evXMTU1xdfXl5SUFNGCzMLCgsDAQNq3b0+zZs1ITU0VQt+4uDjS09PFGqsVtru5uYn71MLCAmNjY50crJubm865s7S0FAUnxsbGBmPZrKysOkXqa9as0fnuZWVlwjpfK0LTB6lUypUrV/Dz8xN/qy7ImDx5MqGhobX2POPHjycyMhKlUomdnR3169cnKSmJoqIinJ2d2bp1KxERERw+fJi4uDiDnw9P9y4jR47kvffew8XFRa/7a3l5OcOHD+f48eO4uLiIfXDjxo0ZOnQo9vb2oggrMjKSwsJC4TQ3bNiwOsUhdY2tf4rAb9iwoYhLa8LDw4OkpKQX+sx/6n1f4sXwksB/iX8DLwn8atCnHtXCwsKCBQsWMHfuXI4dOyZ6jcJTlaM+El9rNaztyTto0CDs7e3ZunWrIPFfpB/2s/BvEdta8l6bNM3IyBAk/ksCvzaBX1xczPz581m/fj0NGzZkxowZbNmyhbt37z7zOIyMjPD09MTb21uQ6U2bNhWVA6Wlpaxdu5ZTp05x584d8TptH29ra2u++OILRo0apTMGHz9+zJIlS0QlzsiRIxk0aBDJycncv3+fO3fukJCQQEpKinhNmzZtRC/z57Ek37RpE/3798fMzIysrCxmzJjByZMnCQgIoH///qxfvx6lUknnzp3p3bs3zs7O3LlzR0fR/7znx9PTU/Qwy83NJTU1laioKKysrBg7diwff/wx1tbWZGZmYmVlhYmJCTExMXzyySecO3cOS0tLOnTogLu7O35+fjRq1Ijy8nJcXFzEZ8nlcurVq4dCoeDw4cOcPXuWEydOkJeXh1QqpaqqCldXV1q1aoWDg4Ow1oenpEv//v0ZMGAALVu2FBv5tLQ0YfEM4O/v/18n8A2Rvjdu3OCzzz7jxIkTOsS9lnguKirSa9mlVCpZsWIFu3btoqCggODgYN555x1atGghiI/169cbPJ6SkhLatWun97E///yTpk2b6n1s7dq1eq1p1Wo1hshDLTZv3mzwMW1POX345ptvDL5Om4xevHgxU6ZM4eeffxZEvr+/P6GhoYSEhIj5q7KyktDQUJYvX46LiwtlZWUUFRXx6quvcuzYMRwdHQWJ/8svv+id9/4TAt/X11ezfft24Kni28XFRVjzffXVV6SkpODn58eoUaM4ffo0Z86cEffX7Nmzsba2Ftbz2vGmb4xcvHiRsWPHUlhYiIuLC0+ePEEmkwnrVXt7e2QyGenp6UydOpXQ0FBKSkowNzfniy++YNWqVbi6uvL2229jY2PDuXPnaNu2LSYmJmzdupVbt27x2muv8c033yCVSlEoFFy/fp1JkyaRmppa5/kxMjKiSZMmtGrVCiMjI06dOvVcNsF2dnZ88MEHBAUF6fxd61gQGxvLmTNnnlm55+joyPTp0zl8+DDXrl2jb9++bNiwQW8CuK57Oi8vT5D377zzDosWLRKJnaioKM6fPy+SHdXtRF1cXPDy8qJhw4Z4eHgQGxvL3r17KSoqIigoiGXLluHn5yeSitURGBj4lwh8jUbDiRMnWLRoETExMbi7uzNq1CjWrl2Lo6OjIPH1JTpKS0tp3769IO8rKir45JNPROXxkiVLyM/PF0IieCp48/X15fHjx2RlZTFkyBC+/vprSktLsbGxQSqV8ttvv/Hpp5+SkJCAo6MjQ4YMoXPnzuLcnTp1inr16onqDFNTUzGvmZiYiIRVeXk5ubm52NvbI5fL+fHHH4XAQ9vvz9raWsyH2oRLWVkZSqVSxxGktLRUh1iqX78+MpmMqqoqQeLpg5ubGykpKXTp0oUdO3bokPhaEdnp06c5ffq0SKY2bdqU9u3bU1lZibu7OzKZjIKCAiwtLYVILzk5mby8PG7duvXM+eZvhMGxJZVKNdXbCqlUKoyMjHB1daVNmzbMnDmzFhG4YsUKbt++TZ8+fVi3bp24v9RqNevXr+fTTz9FLpczffr0565c1Gg0XLlyhY8//viZzzUxMaFRo0YUFxcbTNBUR+PGjZk8ebLBCpQPP/zQ4GuNjY1FD3KZTIZKpSIrKwuJRIKPjw+fffaZXvGEIQK/qKjomT3dZ8+eTe/evfXOUeXl5bWqMSdOnMiVK1f4448/aNGihd73XL9+vSDvV69ejaOjIwUFBaxbt47Tp0/TsmVLfvjhB4PiP0Ooi8Bv2LChZsGCBeL/OTk5rF+/nsePHzN06FB27dqld2wkJCQglUpJT09nwYIFRERE0KRJE/r06UOfPn2E4FmtVvPkyROdar+SkhJRDS6RSHB3d+fYsWO8++67aDQa+vfvT/369QXxr1AoSE1N5dixY2g0GjZs2KAjVDt37hxvv/02GRkZtG7dmuHDhz+Xw0llZSWJiYnExcWRmppKTEyMuN9tbW3p1KkT5ubmtGnTRm9CtaCgAH9/f6qqqigoKKC8vBxbW1vkcjkXL17UiamqqqpEKxozMzNKSkoYMWIEGzduFBXePXr00BHp6oNMJkOhULBlyxa6dOmCSqXCysqKx48fM2/ePE6dOgU8FScaGRlx8OBB3NzcyM/PR61Ws27dOp3KPpVKxfbt21m2bBnJyckEBATw4Ycf6tjVV79eNVHXmgjg7e2t+f7774Gn8aLWdeX69eukpKQQERHBuXPnnhmDdOjQgTZt2rBt2zYqKytZsmQJ7777rtjzPXnyhHfffZcTJ07QsmVLgoOD2bZtG0qlktGjRzNq1CjOnj1rcFyUl5fTsWNHbt68yZdffklqaioymYx27drRrVs3li1bZvDY2rdvr5dwAdi/fz/29vZoNBoR75aUlIgq1heFtqpeoVAgl8uxtbUVbl5aS2p4OkZTU1PJyMggPT2dtLQ0cnJyBCEsk8kIDAyke/fuBAQEEBgYqPfzqgsxtZX01Yn8+fPnM3r06FqVridPnmThwoXExsYKwr9///4iZr548SK3bt3i3LlzREVF/SWStXo8v3nzZjZt2iRI/OdpU6IP+fn5grx3dHQkPDyc+vXrs3v3bubNm0dxcTE9evTgtdde07knJBKJQVcN+J/9YHl5Obdu3RLiBXg61/Tt25clS5YQHh4uXlMzXtWuVUlJSaLS9smTJzptB9zc3Bg5cqRokVkX/Pz8OHbsmN61sea61rZtW+HicP/+fZYsWVLrHD9r72pmZiZ6uCuVSkpLS5+r4jMoKIipU6eyevVqrl+/jo+PD2PGjGHjxo08fvyYd999l6VLlwL/sx/Lycnh888/Fy3HxowZw7hx43RixLrmruoEPjydvz///HMhxBg4cCC7d+/WOU+7d+9mzpw5QjTTpUsXVq5cKZwtTpw4YVAo/7wEvlqtpqCgABsbG7Eu29jYGGyT8vXXXwvivaKigqqqKkHAVo/na0LrUpKTk0NiYiIFBQWYm5sLJwBD8Vh+fj6TJ082+D18fX1ZuHChjkBUo9Fw6tQpwsLCcHJyYufOnUJovH37dqZMmUKLFi2YO3fuXybv4Wl+Ul/MpNFoWLlyJbt27WL69OmsXLkSiURCQkICo0eP5vr16/Tr149Ro0bpzGsHDhxgz549aDQaJk6cyIYNG2q9d10ka829Ymlpqeh5v2rVKkaNGqXz/KqqKn7++WfmzZtHWVkZbdu2FS0kzM3NKS4uJjU1lYqKCi5fvqyTAzAyMsLNzQ0nJycaNGiAm5sbDRo0EHssgGXLllFcXCxa9NQFrVDe19cXNzc3unXrpvd5zxrPK1euJDMzk8zMTJ384PPAzMyMn376iT59+uiQ95MmTRICLi3UajU//PADixYtQiqV4unpSW5uLjk5Obi6umJsbExycjKOjo6sXLmSkJAQUbigRWFhoci7lZSUsGPHDjGvjBgxggULFuiIj6uPHy8vL+Lj42nQoAG9evXi6NGjZGVl4eXlxeLFi+nVq5cobFi5ciXR0dG4u7vrXU+1+DcI/Bd97J/6zJf4Z/CSwH+JfwMvCfxqeBaBn52dTcuWLZFKpdy8eVMEeNq+cVo7/e3bt/P999/rEPcLFy7E398fjUbDrFmzWLNmDe+99x6rV6/+24nmf4PY1tpXOjk5cfbsWQB69uwpSPyOHTv+7Z/5f5nAP3fuHJMnTyYhIYFx48ZhaWnJd999h52dHbNmzRKb1OLiYh21t0wmw8vLi0aNGukNyuPi4ti5cyf79u1DqVTi5uZG//79CQ4O5vz582zZsoXS0lJsbW3Jzs6mffv2rFq1Cjs7O1auXIl2Yz9y5EhmzJghyG8ttBbQRUVF/Pnnn8TFxfHNN9+QnZ3Npk2bGDt2rMHzY2lpKYgqbT+suXPnUlFRwcSJE0lKSuLIkSN4e3vTrl07Tp8+TXp6OjKZjB49ejBw4EAaN26sY+eq7/w4OzuTmZnJ1atXuXDhAnFxcTrXrW3btkgkEqKiorCxsWH69OlMnTqVxMREvvjiC44ePYqFhQXt2rUjLi6OtLQ08VoLCwtat25Nr1696NSpEy1atECtVnPixAl27tzJ+fPnkUqldOzYkQEDBuDn58e5c+c4cuQId+7cQS6X069fPwYMGEBRURFHjx7l999/p6KiAhcXFwYPHszrr79Ou3btdIQVFhYW/zqBf+PGDZYsWcLhw4f1Evda1CRnlUolmzZtYsOGDSiVSoKDg5k+fbre6pt/isA3NTUlPz+fvLw8CgsLqaioeC6SadWqVToOD9VRk8CvrKzkyZMnJCUl1dnmoWXLlnh6enLo0CHGjx/Pl19+SVVVFXv27BGVXG3btmXhwoX4+fkxZswYLly4QEBAANHR0Tg7O7No0SKaNGnCiRMn+PLLLwWJb8hO/z8h8P39/TXaykktca89Tj8/P2bMmEG3bt3EZ965c4d169Zx5swZg+Ok5hgJCwtjzpw5NGrUiIKCAtLT07GyssLHxweZTCbOq52dHf369WPHjh306tWLZcuWMWvWLC5dusSYMWPo0KED6enpbNy4kaysLExNTRk/fjytW7fm7Nmz7N27F3d3d7Zs2cK5c+dYsmQJTk5OdRL4LVu2xNXVldjYWPG8Ro0a0adPnzrHq/Z5CQkJvPLKK0yfPl1nLBUVFeHj40NFRQVXrlwhLy9PPFbdWaSyspIff/yRe/fuiTlw48aNyOVyVq1axZgxY3Sut6F7WqMv9G+rAAAgAElEQVTRMG3aNEHeL1u2jPT0dA4dOsSvv/7KlStX0Gg0NG3alJCQENq1ayeq/mJjY2sp5ouKijhw4IAg8qs7M1SHra3tcyVltMS9tnesm5sbH3zwAcOGDUMmkxEVFSVIpoMHD9aq3Kpum68l7z/99FM8PT25du0ap0+f5tatW0gkEuzt7UU19q1bt1CpVHh7e/Paa6+xfPlymjdvzo8//siDBw+EA4CDgwNDhw6la9euyGQy1Gq1qBCNiIggIyNDp2rWxsaGzp07065dO4MODz/++CMAMTExREdHU1BQgJGREU5OTri4uBAYGCjs62teV30JtuLiYhYsWCBiMH0wNTVl4cKFwk5/27ZtQiB34MABsrKyBJkRHBxMx44dBQmxa9cubt++zY0bN8jIyMDa2prWrVvTunVr6tWrR79+/SguLhbfRYu8vDyD5MCLPgYwf/785640NDY2Fg4HVVVVeHl5idioejXlr7/+ypYtW5DL5axcuZIOHTowZcoUIiMjad++PbNnz66z0kMLLXG/bdu2ZwoPjYyMcHd3R6FQkJ2djbGxsej9nJGRUedrTU1NCQgIoEOHDri4uJCRkUFMTAyxsbGiykgfzMzMhEV/eXk5lZWVQsSYlZWFkZERffv2ZeTIkTpkRU0Cv6ioiP3797N3797nSio6OzszevToWkS+PgL/1q1b9OvXj/fee0+vKC4yMpLg4GAd8r7m42vWrCE7O5uPPvqIefPmPXc1/l8h8LXHv337dq5cucLrr7/Oli1bagkH4+PjCQ8PZ8mSJahUKkaMGMHt27dFew8fHx9ef/11Bg0apNPuAHTXTLVazdKlS1m9ejWBgYGi5VJqaipHjhwBEIS+TCYjIiKCqKgoZs2axfjx4/nss884ePAgDg4OjBgxos4qWEPQkm9FRUVER0djb2+Pj48PUqmUw4cPG4ybtAS+PtQk8LW4du0aP/74IzKZjKKiIlq1asXatWsZO3YsycnJKBSKOl1KvL29USgU3L59m+XLlxMSEiIqTDUaTa1xfuHCBVasWIFGo8HDw4O4uDjGjRvHypUr2bdvH8uXLycpKYmAgADmzp1LcHBwrZjLkJAV6l4TAfz8/DRHjx4FnhIRN27c4MiRI4SHh5OTkyMI5A4dOhgkt9LS0ti1axcymYyxY8dy48YNLl++TKdOnUT15pw5c6ioqBDtVrRV93PnzhVihJMnTz6TwIen6+/du3fx8fHB3NycP//8k7ffftvgNZHL5XTo0AE/Pz88PDyQSCQolUpSUlI4ffo0FRUVKJVKnTX1P01OOzk5iYrF8vJyIYgzNzfH0dGRoKAgGjduXGtPU15eTocOHcjKyiIpKYmoqCjOnTsn1spu3brRv39/XnnlFZ17vjqBr0VNIt/Dw4N58+YJsYQ2/mnQoAEzZ85kyJAhQjB3+vRpjh49SkREBJWVlTg6OtKtWzeaNm2qM/6WLl36XPF8dTemqVOnsn79+hfKm5w+fVqQ94cOHSI7O5s5c+YQFRVFo0aNGD16tF6nmOch8DMzMzl69ChKpRK5XM6rr76Kl5cXtra2jBw5EoDo6GhUKhVeXl4G41UttHF3bm6uaBul3W9XF+Dog1wuR6VSUb9+fU6cOFHLmaL6epaamoqrqytjxoxhx44dvPHGG3pdbWruXTUaDenp6dy6dYtjx45RXFyMRqNBKpVibW0t1m1TU1Nu375t8FhbtmzJgQMH0Gg0nD59mkWLFpGXl8fEiRMpLCzkp59+olGjRmzatAlnZ2fWrFlDWFgY8JS4f//99/VaXtc1d9Uk8LWoXo1vZWXF7t27ycrKYu7cuSK+6dKlC2vWrKklSv6rBH5lZaVoUxgVFSXaVKnVaho0aEBISAguLi7PJPCNjY1FT3uVSoWPjw9t2rTB29ub/v3713qNRqNh1KhRpKSkUFBQgImJCc7OzuTn5wuHCjc3Nzp27EjHjh1p0KAB8fHxHDt2jEuXLj1zj+7o6Ejv3r3p2bOnzhzz+PFj1q1bx6NHj1i8eDGOjo68/fbb9OjRg/Hjx+u0GvwrMETga7F582bWrVvH9OnT6dy5s5jrJ0+eTPv27fW+Jjk5mcWLF6NUKmnSpAkRERE6sfTzEvjVyfsffviBPn366JC2sbGxzJ07l+vXr4uWaQUFBZw8eZL8/Hw8PT1p06YNfn5+woUhJSWFBw8e0KBBAzw8PJDL5bWq2nNzc7l8+TKRkZEiptcKNKoLk6RSqY4rS1paGnFxcWJ/17p1azp16kTbtm11XqdvPKekpBAZGUlkZKRo5WdjYyPawGjFaDXdCapD6/ar0WhYtWoV8fHxwjZ/7ty5OjFxQkICM2fO5OrVq9ja2uLg4CBcXu3t7UVexcPDA6lUyt27dxk6dGgtAZhSqay1jqakpPDtt9+inSPGjRvHRx99xI0bN5gyZQpVVVVYW1uTkpJCz549mTBhAgqFApVKxfnz5zlw4ACZmZn4+/szZ84cevXqBTxtUandp3t4ePDxxx/XIvL/KQL/Ravh/5Mq+pcE/v8uvCTwX+LfwEsCvxqeReAXFBRw5MgRBg4cyLfffissjTQaDRKJhLCwMCZMmCCqWQYNGsSCBQtqVUNVJ/GXLFnCJ5988rd+j/82sf3gwQMCAgIEea8lfbWLcEZGBtHR0QZt5l4U/5cIfH9/f83Vq1eRSqWsW7eO999/n0aNGvHdd98xZ84cYmNjGTp0KJ9//rlOEKQlzJ+FkpISRo0aRWRkJHK5nP79+wtbqOrnIT8/n++//57jx48LNXJ+fj5SqRSpVMpbb73F+PHj67QE1B7Po0eP6N27NzKZjB07dtC6dWucnZ0NHqO3tze+vr46tngdO3Zk4cKFjBkzhvz8fKZMmcKUKVNEr/nY2FiOHDlCREQEqampyOVy3nzzTb788stax5OYmMjUqVO5efOm6EncqlUrAgMDadeuHZ6enuzdu5dt27ZRUFBA9+7dsbCw4MiRI6I/no2NDSNHjuTAgQOkp6fTsmVLpk2bRrNmzYiKiuLq1atcuXJF2GWampqKKhFXV1e6d+/OoEGD9Ca8EhMTuXTpEnv37kWpVOLl5cX27dtxcHAQvZfPnTtHRUUFrq6ubNiwQQSo/zaBP2nSJLZt2yZ63I8dO9YgsVI9cXnmzBkmTZqEUqmkb9++jB07loCAAIOf+XcT+BUVFXz00UcUFRUBT4kSKysrFAoFCoXimVWORkZGBAUF6RWmVCfwz549y927d6msrMTIyEinUrYmWrZsSUREBIsXL+bbb7/l9ddfF73Zy8rKCA8PFwliY2Nj5HI5rVq1IjIykm7dujFnzhwd0YqWxHdxcSE1NVXvmvJ3EPjx8fEMHjxYx/Lf39/f4DwbHR1NWFgYx44dw9rams2bNxMcHAzojpG1a9eycOFCgoODcXV1Zdu2bdSrVw8vLy8dEUtOTg4PHjzA0dGRadOmsWjRIgBBZL/55pt8/vnnrFmzBktLS4YPH86JEydISkpi+PDhDBgwAHt7eyZOnEh6ejpVVVUEBQURFRVVZ1/DoKAgYf2YlZVFSUkJ7u7uSCQSJk2aVOd5PXXqFDt37mTXrl1YW1uzYcMGQRJoE4n6kJmZqWMZWVFRwXfffcfGjRuxtbVl9+7dLFy4kEuXLvHWW2/pOEUYuqeXLl3Kp59+yjvvvMOCBQsYOXIk58+fR6PR0KxZMx2RVE08KyEaGRkpnFNGjRrFunXrxOPPQ+CXlJQQEhLClStXxAY8JCSkVgWjlsSvV68ed+/e1RGxDR48mIMHD+qQ9yUlJaxbtw6lUomDgwMmJiZ4eHjoJLUqKiq4desW+fn5hIaG4uXlxTvvvENJSQlqtRp3d3fef/99bGxsROJs8+bNnD9/XpBG1tbWNG7cWFgbp6enc/78eVJTU7G1tSUsLAwPD49a33/06NHcuXMHjUZDo0aN8Pb2Fg4B6enpgryQyWR4enoyY8YMscbWTLCpVCpGjhxJQkJCnfOPRCLBz8+P8ePH8/7772NiYkJZWZloIRMSEkK3bt1qkU8//fQTq1evRqVS4eTkhK+vL48ePSIhIQGJREJAQIBBx5InT54YtAt+0ccAWrdubXBsmZuba7QisaqqKlFJWVVVhZWVFfb29iQmJmJiYsKkSZOEvbSRkRF2dnZMnjyZyMhIjIyMsLS0ZOXKlXh4eDxXL9eysjI+/PBD7t69i6WlJcXFxXVWCDs4OFBUVERZWRnGxsZoNBrUajX169evU1zUrFkzTExMiI2NRa1WizhGIpHg6elp0LIfnoqLqp+flJQU/vzzT0pLS7G3t6d9+/aiMvntt99m6NChgC6Bf/XqVT7//HOKiop0BJp1QdvWwtnZma+++krsF/QR+PA/Vfipqak66158fDz+/v5YWVnpJe/h6bX08vLiww8/ZPfu3bRp04aIiIjnIvH/KoEPT/cHERER7Nmzh2bNmjF06FAWL14s7uPhw4dz4MAB2rZty/Lly8WckJmZycmTJzlz5gyRkZFoNBp8fX3ZsWOHsGKtvmZOnjyZffv28dZbb7FixQqWLFnCkydPCA8PF3NUYWEhgwYNok2bNkyePJm5c+eybds2jIyMkMlkzJo1C2dn5+fuh1wTdZFvfzeBD0/ngu3bt/Po0SPkcrmYe01MTDhy5IiIlfVBoVBw584dpk+fzokTJzAyMkIqlTJmzBi6deuml1xMS0vj888/Jy4ujuDgYM6cOSP29oGBgSxcuJCgoCCD8c/fQeCfP3+e2bNnix7y1cXDz3PdarqKDB48mNmzZ1NUVIRaraZTp06EhoYyfPhwnar76onv5yXwq2PFihWcOHGizmOztbWloKBAzFtGRkY6IgxLS0vRSsHS0hIzMzNMTU2FQOVFUN0hRKPRoFQqycnJIScnh9zcXFHJ7ujoyOuvvy5ENPq+p7bFzG+//cbly5dJS0tDLpczbNgw4Tygj8Cv/vnR0dGCsNfO3VpCv2fPnoK4nD9/Pr/88osQegcGBvLqq6/SrFkzvS6OPXr0eC4CX3scWhL/RfJR2nlYS94fP36cuXPnYmdnR2hoKBqNxiCJ+CwCf+7cucLVsmvXrly/fp2MjAy6du1Kr169BIFfE89D4NfE4cOH+eCDD+r8rkePHmXkyJFCYHv16lUdq+zqscHmzZuZPHkyrq6uok2Fvtih+t71zp077NixQzhrKBQK0VLOysqq1rV+Vgu4lStXCoIyPz9fuBW0aNGClStXMm3aNBISEsR8OGHCBKZOnao3VtXiRQh8eDrO1qxZI0Sr8PT6d+vWjS+//NKgrfjzEvjp6emsXbuWxMREnbaPLi4uuLi4YGZmRmRkJKWlpYSEhBAcHGyQwP/yyy/ZvXs3T548wdPTEwcHB27duiV6gG/ZskXnHJWWlvL2228TGxuLiYkJnp6eODs7i+tVXl5OZmYmRkZG3Lt3T+SnysvLMTExoXv37nXOl76+vkgkElEEMnLkSOECIJfL6dixI1OnTmX//v3A0+KpAwcOcPLkyRd2ea2LwJdIJHh7e4sqbnhaGLNz505u3rxp8DPlcjndu3enT58+XLp0CZlMRvv27cXzz58//1wE/rBhwzh06JDoeZ+dnS3WrK1btzJ//nzs7OxYuHChEIRpRdje3t7cvn0bpVKJubk5X331lXAuqAktgV9eXi7WUY1Gg5ubGxqNhgYNGuhdh42NjWvlqjQaDU+ePOHmzZs8evSInJwcjI2N6dGjB1OmTAF0x3NaWppwZtS6YqnVauH2WRO//fab3u+gPR4vLy/u378vctjanvdaQSA8FS6OHj0auVzOkiVLWLp0Kenp6VhbW+Pr64uZmRl5eXnExcUJF0mt07CdnR0nTpwQ8bw+Al+LR48e8f333xMWFoZaraaqqoqWLVvy5MkTiouLmTJlit51Qdv67ptvvhGFLvv27cPMzAyNRkNkZKRYTz08PDh69KgQZf1TBP4/gWeR8C8J/P9deEngv8S/gb/fv/3/cfTr1w8XFxe9FZbjxo2jRYsWqFQqrl+/zsGDB/UmKiQSCatXryYgIIDTp0//Nw77H8WFCxcoLCxk9+7dOhXbDRo0YPfu3RQWFmKo//v/X6DtMwZPraR8fX2Jjo7Gzc2N2NhY5s+fz7p1617Ywi4tLY3IyEjGjBlDdHQ0GzZsoGXLlrWSSzY2Nnz00UcsW7ZMEBZa+8DY2Fi++eabOhPm1XH9+nXy8/PZtm3bc9mTSiQSfvzxR5Gg8/Ly4uTJk6SlpZGdnc3GjRuFBRk8VbG2bt2aWbNmce3aNY4cOYK/v7/YpNREdHQ0MTExTJ48mQMHDnD//n3CwsJ49913CQwMxMHBgalTp3L69Gm6dOnC1atX2bNnDxcvXhSJkzt37tC2bVvS09NZvnw5e/bsoVu3bqK6MDQ0lP379xMTE8N3332HhYUFZWVl7Nq1i6tXrzJixAiDyS5PT0+WLFlCdHQ0ixcv5uHDh8TExGBlZcXQoUPZsmULSUlJbNmyhczMTM6cOVP95X/7XF1VVUVRUdFztT3Yv38/ISEhPHz4kE8++cRgcrYmIiIiKC0t5dy5c+zatctgL9F/Crm5uRQVFeHg4EDLli3p0KEDzZs3x8vLS291QU14eXk919wVFxeHg4MDgwYNqrPPHTwl2qRSKYsWLWLkyJE6a4BcLmfixIncuXOHkJAQKisr+e6777h16xZvvvkmn332Wa0NY0hICH379iUvL+8fXVNu3LhBcnIy3333HWfOnHmmhbSvry+7du0SYyAiIkLv806ePEmLFi3YvXs3v//+O7a2tjRp0qRWEsDe3p6goCDS0tJo3rw5b7zxBmq1mm+++f/YO/ewqKr1j3/3DAwMICDiBVEEL6ShFeYtvCGZ98rMa5p56WJpaf5EszRFEa+Zmnq0zrHy2DlZVh7T0jQ0K8lLhClqmrcICwUEBGFgmP37A/d2zzD32Xv2nuH9PI+PzOzZa797rXe9613rXZc1GD16NICaFZsA8Oabb6JTp0547bXXEBkZybfX3bp1w+HDh2EwGPgt8R2Z6NWwYUN+tZg9+Pr6YuLEiVi6dCkKCwt5+RxFo9Fg+vTpePfdd3Hjxg1cu3YN6enpGD58uEV7aMr+/fvxwAMPIC0tDdeuXcN3332HkSNH4ujRozhy5AheeOEFpybZBQUFITk5GSdPnkTfvn2NtjO1lz///BNHjx7FjBkzkJ2djYkTJ5rdBq9z585YsGABLl26VGvyzf79+zFixAj+7OvY2FicPHkSpaWlfPsaGRlZazBZo9EgPj4eQUFB2LdvHx555BGsXLkS1dXVePjhh3HkyBGMGzfOaPD1u+++Q9OmTTF9+nRs3rwZI0eOxODBg9G+fXv+vOJJkybh8ccfx82bN42OsRHy22+/oUWLFpg6dSrGjh2LTp06oW/fvhg/fjySk5Oxbt06zJgxA71798b58+etnnN47do1XLhwweYgdEREBE6ePImBAweiXbt2qKiowMaNG3HmzBksXboUgwcPNht4+vbbbxEYGIjJkyfzZ32PHTsWU6dO5Y9VUBLcbjxNmjRB06ZN0bFjR/Tt2xdRUVEoKSnBwoUL8Y9//AP169evtXqldevWOHDgANq0aYPq6mpkZmZi3Lhxdtf7Gzdu4MyZMxg5ciRiYmLQtGlTq79v3bo1UlJS+AlBDMNg+vTpNssyJCQE48aNw5tvvonWrVujsrISPXv2xJtvvompU6faJStQ42tFRUUhKSkJLVu2REFBAUaPHo1t27ahSZMmFgMFJ06cgE6nw+LFi+0K3nft2hWVlZWYO3cu/v77b7uOROJWT+Xm5hp9f/ToUdy6dQvz58+3uvV7WFgY3n//faSkpCAzM9OuowmchWEYDBw4ECtWrMDp06excOFCI/9q7969GDhwID766COjAECjRo3w9NNPY8+ePThz5gxef/11nDlzBj///LPZ5+zduxejRo3CmjVr+MHcq1evgmEYjBkzBmPGjAHDMPy7+vn5Yc2aNYiNjeWPDpo9e7bFoxeUSGRkJD+hpnfv3mBZFizLYsmSJRa3MOfQ6XS4efMmtm3bhoCAAPj6+uLnn3/GW2+9ZfZsZaDGTm7YsAHt27fnV6lXVVVh6dKl+PHHH42OOZKK7777DgUFBVi7di0yMzPx+uuv45FHHrF70kWzZs2wZs0a9O7dG4cOHcLTTz+NzMxMVFdXo02bNjhw4AByc3NRWFiIZcuWYcKECaLoxHfffWdxFSbHPffcg0WLFuGpp55CZWUl1Go1nnjiCbz88svo2rUrEhMTER8fzwfQAgICRM1v7sz3Vq1aoUuXLhgyZAheffVVPPbYYygoKMBvv/1m9X6VSoW4uDi88MILyMjI4HcFsnZuu+nzBwwYgO+//x5LlixBZWUlBgwYgNOnT9fyf4RpZ2RkYPLkyYiLixPlCEaGYZCWloYHHnjAqb4DZ4f/9a9/ITIyEjt37kTr1q1x4sQJPPXUUy7JyK1CHDt2LGJjY/lzji9evOh0mpbYt2+fzd8EBATwq9qLi4ut9g0525ubm4sePXrYNfHv9OnTuHnzJsaOHYtly5ahbdu2aNmyJX+UkyNoNBqj8gwNDcWqVaswc+ZMnD59Gs2bN0dmZiYCAgKg0Whw7tw5rF+/vtaui2KhUqmwadMmHDlyhJfnwoUL2Ldvn91jTta4cOECzp8/j969e2PGjBlYt24dkpOT8fTTT6Nv375ISEjASy+9hLCwMJvHVBYXFyM3Nxc9e/bE2LFjMWDAAMyYMQP9+vVDfn5+LX/++vXr+PXXXxEZGYmHHnoITZs2NSovPz8/NG/eHIsWLcKmTZswaNAg6HQ6dOjQAZs3b8bkyZOtyhMeHo6FCxdi1apVqF+/Po4dO2Z0PSQkBB999BE/4ejzzz+3OOlBLBiGwapVqxAUFITAwEAcPHiQP/bAGv7+/jh48CAmT56Mqqoqo23X7eXbb7/FxIkTzU7A2LVrF1q1aoWMjAyMHj2an/hwzz334Pnnn0dSUhKmTZuGMWPGoKKiwuYxikDNRKxTp06hZ8+eWLNmDX9cnyOTHxmGQbNmzdCnTx9s3LgRqampaN26tcWV87///jv++OMPjBo1Cps3b8aiRYvQvHlzp45D0Ov1+OCDD6DRaPijs1auXFmrPd2/fz+qq6vx/fffY9SoUbhx4wYaNWqEBx98kJ9MX79+fXTt2hWBgYHYu3cv5syZg48++gjXr1+3e5y/WbNmWL9+Pc6cOQONRoPAwEDMmDEDhYWFeO211yxO6vL19cW4ceNw5MgRTJkyBSdOnOB3SOV87x9++AFbtmzB1atXLfrP3gw3PmXun6VJUgRBeB4UwHcQhmGsOuJc8NHSCgNhOpZm53sa3DubO2fa3HfeyJ1BOov1SaVSGTnU4eHhRs6fWJ0m4Xa31uBWnHBnoGo0GrsCmuawNMvSHD4+Pvx7BwUFGXVyrA1yq1QqdOrUya6JAs888wwSEhIszvqvV6+e0ax5Ls369esbvct9991nccCoSZMmeOKJJ/jJCA8//LDR+WTWCAgIsLhaKDg4GKNGjTLnpNuXuAOUl5ejpKSEP9fRFm3btnWorDk0Gk2tbbXdTVhYGEJCQhweADS3MssSTZs2RUxMjEMDoJYm7Gg0Gt7Z5raYa9KkiUX5uc6VO9oU7ggKe7n//vttrngMCQnh21UfHx+L6QvrBWdHTO0dt2KWS8u0k839nhsQdkcQw9rOJI4gbCfUarXD7UZgYKBR3j788MMWj55wlJCQkFrbPjtKfHy8zfKwpuPcNaHt9/X1RXx8vFX7rFKpjPw6rl5GRUVZ1N127dqhR48eFld6MQxj18BkkyZNzKbBMAwiIiLQvXt3m2eLC7E1CVCYD1xeDx8+3C5fLSQkBE2bNjXSobCwMNH0W2q4FW0A+FUtlgJ4arWa1ydbAXhLtGnThj+ywRY+Pj5o164dfHx84OPjw+/yYQ9BQUH8e7Rr187uCXamcNv0cjRu3Nim7D4+PlZX7Anh2lNHJvLZ8qssnTNuir0yioG1CQURERFWgzGcb2kLc8c4qFQq+Pv7w9/f3+wzuD6Ipw7k1a9fH76+vkb23ZE+plqt5nc1sqe/4+vry9tmrl5Y6xdIgUajwRNPPOF0X1qtVhvZOK5NMu1/mTvT2xXs8Z39/f35Hbm4I2eio6Pt7kuJCRdg6d27t8M+oUqlwoMPPmhX/9Tcc7n+UYsWLSw++4EHHsCDDz4oStDenAzO7sTBIfTLGjZs6FRf0RzCsRO1Wu1UAEtM7NkRkYOzE46UGbcq155jemylYw6hTxoYGMiP/zjS13UFrr7HxMQ4PeZkjUcffRTdu3dHRERELTut1Wod6iM3aNCAT4M7vtIagYGBNss6LCyMHx9u2rSp3f4LUGMfLPljDMPwaUkdvBc+U9imOgIXpH3//fexf/9+hycPWWsPzdmf+vXr8+2KSqVC69atHW5nHnjgAVEmm6hUKtxzzz029QkAEhISnF7YJYSr6yqVCmq12qIPw0185vD396/1W24XJw5nbQd3bBjX5wHss6/crpTmYBjG5oROb+bKlSv85FbTf1JOXiYIwr1QAJ9wGSk6lJ7GndX1Fr1BbosygnASy3siO4lWq0VwcLBDHUiCIJSHPbtoEIQXQk4VQRCeBtktgiA8EbJdhNsxGAy0NThBuIC11fnW/tma8BsdHe3UvVLcJ8c/gpAD23s6EV4Bt4W7VquVZXa7VAjfS84A+Z0Zr6IHWQniDlYjdAaDAQaDwaE6oFKpvGYXEMJ5bO0eQiif8vJyl1dQSQjpFiEV3uPMElZx5yQlahMJiSG7RUgJ2S5CKmi2MOF2qqurUV5eTgtOCMJJuCNpHMVWkPrq1asWJ9dYu1eK++SAgviEHDBKqgRywzBMNYDbAPIAlAJgUBOUNeewqlDTCbd03dzvDVY+WyIcQL4dv7Pn+Y7Ia1f+t0cAACAASURBVAux5HIV4XuFQV6ZWrAsa3bvTIZhbgCwtH+N8B0AgNubqAo1ZWWvrgh/p0JNfhTBsh5b0wlTmSzVAYPJ3z53/m8I4CYA9s4/9Z33gZVnmqZp6TvT5wrTM9VL0+sqAH53/rYmj+l9PjCfjxoAlXf+NlcnVKgpTx8A+jv3C9PxuXO96s5103s5GZpb0i0AYBimADX6JWXnmns/c3lq6bncQJKl8rIE97sw1Nhja2Vurv5UoyY/fVBTRvo7/yyVPe5cA4AQANdN5LNWTpzOM3eepRPIwcnNyWPu/RvdeZ69+OBufXKmTQGMdVWFGttldm8+G7ZL+GzTMuHyy5KOmOqG6bWGqLFfEKTjg7tlqLNwr2n69tg4oW6xd2RnUaN/N0yum+oc9xl3ZFMJZLPnmeZsC5d/QI0+5tt4D0frvaVnWnqGqY5ayltz+eKIbplrd5zxXazZKNWdf1w9bgSg+M7fQn01927myoez6SyM89RSGubehSuP+jBvC4T5bfocU7i0IJDLUb/P1NazMG/3hHbIVA+560BtW8W9E5cXpvZC+FuhLKZpRLMsa3avWYZhCgFcMbnHXp/Hls8PmNfThqhtL8zpoWlasHDdNN+F/gRQY2dCYWzLufsMgr+5cqiGsS8mfK41H9QUc34WYD6vuXcwrXfcb2zppbl8tfV7V22kLbtVAOAa7voKgHUfQZgu55+Y2grAts/NpWFNTxvBuL0wTVdYzyylZ87fEtodDnNpWWofGwIogHnfhcNSHlryv83dL5TRUp3j0jCnx+baZZi51xm49C3aLQBgGCYfQK6N53F9ClO57bFj5vpK5u41V4dN7RasPM+03jXC3X6hqf5b60sI21tTfRN+D9z1EzmbJ6yjGsH3pv6jvb6Zpd/b6ouaw970Yea6ud9xz7Rlu7i+otjjQuYIB1AoeJ6wX2TO3+KwlrdcvrGC/831n7l7w1HbfzUte1M94uTk+u2u5o9pn8uSDgu/B2reW4O7NtGaT8mlZdrn5GyqM2NkpnlvbZwrHzU+l/A+W/6qsG9hz9iCtTrD9cWt5a1QLqHvZA1LtlaIaZma6he3r73uTlqWbCH3ez/cHUsw9QWt2QZbdkmFu30eYR20F3vskiWfwRfG9tgUW7pVCvv115JtU8G4j2RpHNBc22fOb7DHT7DXlnO/FfYtLfW7uHGGMNTYV/UdOUxthL2+k6mcluwyN05mqjum9s3evq8lzI1zWfMTuPQt9aGNdIthmOcBPH/n4z0AfrNDJjGRI4YiV9zG29/Vot0iCKmgAL7CYRjmBMuyneSWwxQlyqVEmeREzvyQ69l18Z3dhRzvVxeeWRfe0RmUICPJoBwZpEJJ76YUWZQiB6AsWWxRV2x5XWgj7UGJcilRJkCZcilRJndRF+yGXM+U67lK1GclyEQyKEcGU+rqmA092733iolS5ACUIwvJ4Rh1yT+oS+9KEO5CZfsnBEEQBEEQBEEQBEEQBEEQBEEQBEEQBEFIDQXwCYIgCIIgCIIgCIIgCIIgCIIgCIIgCEIBUABf+bwrtwAWUKJcSpRJTuTMD7meXRff2V3I8X514Zl14R2dQQkykgw1KEEGqVDSuylFFqXIAShLFlvUFVteF9pIe1CiXEqUCVCmXEqUyV3UBbsh1zPleq4S9VkJMpEMNShBBlPq6pgNPdu994qJUuQAlCMLyeEYdck/qEvvShBugWFZVm4ZCIIgCIIgCIIgCIIgCIIgCIIgCIIgCKLOQyvwCYIgCIIgCIIgCIIgCIIgCIIgCIIgCEIB+MgtgJIIDw9no6Ojbf6uuroaBoMBKpUKarVaesEIj+Dnn3/OZ1m2oblr9uoWUXeprKzk/z516hS0Wi1at27NfS5kWbaBpXst6ZcwzbNnz0Kv16NRo0Zo3LgxWJblbZhKRXO56jLWbFdYWBjbrFkzXLt2DQUFBYiOjka9evUAABqNxq1yEp4HtYveA9ee5OXl4fr16/Dx8UHbtm15f9jPz8+t8thjt4Ca9tTf3x9t2rThr5PtIqxRF+yWOf8wPDwcTZo0AcMwVEckwppuAd6jX+5GqM9nzpxBdXU1GjZsiCZNmgCoOzbf3baLy3eWZXH69GkAQIcOHfjrdSXf6wJ1oV2UA9PxHwBo3769bL61HJBuEdYoKSkBy7JgGAaXLl1CdXU1wsLCEB4eDgD8uJQ57NEtiu0QzkD+PCEllvSLAvgCoqOjceLECbPXqqur+b8NBgPKy8uh1Wr5wBcZe4JhmKuWrlnTLYIAgJycHP7vqKgotG7dGnv27OE+W9QtwLJ+CdPs2LEj8vPzMWrUKCQnJ4NlWYSFhSEgIIAC+HUca7arWbNm2LNnD+bPn48PP/wQKSkp6NOnDwCgefPmbpOR8EyoXfQeuPZk5cqVeOeddxAaGoo9e/ZAp9PBz88PUVFRbpXHHrsF1G5PAbJdhHXqgt0y5x+OHDkSc+bMAcMwVEckwppuAd6jX+7GnD6PHj0aycnJAOqOzXe37eLynWVZtGjRAgCorfVS6kK7KAem4z8AZPWt5YB0i7DGwYMHUVVVBV9fXzz55JO4efMmBg0ahMmTJwMAEhMTLd5rS7eOHj1qNrYDUHyHsA7584SUWNIvCuA7gUqlQmBgoNxiEAThxWRnZ2P+/PncR4Or6TEMU+tzUFCQq8kSXs61a9cwf/587N27V25RCIJQEAzDgGEY+Pv7yy2KTUzbP4Ig7sLVD7VaTXWF8HhIh90P5TlBiIen+NYE4Q6Eu0JJ0dZQbIcgCE+Bll0SBEEojKCgIBgMBnz44Yf48MMPRUlzzJgx8PPzQ+/evUVJj6gbFBQU4MMPP0ReXh4AICIiQmaJCIKQk8TERPj5+WHMmDFyi2IXarUaZ8+eRVZWltyiEIQiIf+Q8CZIn+UhJiYGMTExcotBEB5LYGAgkpKS5BaDIBTLkCFDoNFo0KVLF7lFIQiCcDu0Ap8gCEJhZGRkIDMzk//8zDPPuJzmrFmzMGvWLJfTIeoW0dHRSElJAVATvG/btq3MEhEEISedO3fGhQsX5BbDbtLS0jBnzhwMGzYMn3/+OR544AG5RSIIRUH+IeFNkD7Lw3fffSe3CATh0Zw9e1ZuEQhC0UycOBETJ06UWwyCIAhZoAA+QRCEwggJCeHPGScIOalXrx7pIkEQHgu3U4AwiE/n8hIEQRAEQRAEQRAEQRBKh7bQF/Dbb78hMTERiYmJSEpKwvbt2+UWiSAIgiAIgiAIJxkzZgyWL18OvV6PYcOG4fjx43KLRBAEQRAEQRAEQRAEQRBWoRX4JlRXVwMArl27hjFjxqC4uBhjx44FUHMuEUEQlsnJybF63d2r3pQmjzWkkMWVNJWWd0qTp66g0WicyltvKS9veQ8lUllZaTV/LeUtlYk8eHq+ClfiJyQkWNxO39Pfk5APT7JN3uQfehPW2kVPyld364gn5Y1cSKFbzt5HNoQgavAWXbdWpwsKCtCgQQM3SgMcOnTI6vXExES3yCEG3vQuzuBN78fFmiyhVqvdJAlBEJ4IBfAFtGnTBnv37gUAlJeXY+TIkZgyZQoA8EF8giAIgiAIgiA8izFjxqC0tBSLFy/mt9M3F8QnCIIgCIIgCIIgCIIgCLmhAL4FtFotPvnkE6Mg/vPPPy+zVAThOeTm5iIyMlJuMXiUJo8nkZeXhwYNGsDHRxlNhtLkIazjLeWl1+tRUFCAxo0byy2KV5CXl4eVK1cCANq1a4chQ4Y4nEZxcTEAICQkRFTZCO9l2LBhCAoKwpw5cyiIT0hGXWkvvKV9Vwpcu8gwDEaOHImoqCi5RXIZ6n8pA6HPlZiYiM6dO8ss0V1IRwjCe9Dr9XjvvfdQWloKoGZhnFarlVWeoqIihIeHyyaDWOTl5Xm9X+kuKioqcP78ef5zs2bNEBAQIKNEBEEQ1qHethW4IP6IESPw4osv4vHHH6cGkyDsIDc3FwcOHMA999yDbt26yS2O4uTxNL788ks0a9YMAwYMkFsUAMqTh7COt5TXgQMHkJubi8mTJ8stildw/fp1vPPOO/znGzduYOLEiQ6l8c033wAARowYIapshHczZswYXLx4Ee+++y5eeuklHDlyRG6RCC+jrrQX3tK+KwVhu/iPf/wDFy9elFki1zh27BiGDx+OqVOnYs6cOXKLU6cR6tY777yDjIwMRQTNly9fjg0bNmDHjh3o0qWL3OIQBOEiL7/8Mvbs2SO3GDwZGRnIy8vD8OHD5RbFJfLy8pCRkYGYmBjcf//9covj8WRnZ+Pee+/lP3fr1g3ff/89GIaRUSqCIAjLUADfBlqtFuPHj8ehQ4dQXFxMAXyCsIPIyEjEx8ejffv2YFkWOp0Ofn5+JI8HwrIsEhIS0KxZM7lF4enTpw8aNmwIAHx5GgwGqFQqmSUjzMGVl6fXvYSEBOTl5Xn8eygFHx8fhIaGAgC6d++OJ598EhUVFfDz87O789yjRw/+b7IFhL1kZWVhy5YtAIBXXnmF6jQhOgkJCcjJyQHLsl43GCisL0J/jHAdHx8fhISEICAgANOnT5dbHJf57rvvAAA7duzA7Nmzyc7KCOdzqdVqDB8+HJGRkbL7TSzL4tNPPwVQoysUwCcIz+ftt9+GXq/Hzz//DKDm3G9rZ3vn5+dLanzi4+ORn5+PyspK+Pr6eqxP1qhRI7Ru3Rrt2rWTWxSvICYmBosWLQIA/Pzzz1izZg327t2LgQMHul0Wg8GA8vJyBAUF0RgGQRAWoQA+QRCScN999wGo2Z6ovLxcZmmUJ4+noNPpEBERAY1GI7coPK1ateL/1ul0KC8vx+3btxEUFCSjVIQluPLy9LoXHByM4OBgj38PpdCuXTujFRrCfPX397crjYiICP5vsgWEPZw+fRoTJ06EXq/H8uXLMXr0aKrThOhoNBo0bdoUOp3ObnvmKXC2FjD2xwjXadu2LT766CNotVqv0pvq6mojvSHcj6nPBcjvN+l0Ouj1erc/lyAI6fD398d7770HoKZvd/36dTRq1Mhsm1ZRUYHY2FjL0X0RCAoKgkajgU6nAwBFjWk5QlVVFVq0aGFzQgRhH2FhYRgzZgwA4Mknn8TOnTuxaNEiDBgwwO2TPMrLy1FaWgqVSkVjGARBWISm9xAEISl+fn7QarWirLhYunQpEhISUF1drQh56gJKzy9OPlfPrNq3bx/at2+P3NxckSQjTFG6LtmLt7yH0nA1X8WyBYT3kpWVZRS85wZuqE4TYuPNOuXN7yY3DMN4bd6S3igPuf0mR3ZcIghvprq6GgkJCVi+fLncooiKn58fNBqNRbt/53vnB/bsxNfXF35+fvD19ZX6UZLhDe+gVDQaDebOnYvjx49j7969bn++VqtFUFAQjWEQhA2io6PBMIzZf9HR0XKLJzm0Al+AwWBARUVFre8rKyudTtNWoLEuzJ6jPKjbMAzj0iqS1atXAwB2796NgwcPAgBCQkKwYMECqNVqzJw50yl5CgoKrA4aNG/e3GFZc3JyrF53Jk25cbX8HMFa/hUUFKBBgwa1vufkc2a7KU63srOz+e2Uo6KiMG/ePISEhDisWxzeqAdi4KouuZKvYpaJGHXCW3TE1ns4gqv56ootsIUU5eVq3omtI96ikwCg1+tRUFBg9J3pynsueA9I6xcQNchRh6Qor8rKSovPFfop7vSd3I0U76Y0e2gLKXXPnXoj1Xtw9pdbcW8wGFBYWAgAKCsrQ1RUlFPpOou32B+xkdJvsoawfWZZFkCNrnDfe0LeSYkc/R0x/XnCflavXo3q6mqkpKSgrKwMGRkZ+OabbzB48GAAcGosQin9ZaDGxljbtv7O9waHEnUChmFEWXl/6NAhq9cTExNFvU+IuXe4cuWK1bTtSdcUMWT1BAwGA27fvs1/fvLJJ5GWloaFCxeiV69eCA4OdpssKpUKgYGBTrXFFGuhPKhLXL16lfcbTakLE0IpgC9ApVKZ7TR76jY7SoU740Wr1dIZL16GVB1uYfDe398fZWVlSElJwYIFC2SRxxE89WxdOfNOmGdcQ9ygQQNJZBIG74ODg1FSUoLU1FTMmzfP5bTNvUddQQl1zxr2lo3U71GXdUSj0TiVv0rXLSlwh554ky76+PgYTfgyXXk/e/Zsh9KT+5xgwjJK0lup/BSlIcU7Kqkc7UEqeZ1tF5UGZ3+1Wi2AmjEWc5Nw5UDssvMU3VWSbgl1gWtTtVqtYnRECShJr+4MlpPzIwHC4L2/vz8qKiqQnp4OAOjfv79i/E5bfrA12yKH3XF3kJllWVRVVUlSXtbexVaw3Rm4d7E28cJbEJaVv78/kpOTMW3aNHz77bd44oknRH+eVIFkiq8QRN2AajfhdrgzXugcPMIehMH7SZMmYdGiRQgMDOSD+K5sp+8OuPMFuXO3CNu4K8+EwfukpCQsWLAAMTExMBgMSE1NdXk7fSp75aKUslGKHISycYeeeKsuZmVlYdiwYWZX3tuL8JxgQll4q97WNTytHD1NXuIuYpcd6QIhBUrSqzsy0BJGkREG7wMDA7Fo0SJMmjQJAJCeno49e/Yoxu8kP9g6VVVV0Ol0XpE/3LtUVVXJLYrbeeqpp9CiRQukpaVZXOWrRCi+QhB1AwrgO4DBIPnuPnUC7owXblY+QVji/PnzRsH7uLg4qNVqLFiwgF+J37NnT5eekZWVhdjYWMyZM0cMkY3SnTFjBoqKiujMRwf5+++/0alTJ/zvf/+T9Dnvv/8+AKBPnz78VnXTpk1D8+bNYTAY0KFDB5fSLy8vR9++fTFs2DCXZSWM4epXXl6ew/cmJycjPT1dEfXSz88Pixcv5ldbeDJz585FVFSU0T9vJDk5GV9//bWoaX7xxRe18k74LzY2Fvv375dUX4XnE3/yySdo1aoVrl69Ktnz3MWoUaOcCt5//fXXSE5OBiD/OcHeRF5eHmbMmIGsrCxR0uPKJj09nS8vKTl16pRR3RwyZIjkz6wLCO2PLXsYFRWFL774QhHyFhUViarPcjJw4EAMHDhQbjEkJS8vD6+99houXLggWnvq5+eHw4cPi7JzV12kZcuWAICGDRvKLImy4GzMuXPnXOrvOOOvmvrzsbGxgBvOKa9r9OzZk195zx0NGRcXxwfxDx8+jD///NOlZ7jizwv1h/zg2qxYsQKHDx8GcPd8envy5/Dhw1ixYoWk8rgC9y6+vr44d+4c0tLSkJ+fL4KEyuLkyZNo0qQJ/+/FF1+ERqNBcnIyTpw44VFjMxRfIYi6AQXw7SAiIgIA8Mcff8gsiXfgyhkvRN0iOjqa1xPhFlHnzp1DRUUFAODxxx93On1uZV5FRQWOHj3qkqymxMbGIiEhAeHh4fD39/f6LajEZMeOHaiqqsK6deskfU69evUAAMeOHeN3ciguLuZX3nft2tXptIuKitC7d2/cuHEDZ86ccV1Ywgiufjmz3Wb//v3Ro0cPRdRLhmEwaNAg9OjRQ1Y5xODZZ59FZGSk3GJITv/+/dG9e3dR0+zSpQv69u1r8Xp0dDS6du0qqb5yZ+EyDIO1a9eiqqoKn376qWTPcxfl5eWIi4tzeOV99+7d0b9/fwDynRPsjTRo0AAJCQlcQMBluLLp0aMHX17uQq1W49FHH3XrM70Vof2xxx527NjRjdLVhpM3PDxcVH2Wk+zsbGRnZ8sthqRw9qd9+/aitacMw6BPnz4YMGCAKOnVNdauXYu9e/di3LhxcouiKDgb42p/xxl/1YI/TyuZRIbzHyoqKnDu3Dn+e27MS6VS8RNcnMUVf16oP+QH16Znz568L8KdT29P/nTs2NHlBUi25HEF7l0YhkF0dDTi4+MRGhoqgoTKIjw8HBMnTsTEiRORkJCAf//73zh58iRGjRoFPz8/0SfrSwnFVwiibuAjtwCeQLt27QDUdGz79evncnrCM0qkOgeFILwBjUaDefPmITU1FZcuXcKGDRuQmJhotO351KlTnTpvSritLgAEBgYCEO+s24CAAIwcOdLp++sy3JZVUm8DNW/ePH7rupSUFMycORNLliyBwWBAy5YtnXbci4qK0KtXLxQVFQG4q1uE63D1U6vVOl2/rAUG5EBp8jhLq1atkJGRwX9mWRYtWrTwup5k3759wbIsKioqRDubNDIykm/XlHDuKWd7PWn7QGuoVCqjfLWH4OBgr6mbSsLHx4e33Y6WiTXcVV4dOnTAnj17jL4T8z0IY3toCbFtsLMI9dlbkEqfvbm8qL1wnsjISD5YLFYf3JtwZDzBYDAY1TNnddLUnwfgtbtqycncuXOxf/9+HDx4EFu2bMGkSZNw6NAhXLp0CSqVCvPmzYNGo3Eqba4uueLPk02zzkMPPeTUfUFBQejWrRsqKytFPWdeKA93jr2rttTf399rd+aJjIzE0qVLAdSM3bVv3x5Lly7Fxx9/jM6dOxstHiM8Ey7uFhQURD4F4RWQFttBeHg4wsPDRZuVTmeUEIT9hISEYN68eVCpVLh06ZJR8L5///4oKSlx+Lyp48ePG52JK4TO+Ko7cMcxBAQEoKysDIsXL+aD91OnTnUqzcLCQj54P2rUKH6VPyEOSjoTkrCON5+ZKaUeko5LA+Wr8vCWMlHKe6xevRr/+te/ZJXBXSglz70RKfKWZVkqL8Im1Ad3jdu3b1M98zCGDBmCPn36AAC2bNliFLwPCQlxOl2uLnnLRFxvQ+pz5rn0yZbaR2hoKKZOnYrdu3fj5MmT6NmzJ3755Rd+MQ7hmXBxN6oHhLdAK/AF6PV6FBYWmr3Wpk0biwF8butlS9dMV9lzZ5PQGSWEXOTk5Fi93rx5czdJYh9cED8tLQ16vR5JSUn8meXBwcEWz5sy957Clffz589Hv379MGfOHOj1ehQUFIBlWej1eptpmlslWVBQ4NQWd0QNBQUFAO6u/jQYDPx3gGW9dEWf1Wo1Fi5ciEWLFqG0tNTu4H1OTk4tHRCuvB86dChee+01fqWePe/haUhhR/744w+Lq48LCgoQFhYGAKKuDBOWjTm8pbycxVo5W7N5d8pIMWdm2tJXS7Asi7y8PDRu3JjXSU7/pFhx62raztZLYT0wGGp2Si0vL+e/96R6wLXnws+lpaXQ6/VWfXZXsJbv+fn5CAoKsrj61Jm89TQ/zhxS1iN3IvV7WCvrrVu34ocffsCBAwf4HaX+85//8D7yzJkzJZFJbuzNc2+oJ/Yght3nEMNWmvrznL9cXV2NsrIy0fPdnE9OyIszviNXnwsLC3Hz5k2L94vdv3A2TbmwlLdcHfDG7a7dgbN21FZ5tGrVyurqzyFDhgAADh48CB8fH7z++usuBe+F41nCXQ2l9Oc9qa21tbKaW71ubnX8lStXEB0d7bIMvr6+Rv+LDZeupfFMqbCVt4mJiW5/piV0Oh2uXLnCfx48eDDeeecdzJ8/H+PGjYPBYMAPP/zA10/C8+Dibe6qBwzDPA/geYB2rSGkgQL4ArjzXszRtm1bfPbZZ2BZ1qFOoVqtrhXAV6vVkjXWSoSOCSBcQTj4mJKS4tC9poM5psH75557jv+tj4+P0WCCrW12hNuS+fv7A6g5W1FJHRRPg8t/ztlSqVSSTogQ6lZycrLD9wt1oKKiwih4v27dOgDg2wua2GEf5uoVhyv1y9H7pN4S2VvshB1l4vFnZnJ6EBYWhqCgINHSVZoOmGv/NBoNwsLCPC4YYtqe+/j4IDw83OZ9UpWJXq+3aNfEQunBKynyVo46pNFoZKu7pmW8bt06vP3223ygNTQ0FEVFRUhPTwcAPojvCSjNHtpCifI6YwPM+ab22Ep70xX6802aNHE5XWtY8x+9xf54OpyOhoWFWc0/ZydcWsOafigNW7plKX8YhkGTJk2c0k3SZ/ER7ihhqf/AjUWIOdnOnD+v1WrRoEEDsCyL0tJSBAQEmB3rqut6wLIsysrK+InMprGB6Ohop4LQUgSupUpXKlmVBsMwRnUgNDQU48ePx/r16/Hcc8/Bz88Phw4dUnwAn2ItlvPA3XE3lmXfBfAuAHTq1Im2PyFEhwL4dhIbG4uSkhLk5uaiWbNmcotDEIQdCDvr586dM9o2v1+/fi6l7S0rxwjn4cq+vLwcvXv35rfNf+2112SWzHNRSr0S2g6ibsPportXMSgBbgtGpQ92Kx0fHx9otVpJ7ZonBScI5+DKeOPGjdi4cSMqKysBAGFhYZg0aRIiIiKQnZ2NLVu28EF8b12BT9SmrtsApfiPhGXk9K1JPwh3o8T+g06nQ0lJCQCIOinZWxCeG1+XFtwRNYwbNw5bt27Fe++9h27dujm9up8gCEIKrC8xJXjatGkDADhz5ozMkhCEuEyfPh3Tp0+XWwxJ8PPzg1arRUVFBR577DF+e9HU1FT07NkTcXFxiIuLcypthmFw4sQJp1ZuE9LhTn1mGAb+/v545JFH+OD9ypUr3fJsJVFcXIwXX3wRly9fdjktLk8ZhsEPP/yAWbNmiSCh/WzevBmbN2/mbQcN9BnD5Y+nk5GRgaioKIv/WrdujYyMDAB3ddLWrixKxNny4lbvcNu+exrZ2dkute+uUFxcjOjoaCN96tixI2JjY9GiRQtERUWJXocuX76MGTNmoKqqyiPLi7APPz8/JCQkYM2aNaisrERUVBRefvllvPHGG4iIiAAAxMXFYdKkSQCA9PR0/Pvf/5ZTZEXhLe2XJfz8/FBVVYUZM2aI4o95GlxbfeXKFbz44osoLi6WWyTiDpw/76hvLVX/YvPmzYpfVWkPYuYPYYyz4wmXL1/m7Y8S+g+cP89N6vLz87N6/KQYyNF/d5asrCz06dOH/9e/f388/vjjePTRR5GUlIR+/fohKytLbjE9kuXLl+Pnn3922/NKS0vx8MMPG5WnowQHB2P8+PFIT09HXFwcfvnlF/IlCIJQDLQC304+/vhj+Pj4iHLmDUEoiS+++AIAsHbtWpklER+u46TT6dCrVy/88MMPCAwMrPW74OBgi9MHIwAAIABJREFUPPbYYw6n361bN9y+fVsMUQmR8GZ9VjJdu3YVfcWXHPXr4YcfBnDXdhDGcPnj6fj4+KBZs2b4888/5RZFUpwtr7S0NPzyyy8YNWqUIrdjdwRn23dX6NSpE44dO+a25/n7+6Nbt26K3T6fEAeGYaDValFWVgYA/Nm2hH14S/tlCYZh4Ofnh27dujnlv6xZs0YCqdyPv78/unbtKrcYhADOn3fGt5aif7Fs2TL+6BFPR4r8IZwfT1Ca/RH680BNOyH1yntPGh9Tq9Vo3Lgx8vLy5BbF6+jRowfuv/9+tz6zffv2+PXXX936TIIgCHfhtQF8hmFULMuKcvbqvn37sGPHDixYsACxsbFmf2MwGFBeXg6tVuuRq7QIwpsJCQnBtm3bjL7Lz8/nVxc6O+Dt4+Pj8lb8hDEsy3rcoMqBAwfQq1cvbN++HQDq3Bb6ISEhmDBhgujpylG/Wrdu7dbneRIsy6JZs2ZescK3c+fOOHLkiNxiSE7r1q3BsiwqKiocaus6d+6Mzp07SyyddMTFxWH37t2ynAkfEhKCHTt2GH1XUFBg9qxpsYiIiJDEBhPKIzMzE+vWrcO6deuQk5ODd955x+wW+gCQlJSEp59+WmaJ5UV4LnxdaN9d8ceeeOIJ6HQ6sCzr0ROByB4qD2f8eZZl4efnh2eeeUZ0ffS0fqYlpOp/1VWE7YWzKM3+yOHPe9L4WIcOHfDxxx/LLYZX0r17d/5vlmWNjieQgqCgoFoTbhxdhV9SUoKtW7ciKSkJ2dnZiI+PR0hIiJhiEgRBOI3XRJoZhhnAMMzrDMMsYBimvljB+5s3byI5ORlxcXF4/fXXLf6uvLwcpaWldGYu4TFwg/p1Fb1ej/Lycuh0OrlFIQTodDpUVVU5da9cq9FCQ0Nx+PBhhIaGYvv27UhJSZFFDrngbAmtBvRuuLNLvc1merv+emu52ULu93ZGr65fv47r169LKBXhDbzyyiv4/fffMWvWLKjVahQWFmLVqlVYuHChUfB+8ODBMksqP3LbAU/CHXnF2UWDQZRhGsKLobprP97ux7oL0jlxIH10DW88sreqqgo6nU70nRkMBgMqKytF07Vt27ahpKQEzz33HH766SckJiaKki5BEIQYeMUKfIZhEgGsBPAGgIcAHGQYZhqAI7YC+QzDPA/geQCIjIys1aGcN28eCgsLsW3bNmg0GovpaLVao/85qqurra7OV6vV9ryiQ9iaVSzFM4naCHUrKipKZmmMKSgoQFVVFSorK42+42jevLnDaRoMBly8eNHqajdn0pUKHx8fi+fwCfPC3DUpV9LZi5L1y1kKCgqMVuAbDAbk5+dDr9fDx8fHov5w5SUM/Luqz47CBfF79eqFnTt3AgAWLFjAdyjcLY8rOKpb3IAHAK/bxtGWLQgLC7O4ytfZcs7JybF6XS794WylKytT7NEtW22JLRvsaP64qr9KLS8OMcrNEzD15+V+b6FeWWP37t0oLy83Wjk9adIkxMXFAQBmzpwpqZzeSk5OjtFqOlfssxj+lhR24pVXXkFoaCh++OEHHDhwALdu3QIA9OrVC/3793dKTg5n5bV0H1cWrVq1cutOdXLbAXtQij8vZl5xvhNnAw0Gg1HfMyIiwuw2zlLUE5ZlceHCBY/pn4qJUnTLFFPf2pyttqSP1vxywHJZmrvPk/pm1pCjH6ZU3XKF0tJS6PV6o7HU/Px8Xiel0BGx21pA/rEqV/XRU3Xr0KFDZr/nVp/37dvXrP9ja4cRb5gI4evrCwAICAgQNd3bt2/zE26sxWo4hLoVERFhNFnn1q1b+PDDD5GYmIjS0lLodDrFBPApvkMQBOAlAXwAfQD8h2XZXQB2MQxzL2oC+lMAnLS2nT7Lsu8CeBcAOnXqxDZq1Ii/9uWXX+Kzzz7D/PnzkZSUZPHharUaarWab5hMKSsrQ2lpKQCYPX+b8E5MdUtmcYxo0KAB31kWfucKt2/fVlwQz1pHy9lOWIMGDRTRyVeyfjkLp4OcnVSpVAgKCuInQNm6T9jBkbrjak4HmjdvjosXL6JVq1bYuXOn0UCUEiZ92Iu9usXlgcFgwO3btxEQEODywLwcdcuVZ3rz5AUOMcvEHt2Sqi2x9B5i6q8ScLa8lNCuuYKpbrl70M80/+zVK9PgPQBs2bLFKIhvz/OI2ohln+X2t6yV9RtvvMH//c9//hNNmjRBYmKi4uwZVxa3b9+W/PxdIZ4w+C+GfinN7nM+L+e7q1Qqo76n2IP41t6jtLQUly5dAuC9fpol5LRdjuiWqa2WQi/N9cM8qW8mxFl/Q0zkbhelIDw8vNZ3QUFBNu2G0vwxOcaqhM9zVR+l1i13B2WFq8/d6f/IgbvzNiAgAH369LFb14S61bFjR7ZNmzb8taVLl+LWrVtYsmQJdu/eDZVKhR49ekgmO0EQhKMop2fvGtcA+DEM0/jO50wANwC8xzBMoDPb6RcWFuLFF1/E/fffj7lz57oknFarRVBQkNUAFEG4G4ZhRB3ICAgIsLiinSCcxc/Pz269UsKZnWFhYUbb6XMr4rwZbqKFkoIF7sIR/STsw91tSV3WX0I67NUr0zPLuQnDW7ZsQXZ2tuRyejN1zT4/++yzGDJkiCLtGVcWYgduCc+C63u6Uz+pf6p86pqtFhvyY6WDdNJxSB+N8fX1hZ+fH/k/EiCWrhUVFWHDhg0YMmQI7r//fnz//feIj49HaGioSJISBEG4jre0qkcAdASQxjDMZwA6siz7GIAs1KzOt4uzZ8+iS5cu6NKlC+Lj45Gfn4/169fDx8e1jQpUKhUCAwPJiSEUgxRnU6lUKvj7+4NhGOj1esyZMweFhYWipS8Xn376KXbs2CG3GHUKLhDP6RP3vy2UssUYt50+5/TXhSB+XSA9PR0tWrRAVFQUoqKiEB8fjxYtWiA2NhYtWrTA8OHDodfrRX1mXbQ/wrYEAMaOHcvnOZfv3N8xMTHYvHmzYs5a3Lx5M5599lmcOnVKblEID+Cnn36qdWb54MGDjYL4R48elVNEj4bzH27evIk5c+aIbp+d5fLly3j22WcVI481TP15R84wF7ZfcgRuCfkR+vOO9j3F8n+8tX/qLRw6dAiPPPIIioqKHJ6IvXz5cvz6668O3aMEX5HwHNyxOICzjXPnzkV6errD9//6669YsWKFBJIRzvL+++9j+/btAGp0SKPROO3/DBgwQEzRiDucO3cOPXr0QI8ePdC9e3cUFRVh7ty5qKiowPHjx9G7d2+5RbSJwWBAWVmZXT45QRCej8duoc8wjJpl2WqGYRiWZU8xDPMqgAgAjQB8dednlXBgksLt27eRmZnJfw4MDATDMCgvL6et7wmvQrhV3ciRI0VPv6CgAD179sT169cRFhYmevruhJxm9zNy5EgcO3YMo0ePdui+WbNmSSSR43BB/MmTJ6NVq1Zyi0OIwOnTp60O/B0/fhwFBQVo3Lixxd84CtkfWB1or66uxq5du/h2TO7tcTds2ICioiJ88803CAoKQs+ePZGamoqOHTvKKhehTL755hsANYN7wm0ae/TogYMHD4JlWezbtw9du3aVS0Sv4Pr16+jZs6fo9tlZ5syZg59++gnbtm3DhAkT5BbHKqb+vCNb4VP7RQj9eWHf0x6k0B9v6p96AwcOHMCkSZMAAAkJCThy5AiaNGli9/2PP/642W3PraHT6fDcc8/h/PnzDt1H1C2kGB+zBGcbP/roI+zatcvh3ZeaNm2KRx99VCLpCEdZuXIlvvrqK/j4+GDUqFEup3fs2DERpCJMKS8vR1ZWltF3p0+fRmxsLPz9/bFr1y68+uqraNasmUwS2qa8vBylpaX8TgQEQXg3HhfAZxgmlmXZ83eC92qWZasBgGXZiwAuCn73PIAeAN62N+2IiAg8//zzAGq2Udm6dSsmTJiAw4cPUwCf8Cq47cD8/PywatUq0dNv3LgxhgwZInq6clCvXj25RahzREVF4ZNPPnHontmzZ+PTTz8FAMVsURYaGorPPvtMbjEIkXjllVfwyiuv8Ge4lpaWOjxw6Chkf4Cvv/7a6HNBQYHRuaVceShhm8shQ4Zg27ZtCAsLQ2lpKb7++mt8/fXXCA4OxsMPP4zk5GQ89NBDcotJKIQ333wTH3zwAS5fvozU1FTMmzcPAJCamgqWZRETE4M333xTZik9n7Zt26Jt27Zyi8Hz+++/AwBu3LghsyS2MfXnOTtrj58lR/t1/vx5REdHQ6PRuP3ZRG2E/jw3AdLetloK/fGm/qmnIwze169fHzdv3uSD+Pae3+2MXffz80NycrIifEZCuUgxPmYJoS46s2tfeHi45P1Rwj644D0Al3fx5aBd3aQhPj4e33//PYCaQPjIkSMxZcoUAMDnn3+OoUOHok+fPjh48KBig/jcEc1KGfskCEJaPGofO4ZhhgDIYhjmPwDABfFNfuPDMEwrAAMATLgT2LeLv/76CykpKUhJScHatWuhUqmQk5ODYcOGOTRjXInQ9iqEEEe2JSekOXKAEI/Zs2fj448/RmhoKAICAqBWq23fJAOObD1LKBd320+yP9ZRUns2depUADWrYX7//Xd88MEHSEpKQkVFBb744gskJCRg7ty5MktJKIlp06YhJiYGBoMBixcvxuLFi2EwGBATE4Np06bJLR4hMizLerQtV/JW+HPnzsU999yDwMBA5Obmyi0OYYKzbTX5QN6HMHj/0ksv4eTJk+jSpQv0ej0SEhJs1l9XdEJJPiNBAHd10hXITsoPF7yvV68e/P39RRuPioyMFCUdwjJarRaffPIJEhMTMWXKFPz+++/Yt28f8vLy0KdPH/z5559yi2gWOqqZIOoWHrMCn2GYQADTAMwAkMAwzDaWZcfdCeL7sCzLHSQYyLLsRYZhxrIs61DUvWHDhnjyyScB1GzZunPnTvj6+uKnn37CfffdhwsXLig2MGQLbnsVAPD19RU9/erqaqvXPTXf5CYnJ8fqdXtnqDtCQUGB0YpG0w6uFM+09p5bt26FVqvF/v37ceDAAej1erRo0QLPPfccwsLCrK6kEEtW4baPZWVlFn9nujLUUaTIW2dZvXo1ACA7Oxvvv/8+6tWrh3nz5vF1eebMmW6Vp6CgwOz3XPA+JCQEX3zxBR599FGwLGv0e0v5yr0jAGzcuBEXL1qf79WqVSu89NJL/GdH80Cn0+H69esALG/1rSQdsIVpvTW1G868C1cm1dXVSE1Nxa1btzBx4kTExcUBsJ7n3L179uxBenq63eVlzf64UqedTdf0mtD+yLFFvBztkBSYew+hzkZFRTl0L4ewvCIjIxEeHo4zZ85Ar9dj06ZN+Omnn4x+v2zZMixbtox/vqvPdOQa4P42XKpnKg1ny6u8vBzTpk3D+vXrcfnyZQBAdHQ0vwrEEubar6SkJAwePBiANG20VLZy69atMBgM+Ne//oWrV6+iXr16mD9/PliWhY+Pj9v9DSngfJKqqip+El95eTn/vbN1ZPXq1dDr9SgrK0NaWhr0er3F3zIMY3d76kmY9lP0er3RailLdpbslnWE/tjixYtx69Ytu/tf1rDkz7Msi7y8PDRu3NioTDkfyNoZ6a7Yn927d6O8vFwx/R1v0UtL7yEM3vfv3x/t27fH7t27MWHCBBQWFuL3339HdHS0xe30CwoKEBgYaNYvtqRb3DVX+ujO4GxZ2rrPFs7oiCvPrKystHq/2DrrSh2x1nctLCy06ltbghurOnXqFLZv347y8nK7/TFz6dozhmGKI31FqfRSCtt069YtHDp0yOy1K1euIDo62uw1lmXRuXNnBAQEOBzctPQ8a8/kgveBgYFIS0vD7NmzYTAYcOXKFYee7SjWJiL17t0bCxcutHg9MTFRfIGcxFqeA9LIWlxcXGuXv8mTJyM/Px9TpkzBpk2bsHPnTgwdOhSJiYn46quv+MkUzu7OTDETgiBcwWMC+CzLljEMMwlACYDPAWwSBPH1AMAwzP0AejEM866jwXugJjCXmZmJO2mha9eu+PHHH1GvXj1cvnwZycnJRgNm9iCHETb3zKCgIKhUKtpehQBg28GuqKhwKmAkheN+6NAhHDp0yGhQ8urVq5g3bx5iYmLQs2dPhISEiPpM0/cwGAy4ffs2AgIC6tSqnuzsbGzZsgUAUFJSgpSUFCxYsEAyu+ao/giD999//z1CQ0P5jowjgzQbNmzApUuXwDCMRYe8rKwMFy9exIYNG/hVtpaw9B7coL23btsoVqC5uroaKSkp/GSZLVu2YNKkSXzQwRpc8B6A3eVljQYNGlgsT1v66uxgmOkzhfanrsywtpa3YrYzjp7Jaw7T8ho+fDg2bdqE/fv31wreE4Qp48ePR/PmzTFz5kzs2rULBoMBffv2tbu+c+0XAN72cYPGnsDNmzexefNmI3t569YtpKSkYM6cOU6nq7QgF+eTsCzLl6tWq3U5oKTX61FQUIBVq1bBYDDA39+f37ZVr9fzf7Msi7KyMrvbU2fzT2n5TriGqT9mb//LGT3ggmhhYWFGZ7lyPlBhYaFzL2FDHi54787+Tl1FGLxPSkpCv379jHywF198kW/TuO30TYP4DRo0QGRkpMN+sTV/nqi7CPsBzupIdnY2du7caaTL9vpj5nwAe/wCa2NVdaWvaI2qqiqUlJQAgORngwuD9//5z38QHBzMl4GlCQZCuEmGBoMB+/btg0qlQvv27V1eeX/16lWX7vd2dDodP3EaqDmKwtfXFzNmzMCaNWtqBfEHDRpkFMR3J+SLEAQBeNgW+izLXmNZtpRl2XwALwDQMgyzDQAYhrkPQGsA21mW1TmT/u3bt3Hs2DEcO3YMR48eRVZWFh588EHcunULwcHBePvtt7F27VrxXsiNqFQqPohPELbw8/ODVquVNdC4bt06tG7dml9136BBA8yaNQsrVqxAx44dwTAMLl++jA4dOmDo0KEoLi6WTJa6WH+Eg1l9+vRBYGAgysrKkJKSYnP2qFQIt4cTbpu/c+dOhIaGOpUmN1CkUqkwf/58/hgV03/z58+HSqXCpUuXsGHDBqeepVKpvHrbRjHshnCwODAwEH369AFQE8TPzs62eq8weD969GiXy0sp1EX74y6kaOu4LfL/8Y9/2P1bggCAxx57DEOHDrW7vgvbr9GjRwOoGTTes2eP1KK6vF3rzZs3MXToUNx///3IyckBwzDo2LEjVqxYwfsby5cv97r2kmEYUd+prKyMD963bNkSS5Ys4f2WZ555hv970aJFSEpKAmBfe+op2GND69LEWzEx9ccs9b+KiopE2bqZa49NFxtwPpBUtkCJ/R1vRBi879Wrl8XA5tSpU4220//7779r/Yb8Yvdyp257ZWa70g/46quv0L59e/z3v/9FeXk5tFotJkyYwOu5u/wxgOqEKb6+vggODpZ88Zpw2/xly5YhODjY6bRUKhUGDhyI/v37ixIkvnLlCvr164d///vfLqfljeTm5mL27Nn8v9dffx2FhYXQaDSYM2eO0Xb6O3fuxPXr1zFo0CBRfEo63pggCGfwmBX4prAsW8AwzAsAVjIM8xtqnMpeLMtedzbN0NBQPPzwwwCAoqIiHDp0iO+gnjp1Cvfccw9effVVREVF4YknnhDnRbwQg8HAO7HkRIrH7du38emnn+KZZ56R/FncWVx//PEHsrKy8Nhjj0n+TI6tW7di4cKF/Ir7+vXrY/LkyYiIiOB/M3bsWIwePRo7duzAiRMnkJmZiQ4dOqBz58745JNPUFVV5ZbJB5cvX8aECRNw69YtADW6b0vnWZYFwzDo3r07lixZ4pKjLxX79u3jB7O4LeAGDhzID+SlpKQgOTnZ7XJxs+TfeOMNfPrppwgNDcXhw4edHmDbuHEjH/yYN2+e1Z0cQkJCMG/ePKSmpuLSpUvYuHGjy9tqylG/pOLDDz/EiBEjXO4oCweLudVPDMMgPT0dW7ZswciRI9G/f/9a973xxht88H7y5Mm49957ERsb63B5ZWRkAAAeeughl97DlKlTp+Knn37izz8WrsJs3bo1Vq5ciRYtWoj6TCk4duwYAKBLly4yS+IaxcXF+PzzzzFx4kSHd4v44osv0LFjR4vlFRUVhUaNGiErK8tmWsuWLYNKpcKSJUtqXRNu67lixQrs2LGDt3XCtoZhGHTq1AkNGzYEULODjvCdBg8ejPj4eLNH4kjBrl27EB8fX6dXugnrO2BcXmLVd3PtV0BAALZs2YL09HT83//9H1auXCmZH/7bb7/h9ddfx+XLl8EwTC3/JzAwEL169eJ1jmVZ/jeZmZl8AFmlUqFDhw4YO3Ysv8JkwYIFsvsbUiJWPfz777+RmprKB+9t7TbDBcxstaeewuuvv84fR2KN6Oho5OTkmN2Om8Ob/DGxMOePmet/3XfffYiPj8f27dsdbk+F7QXX97THZv3yyy946623+MHvyspKaDQa/nrjxo2xatUqm6vWlNjfEbb9X375pUe3p9y7HDlyxOjM+6ZNm1q9b8eOHRg+fDiOHTuGhIQE/PTTT2jUqJFDz1aav5qRkQGDwYCEhAS+fO2huLgY69evR2lpKVQqVa32Q6vV4uWXXxZ1PMF0fOOOL2OxMp09exYdO3YEALePb7gyPuasv3r8+HFMnDiRX+Gt1WoxatQodOjQgf/NpEmTeH8sOTkZy5cvV+S46Pvvv48nn3wS9erVc0gv3VW/Ll68iGHDhpm9Vl1dzdv4+vXr4+WXX8YDDzwAoMbPEmPlfUpKCk6ePGn2maWlpaiqqgJQo/c7d+7Et99+CwB821lZWQlfX19J+l9fffWV1ev+/v6oqKjAli1bsHXrVkydOhVDhw4VXQ6x+euvv3D27Fl+0qlUNGzYEMOHDwdQ03f+73//i7S0NLzxxhuIiIjAJ598gpEjR2LKlCnYvHmz0Ur8w4cP22zHrCE83tjZ7fgJgqh7eGwAHwBYls1nGOZXAAMBPMKy7F+upKdSqaDVagHUOGIPPvggjh07hvvuuw8tWrTAhQsX0KFDB8yePZsC+FagBkkazp8/j4EDByI3N9dtW/fodDq3n4+0ZMkSPng/fvx4xMbG8vVSiFqtxoQJE/Dee+9hyJAhyMnJwfHjx9G/f39s377dLbJu2rTJaOslR/jf//6Hjh07YuLEiSJL5Tr/93//BwAIDg7mB3zVajVmzJiBJUuWoKysDKdPn0b79u3dKhfXqdy5cyeAmgBGaGio1XPprMGdeT9y5Ei7jmEICQnByJEj8fHHH/P3uoIc9UsKcnNzMXDgQJw/f57vODvD559/jrKyMvj7+xttXSoMOkyePBl//vlnrXvXrFkDAIiLi8O9994LwLnyevrppwEAFy5cEK2znZubiz179licZZ2fn4/Fixfjn//8pyjPk5JmzZqBYRijAWZP4+bNm+jSpQt0Oh3at2+Pzp07O3T/9OnTER0djcOHD/P5YBq87NmzJz777DO70lu2bJnZAD43YenatWs2d5EwPcNPyJdffsmfLejK0Rb2kpiYiLy8PMmfo1Tsqe8LFy7Eli1bXLIxFy9eBMMwRpPP4uLi+EHj1atXY+bMmZL5iytXrsSJEycsXs/Pz7e56qd58+bYvXs3vvzyS6NAm6m/cebMGd6uewNjxozB5s2b0bt3b5fSSUtL423PlClT7Lpn8ODBOHHiBEpKSjBr1iyPDuAvX77crt/p9XosXbrU6i56Qn/Mkl2vS5w5c4bfNn/GjBm16ueECROQmpqKAQMGwGAw4JdffsGlS5ccrqfOthcjRoxAZWWl1d/o9Xq88847Vn9jT3/H3fZHuKW3p7en3LukpaXx3127dg2NGze2el9VVRWefPJJZGZmQq/XY8mSJVi7dq3Nuin0TTl/VSk8++yzuHXrFlJTU/Hoo4/adU9RURF69eqFoqIim7994403XBWRx8L4hsXZ8nq9Hvn5+QDujm9MmDDBLf0EV8bHnK1f06dP54P3U6ZMQWRkZK0J7HFxcYiLi0N2djY2btyIBQsW2B1QzsrKcqk/bS+7d+/GggULkJmZiZUrVzp0pJi76ld1dTVu3rxp83c3b97E8uXL8d///le0Z//99984fPiwXauk9+7dW+s7f39/6HQ1GwMLJ5iJwfHjx23aka5duyIkJAS7du2CXq/H5s2bPSKAr9Pp3DLxKigoCAkJCfzniIgIpKWl4ccff8Tw4cOh1WrxySef4KGHHkJqairOnDmDF154AatWrcL27dvx6quvOv1sYcyJIAjCXjw6gM8wTH0AgwD0Y1n2lNjpc0HE0NBQhIaG4urVqxgwYABWr15tdK4gYQw1SNLgDkfelDZt2rj9mV9++SUmTpyInJwcbN26FWq1Gv369UPfvn2NfldeXo6DBw/itddeQ0lJCR555BFcvHgR58+fx1NPPWVzVqoYLF++HPHx8bhy5QrUajW/8wRHdXU1qqqq4Ovryw9+cTN327VrhyFDhkguozPs27cPUVFRKCkpwfr16zFt2jQUFxdj6dKlAGpWM9lzppfYcKtzFi1ahLlz52L8+PH44osv0KxZM6fSS0pKQnp6Oj7++GMEBATYPBM2OzsbH3/8MX+vq8hRv6SAGzBxdHWMKdz5ps2bN6+1amrw4MFIT0/nZ7qbsn37djz66KPIzs7Gnj17MHjwYKfKixsQ1ul0ogU7IyMj8dVXX/HbKFZXV0On0/GDPQ0bNsS4ceNEeZbUcLPNKyoqXD47Xg5u3ryJ3r178wMq3GRDR7ly5QqAu4PTt2/fNhqY2759O5o0acIPaFqC26r3q6++wqBBg4yucYOeoaGh2LFjB7777jv+mrCtOX/+PPbt2wcAmDdvHiIiIviVTxMmTIBer3frkTjBwcGK3FnGXdiq76GhoRg6dKgoNiYwMLDW5LO4uDh07NgRmZmZGDFiBI4cOeLSMyyxefNmbNu2DTdu3ACAWv7PRx99hMLCQjRo0ACrV682CrZ36Y97AAAgAElEQVTk5ubi22+/xf79+9GzZ0906tQJSUlJ/P1Cf6Nly5ZeFbwHgFmzZmHWrFkup/P2229jy5Yt/Ephe87sXr9+PUpKSqBSqcwOOHsKu3fvhsFg4G2oNRo2bIjVq1db/Y3QH7Nk1+sS9957L2JiYnD58mUsXbrUaKLQX3/9hffff5+fPKvRaDB9+nSn6qkz7cW6detQWVmJsLAwvPbaawBq2nKurCoqKvDmm2/iyy+/xJo1a6zWCVv9nZiYGLfbH66t9vPzg7+/v0e3p9y77NixAxMmTEBmZiZ27tyJ//3vf4iPj8fo0aONyqe6uhrHjx/HmjVrkJOTg5YtW+LSpUuoV68eANt1Uzj5wZXVkVLAyTVv3jwAdycMW0IYvO/fv7/ZfsLx48exbt060f1xbnwjJyeH/+6dd96xGMVs1KgRRo0aBQD8+Ia7+gmujI8566+Ghobizz//RPPmzbFp0yZERkZi4MCBaNu2LR/U3rNnD7/T0AcffODQDnXDhg3D559/LvnY39mzZwEAP/74o5HdsYemTZvyRylJucNXWFgYBg0aZHbSTnFxMd8uaTQa0RfYhYWF4e2338bRo0f5ZwufqVKp+DKvrq5GQUGB0eSke++9F35+fvD19RVVruPHj6N79+42JxZwE80BoEmTJkYTqZSMHGOMQoQTgcrKyvDHH39g8uTJ2LZtG9566y306dMHzz//vEvPUKlUtNCRIAiH8egINMuyNxmGeZRl2Qop0s/Ly0O9evUQEBDAN5AtW7aEXq/HtWvXEBUVJcVjPR5qkAhXiI2NxY8//ohz585h8uTJyMnJwddff439+/fjkUceQffu3fH999/j8OHDKC8vR79+/TBjxgy0b98eBoOBD9wNGTIEv/76q+SrZ4YOHcoPXJeVlaFBgwb8NeFKACWtArBFZGQkv1385cuX8fbbb+PatWswGAyIiYnBlClTJD9TzBpjx44FUHP26RNPPIEPPvgAvXr1cjgd0+1kJ02aZDGILzwjk9tmk1AOQ4YMMdquMC8vjx84caa8xA523nvvvUaDwAUFBUa2wtNwdKBHCXDB+6KiItSvX9+uFR224N7f1B6q1Wr8/fffNid6fvrppxg0aBDeeuutWgF8bsISULNFpXA1gqn+fPTRR5g7dy6WLVtmZA85udyx8p64C1ffuQFsnU7Hb9/tjt0rRo8ejaysLGRkZBgNNoqJj48PJkyYwH821cn/+7//w6BBg3DmzBmsWLECe/bsMfLHnnrqKZw6dQpr167FN998g4yMDPTq1Qv333+/0ZnutraFr8uo1epaxw1YC+KvX78ely9f5o9dcNduXlLABeQ5G2qNv/76y+bEBiGW7HpdY9q0abzOpKam4vnnn8f27dv5tpML3L/88stulWvdunUAaibK3XPPPQBq25+dO3ciMzMTM2fOtLrzgq3+zrRp06R9GTMI235Ph3sXf39/7Ny5E0VFRXwgPzMzE7/88gvi4+MxYsQIZGZm4ttvv0VhYSEeeOABpKamgmEYjB8/nk/PVt1Usm+q1WqNgvi+vr6YPXu22d8Kg/ejR4/GihUr3CkqgBo/Qoi13SwaN25c66gJJZeFq3BjOocOHcJnn32GtLQ0/POf/0Tz5s3Rv39/XLp0iT/WbdKkSRgxYoTdaXOT0rggvruOz3DG7ggnzEhls8LDw/H000/zfrNwJfuVK1ckDfb6+vqibdu26NChA1/m1p4ptTzA3eB9VVUV3nvvPTz33HMWf8uyLCIiIrBkyRLExMRIKpc3cPbsWTAMg9jYWP67//zn/9k787ga0/ePf85SOpUiDAlRtomQZhpqbI1MZCmDUAbZyRpRoqKskXU0loy1GhLGkooxoYgaJvlmizaJqUjr6Sy/P/o995zT2Zcozvv16uU451nv537u7bquz3USbDYbrVq1wrx58zB48GDs27ePOEZo0KBBw8ek0evC1Zfxnsfj4c2bN8SLjsfjQVtbm3R+VPSVBg31CeXZqo5BAo/HQ1lZmVwyUKrA5XLh5uYGFoulkpxb9+7dcevWLXh6esLIyAgcDgeXL1+Gn58frly5AjMzM/j4+ODgwYNEyp1Op+PixYtEssza2rre77dJkyYSoxupyVBjMt5TUDnf6XQ68vLyhBazKKNUfdQneeuPm5sbNm7cCA6Hg2nTpgnlJ1MEJycnEp0dHh5OIuPq/tWH8V6d77eG/+SjAahkvAfUl6NYGo35+Te2tq2oqIgY7ydOnKi2PMfScvbKYzAaPnw4DAwMcOvWLZWuQ13toTqQp15/rPHIp4YaHwg6cnyMd4fBYJDFd0nGzfp+BnQ6HZcuXYKFhQUyMjLg5OQkci5LS0scPHgQ8+fPh5mZGa5cuYItW7Z8McZ7dfQBlBGfWvT39vYm45b9+/cLjWMEjff14dShKKrUwaSkJBgYGGD48OEyt1XEeA9Ib9cbAqtXrwaLxYKbmxu4XImq1mrB09MTnTp1Ao/HQ1hYGEpKSsBkMjFq1Cg8e/bskxjv2Ww2OnToQIz34jh8+DCAWjlvDocjtZ6Jm++YmZl9EuP9506zZs1w9uxZ+Pr6wtTUFHw+H2lpafDx8cGpU6egp6eHmTNn4ty5cxgyZIhIPynr3WzoY1MWi4UzZ86AyWRi5cqVYlNnFRcXK2y853K5DW4u8bGexaecS2lpaWHixIlYunQpJkyYgLKyMhw8eFDIeC9L3a8uZmZm2Lx5MzgcDsaOHYu7d+/Wx6WrBWlrYOpES0tLpUh2R0dHGBkZIT8/X6H9aDQatLW1G0R7Qq2Pfffdd8R4P3PmTKn7WFtb4+TJkxKN941hLsbn88Fmsz/KNf7vf/9Dx44dSSAin8/H4cOH0bVrV6xfvx6DBw9GVFQUWrRo8cU7eGrQoOHT0Kgj8NWNoaEhyQX44sUL1NTUYNiwYejfvz9KSkqQk5NDvCCzsrJgZ2dH9lV0ceBz40u///rCyMgIpaWlMDAwUFjGUVD2DPhP8lhcpHhdJHn75ubmihyXiiZjMpn46aefcP/+fTKJ2rBhA27fvk0MaMuWLVPofECtx/fu3bvx8OFDjBkzBllZWQBqDTLi5PEoI76TkxPu37+PXr16iUR+yXNeSUjb53NS5aCe1ezZs7F27VowGAzs378fQG09eP78OalPdb2updUfSXC5XIwdO1ah+rNq1SoYGRlhzpw5cHFxQUxMjFL3uGzZMgQGBuLXX3/FmzdvxG5Lp9OxYsUKsbmq6yJ4n+JUGKjyKSsrU+j9llZ+gsf9WEg7n7i2Qt59lYV6ni4uLrhw4QKMjY3h7+8v177Uc1IEVZ5H+/btFX7+qp7zUxz3YyPuPgQj76nF0DVr1nyU6+Hz+eByuUJy+sbGxkhJSQGfz0dubi7s7Oxw+fJlHD58WChVjKz6UxdV20NV6zNF3Xotri0QHI98LqlEGto7EhwcjIiICCQlJeHhw4dCBtuioiLo6emJ7cNlqYNIuk9J36enp8Pa2hr379+Hk5OT2PFYt27dcObMGfL/UaNG4fz58zLvUd6+Vp2w2Wyl+jZx3wu+K7m5uVJVmyQdV3Ac4+HhgRMnTki8tqZNm+Lhw4dyRd5Lu0dl64i0dkBHR0fmmIIiPj4e1dXVsLe3R25uLnJyckCj0WBjY4OCggIAtbL5siLvVakfH7vPpBQHLl68SIxDJ0+eREREBKysrBAdHa32exWsW7NmzSLqZr6+vkrcgWrXAtSqLezYsQMAMGHCBJw6dYr89uTJE6GoOQAwNTVFdnY2fvrpJ1y4cAEAxI61pM13PgUNrS9RFmn3ERwcjODgYLx//x4jRozA7du3wePxUFRUhHbt2oHP5ytlNFN2XqJsm6YMffr0wZkzZzB27FjMmjULxcXFmDRpEgDlI+85HI7KaXlUuUdtbW2F1o4o1DHeEDeX+tjts6urKzZs2IDS0lIAtYbt06dPK50qkaoPK1euhK2trUQ5/YY0768vmjZtiiFDhii8n7j2QzDlojSHj8GDByt8Pllcv34d169fF/ubtMh9LpcrkkYUAGbNmkWi74uKitC5c2eUlJSgY8eO+OOPP0hwk7TrSUhIEKtsANRPGUhD0vmo97s+UhppaWmROsFms/H8+XO4uLiQ7+7du4enT5+iffv2sLCwwMWLF1VOEayszUSWs2ZDO64GDRrqh4bpWt4AoHICde/eHUDtwFhbW5sY6DQR+Bo+Brq6ujAwMFCLl199eclWVFRg8eLFMDc3x99//w0+nw9TU1OS2+3atWskF6wq9OzZE8+fP0d2djbs7e1RWFiIhQsXwtraGufOnRPatm4kvrjILw3yYWJigkOHDoksZqmrPnG5XCxcuBBmZmZK1Z/Zs2eTyFMXFxel8+35+/vj1atX4HA4Yv/YbLZcxvu6UPJy4ozD6ny/NfzHyJEjERYWJrfxHhCWAfxYNOTn35jVAQQRNN67uLiILIZ+jPuj5PSpBYGCggJ07twZrq6uiI+PJ1F+Bw4cUPlc6moPVUGeev2xona+ZBgMBsaMGQMAQlL3FB/rGdDpdKSmpoqNxI+JiYG1tTUWL16MwsJC2NvbIzs7Wy7jfV2k9bUNlbrviir3wGAwcOTIEYljGA6Hg5KSkgYlm69sHaTaSk9PT8THx8PV1RWdO3cmxvt27dopLJuvLB+zrxQ03k+ZMkUogtnMzAyLFi0SWoxV57UdOHAASUlJKhvvVSE+Ph4cDgctWrSAsbGxzO1nzJgBALh//z709PRkjrUkzXc01B+Ghoa4desWPnz4gKlTp4LNZiMgIABff/01QkNDhebun8u4FKg14h8+fJhE4kdERAgZ78WNV6XBZDK/2PHUp5xLVVRUYOnSpejRoweOHj0KHR0dBAYGoqKiQmnjPcWkSZOwZs0aEol///59NV21eD6Xd6uxQTl61y17LpeL9evXw8HBQeYxunTpgpKSEsycORMvXryQabynUFXZ4GPwsd7vR48eoaamRshRZv/+/WjatClyc3Ph6empsvFegwYNGlRFE4EvQEVFBf755x8AtR5Xbdq0QfPmzQEANTU1aNKkCXR0dGBsbIzs7OxPeakavhDodLpavA1zc3Px7Nkz8v8PHz6gadOm5P99+/ZVWE6Ty+ViyZIlOH/+PBl0mpqaYtasWWCxWGCz2UI5qQHJEfiK0KFDB1y9ehU5OTmYNGkSkpKSsHDhQqxbtw5r164lC9aCkfjUorGkSHwNikNJ471//x4A1FZ/Zs6cSQbpWlpactUfNzc3AICPjw+A2ra8oVBVVYWamho0a9ZM5DdV3u/8/PwGtRAvCI/HQ1VVFYkiLCwsRIsWLWTmA/+UqMMR5fHjx0J57mWhavteVVWF/Px8mJubK30McRQWFkJPTw81NTUAGm/+9Ldv32Lw4MH48OEDRowYgalTpxIFF6rdou6xvmEwGMjNzUVaWho2btxIcn4nJyeTqIfk5GS1nKtue6isET8/Px9t27ZVOF+7tHot2F801nrVmAgNDcW5c+eQmpqKuLg4skhXdwwoiOBvNTU1sLKyQqtWrVS+FiriMCMjA5aWlmjSpAlRpbC1tUVERIRKKkYMBgOlpaVi+1p1UlxcjCNHjkBLSws0Gg1Dhw5VunzqvivUe/bvv/8KRYp9ajIzM4lxHBCuI0wmE/3791e4f+dwOCgqKiKp6hTh9u3bAGrVdthsNgDAwMAAo0aNgo+PD/r27avwMZWluroaWVlZMDMzq9c2TdB4P2PGDFhYWKBPnz6oqKjAwYMHkZ2djbNnz+LcuXMYPXo0du7cCTab/UmcuOqLhIQEAMD06dPl2l5PT49E4Xt6euLYsWP1eXkaVEBXVxe//fYbfvnlF8yfPx/Hjx9HaGgo+Z1SJ1FXfeZwOEhKSiIOL3X7RH19fXz77bdqOZckevbsSfrFlStXEsPvxIkTsXLlSoWORafTJaq3NCTy8vLw9OlT8n9x61EGBgYKjTtlzaXqY77M4XAA1KZu43K50NXVxcqVK0kqDlUQNOSOHTsW+vr6WLlyJcaOHSsxEl9V+Hx+veeyb2h8ynWUmpoapKSkgMlkgsPhoLCwEK9fvybjqNOnTyM1NVVuh4ri4mLMnDlTYUdwKkUAh8PBu3fv0LJlS4Xvpb5R11q4OMrLy5GSkgKgNmCITqfD0tISQO18NTo6Gp07d0Z2djYmT55cL9egQYMGDYrQcFfTPwGFhYXYunUr+X+rVq3A4/FAp9NBo9FQWlqKV69ewdzcHImJiXj//n2DyCGoQYMkUlNT4e3tLTRZEkf79u0VysHL5XJhbW2N4uJiALU5ln777TfExcUBAO7evYvff/8dP//8s5ARn8vlqi0ipkOHDoiMjERubi6GDx+Ot2/fYuHChbCysiKLwJQRv1OnTsjIyMBvv/2GyZMnN/gJbmOCeubjx4+Xua2gPKyjoyMeP34MoLb+HD58GPHx8ULbUznNBY34knBzcwOfz4evry+4XC4SEhLESo59bKh7kqd85IHP5+PFixe4ceMGunXrhn79+qnluOqkoqJCaCHgjz/+QLt27eDo6Ch1Pyo3nTg5L8p4UF8RdTQaTcjxw87ODuHh4VJzrAKijijffvstTp8+XW/ti+A7ZGNjg3fv3iE+Pl7mdcpLREQEVq5ciWbNmiEuLq7ejWH1yQ8//IAPHz4AAC5duoRLly6JbJOWlkZSJ0lDsNwp3r17p3D59O3bl8j+Xrp0CXv27EFsbCz53cLCAhs2bICzs7NCx617rT/99BOysrJw4MABstCoCHv37sXmzZsxcuRIpZRHJKFIf6FBPGw2G9bW1gAg02j66NEjtGnTBgUFBTJzZUojPDxcpf60oqIC1dXVmD59OlasWIEPHz7gw4cPsLW1xbZt22BiYqKyNOvVq1eRn59Pom7ri/z8fJEUHKqWDwWNRkNRURGuXr3aYPr3/Px8DBs2TOo2AwcOxPHjxxU6bkJCglLPKycnh3xu0qQJhg4dilmzZmH06NGfxEH3wYMHGD9+PBYsWKCw0U0RqDHwxIkThRwFdXV1sWjRIjg4OMDFxQXPnz/HuXPnwGKxsHnzZgCqOyg2BAYNGgQOhwMjIyO5ou8pPDw84O/vj+joaI0BvxFAGfJ9fHzg5+eH06dPAwCOHTuG1NRUuLq6wt3dXeXzzJ07l4xHJLF06VIsWbKkXtcL+vTpg4iICEyYMAEVFRUYOnQotmzZgqKiIoWOw+PxGoUBdsCAAVIlm9u3b4+rV6+qzVEjPz8fCQkJau9PKcNqkyZNMHfuXCxatAimpqZKHy82NhYrVqwAAGRnZ6Oqqoo8R0E5/VmzZuHGjRtqW8ei1I6Kioqgra39WfQVQO3YVxaOjo5IT0//CFcjzNu3bzFp0iSZ0uVA7TrYpk2bMGrUKKnbKWO8FyQ5ORmFhYUYN26c0sdojOTn5wuN21gsFgkiunPnDthsNnJycuDs7AwDA4NPdZkfFaovYbFYmqA3DRoaIBoDvgBNmzaFjY0NgNrohwcPHuCPP/7AmDFj4OjoiNu3b2P8+PFYs2YNRo8ejZkzZ+L333/XGAI1NDiSk5MxdepUYrjv3LkzbGxsSPRVVVUV3r59SxaEFi5cKPexBY33zZs3R2JiopAjy927dxEVFQU+n4+7d+/Cw8MDJiYmyM/Px+XLl1WWFKPg8XgIDQ1FWFgYKisrwWAwMGHCBJEIrlWrVoHP58PQ0BAjR45sFBPcxsT3338v97ZU9ER0dDQeP34MLS0tpKamSjWCUfKJ8shW3blzh3ymDP+f2oivSPnIQ3V1NZo3bw4LCwtixGlo6OrqCsniDhkyRK4IxX379gGoXUio6+wTHh4OQLG2SlFGjBhBPufm5sLBwQHt27fHpUuXROToqNQPggoSQG37N27cOERHR9fLNVLvUHx8PN69ewegtq4r4oAlCcp4D9Qap4cNG4bExMRGacSPjY3Fu3fvoKenh40bNwKozaNHefEXFxcjICAAhw4dIpHq0hAX+TVw4ECly4fH4yE+Ph7Xr18Hn88HnU4HnU5HWVkZFi1ahPXr12PHjh1KefxXV1fj7t27OHz4sML7UlD5Qy9cuAAWi4WQkBCljyWIutvDL43ffvsNM2fOJO2jJENGXl4eZsyYgfj4eBgYGMDOzg5mZmZkMUZwcbguVVVV4HK5uHLlCioqKsDlclXuT8+ePYtly5bh7du35LtJkyYRA6M6sLW1RWFhodqOJwl9fX1YWVkBqO2rHj16pNbxhomJCaysrOSWQK1vTExMYG5ujufPn4NGo2HKlClCuZaPHDmCkpIShY+r7PPq0KEDMjMz8fLlS1hYWKCqqgqVlZX1kh9VHhITEwHURszVpwGfega///47unbtKjTvysvLg5eXF54/fw5dXV1UVFSAyWQSpazGzsCBA3Hjxg3Q6XSSckZeqBRr1DuroXGgq6uL7du3Y8SIEfDw8ABQa5Tz9/dHYGAgevfujTlz5mDGjBlKqXs5OTkhLi4O2tramDRpEukTuVwuYmJiUF5ejr1792LevHn1+g5VVVVh586dAGqViW7fvo20tDSFjcF0Or1RpCXicrmkzAHx61HUPajjXuqrPz1//jzKyspgZGSkkpErJiYG06dPJ+pU+vr6KCsrI2MKikmTJiEoKEjEQV4Vxo0bJ6Qoa2dnh9TU1M8i57U8anjqmtcoQl3jfffu3dG9e3eiRMFms4mzOZPJxJ49e+Q6rqop2KysrBR2GvocMDQ0xODBgwHUPpukpCRcvXoVDg4OpA02NDQk6y1fApWVlSgrKwNQq2KkQYOGhoXGrUaAli1bYtq0aZg2bRq8vLxga2uL6Oho3L9/Hx06dEB4eDju3LmDs2fPYvPmzYiJiSELwxo0NASSk5PRo0cP2Nra4unTp+jatSvOnTuHa9euYdOmTVi/fj3Wr1+PkSNHkkWnzZs3Y+LEiXLllhM03hsZGSEtLU2s8b5z587o378/Hj9+jKqqKnTs2BEAiCe9KvB4PAQEBKBp06YIDQ0Fm83GuHHjkJGRIbIY7O3tjcjISDRr1gw3btxAq1atGsUEtzFhbGwsdzQMVe6rV68GABw6dEim8SsqKgoA4OrqKnU7LpdLPMmpxR4PDw8iuSmL8ePHg8Viqb1NV6R85IHKGfvNN980WM9YOp0OHR0d4txmbm4u03P5xIkTKCwsRNu2bfH+/Xvcu3eP/FZQUIDi4mKSK7I+2LVrF169egVdXV3k5ORgxYoV0NbWRm5uLiwtLWFmZoaHDx+Cy+XCzc0N2traOHfuHPh8PqytrZGenk7k8O7evVtvEcbU86fy0NJoNOTm5hI1C2WhjPdMJhMXLlzAxIkThfJxNjaoSJadO3fC2dkZzs7OGD58OPns4eGB9u3bg81my7VAUjdXM41GU6p8BPuvHTt2kP7r0aNHyMrKQnJyMmxtbfH27Vu4ubnB2NgYJ0+eVOjeMzMzMXXqVBJ5L0kqXRrUgjiDwcCpU6fU9t6puz38UqiqqoKlpSWmT58OLpeLQYMGYePGjejUqZPQdnl5eQgPD0doaCju3LmD5cuXIykpCREREQgODiZjwFWrVpHPdf+mT5+Oe/fugc/nIzo6GvPnzwegWH9KceLECRgbG2PKlCl4+/Yt7OzssG3bNgBQe85NAwMDdOnSRa3HFEenTp1w4sQJnDhxArGxsSqVjyR69erVoPr3hIQEfP311+Dz+UTZi6ovglDzCMG81ZJQ5Xnp6uqSBXqqbf4U+Y8FkSeaThXmz58PMzMz8Hg8BAUF4f3792Lfd0p2vCHVH1WgjPdMJhN+fn4KKR9yuVz8/fffACBWgUdDw4cyJk6dOhXJyclwd3dHixYt8Pfff2Pu3LnQ0tKSqRAiCNVGOTs7o1WrVmCz2Zg7dy7pEy0tLVFeXg4DAwOw2WyVDWPSqKqqIg64ISEhiIuLQ8uWLeHu7k5SesoL5azTGIKKunXrRvqPUaNGiaxHqfteevXqBRqNptYc7zo6OmjZsqXS7WxMTAyMjIwwduxYouh68OBBPHr0CCEhIbh16xY8PDxQVVUlsq861rHGjRtH5qy3b9+GkZERiouLYW1tXe99WUNBHvU1dSJovO/VqxdsbW2Js627uzsWL15M5m2UrP2JEyfkOrY8Yy5p6Ovrq6Qg0Vhp3bo1lixZgiVLlmD9+vXo0qULDh48iOrqanTp0gVfffUVCTZSV9uhLng8HsrLy1V+9nVhsVjQ19eXK3BKgwYNH5/PY3ZXD9BoNHh4eKBDhw7Yt28fCgoK8NNPP2HlypU4ePAg9PT0MGnSJPj7+2smhRrURlBQECwtLfHw4UO5tufxeCgrK0N0dDRat24NW1tbPHr0CD169MC5c+eQkJAgEnVw//59TJ8+HRwOB5s3byZe0FSEYXV1tdhz1TXe1/XSPXXqFDHez5gxA9bW1uBwOMjIyCDXIGiUU4bAwEDo6OggMDBQyHC/fft2kcU7QeM9FSXZmCa4nyM0Gg0TJkwAj8dDv379iNerJNLT04mME5WTShJLliwBn8/HN998g4CAAKFF9QsXLkjcLzU1Ffr6+jh9+jSqqqrg6+sLU1NTkh5CHNR7x+Px8PDhQ1haWiIoKEjq9amLz7UOL1++HDQaDdOnT0f79u2RkJBAFhGoKITBgwfjzZs3ap+sFBcXE6PSqlWrcOrUKcydOxfPnj3DihUr0KRJE7x48QKWlpbQ0tLCyZMnwePxiOE+JiYGhoaGaNOmDZKSksBkMnHnzh0MGjRI5FyCdUcZaDQarl+/ThZ8KEM15bSiDAcPHiTG+7Nnz6JXr17YsmWLkBFf2vvQ0IiNjSXlI21h99ChQwCAHTt2yDxm3feuZ8+eUsun7nOmHD9k9V8mJiaIjIxEcnIy7O3tUVhYCDc3NxgYGMjVxty9exdjx44l/bsyxntBdu/ejWbNmiEyMhKzZs1S6VgaFIfH42Hfvn3Q19fHw4cPoa2tjTCkUEUAACAASURBVNjYWFy/fl1o/JWVlQV/f3+EhoYiKysLjo6OSEpKwqJFixSSfSwoKMCsWbPw77//4vjx4ygpKYGNjY3c/SlFUFAQDAwM4O7ujsLCQvzwww9ITk5GREQEvvrqK8ULogGzatUqofI5deqU2vsoCi6Xi++++w5ubm4KLbJT7U/v3r2VkoxlMBi4fPkyLCwskJGRATc3N7H3SM0jBNPRKMOVK1fQs2dPklZHGlTbTKfTweVyYWtrq1Zlh4bEggULiBF/3bp1Yt/3+nJkEJyfqjqOoUhPT4eFhQVat24t9o9yvmYymXj58qXCaQsjIyPB5/NhamqqSXn4CaHan2+//RY1NTVKH8fExAQbNmzAvXv3sG3bNmhrawOoTVUmbrwtDsG1Dj8/PwC18w8AxKGzT58+JOCAio5XN1VVVViyZAkx3o8fPx7GxsaIiopCy5YtMX/+fKSlpdXLuRsKDx48wLRp00TWoxQlKCgI3bt3l9pfyFrj+lgIGu5LSkrQvHlzHDx4EOnp6ejXrx8OHjyI7t27EyP+kiVLRIz4qq4BDBo0iBjvk5KS0LZtW6Smpso04qur3f9cUGQ8lp+fL2S837lzJ6ZOnYqysjKcOXMGQG2qqatXr0JHR4coEh45ckSua1F1zCWNS5cuoUuXLoiJiZG5bWOuI3Q6HfPmzcObN28QHR0NOp2O4cOH482bN3j9+jVevXoFQLF7zMnJwdatW+ulLaci5dWVboSCTqdDT0/vs3EC1aDhc0MjoS/A27dvsX//fqHvvvrqK+Tn5yMgIADdu3eHo6Mjrl+/jkWLFmHr1q24d+8eJk+ejLS0NLGRBLI69M9BpkiDamzfvh1ArVTtn3/+CQCwtLSEkZER5s+fj9mzZ0vc19fXF9HR0UKdd6dOnTBs2DC8fftWRA7p4cOHYo33wH/R0WVlZUQ+l0LQeK+vr4/AwEBcvnyZ/H779m0cO3YMBgYGaN68Oc6ePQs+nw9tbW1cvnyZ5Geue1xly4fBYGDw4MEYOHAgKisrRQYv69atQ0xMjJDxXl1Q9yCYE1lwIqVqHteGgrRnVVRUhBYtWih8zMGDByMrKws0Gg1cLhcTJkwQ+r1uegUq+t7FxUXqAPXcuXMk+n7SpEm4cOECevbsiR9//BFXrlzBqFGjxMrb1k23QJGTk4MWLVoILcwLUlVVhe3btyMqKopIxz58+BBXr17FqFGjwGKxJKaKkCVRVh/1R5n3rj6pWwYxMTF4/fo17OzsQKfTMXjwYBw7dgxJSUlo164diouLwWAwYGtrCw6HI1EqV9Z9SipbGxsbkmYjICAAPB4Pvr6+MDExQf/+/bFhwwbEx8cjISEBHA4HpqammDVrFqqrq3Hjxg2R4wUGBmLNmjVITExEv379SM5zAETul8ViKRV9eOHCBXh5eQGoVaXo2LEjmEwmcnNzsX//fpGISEHElQ8Vec9gMHDkyBGYmJiQ57Ny5UpUV1cjJiYG5ubmEtvShtTm1S0fQWNjeXm5iBxcixYtUFRUBE9PTyK1K466dZbD4UgtH+o5R0dH4/z583jw4AHx3pfVfwG1C3S2trZ49+4d0tLS8OHDB6xZswaBgYEYOnQoRo8eLdLG3L9/nxjv16xZg2HDhpH6IHj9kp6X4DbUgiGfz0dMTAycnZ1x8OBBlJWVYcuWLWL3V3c9+BTtlrJtiKx9pfWZkn6rqqpC165dhb5js9lwdHQEAPTr1w/jx48Hl8tFWFgYmW/o6+ujS5cuqKmpkdjfCErZUxQWFmLWrFl4/fo1unbtimXLliErKwtArYqKsbExCgoKJPanR48exc2bN0k7SWFlZYX+/ftDR0cHRUVFKC0tJfcnT71saLx//17EiaFnz54YNmwY4uLiMGHCBPz6668YPny4yL7K3uOFCxdQVlaGwMBAlJeXIyUlBREREbCyssL06dMxZswYsfsdPnwYMTExQu1Pr1695Jpf1IVOp+PSpUsYMWIEHj16BEdHRxIdxuFwUFRUBD6fDw6Ho5QR+cKFC6isrERGRgZx2uvQoQOJupamalO3fJKTkxEXF4cff/wRTCYTy5YtE7ufKu87VXep9pvH432U+rxgwQLs27cPz549AyD6vqvz/ZI0P23evDnmzJkDDw8PpWSct2zZghMnTsiVeoHJZMLX1xdRUVF4/vw52rZtK3a7mpoaob5UMPpeVs70uvWg7vxOmbJTpf9Spr+QBzabLfG6lK2v0u4zPDwcMTEx+Oeff0j706xZMwQEBIDBYEh8L4H/3q8PHz4A+K8+v3nzBq6uriLKR4mJiWQuLi1SUlCe3cXFBUFBQbh16xbi4uLwzz//IDc3F6NHj8azZ8/kHh9KQ/AdpK4rPz8fS5YsQUpKCqZMmQIWiyXUp8yaNQu7du2Cm5sbfvnlF/Tq1Uvi8dX5vtfXmEvc+DkxMVGm8b5u2Qm+k+LGG9L6C3ll+VUZx0lj7dq1iIqKIm0Ui8WCq6srLC0tERYWhoCAABQUFJD0SN27d0enTp1w584dTJkyBTt27CD1R57nLOk+qMh7Op2OwMBAocCawMBA+Pj4oLi4GF999ZVIoA41rzEzM/sk6WrUzfXr1yX+Ji3ApK7zREpKClFK+/7770Xm4YKR99Q6aUBAAIDaOeixY8fI+8vlcvHzzz/DzMwMbdq0wevXr+WKwle3415AQAD++usvoe/Gjh1LPlPjgbqw2Wy8fPkSHTt2JA5WglC/iUPZ31Th1atX5FlQtGjRAuHh4cjKysLMmTOJE8Xdu3fRpk0blJeXEwO+JIn5p0+fIiQkBEePHiVOa05OTvDx8UGvXr2kPi95bUNUhPyXFCmvsatp0KAx4AtRVlYmdjEeqM0HGxwcjMDAQKxevRpz584l8k8+Pj5wdnbG7du35Yp24vF4ZAFf09BoAIQXR6ytrfHgwQMUFxcjKCgIR44cQXh4ODGCA8Dly5exYsUKMnFjsVhwcXFBcXEx/vrrL4SGhqJXr17YuHEjiVyuG3nv7e0t9lqkGe/19PSwdu1asNls8rugbP7Tp0+RkpIitD+bzcbt27cBgOTUUaV8xowZg2fPniEhIQG3bt3C/PnzMX36dBJl5u3tTYz3z58/h5GRkVLnlIVgTuTPIcekPFATaCMjI4UXByorK4kxgM/n4+7duyLb/P777+RzbGwsKisrYWhoiE2bNkk9dnh4OImyoc4FgETfXrlyRShHbXp6ulwS55s2bcLRo0dx6dIlUo8eP36M6dOnIy8vD0Dt4mLv3r2RmppKJoOjRo2ql8Xb+jjm/y8IqN3NVpFrDQoKAo1GQ0hICHR0dGBkZIQHDx4gNTWVLC54eXlhxowZaNasmVonqkFBQaQ9o3IQArXvd1ZWFvLz88Fms2Fvbw8HBwehfXNzc8UatHV0dODn54cNGzbgzp07GD9+PDHiq5rbMSUlhYwfunXrhsrKSgwdOhSxsbHYu3cvAgMD5faaFpTNP3LkCAYMGCCyDRV9FBMTo1LO94+FuPKhePbsmYhBdNq0adi2bZtMJaW6i3ZMJhMtWrSQWD5MJhOrV6/GxYsXyaKbqakpnJyc8Ndff0nsv4Daxd29e/ciIiICQG2u6J49e+L06dMoLi5GbGwsEhISkJWVhUWLFgEQNd5T0fLUQpM8C/6C21B9moGBAczNzXHjxg0MHDgQkZGRACDRiC+OxtRuSTtfdXU1eDyewlEJfD4fNTU14PP5EqOm6i5Onzp1iqhrSOL27dtITk7GoEGDwOVy0alTJ7BYLDx69Ai7d+/GlStXsHXrVom5nwWfd0FBAebOnYuSkhLU1NQgIyNDaNvnz58DADHi1835vmvXLoSGhpLFFSMjI4wbN46kFnnw4AFevnyJBQsWkLquo6OjtCGK4lMY/ak5XF0oOda4uDjMmTNHrJODNKTdi6BxWk9PDy1btkR2djbS0tLw999/4+rVqwgNDSVzSi6XiyVLluD8+fNC7U+XLl1w/fp1qfMLWdeTnp4OS0tLPHr0CD///DOA/9pDCknviLR7rGu8NzAwQGlpKYKCguDn5yd3+ejo6KCqqgrXrl0Dh8OBk5OTxP3EIfguSoO6X2rxlIpaquvUqy4EjZ3Lli1DcnIyZs6cKfS+b9myRa3vFyB+flpSUoJNmzbh+PHjCA8PR/fu3eU6VmZmJjw8PITGzw4ODkLvyZMnT0T6aYqePXtKdY4VvN9FixaBz+ejb9++mDNnjlzXR1Ef87u69UqcA7i0fdRdp+rz2JLan3///Rfl5eUIDAyEv7+/1GNQz5JaV2vSpAmuXbuGwMBAsvahKOLakNDQULi7u2P//v0oKSlBhw4d0KlTJ1RWVgqND5Xp+wXvA6gdj/H5fKxYsQIpKSlwcXFB7969RfoTHR0dLFq0CAcOHMCCBQtw/Phx9O3bV+zx1f2+1wd1r+v9+/fEeL9p0yaJ61GCCL6T+/fvFxpvtGjRAiwWC3l5eXL1F6rch7TjinunYmNjsWLFCjK/FDTcV1ZWIi4uTkSdksvlkjGYmZkZUlJSyHiQRqMp/ZwFZfN9fX2ho6MjUvfWrl2LdevWkUh8QSM+1XZ96nQ18iLNkUea8Z7P56OsrAy6uroKv/M3b95EUFAQfHx8wGAwRHLel5aWihjGgdr5OJPJhJ6eHg4ePAg6nY4rV66gd+/eOHbsmMzzKtM2SXNSEHeNgowaNQre3t4i6wZaWlpgMBhSU2Sx2WxoaWlJnQ/V1NRI3UZeZM0Vy8rKJN5rUlISIiMjwWAwwOVykZqaSoJ0eDwe+Zdac6DT6cjJycHmzZvJOHbq1KmYNWsW/vjjD+zZswfff/89RowYgYCAAIltuiTq2oxklbOyx20s1C17DRq+FDS1XU7MzMxw48YNnDhxAk2bNkVQUBAqKiqwd+9e+Pr6IjMzE9OmTZMrP0p9SZ5oaJwILo54eHhg8uTJ2Lx5MxwdHUlkpYODA+zs7HDo0CFYWlpizpw5KC0tBYvFwrRp0xAUFARra2s4ODhg9erVcHR0xNOnT+Hk5IQZM2YgOjpaSFZXXpkyDoeDvn37Etl8b29voY5e0Hg/Y8YMmcfj8XgK59aqWz4DBw6Eh4cHli5dii5dumDbtm2wtbXFzp07sWTJEiHZ/Poy3gOiOZG/BFSRoLOxsVFoe2qyGhISInU7LpeL+/fvA4BYiecxY8YIyduOHTsWTk5OcsmN6erq4tWrV7CysoK/vz9sbW3h4OCAvLw8MBgMDB8+HJs3b8bkyZOJhPn169dx8eJFhe71U/L/z/KTjd5jYmLw9u1b2NrawsTEBEDtAsXSpUuRm5uLvLw8aGtrw9PTEzQaDfr6+mobqBcXF2Pt2rVSt2EymTh16hQ2bdqE27dvy91+GRoaCsnpUw4jqqZAoFQpXF1dyXcODg5gMpkoKSmRO02JoPH+7NmzJJ+wONauXSskF//69esGlwuOQlz5SKNt27YwMjICh8PBxo0blTqnYPkMGDAA8+bNg7m5OS5cuEAci4KCgrBo0SKYm5tL7L8eP34MX19fDBw4EFFRUfjuu+/g4+ODn376Cd26dcPq1auxfPlycr0hISHo3LkzVq9eLdS/C0ZJqAtBNZvIyEh4e3urNZ+oonzsdksVafDq6mqw2WyRfpPKxUst+lZWVuL9+/dwcHCAl5eXXPKMly5dQmJiIhgMBjIzM5GRkYGkpCRYWFjgyZMnGDNmDIYOHUoiUcVRUFAAV1dXIpsvDV1dXaH+dMmSJejcuTNCQkLA5XJhZGSE5cuXY/Xq1ejWrRvGjRsHHx8f2NjYICoqCgMHDsThw4cB1PbdDbUdURZnZ2eh8klISFD5mFwuV8h47+/vj0WLFiEoKAimpqbg8/k4e/YszMzMsHDhQnh6esLMzAznzp0TaX+oMYu4+cXjx4/luh4qEp+S0wekL5TLi6Dx3t7eHv7+/ujUqRPJ+S5JHrlu+axbt46MxxITE3HlyhWFrkPZcS6fz/+oEs39+/cXed+dnZ3h6emptnPImp/m5eVh2LBhMutPZmYmbG1tMWzYMJHxsyJOLvLC5XJJxPRvv/2m8P71Mb8TrFfy1rH6lP2uj2NzuVwsXLhQYvvj7+8PPT09YsRXZD3g2rVr8PLyEutsVBd55fQBwM3NDW3atMHz589RXFyMYcOGkfG54Phw3bp1ch9TElQbQcnmSzPgNG/enMjpu7u7f1Zy+q9evQKHw4G/v7/c49UmTZrg8OHD6NmzJxlvtGjRAsuXL4evry+WLl0qV39Rnwi+U7GxsbC0tMTs2bPx/v17ofW6zp07Iy4uDsHBwTL7JxaLReT0KysrSV9LjR/llSoXNN4nJSVJTCnCYDCwceNGsXL6gulqPmdqampQWloqdrwvT5t19epVODg4YM2aNUKy+bLgcDhYsWIFKd9evXqhY8eOnzztgzjKysqwdu1ajBo1Sij4kUajgcFgSFzj4HK5qK6ulppKpaamRuw2fD4fbDZbofHm/x9DqbliZWUl3rx5QxTEqDaYTqcT5w7KpvPkyRMsWLAA3bp1Q3h4OKZOnYp//vkHO3bsQI8ePbBq1SpkZGTAz88PSUlJsLGxgYuLy2fVrn9sNPY0DV8qmgh8OWnXrh1MTEwQHh4OW1tbslCydetWPHnyBH5+fli3bh2OHz+OKVOmSD3Wlyh5okE8T548EVoc6dGjB/nNwcEBo0ePxsuXL7F161bk5uYiMDAQQG3d2b17t1DEKAWLxYKDgwMcHByQk5ODnTt3Ij4+HgAwevRouY33MTEx8PX1RXl5OVgsFm7fvi0UIZ2fn4+oqCjo6upi8uTJcnsB/vXXX7C3t5drW2nl065dO8ydOxempqbw9/cnOawNDQ0/SpQon8/H+PHj8fLlS6VyijYmVqxYAXt7eyLdq+ii1o0bN/Dw4UO5t9+4cSPJYU1FtUnCy8sLfD6feOCLY9WqVXj16hXOnj2Le/fugUajwdvbW2ae1MzMTMybNw8XL14kRgctLS0sXboUBgYGQufr0aMHiUq8du2a1CgiisuXL+PatWvYunWr1O3UibOzs7gJg2JeNWqEimC+deuWxJQGS5YsUeiY2dnZsLe3x8aNG0XSNAhib28vcyLYs2dPWFpa4syZMzh16hTu3r2LhQsXynUdbdq0QVxcHH744QfcuXMHO3bsUPheBNmxYwcqKyvRpEkToqxCQalAzJgxQ2Z7lJeXJ5LzXpb845YtW1BRUYHz589j4sSJiI2NbXDKI/fv30dlZSWYTKZI+UjDw8MDISEh2LhxI3x8fOTaJy8vTygii4pIj4yMJA481tbWcHR0FOtIJq7/2rZtG5hMJiZNmoQFCxbg1q1bIvsZGxtj9erVKCkpwZEjR5Cbm0uiMzZt2oRJkyYJPUsajYbKykq8e/dOoT6Rui9J49nIyEhYWlpi/PjxH6UexMTEYPHixXW/rtd2S7B9ViTyqLCwEP369VPYWVEQJpOJffv2iXVKE4SSTg8PDydylZRh7+zZs/D29iaGfFlER0eDyZQ+LXz+/DlGjBgBHo+HsLAwkruzQ4cOGDNmDJG4fPHiBU6dOoV58+ahefPmGDduHLZv3y6kLPHvv/+iurq6wbUjqrJq1SrcuHED6enpmDFjBrKzs1U6nq2trZDxnnKiZbFYRIHj5MmTSE1NFZJ5ltb+CM4vduzYQQz5enp6GDp0KAIDA6VGGvJ4PLi7u8PPzw88Hk9EsUEZqDHWkCFDSNS8p6cnuT5LS0sUFxeL7DdgwAASeU+VjzLjseXLl+PKlSv4559/AMg/zm3VqhWA2jQTn8Kpt+77/vTpUwBQOQftw4cP5ZqfCtYfWWhra2PJkiUi42dFoXIPv3nzRup2ffv2VXguSM13xKXAUJYJEyYQJbpPSXp6Ohln02g0tc+VKbU+oLbshw8fLtT+MBgM+Pv7Y+3atSgvL8eAAQOQlJQk9ZiUPHpeXh68vLzQvn17sQpugiQmJmLFihVyz61CQkLg7u4OOp0u0k5MmDABYWFhCAkJEZFaVpTq6mpwuVxs27YN48ePx9GjR6Vub2xsjKioKLi6umLKlClITk4WUmsC/ouepFRy1IWPj49c0t3KsmnTJowdO1bu9tLV1ZW8Q3XHGxSenp7Ys2cPXrx4gW7duimt+kixZ88eclx5oO7l0KFDZH3B0NAQ27ZtI+t1VVVV2LRpE8rKyqCnp4d58+aRfOfiyMzMJP2hl5cXysvL8fr1azRr1ow4lcqSs9+5cydRx0xKSkKbNm2kbs9gMJCamgoLCwsUFxfjp59+wtmzZ+Uqg8ZIZmYmzpw5g9mzZ6Nly5bQ0tKCgYGB2PG+ra2t1GP1798fpaWlyMjIwM2bNwHUrg/t3LkTQ4YMkbqvtrY21qxZI/TduXPn0Lt3bwXvqP5Zt24dtm7dig8fPsgMhGgAKD0Z2759O4YNG4abN2+KNbZTqmeDBg0Cn8/HjBkz4O3tja+++kpkW0NDQ6xatQpz5szBoUOHsGPHDtjY2OD48eOYOHGispf4xaKxp2n4UlHIhY5GoxnJ8ffJtVVp9aBdV1NTg8ePH+Orr75Cq1at8P79e5w5cwZaWlowMTHBkSNH0Lx5c1hbW8s8FiWz97l7MGqQTceOHUk9ECfndP/+ffz6668iRqbKykoEBgaioKBA7HG5XC7S0tLI4io1QT9//jysra2l5nKLiYmBtbU1Fi9ejPLycjRt2hSVlZX44YcfcO/ePSHJMgsLC5SXl2PLli3ESUAaNBoN/fv3l7kdhazyKS4uRkREBB48eEC2CwkJqXfjPY/Hw4gRI/DgwQOxThSfGz/++CPs7OyUjh6m8mjKw6ZNm8hkNiwsTOb2VGRzUVGR2Mj3nJwczJgxA2fPnkWTJk1Ap9PRvn17ub3+Z82aBRaLBSaTSRZKXr16JZJ/EfivjtLpdLlyddnZ2eHHH38UisSsb7Zt2yZOLku1lV4VOHToELp06QJLS0tYWlri66+/Jp979OiBn376SeGIslOnTqGmpoY4B0hCmnwcRUVFBZKTk1FcXAwWi4U+ffrIdQ2VlZXYsWMHnJ2dyXN99eqVXPuK48CBA1i6dCmA2kVAwQXMjIwMpKamApAv8pxa4B87dqxcUQFAbRqhxMREALX1tiEqj3Tr1g10Oh0cDgd79+6Vez/Kuahly5ZybW9lZYWSkhI4OTkJGUm2bNmC0aNHk5x4HA4HOTk5Et9rwf6LeiejoqIQHBwsMc8vRdu2bXHr1i2haLRjx46JGG3Gjh2LmpoaDBw4UGybJYk5c+bg559/Ju+i4F/Xrl3Ru3dv2NjYfLR6YGNjIy5Ss17bLap9BhSLPBJ0JqPRaCLtWt0/wd+ovJFUdLQsOBwO7O3tiZS5INbW1rh69SrOnDmD/v37E2ekuuekFilnzZoFY2NjqefT0dFB27ZthZw5J0yYgJs3b6J169bku9u3b6OwsJCo4wCAiYkJNmzYAHNzcwANtx1RhcuXL6Nz587EiUqasom8dO7cGUBt+yRO6pLFYiEiIoIsLFNlKqv9AWoNE8+ePYO3tzeJjD137hz69OkDAwMDTJ48mRjkOBwOfv31V/Tt2xedO3eGr68vaW9kLWrLAyWVnZKSQuYZ79+/J5GU3333ndj9Ro0aBaDWMJKZmUm+V3Q89vvvv+P9+/cKj3Pd3d0RGxuLnTt3qqSuoyrU+x4TE4MLFy5gwYIFKh2PcuCg0WgSJfI9PT3lHhMBQJ8+fVRWCKDSur158wba2tpo2bIlWrZsCSMjI/K5ZcuWMDU1JblrFYGa76iLcePGEcOjkZGRSPuvCD179pTalyhyvG+//RYmJiZqra8uLi7k899//40//vhDxJEtMzMTVVVVACCXY9ngwYPJmGr79u1yOwudPn1a3suGm5sb9PX1wePxhJQB3r9/j/379wOobX9UdYrh8XhgMBhypXCjMDY2xpIlS/Dhwwf8+++/Ir/369cPzZo1w61bt2Sm3VGEmTNnElU0dXLt2jWcP38ekydPVqi9FFRVCAgIEBpvCOLs7AwAKC8vJ86CymJvby93wAnw3zhRsD90c3Mj6fyA2iCA7777DoaGhigvLyf1SxJGRkZgsVgYP3487OzswOfzYWtri5KSErBYLLmcSgVlzuVVJPnzzz9JZKs8zlmNmY4dO8LKyoqsHUpT+3v58qXUY2lra2PPnj34448/yDxAR0dHrij6cePGiZyTisJvaAwYMICMvRoBSjfc5ubmKCgoAIPBEOsMS6fTYW5ujg4dOkBHRwdubm4Sg1EoDA0NMW3aNLRs2RJNmzbF119/rezlfdFo7GkavlQUjcB/9f9/0kZbDADSW656gkaj6QBg8/l8Ho1GY/D5fLVF5zx69AiVlZXYvXs3eDwevLy8kJOTAy8vL+zfvx9sNhsJCQlqWazR8OWgra0NPz8/BAUFISsrC3v37sWCBQuQnp6OqKgoMng2NDTE1q1b4ejoiF27dmHXrl3Izc1FSEgIjIyM4OHhAWNjY3C5XNy9exdXr15FcXExevfujfXr12PIkCF49eoVvLy8kJSUhIULFyI4OBjbt28nEfknTpzA8uXL8fr1awC1C3Lbtm1D27Zt8eeffyI0NBRnz55FYmIihg4dim+++YbkMoyLi0NsbKzM+924caNCnnKSyqekpARXr15FSkoK6HQ6Jk6ciIqKCkRHR5MotPqCMt4/evSoXs/TkFBV4vLatWvQ0tKSKpkF1Brvf/nlFwC1EYXyLKLZ2dkJRVoBgJOTE6mXGRkZMDAwgJeXF6ZPn46nT59iypQpchk609LS4O7ujtatWyMqKgo8Hg979+4ln21sbPDDDz+gefPm2Lt3L7KyskCn0+Hn5ydXPTQwMMDQoUNRVVX10SSgzM3N8eLFC6HvZE026hNzc3NcvXqV/L9uHlNloAwWssp0x44dOH78uNTo8/T0dLBYLDg6OuL777+X2X5VVlbixo0bSExMx1VyoQAAIABJREFURGVlJYYNG4YBAwZgzZo1SrdNBw4cwOzZs6GlpYXZs2cjLi6OSMXr6uoKyQ77+fnJPB5VPvK2xe/evYOLiwvevXsHV1dXBAcHK3Uf9Q2LxRLbX8iCkrk+f/68XOc5c+YMRowYgYyMDDg5OQlFUe3ZswdsNhvR0dHYs2cPjh07huvXr+PHH39E9+7dQaPRxPZf5ubmCAgIUKjuFxcX4/Hjx6DT6ejWrZvY61m3bh0qKyuJfHliYqJcuUHbtm0LPz+/esvnrCiUApYg9d1uUe2zojCZTNy6dQuDBg3Cu3fv0KNHD6xcuVLis63b5r1+/RqrVq2SS7J34MCBQu2nOHr27ImwsDCwWCwS7S54TsogVlxcLHOhtlu3bhg6dCiKi4tJjvK65+dwOMQp5p9//hHJkfns2TPQaDRMmzZN5v01FuLj45GQkECiRdu3by8xt7yiHD16FBEREcjOzib5HgVhs9nw8PBAcnIytm3bhjFjxkhtf8Th6ekJT09PFBcXIyAgAPHx8fjw4QMiIiIQEREBFosl5GTYqlUrODo64ubNm3jx4oVCTpqS8PPzI1L4gYGBWLZsGYKDg8Hj8dCpUyeJqYl8fHwQHx+PP//8E+Hh4fDw8MD169cVHo8pC5PJbDBzfz6fjx49eqil3TY0NISpqSmys7MRGRkJNzc3kW3qyjJLiuwsKCiAnZ0dUlJSMG7cOIwePVqpaxJsq4yMjITyM6tj7AioPt8RRLB8nJyccOnSJRw4cIA46KWmpsLFxQVdu3YVSrcheC+Cc04+n4/jx48T1QdxSOsXLS0t6zXFl7+/PxYuXAgPDw+kpaXhn3/+wcqVK2FlZYWJEyciMzNTaLy6cuVKmcfU0tLC//73P6KGduDAAZn7UPW2rKxMZnQyxdq1a4Xan6VLl2LDhg2k/Tl27Jhc0c71gTQDBZPJRGJiIkm9BEAtqm7m5uZISkoSyumujjEX5ZCmKAsWLMD79+8RFhYGDw8PuLu7w8rKSmS7uLg46OjooKqqCsuWLZNbdVIcgu06lepIUHlLElZWVqQvotY0KMdFBoOBESNGwNHRETk5OXjw4AFxjhaHubk5acsjIiJIm2JnZ4ekpCS5jFd9+/aVeD3iSE9PJ4EU8+fPV9kZrKGjo6OjVsUVANDX10fXrl1RXFyMtLQ0rF69WuY+kpwrGmIU/oEDB3Dy5EkAwIYNG4SCs16+fCnkdCCY0z47O1uiQ0Ld/eT9TRaylA8kQafT4enpiV69eoHBYODbb78Vu52RkRESEhIwdOhQjBgxApcvX5bq2Jifn49Ro0ahsLAQly9fbnDPVoMGDQ0bRV1W/sfn8834fH4nSX8ApOuw1hM0Gm0kgP0AztFoNCN1Gu+BWi/c5cuXo0OHDli1ahUx3h8+fBgVFRVISEiQmstKgwZJGBoaws/PD3Q6HVlZWfDy8sJvv/2GyspK6OrqYv/+/UhPTyfy5YsWLcKzZ8+wfPlyMJlMFBcXIyQkBKtXr0ZwcDBOnToFfX19LFiwAOfPn4e9vT1oNBpMTEwQGRmJ5ORk2NraorCwEJMnT0arVq3QqlUruLu7o7CwELa2tkhOTkZkZCTxzre3t8f58+cxZcoU6Onp4ffff0dwcDCOHj2KFi1akJy+spBnsi6rfFasWIGNGzciJSUFtra2SExMRHBw8EeZVAsupPTo0QM9e/as93M2du7du4fS0lJ8//33MrcVNN4rsohGyaUCtc4Cq1evRmhoKLKysjBy5EgkJSVh8eLFMDAwgLW1NY4dOyY2kqEu7u7uaNmyJaKiomBsbEwiCBMTE2FtbY2UlBRs3LgRK1asEFoslpRbThL1kW+zsVDf6gOyji1LirNdu3ZYvXo1HBwcpBq8CwoKsH//fgQFBeHKlSswMzPDpUuXcPDgQZW854ODg4nx/tatWzAzM8OMGTPQuXNnREZGCi2GUjKLspDlSCPIu3fvMGbMGGK8/5jpHpShbn8RGhoqVco8Pj4eHA4HRkZGcrfnNTU1OHnyJL7++mtkZGRg8uTJQpFZ2tramDRpEv788084OzujvLwcBw8exKZNmxAUFCS2/xLn2S8Lqs0bPXo0Ll++THJS172erVu3wtXVFe/evcPAgQPFylDXpT5z734JNG/eHH/99ReaNWuGyMhIhfLntmnTBocPHyZpgaTx119/ydxGVv9CyaVSOU+lkZGRQYxnd+7cgba2NoqKisBms8k2T548QVVVFUxNTfHixQshlaI///wTPB6vXiL7PhZv375FWFgYwsLCsG/fPqxcuRKxsbHgcDho0aIF4uPjRdQxVIHBYJAFvrrGq5qaGoSFhZGcyuPHj5fY/mzZskWmk5KRkRF27dqF//3vfygqKsLkyZOJChedTseUKVOQm5uL1NRUBAYGIjs7G61atZKp3CDvfQrmyF6/fj0xns2cOVNsPlqKkSNHkkXa8PBwlcZjjRl1t9tUH/P333+L9KPbt2+Xy3jP5/PRvHlz3Lx5E0wmEykpKXIZYevC5XLh4+ND2p979+6hpqbmoyhXKUNd54ZVq1YBgJA6kLe3NwDpBlc6nY5Lly5J7N8bEnw+H7q6uoiJicH9+/fRvn178Pl8pKWlwdvbW6nxKsW+fftw8eJFuSKOp02bBj6fL1cfSlG3/QkKCgKPx4OZmRk8PT0lSmo3BJo1a0bSIURFRaktEr+hjQN9fX0xd+5cAMDx48dF1Bjy8vKQkZGBwYMHY8iQIXj9+rXKUfgUVFlI64cEGTp0KKnvv/zyi4jjDKUMI48KhSCnT5+GjY0NOBwObG1tiUKNqtdDkZGRIWS8p9otDcphZGQEb29vuXKdS3rP5FXK+5hIMt6LQ1JO+4aOvr4+Xr58iZcvX4LNZku187Rr1w4JCQlo3bo1hg8fTlJW1CU/Px9OTk7EeN+vXz8AtevL5eXlDbZv16BBQ8NB0Qh8ebSv5dfHVhM0Gm0IgGAAngCmAdgHQHZ4Ze2+swHMlrWdiYkJhg4dinXr1uHx48dYtmwZMd6HhIR88cZ7Wbk+xck+qrJfY0Cwbskjp+Pn54fg4GBwuVywWCy4urrCxsaGGO7rsmjRIhgbG5PIn6qqKlRVVcHY2BhTpkxBq1atxC7G6ujoYMKECfj6668RGRlJDJl6enqYNGkS+vXrBx0dHbFRqR07dsTPP/+M8PBwFBQU4MGDB3jw4AFMTU1l5mpVhbrlQ6fT8f3338PZ2ZlcKyXJV1paitevX4PJZMoVaSgOcdK1gsb7bt264ejRo3B3dwcAobJS9pyKokj9+pjULTsqn9fPP/9M8mlKY9euXWKN/ZKipPl8PsrKyoRynlZVVUFbWxsjR46EnZ0dampqhPbv2LEj9uzZIzMCsHnz5ggLCyNGCgodHR04ODhAR0cHN2/eJLKIq1evhqGhISorK0XKgfLeLysrE5HqpmT3ioqKpEZNfY51i1oUAaByLmTqGVHH43K5RGZVS0tLbPl16tRJ6jHbtWsndExBuFwuCgoKEB4eLtTWWlhYwN3dHcbGxigqKkJpaSmAWmcCedoKKprx4sWLRFXCxcUFN27cILl8hw0bRqTw5V0Mpc5NtZWC1/P27VuR7SnjfWlpqdqM9+qoW9KkxSsrK4X6i7y8PBIB1rt3b5HnSKV+ERddKAnKEHrp0iU4OTnh0aNH+PHHH3Hy5EmRaBhLS0u0bdtWyGlIXP9F5ep89+4deSZPnjyReA1NmzZFWloa6HQ6QkNDySI/1UfVvZ5Vq1ahuroaZ8+ehbm5udjct4JRf9Q9NianInnrlrT6Iy2KU5pShzgoI/6gQYMQExMDAGJzRYp79wAoJN0qDap/kQZlxBfMYSwOytnl1q1bYLPZsLKywp07dxASEoLc3FwUFRXh2bNnYDAYMDAwAJ/Px9GjR9GmTRuMHz8emzZtAgCyCN9YqDtXpNpeCkoJy8zMTG2Ge0FGjx6NBw8eIDs7m6RzqampwfHjx5GVlYWAgADY29uL1FHB9ufNmzd48+YNcnNzsWDBAhQUFODChQsSzzl//nyh/3O5XBw7dgzHjh1Dv379MHr0aPB4PJJmQh1QRrT169fjw4cPMDMzw4IFC8DhcGQaz0aOHAmg1kmEyWTC19dXpvFe3DvdmMfz6m63GQwG2rdvj9zcXJw4cYJIfx84cADZ2dkyjffAf2M8qt2ws7NDdnY2du3aJXbeWFNTI9JPc7lcbN68GRUVFSTyXnA7VceO0pDW7kvqLyjjPZ1OR2BgIO7duwegVu785MmT6NatG3r06IGnT5+ia9euYiOJBZHVv0tDsG7Vt+OU4HjeyMgIc+bMAZfLRXh4OLKzswEoZ7ynsLS0RGZmpsx3xNXVFYGBgQgPD8f06dPJvEpa/06pm4hrfwAoHSQgWH8oZxPqu7y8PIkOKG3atCHbiRsfiiMmJgZjxoyRGYkvb7smqz35FOsQvr6+AGpT7IWHh8Pd3Z2k+Lh8+TJ0dHTwzTffYMSIEbC1tcXixYvFriko2rZTZaCIEwdlNPfw8MC1a9fA4XCE5PTlpW4/PW3aNBQXF+PZs2fo2LGjSBvM5/NRWFiI1q1bC60pyLqezMxMHD9+HID6jffypIQSRB11S1zqTQpVIrplQcnsU3Pt7t27w8PDA4cOHZK6X304CEkrA0C+VIKSkMd4D9SqqAj++6mR1/bTpEkTXL58mfxf0NYjztBubGyMK1euYNiwYRgzZgxiYmJgY2NDfqeM92/fvhUy3gO1/Q/VzjeUcvqc+JztTRq+PGiqei7TaDQmgB4Acvl8vuywnnqARqMFoVY6fx2NRusOYBWA/wE4AyBL3mh8MzMzvmCUzIsXL7B+/Xp07twZ3t7eyM7ORkBAAFauXInIyEiUlpZqIu9R24mVlZWBxWJJnEx+CQZ8Go2WyufzvxH32zfffMOnJvDSYLPZyM/Pl2lUEsexY8ewYsUKFBYWklzz27ZtE5mwp6enw8vLC5mZmWCxWGTwlZycjMrKSvTq1QubNm0SiUbMz8+Hl5cXkpOTwefz0bp1a/Tp0wfx8fFkIGNtbY3ffvsNhoaG4PF4sLCwQEVFBVatWoX58+ervBhWUVGBefPm4eTJk+BwOGCxWJg7dy4WL14Mf39/HDlyBAcOHICNjQ1YLBa6dOmi1HnqTjTqGu+vXLkCOp0OJycnpKenIycnh2xbHwt+0uoWIH/9+hjULTsLCwvU1NTg6dOnKCoqQkFBAUaPHo3Ro0djx44dQrL558+fx5AhQ6CrqyvSlkia/FHy82ZmZtDX10dOTg6mTZuG69evg8/no1WrVli7dq1YL/dr167B09NTKMqeks0X/E4QHo+HnTt3IiwsDJWVlWAymZg8eTL27dtHJl/irpW6Tmn1UtI9UsZ/c3Pzesn1pI62S1l4PB4qKirEPnNFocpv69at2L17N1q2bImkpCQi/yjp3czNzUWvXr3w7t07TJ8+Hf7+/uRaJC34PX78GB4eHuScTZo0wfDhwxEfH4/y8nIwmUw4OzsjKCgId+/exZQpU+Dm5oYNGzaQBRVpBnxB472hoSGqqqowZ84cmJqaYsCAAcQx5cCBA5g5c6ZC5fPnn39i6tSpmDp1KtavXy/2PqlobSryPjIyUq5z1KU+6pashSCqXEtLSzF8+HAkJSVR14IxY8YgNDQUDAYDu3fvxtatW9G+fXvcunVLqbabx+PB0tKSqLJcvHiR1J3U1FR4e3sTY5+FhQUsLS0RHR0t0n+dP38eixYtwvXr12FmZgYAOHXqlMTz7tq1C9nZ2XD7P/bOPCyqsv3jnzMzCghumKIibpkbYiiauW9ZJmpiuGtqmuVPzTXNVwoxcE/csixzyV1UJMXU3NIELXCXwp3MXdmRfc7vD95z3hkYZmNA0Plc11yOnO05c57zbPd9f+8hQ+QFN0PlgRzHvz179mhFbOn67UoC5tYtY+uPpY57+vQp9erVIz4+noEDB7Jw4cI82/MzKiQnJ7Nt2za+++47Hj16BOSkjTlx4kSh9AXZ2dlUqVJFS6Ia0JKtfvToEYIg8OzZM27dukXTpk2pXLlyvo4IEqIoolKpUKvVxT7KRF/dql27tqiZqqRr165mjdlN4Z9//mHcuHHs27cPDw8Ptm7dyocffsipU6eYPXs2I0eOzHNM7vanUaNGXLt2jaysLDp06GAw8m/q1Kl6t7u7u3P+/Hnu3LkjO7qVNDTfaclIYB3P/487d+4QGxuLu7s7CoWCGzduMGDAADmy/Pbt2waNwrnHeP/++y916tQhKyuLN954I0+u8tztYW7Z/EePHqFUKi06dtSHqQ5fmsb73AoQcXFxzJs3j1atWhEfH09UVBSnT5+mVatWRpXFUP8OULNmzWI5nk9OTiY2NtZiht7IyEg6duxISkoKkCObP2LECAYMGICDgwPt27cnJiaGc+fOyc/IUJqFwnjfNeuP1E9Iacx++umnfJW97OzsZKekPXv25Bkf5kd8fDzt2rXT63hr7n0+z7libsaOHct3330H5KiuODk54enpydSpU5k4cSIAAwcOJCwsjBUrVuTp74pyrLtv3z45X7guw/ixY8dYsmQJly9fJjs7G0EQmDdvHjNmzNCbnubbb7/l+vXreRypcq+LGFOew4cPy4orY8eOlddlLIWh8XNhtFuFYbx2cnKSx+K66NixI7NnzwZg0qRJQE66PshRjVi7di3NmzcnICCAKVOmEBUVxVtvvcWsWbP0luf48eMMGjSIBw8e0Lt3b37++WdKlSrFoUOH9N6Lub+BtIb2zjvvkJmZydq1azl8+LAceb937165fSru6Gu3GjRoIK5evVr+/+bNm1mzZg2BgYG4u7szZ84crly5wpMnT0hKSpLX+fTZL65evUrv3r21ouz//fdf3nrrLflvuVOEFtV45mWlsOxNJWk8/yIhCEK+zo/6tpU08qtfBWohBEGoBqwH6gKzBEHwKsj5CsDfQF1BECYCB4DHQA1gGWBWYrrExESWLVtGuXLlGD9+PJGRkcyePZuBAwcSFBRkNd5r8OzZM5KTk4ssh/OLTOnSpc1eCBw2bBgPHjxg06ZNODk5ERYWRuvWrRk4cCB3797l0qVLjBo1Ck9PT27fvk337t2ZNWsWnp6eeHp6MmvWLLp37861a9fo0aMHo0eP5vLly9y9e5eBAwfSunVrwsLCcHJyYsuWLTx48IADBw6QkZHB4MGDUSgUREZG4ubmhpeXlyx5Wb169TyRPOZSpkwZNmzYQFxcHB988AEZGRkEBgbSqFEj2dhVqlQpi8qR55bNNzbq4WVHFEX+/PNPkpOT8fDwkP/epEkTxo0bx+7duxk+fLiWbH6vXr1wcHAw6feV5IGlQXXNmjU5evQot2/fpkuXLjx+/JgJEybg4eFBSEiI1rGvv/66HBk7YMAA9u/fn6/xXq1Wy3UtMDCQjIwMhg8fTkJCAhs2bDDoOV0QmXxTpftKEgqFwuRnbgq2trZG5YKV5ATXrVunV5IwOjqatm3b0q1bN+7cuYONjQ1z584lLS2N4OBgEhMTmT17NjY2NuzcuRNXV1dZxjMrK8soKUpN4/2HH37Ip59+StmyZVm9ejVnzpwxy3gvIYqilty1LnIb74u7bH5+lCtXjlOnThEbG0vr1q0RRZE9e/ZQt25dJkyYwLJlywDy5FY3hdzytp6enkRERNC1a1e8vLy4du0arq6uhIWFceXKFbZt26az/9L08jdEcnIyMTExKBQKNmzYYLA8msZSX19fLTn9+Ph4s+/dinFUqlRJS05fkk3Oj+TkZJYsWUL79u1p3Lgxc+bM4dGjR9SpU4fAwEB+//33Qmsvc8vpe3h46Mw5LbXbbm5ulC5d2qDxHnKi47Kzswst6qmoeOWVVxg9erT8KWzjPeQsSKxYsQJBEIiMjGTIkCGybH7ufOKRkZE625+oqChu374t50zWlPKWePjwIQcPHjSqzb9w4QJVq1Ytscb7/CjstD4lDUdHR5o3b45araZRo0ZasvDGRHTnHuPVqFGDU6dOyXL63t7e+R6rL+d9YY8dzUFTNn/q1Kl5FCAqVqzIG2+8wenTp4mKiqJx48ZGG+/BcP/+vNH3TBwcHCwape3h4UFycjIBAQHUrVuXmJgY/Pz8aNy4Me3bt5dVGXKPkV50KlSoQEhIiMXl9IsbmnL60jypXLlyWs5sixcvBjAphVFh0LNnTy35+vnz53Ps2DHeeecd6tSpw/Dhw7lw4QJqtRonJydEUeTzzz+nVq1aclSuLqZMmaIlp//gwQMg77qIofJ8+OGHsvHe2JSYJQ1p7vs8+/V27drJcvqfffYZUVFRCIJgtNKBv78/gJwKafjw4YVWVsgZdw4bNgyAMWPGaMnmlxTjvSnExcWxZcsW2rRpg7u7OykpKZw8eRIHBwcaN25stEJCvXr1+Pnnn2U5/d27d2sZ7zUj7yWK43jGihUrxZOCthJTgFnAv6IoTgWGFrxIZnEKCAdcgHBRFD8TRXECcBEweuR6//59AgICCAgIYPbs2SQmJjJp0iRSUlJYvXo1bdu2JS4ujn///Zd9+/ZZjff/pUyZMjg4OOjND2yl6BgyZAj3799n2bJlVK5cWTbke3p6cubMGaZOncq0adPy5HS2s7OjW7du+Pv7y5H2PXr0kA33lStXZsWKFdy/f59BgwbJxymVSjZv3kxGRgZ9+vSRFxgPHz4M5MgMWxoHBwc2bNjApUuXeP/998nIyJC9eyW5WGOMdsYwdOhQoqKigJzInI4dO+Lq6oqrqyuXLl2yyDVeRNLT0+U8l5r1BWDChAk4OzvLkvqm5rzv2bOnLEUsPW8dUSgcOXKE8PBw2rRpIxvymzZtqjWB8/DwYOPGjdy7d49PPvmEsmXL5jHex8bG4urqKhvuvb29uXLlCuvXrzc4oF+9ejWrV682uV7eunWLsWPHkpCQYHAybqXguLi4yCkV2rZtS//+/enfvz+jR4+Wv2sa7kuXLs306dNJS0tj5syZ8nkUCgW+vr4kJiYyefJkSpcuzfnz54GcumrIgWPjxo1axntXV1cqVKjA2LFjsbW1ZceOHWYb7yHnvZQM+Bs2bJDbsvbt28vfmzVrVmKM99L7pY+KFSsSFhbGhQsXcHd3RxRFQkJCyMjIwMXFpUCS12q1moyMDEJDQ+VF9b59+8rSuMHBwVy+fFlLZlBX/yUZ8H///XeDC0xSfspBgwbp9BrPvcgv5YaWWLRokWzEN6XdfRExpv7oQrN9NgZJTl8y4gcGBubZR61W069fPxo3bszSpUuJiYmhVq1azJ49m6SkJG7evClH9BQmCoWCU6dOyUZ8XcYzTXJHkuSH1E6+qAaFwkapVMrG+j///FPOea/JuHHjZMO9rvbH2dlZNuLfvHlTNm7FxsayePFiFi5cyK+//mrUWEMURTmK70VAGpsVt7zPxQHJ2JOWlmaUbL4hqlWrpmXEd3Nz0znmatCgAbGxsVSsWDHf9qcomThxIjVr1pQ/zZo10/q/lPc2LCws3/QNnTt3lo3uK1euNLkMufv3+vXry2M3V1dX82+uhPKf//yHGzdukJSUhK+vL7Vq1SImJobo6GggJ/pV1zj31VdfNVvKvyBkZ2dz8OBBo/fPyMgwea1BU2Fp+/bteqO4SzKaRvwbN27wwQcfUK5cOXl7jRo18PDw4PHjx2aN8yxJ7hz0w4cP56+//kKtVuPi4sKqVatQq9U8ePCAiIgI7O3t+eeff/D19eXKlSv5nnfnzp00a9aMrKws2rdvD+S/LpJfeaT1urFjx/L5558Xeuqs8PBwrXazKNIvnDlzhoULFxZZHvaHDx/qTHfRvXt3pk+fLr/TXbt2Nbpfe/XVV7UURIxN/SY5L2zbts1kNb1hw4YhCAJZWVmA8bL5JYU7d+4wadIkJk2axMSJE2W1Q4CzZ8+SlZVFXFycViCSIRQKBfXr1+fw4cM4OTnRv39/7t69m6/x3krRoFarSUlJKVZOj1asmENBDfhlgBTA3QJlMQlBEOTeThTFW6IorgaWA/8IguD0301/AXGa+xrLK6+8wvjx46lduza3bt0iMzOTVatWcerUKUaPHk2bNm0scyMvAAqFAnt7e6vXWDHDy8uLyMhIOcrQWOLi4tixYwdJSUlATgTrihUriIyM1Cu5qVQqWb58OWvWrClQuU3BwcGBwMBALl26RP/+/fHx8bG4Y423tzcKhYKyZcvm2Va2bNk8qQas5GBjY0O9evUA+OKLL7QiPUuXLi3nhfrss8905qfTx8WLF1m/fr1RhgBnZ2e2bduGm5sbkBNdLDkOSHh4eMgL1lKeWE0uXbpESkoKTZs25cqVKyxZssRoY3rXrl3p2rWrUftqYmtrK0fmGDMZt1JwNCelUg67/Chfvrze6DOFQsHkyZP566+/mDx5Ms7Oznh5eZntWHT37l3ZWOjv72+W8R5y3stWrVrRoUMHnW0agL29PSNGjCj2xnsw7f2qWLEiISEh/PHHH7Ro0YImTZqwbt26Al3/2bNnpKamkpmZqeWsFhwczOHDh/VO+jX7r/r16wPg4+ND7969OXr0qE5D/sqVK3nw4AFKpVJvZJlCoeDTTz8FcozN9+7d09ru6+srl/9lxhLts7FIRnz434KphKT0c+bMGSpXrszkyZOJiori5MmT+Pr6mp1/1xwkJ59Tp07Jxg59xjNJxtYQkiNkSUrTUNxYunSpbBiUjIWaJCYmAlC7dm0OHTqks/1xdnaWHUGio6N1Sku+jNHnq1atYt68eQVSS3pRcXR0ZOTIkTg7OxfYeC9RrVo1jhw5AiAbBzS5ffu2QbWgoqZjx45G7deuXTud0sXZ2dnynNzFxcXo8+VGMuK3a9fOWk//i4ODA7Nnz+bkyZNERUXRrVs3eVvuBXu1Wk1mZiY3b94s0jJK6dM++ugjORVCfmRlZbF161Y6d+7MDz/8gIeHR56UbvqQjPiA/J4GT//0AAAgAElEQVS9iPznP/+hQ4cOADRt2lRr2/3793n48CFAsZjPSEZzOzs7XFxcCAgIICYmhlOnTjF27Fh5P0ldQlInWbt2rU4jfmpqKkuXLuXGjRsAJjudSeUZMmQIkyZNYubMmRYNgMkPlUpV5Mo9Hh4etG/fvsD5xQ3NF9LS0ggMDGTo0KE8ePBA5/pW9+7d5fUDY6PvC0JmZibp6em0bNnSLPuFNP94++23XyjjfW4cHR1lJz3IWQ8H8+XVa9SoweHDhzl06BDHjh2zGu+fM6mpqVbFaCsvBKoCHr8MWAgsEwRhCnDYwP4FRhCE+qIoXhVFMVsQBGWu/PaZQENgmiAINkAHYFiuffKlWrVqzJo1K9/tkhyX9K8Vy6BWq+Xc0FYDleXx8vJi4sSJ1KtXj7p16/L1119ja2tLp06daNeunRyFf//+fdauXUtsbCyQY2SdOHEiEyZMMPpahw8fZtSoUUDO+3T//n169OjB6dOnLX9jGjg4OMhSaZZAyjluY2ND37596du3r7zNUA49KzkIgsD06dN5/Pgx27dvp0OHDgQHB8u/neQlX79+fbMXoLZv3w4Ynph7e3tz6dIlVCoVVapUITAwUCsqdc+ePcTHx1O9enXu3buHl5cXwcHBvP7661rnef31102OgpecGEylWrVqckS4laJBkrbu0qULR48epUePHowfP55XXnlF3ufu3btMnTqVsLAwJk6cyLx581iyZEkelQkJyZBvrCThsGHDWL9+PUePHmXt2rWyrKEUKdGlSxe94xRDCIJAlSpVtPKmQ952TZIRtrGxKfTFnIIgvV+abbY+BEGgatWq7N692yLXL1OmjGzs0fydTPHWd3Bw4M033+Tq1auMGjWKQ4cOMWLECFxcXHjnnXdo2LAhgiCwcuVKbt26hUKhYNasWQYXFWbMmAHkLJZ98803BAQEyNu++OILIEcW8WXGUu2zKIokJycbzF9YsWLFPH/TTNPTuHFj9u/f/1zHwtI7ZGNjY1Rqh/r16+Pt7Z0nl3VupHtasmTJCym/WRQolUpOnDhBx44d5fGP5gLwhg0b5Lrk6ekpp4bRRK1Ws2rVKgRBID09nYiICFq1asW0adN4+PAhFy5c4MKFCwbLIggCe/futdzNPWc0o3Gt8/y8+Pn54efnZ9FzSuk06taty44dOwB48uQJK1eu5PTp04wcOZKQkBA5nUdkZKRFr28qhuaD0dHRfPjhh9y5c4fDhw9z/PhxunXrxltvvUV2djZ+fn6kpKRgb28v9+XmolAoZEljCVEUqVWr1ku/kOLg4CA7OKlUKvr27UtAQID8vCZPnsyuXbv4+OOPjR47WoJDhw5x4MABPvvsMxISEtiyZQvBwcEMGDBAdjLPysoiIiKCo0eP8vTpU9zd3fH396dTp04mj8UrVKhQGLdR7KhduzYnTpzQUpW8f/++rDRVqVIlnj59ysqVKxk/fvxzLGmO0VxShzBEUFAQXbt21ZoPurq6kpqaysmTJzlx4gSpqam8/fbb3Lx5k+vXr5tVnqJW4mrZsiVhYWFafyvsKPxSpUqZ7TClyZYtW9i6dWu+2//44w+USiU9evRg8ODBODk56dzP3t4e+J9x2Jg5xI0bN7Si+jdv3szgwYPJzMxErVbne5zktFC3bl2z5vMqVY65qEqVKiYfW9xxcXFh6dKlOrdJQQ4NGzY0auyhy55Ro0aNFy7NVElF6h8KWzFaEIQxwBgo/HatuFO7dm1iYmLy3V6rVi2DAVNW8lKgQb4oilfJkaivCxwSRfFbi5QqHwRB6AmcFwRhy3+vny1F1wuCIIiieB/wBaKBBGCAKIpWjetijtUjqmiws7NjzZo1hIaGUqdOHQ4cOEBAQAA7d+7kq6++YvHixcTGxqJSqfjss8+4fv26Scb7ffv2ycam//u//+Po0aOUKVOGe/fu6cy1WZyxSmhaDk255j59+uTJuVy6dGmzJhT169c3KsefZk5Kyeh64cIFrSj8r776CoBdu3Yxb948srKy8PLyyrOIbZVdKlmIomh0JOEvv/xCQkIC5cuXZ926dYwaNYq1a9eyePFirXNIig5SaoaHDx8yePBgqlatyvfff2+Rcr/zzjtyRMnatWu1jPdFJflZ0trA51VehUJh0YiVTp06cfz4cRYuXEhKSgpr1qxh2bJlBAQEyAv+06ZNkxd/8kOzPg8cOJBt27bJUfjJycns2bOHMmXKMGbMmGITbZuQkMDly5eL9JqWynednp5OYmKiyYoGarWawYMHG2W8z8jI4OrVqwUqpzGYk4YoKCjI4D4LFiygXLlyeRZurZhGxYoVteSRNY2qxuTInjNnDs+ePaN58+a4uLhw+PBhOQrfycmJt99+2yh1o9dff50HDx7w77//WvYGrbw05G5jRFFk8eLFsrFq9uzZREZGyuk8PDw8dCpGmIq+yGd9GOovGjRowJEjR9i1axcVKlQgKyuLX375hRkzZjBr1izZeO/r61so6QD+O/55vnkGigHGjn8+/fTTIh87du/enUuXLvH9999jZ2dHamoq69evx8fHh+3bt7NgwQKCgoIoW7YsGzZsICQkhM6dO1tkjCnV3xd9LisZ7588ecKmTZtk2fD8DHXFGU9PTzp16gTkzAfXrVtHQEAABw8e5LXXXmP//v2sWbOmxKUxtdTYu7hRrVo1Nm3axOTJk/M13usiMzPT4BzCx8cHgD59+gA5DptSdL2+4wRBMHut7WVGMuDXrVuXqKgog/M7qz2jeFNUitGiKH4vimILURRbVK5cuVCvVdyJiYmR12J1ffQZ963kT0Ej8BFF8SkQbIGy6EUQBHtgPDAJaCMIwiZRFIf+14ivEkVR0l/7WxTF8+ZcIy0tjWvXruX5+4MHD8wud0HIPUnN7dn1vHPBWYqi8ogqiUh53fNDnxRp7txLWVlZPH36lOrVq+Pt7c29e/fYunUr4eHhQI6HZbdu3ejVq1e+0VG68jlBTuS9ZLyvVq0aBw4cYNWqVVSrVo1nz56xYMECfv3113w9GAtyn4WBZgSalbzoe166FAqkCPnt27fTvn179uzZQ1paGgBJSUlyvTKlPiuVSoKDg3nvvffkSLSFCxfKkRSCIMjGe4VCgZ+fHxEREdjZ2VGpUiV8fX3x8fHh2bNnPH78mDZt2uDs7Mz7779Pamoqc+bMwcvLi/Xr18uytJmZmVrlsEoBFy+kZyNNntRqNQ8fPpS9z/N7Xvv27WPq1KkADBgwgNDQUJo3b86tW7fkCKdp06ZpTX5tbW3p378/nTt3Zu3atdy/f5+PP/6YBQsWMG7cOIA8+Yl1lVUXGRkZeHp6olKpOHr0KFC0xnsoeW3g8yyvrmdpTDuhuY/UHiYmJpKYmCjLv+7atYs//vgDURRRKBT4+Phgb28vR0ToInd9rlmzJmq1ms8++4zhw4fzyy+/kJ2dzahRo0hPT5edEAoLff3FTz/9RHZ2NmvXrpUncpp1fcqUKYVWLvif4wcULOrWxsaGcuXK5avQoms89vjxYwYPHkx0dHS+xvt9+/aRmppKQkIC/v7+qNVqo38fU/tpY7YVhD59+nDgwAEOHDjAunXr8kR9WftT45HkkTt06MCePXuA/6XFANi4cSODBw/mypUrNG3alNDQUBQKBWq1moULF6JUKnnrrbe4d+8eGzduJCwsjBYtWphUhv79+3P+/HlmzpzJ3Llztbbl9ywLMtY399g7d+5oRdlq9uNWRS3z24mCoKs9fPLkCYsXL2bLli107twZDw8PWUHCz8+PmTNnEhsbS5UqVYiIiCArKyvP89RXf6Q84JKSTW5DujF9jTH9hY2NDW5ubkydOpWEhAQtZbvCNN5L1wYK7uFQDDD3fTd2/PPJJ5+gUCjkMWNycrLea1q6f+revTuzZs3i+vXrbN++ndTUVNnZvFevXnTp0oWmTZvKdccUHj9+rPV/af0nMzOTjIwMqlWrVqRpeQqD/MbPUVFRfPTRRzx+/JgJEybIjhtSFP748ePp3r27lmS9JgXpZ8zlyZMn+Sqepaam0qtXLwCOHz/O5cuXsbe3Z/To0TRp0oRq1arx9OlTOQ1JSVmjsNTY21xu376tM82JhOQ0YSqvvfYaqampOqNKNe0JksOQ5n5t2rTJdw4xbdo0Hjx4gCAIxMXFYWtrK+drr1WrlsXXB6RyZWdny/aIhISEQo2W1fc8wPxnog9p7KEL6b6rV6+OWq3m7NmzcgqB7OzsPP14Ydsz9Dkv6iqPhFqtJj093aBCnBUrVkoGJhnwBUH4Wd92URR7F6w4es+dIgjCh0AisBv4TsOIn/Xf8rkD7QRBWAOkiya69dna2sr5qTTJPRB+XkieXYDB6KuixtzJqFKpRKlUFjgnkZW8ODo6asnCqVQqKlWqxN27dzl8+DCnT59GFEUqV67M7Nmz+b//+z+zrqNpvIccz2dd38+ePWvmneRPYU1O9EneFOcJUVGja1G0UqVKOn8jyQN++/bteHl5yQaqsmXLGrVAmHsflUrFq6++yu+//067du3Yvn072dnZsjT00KFDZeO9j48Ptra28mSxS5cuBAUFcebMGfbt24cgCGzduhUXFxd5oad69ep88sknjBgxQpaotbW1Naqs5tYRa90qGNKzkSZPCoUCJycng17nZ86ckZ3jGjRoINeTHj16ADmSeba2tvj6+srnEkWRyMhIjh8/zv379ylfvjxJSUncvHmTb775hnHjxpn9PIcPH46LiwvTp0+X895LeY8Lgr7ylKS6V9zeL11tgqltmrSAVa5cOSpVqkRwcDBLliyRF3zatWvHrl27jJIwzF2fAd544w3CwsJ48803CQkJwd7eniVLlpCWlvbcJvWxsbGsXr1aXvgUBAFRFGWnlcJyWNGsB2q1mmfPnhn1GxSk/uSuD0qlkmHDhhEdHU2jRo24cOGCTqeM3MZ7oNB/n/z6cEP8888/jB07ltDQUKpXr054eDgjRowgPDycQ4cOoVAoGD9+PAcOHOCHH34octnWkoyu5+Hi4sKNGzd49dVX2bNnDzY2NlrphA4ePMg777wjR+KHhoaydOlSUlNT8fb2ZuDAgTg6OnLx4kUiIyP5+uuvteZiY8eOZfz48ezbt4+kpCSUSiWDBg1i3rx5iKJIVlYWPj4+HDx4kICAAJ0G8uJCfsYCc+v6y0Jh/T662sOVK1eyZcsWWrdujaenp2yUk/jyyy+ZM2eOHIkv5fU2xfgjGe8BUlJS8PPzM2hQ19df6PttpGjJRYsWcfnyZfbs2cPMmTMLbLw34nm82OHVBggLCzNq/LNo0SKtPr8gBlh96HteUjqsdevWyY4HV69eZe/evfz999/Url3bpHRMmmi+Y9L6jzRnNzUVXHFE1/g5KyuLTz75hLi4OMaMGUPVqlXldn/kyJEsXryY/fv3Gy2lnp/jlznoqwdpaWn5GrM/+OADXFxcmDJlCjt37uT//u//ePz4MT/++COtW7emVatWODs7y+NHYx2uirrfy309U8be5qLP4GvIWKwPURTl8i9dupS5c+eSmpqKSqXCxsaGqlWr5tsvSWljpLVZ6f+AXqcaKQBKFEV+++03+e+3b9/m9u3b+f6G5hq9a9euTUZGhuzkDTnrEJrlLQxEUSQzM5NSpUoVyVjSzs4OV1dXndukVJ9SGkVNA75kv9CkuNozNO1HJd1xy1xelKBXK1bAdAn91kAN4CSwGPg616dQEUXxniiKyaIoPgE+BuwEQdgEIAhCU+BVYIcoimmmGu9LAnZ2djg4OFgj1a0YRW5ZuJSUFAYMGEDr1q0JDw/HycmJzZs38+jRI4sY7405x7x580w6/8si91ZSMVV6UFNOX5LcLaiMWoUKFQgJCaFChQpyOgjJeK9SqZg6dWoe42eLFi1wdHRk9+7dPHjwgM6dO8tOGwqFAgcHBz7++GPmz59PVlYW/v7+ZpXNSslAyr06YMAArb8LgsD7778vy+n7+fmhVqs5cuQIvXr1YuPGjaSkpNC/f39mzZqFj48PCoVCNuJbgvLly1vEeG+lZHDkyBE8PDyYOHEiDx8+pEuXLsTExHDy5Emj8w/qqs9du3YFYP369WRlZTF9+nRUKhUODg5FbryPjY2lT58+uLu7c+fOHQRBoHnz5ixYsEAeTxw9elRn/m5LI7X3Rf0bXL58maioKBo1asSWLVvyGKskNI33devWNfn3MaV/tYSk6bfffiunThoxYgTHjh1jxowZ8qJf06ZNcXBweO65rF8UHB0dteT0NaXvpRzZkpx+jx49WL16NUqlUh7TCILA5MmTuXPnDrt27SI2NpYJEybQqFEjKlWqxNatW0lKSsLOzg5RFNm0aRMuLi54eHjw5ZdfUqtWLR4/fkxMTIzRY8HnIZ1rY2ODnZ1diVGUedm4f/++LJvfo0cPnQv3SqWSefPm4ejoSFxcHF27dtWrRJMbyXivqWQjGfGNleU3t79o0qQJPj4+1kVkMzC1vdi1axdgePxT3CIRe/bsSXR0NGFhYTRu3Jhr167h5eVF165dLdZfSulxitu9W4q5c+fKsvm1atXS2latWjUcHR3Jysri8OHDRp2voOkVjK27xvZP3t7ePHr0iE2bNuHk5ERYWBitW7dm4MCBpKSkyNcsCTyvsXduRFEkIyPD5N9NKr+Pjw/JycnMnj0bGxsbDh06RM+ePZk3b16+43pTuXjxokXOYyqlSpUq8jGTlBIgMzOzSK+rC8mAD1ClSpVCCUQrCuzs7PQqxFmxYqVkYWqvWRX4D9AEWAZ0A56IovibKIq/6T3SwvxXuv9jIFMQhGhgFxAmiuIjc8/59OlTtmzZIn+KW16/osrdYaV4Ehsby4wZM2SZLENIEwJpgePmzZuEh4dTuXJlli9fzv379xk8eLDZ5Tl79qyW8b5x48YGj5k1axZJSUl695kwYYIsfydNnkzNK2ulaLCxseGXX35h7969Rh8jGfElMjMzzZoga+4vyclKRnzNnPe6jJ8qlYquXbvK0oTr1q3TeY3Bgwczf/58+f/GvntWni+Sw48UPaGPn3/+WY7WcXNzy7NdEAS+/PJL2YjfoEEDRo4cSVxcHH369OHzzz+nVatWKJVKypcvr2XEf+edd4wq78yZM+WoWisvJ1KdXb9+PY8fP6Zt27bcvn2bI0eO6FWEyU1wcLDO+lyxYkVatGjB48ePsbOzk6MDi5pPP/0Ud3d3zp49i0Kh4PXXX2fBggUMGTIEpVKJq6urlpHaVKe/koQkm29vb69zYSU1NVXLeD9u3Lg8v48h57L09HSSkpIYMmQInp6e8mfw4MHy9549e3L06FGL5QKWnPOOHTtGmTJl2LVrl9a1k5OTycjI4NixYwW6jpUcNMc/27dv56OPPpK3KRQK9u/fT+PGjYmKiiI1NZWyZcvSr18/uQ4sXrwYOzs7pk+fjru7OyEhIaSkpFC2bFkGDx7M06dPefbsGenp6axevZrmzZvz9OlTNm3aJEczr1ixwmgDuVTPIiIiWLhwocn3m5WVxYwZM0ySlpYMVzt37mTnzp0mX/NlYfXq1bLUfFHy9OlTRo4cqaVypAulUklkZKRsxH/jjTeMOv8777yjZbyvWLEivr6+shF/zpw5lroVKxYmJSWFMWPGEB0dbXDfkJAQi4x/goODGTVqFPHx8QUuv6m0bt2aK1eusH37durWrSsb8rt166bTIBgfH6+3f38ZkH6XhIQENm3aRPPmzXXuJ42dfv31V6POu3fvXn755ReTjZjSel1KSopRYyqpfxIEgQULFhg02A4ZMoT79++zbNkyKleuTFhYGDdv3gQo8PjtZSMzM5PHjx+zaNEis9d4FAoFvr6+JCYmMnz4cEqVKiUb8keOHMnHH3/Mxx9/zOzZs+XvV69eNfr8+aU1LWwEQaB06dJFqqokOQ3cvHmTNWvWFNl1dVG2bFkgp41t3rx5iXU8Li7OMlasWLEMJr3Joihmi6J4QBTF4cCbwHXguCAIEwqldIbL8wS4CJQH+oqieN/AIXpJSkri2LFjHDt2jAMHDhAcHAz8T4730aNHlClT5rkM6K1YefToEe3atePu3btGeYoKgkCpUqW08louXbqUyMhI+vTpU+DynDp1Sv4eExNjlGeiKIp5cmVq4u3tTUhICEFBQQQFBclOCFavweKJIAj06tWL7t27m3TcokWLGDRoEG+++Saurq4mR0bZ2tpy9epVtm7dKv9NWsQuVaoUSqWSsLAwqlatmu85WrZsCeTISekzkA0ePJiAgIA875KV4klcXBzfffcdAFWrVjVYr8LDwwH9soOCIMjnSU9Px87OjiNHjtCiRYs8EVXly5dnzJgxgHYbqY/NmzczYcJzGUZZsSDTp0/X+d0YmjdvjkqlkqVet27dapLhXkLK49uqVas826SUNoMGDXpuE/kzZ87I393d3enZs2eed6hhw4ay/KQpzmElha5du9K5c2f279+PUqnMNyIuOjoatVqNSqVi3Lhx8t9dXV1lWd3t27frvZaNjQ0XL17k999/59KlS/Lnr7/+kr9fvHiRJUuWWCxK2c3Njffffx+AZ8+ecfnyZa1rS1jnUpajQoUKTJ48GYBDhw7JhnX4nxFfkvaMj4/XqgOXL1+W5XsdHBzo06cP586d4969e2zcuBFHR0cgx/FxzJgxREZGcv36debNmyc77trY2MgGCENI9ax27dpybl9TePr0Ke3bt+fRI9P99bt37260Y93LyIIFC1i6dKmWkkNhI7V969evZ+LEiQaj4SUjfoUKFXjy5IlR6m/SWGzMmDGyU69SqcTX1xeFQkFycrLWfMJK8WHnzp0cP36cL7/80uC+koElPT1dTj8FOUY6qb3IyMjI1xCze/duWQHp119/pUOHDs+tn3rzzTc5cOAAu3fvxsnJiejoaP7880+tfeLj4+nQoQMnT57Mt3+HHAWIF5nq1asDOc9Z+q6LqlWrUrp0abKysox637t3706vXr1MNmA+evSI9u3bk5ycbPKY6r333tN7D5p4eXkRGRnJsmXLqFu3Ll27drWqzJhIqVKlSE5OpmXLlgV+1xUKBSNGjCA0NJThw4djY2PD7du3uXr1KlevXiUmJkb+Dv+TM5dUAHSpjXbo0MGo9B4vSv8lOQ04OTnRuXPn51oWpVJJuXLlSExMpFq1asUmpbIVK1ZebozXHvsvgiDYAJ7AIKA2sJycnPRFjiAIFYEewNuiKF4ytL8hateuLXth//DDD0RERJCdnU3dunUB+OOPP2jUqBFRUVEFvZQVKybTsGFDateuLXvzGsr7l52djYeHh1aUyvHjx+nbt69FyjNhwgQEQWDRokWEhoYandohKChIZ1Sdt7c3f/zxh5wH97PPPuO99957oeXeXgQkD1VTWbBggdnX3LFjB3379mXGjBkAvP3220DOIrZk2NBnvIecgblCoTBK3WHYsGEMGzbMrLLevXsXAGdnZ7OOt2I8cXFxdOzYUV4AbtGihcGFF39/fxYsWMC///4rR+7kZv78+axatQrIqe9JSUm8+eabTJw4Uec5JQnzadOmGV12Q8okVoo306dPZ9u2bfKCzLZt2wCMjjD19vbG29u7QGUICwvj9u3bqFQqLl68SI8ePWTjeHJyMv/88w+CIPD9998X6DoFLePkyZMJCQnh7NmznD17llq1avHRRx9hZ2dHdnY2fn5+pKWlYW9vz8mTJ59bWQuL/BRfcuPu7o6dnR2pqalcunRJK6LwwoULgOFFO0EQ5PHT8OHD+eqrr4AcI6jktFSzZk1EUZSjwCxBYGAggYGBFjmXFcOkpqbi5+cHQJkyZZg2bZqshAA5zjuZmZm4urryyy+/ANp1IDdpaWkkJiYCunNmqlQqhgwZwpAhQ0wuq1TPbG1tqVy5ssnHOzk5mR2RZu549WVBMm5JjkGLFi0q9GteuHCBESNGEBkZyZ49ewgJCaFZs2YMHDgwX8l5pVLJ8ePHadasGfv27WPs2LE6FZQkPv/8c7744gt27Ngh5x0HuHr1qmw0mTJlCoMGDbLszVkpMJLR5Pr16wb3nTNnjqwM4u/vj4+PD2XKlOHHH3/k9u3btGzZkj///JO2bdty6tQp2ZF78+bNTJ48Wb5W27ZtKVeuHL/88gsdOnTgxIkTRZ4zXGonW7RowTvvvMNPP/2kZeCTjPfx8fEMHDhQa6ypr21/EZkyZQrh4eGcOXOGNm3aEBYWpnO/v//+m4yMDPkYQ++7uf1Fw4YNadiwodnHmoqXlxdeXl5mXe9lRxAEGjRoQIMGDSx2TsmQP2LECK2/3759W2cOeUk2/tmzZ1rjLck5R6VSGVQHeNH6r4oVK1KxYsVCv056ejq3b9+W/+/k5KS1DlS2bFmSk5O5efOmbA+yYsWKleeJSVYxQRA2AGFAc8BPFMWWoih+JYri3UIpnQFEUYwDeomiaPHkMO7u7jx79ozr169Tvnx5XnnlFc6cOYOrqytRUVElJseQlRcLYyOkNI33jo6OnD9/HsiRlzM2158xjB8/nnPnzlG9enU5gkcfr776Kjdu3CA5OVnr75LxXqVScebMGVq1aoVarX5uslFWijfu7u7s3r0blUrFjBkz2L3bPB8yW1tb1Gq1Rd8JTfr160eNGjWoUaMG+/btK5RrWMnh6dOndOzYkfj4eNmJwxiUSiXu7u5AjuNebkJCQmTj/dq1a7l48SKOjo7ExsaycOHCPHXn3r17xMbGolKpjIoYslLykYz3FSpUICwsjLCwMCpUqMC2bdtMjsQvCJJ09rvvvktsbCwRERHytrVr1wLQrFmz55qHV6lUsnz5cm7cuCFHNsXExODj48OyZcuYPXs2KSkp2Nvb4+vr+9LnDJbSzWhG2v/6669kZWXh6Oj4wkfWWTGO3r17o1arefPNN5kzZw5//vmnlqPIN998A8DQoUONOp+NjY01Z+ZLiFKppEyZMnI6hqKIxC9fvo42OdMAACAASURBVDzBwcFcunQJDw8PRFHk7NmzzJgxg82bN+c7Pnd0dJTL169fP73X8PHxQaVSERsbKyvRiKLIwYMHcXR05NVXX+XBgwcvTBTjy8z48eOpU6cOarUaf39/vv32W65fv86AAQMYOHAgP/zwA5mZmbRt2xZ/f3+qVavG0KFD5dRF4eHhbN26ldWrVzNw4EDZUG5Kyo7CRp/x/mUlKCiIVq1akZWVRZs2bbQUGMD6vlspvkiy8ZrjLU3jvaaBOT+s9dk8rl+/To8ePeTPxx9/rLXdwcGB5ORkrl+/Tr169Z5TKa1YsWIJateujSAI+X50OVgVR0yNwB8GpAD1gU81ItsEQBRFsZwFy2YUoijmTQhlJomJiXIe2oyMDARB4Oeff8bDw4Ny5crxxx9/MHXqVBITE/nnn3+oUaOGfOzLvsj4PDBGZu9FI3eElC5ZJU3jvYODA35+foSFhVGnTh1u3bpF//79GTlyJGPHjtV5DX1STbq8uh0dHTl9+jQrV640OIns1asXS5cu5YsvvpClfjUj75s0aUL37t3lqNm///6bTp06cePGDb3nNQdDklT5edube1xhkpGRkW+5nkd5igLJiN+3b185qrBv375kZmYCOXUVciTSpe/5sX//fr1SrlIudRsbG7lu6junLulrzfPn5wBWHOuWuZh7L1L+1ezsbObMmUNycrIcoevo6KjTqUeKvI+Pj8fLy4u33nqLyMhI0tLStJ5Tftfs06cP58+fJyYmhtjYWNn7+tChQ5w4cQLIMYC+9dZbQI5Mp9TG+vn5MX36dLm/+fHHHwHo1KmTXuUQXfXnyZMnZGVloVKpitWzNrVPKK4YqpNBQUHcv3+fH3/8kbi4OOzs7BgwYABubm7Y2dnprHuS8V4yQkjjkuDgYN577z2dkfhSe5KcnMwrr7xikXuJiIggKiqK+vXr8/rrr3P27FkOHTqEq6sr6enpxMTEIAgC7733nlnXg/+9m6GhoRw9elTOyy4h9enGoFKp+Oabb2jRogUhISGcO3eOf/75B6DQjffSfSQkJMgpff7zn/9Qvnx5srKymDZtms531xgZy/ww9z2pV6+eHIUfGRlJ48aN5fythqKfpTZGUvfQbA9zS0FmZWUZ1Vbq+w2ePHmCg4ODVj+pq+80lcLqFwvyPM05p6E6YO59dOrUSc5/e/36debPn0/58uX56quvOH/+PCtWrODgwYMoFArZIcQQgiAQFxdHXFyczu367iV336ZZB2JjYy3WX2ieNzQ0lKSkJKKjo1m3bh1ly5bFx8cHpVKZb9ttiJI2HjO3vJrPSxRFFAqF3H8ZisS35G8g9aGrV69m06ZNcmq2S5cuERAQgFKpJDw8nJ9++gnIUZWIjY2lVKlSPHv2DHd3d73j8k6dOnH48GF+/PFHpk6dSnR0NHfu3KFPnz64uLiwYsUKJk6cSLt27Yy+z4LUEc1jdbWThVG/9M0Vc5O7TEVd36VnKQUHqNVqo/ooyDHir1y5klu3bhETE0Pfvn1p2bIlV69epX79+nh7e7Nz506++OILIKef/eijj2Q1N+k6M2bMID09neDgYF599VVOnDhBhQoVdF7T0r+P5r1KOd4TExO5ceMGffr0ISEhQa/xPr++N/f7rrlPQcbzhuqWOe+QrvLkHj9r3kNQUBD9+vXjzJkz+Pv7M3XqVDllhub7XrNmTZYvX67zfTelbzP2uIJg7jXzO05XvTC1HhS3vi8/jh8/nu+2/KLhJfSNVzt27Iivry+ZmZmUKlVKa19D583vWnPnztWZ3icrK0vL3qCP8ePHU61atTx/79Spk0nlAbScBqR5bUJCglHOBM8Dfc9aH46OjvLvfvv2bcLDw/n2229xcXHBzs4OBwcHEhISuHv3rkkG/PxsFGq1mtTUVLNz0kvH29nZlWh12pJkwymsIC8rRU9MTIzeIGxz1ymKGpMM+KIoltyWwghEUZSNP4IgULlyZe7cuUPTpk1xcnIiPDxclmW+cuWK0R2quRSnxsvK88HQIDn3xEfTeG9vb8+XX34py4WNGDECX19fIiIiDEYr5EelSpXyLdOCBQuYMWMGzZo1kxfilUol8+fPZ9q0ady5c4fk5GSWLl1KcHAwU6ZMkY33kPP+SUoBmty8eZOMjAxKly5tVpmtWB5zJ28FmfTpOtbFxYWwsDDatGnDV199hYODg5znVZp8hoaGGjz3rl27dBrwpWsmJyeTmJhIuXLldMrJapKfY4wV48nOzmb27NlyegMpQrdOnTq0b99eXpABbeO9tJj122+/ATkKC8YsqIwcOZKzZ88SEhLCwYMH2b17N/Pnz5eN9zt27MjTZj569IgqVaoQGxvLsmXL5LzA8fHxlC5dWo54zg9d5VKpVLLBwUrREh0djb+/v2ywEgSB1NRU1q9fj52dHcOGDctjBNI03p88eVJrYbdSpUr8/vvvtGvXLo8RPz09XZ7AW2ohTEonsmjRImrWrEm9evUYMWIEdnZ2hISEADmOKiNHjizQdSTjPeT0zStXrmT8+PF6j9F3j19++SVffvkl2dnZjBw5ksTERHbt2lXo49+EhAT8/f1lSVp/f38+//xz7O3t88hYWgJ9Yyd9fPDBB1SpUoUxY8YQGhpKjRo1yM7OpkaNGgajY6U2RpKBzd0ean5XqVQFXnx2cHDA3t5eq580pe+0Yjqpqamy8R5ynCg0CQkJYenSpTx+/JhmzZpRp04deZup8wtNTKnPUntn6nG5yX2cZt1KSkri8uXLbNy4EcgxdPn5+eHr60tqamqJMTg8DzTfe2nx6tVXX5X7r8KQ09f3PPz9/fH39ychIYEmTZrw77//EhoayvHjx/UursXGxsrOlbpYu3Yt9erVIy4ujlatWhEUFISLiwtff/01iYmJREZGEhYWRkhISIEc3cxB8x2xVBqTgvK8yyTVS2k8rFAojOqjJEfCKVOmMHDgQLZv387x48f54YcfWL9+PaIo8vDhQyAn8jUzM5PY2FguXryIt7e3PIeUWLZsGTY2Nmzbtk2W08/PiG9JNO9V+v0FQcDLy4uEhARGjRrFmjVrdB7r4uJiVN/7vJ+xOeQeP+e+z9OnT9OxY0dOnDhBYGAgYWFhODk50bt3b633PSIiQuf7bm4fZcm+rTCvqeuZl8R6UFBq165tlmEbchxgJdl7QGt90tzzSusW+XHs2DH5uyiKjB07loSEBDZu3Mi///7L8uXLOXfuHEeOHKFr164mXz83mk4I0nysfPnyhRqhau7zKAi2trZy2oratWsTGRnJiRMn6Nu3r9zOSOPqBg0aFHhumpqaSnJyMgqFwuQ5kVKpzPd4q83IipWXhxfaIF9QqlevTlxcHM+ePcPJyQlANij89ddfz7NoVqzkIbdsvmZUKOQsrtaqVQtRFGWDgqVxdHQkJiaGuXPnUqZMGbKzs/nss8+wtbVlwIABnD59mlq1ahETE0OfPn1k2XxDtGjRolDKa6Xk07JlSy05/UePHpl8Dk2paV2UKVPGoJzspUuXaNiwoVEOA1Y5/fyRcmA/e/YMe3t7Fi5cSPPmzREEgVu3buHm5iZHn+gy3pvL0qVLEQSBiIgIZs+eLcvmr169mvfffz/P/kqlksjISFlO38PDQzaOTpo0yawylCtXzqgUKVYsR3R0NG3btqVbt27ExcWhUql49913Wbx4sWwAT01N5fvvv8fNzY0DBw4A2rL5e/bs0bmgW6FCBUJCQvLI6RubCsdYIiIiuHbtGvXr16dZs2YAdO7cmddff52vv/6as2fPolAo5Mhzc9E03g8cOBCFQsGtW7dkee6CoFQq+emnn9izZ0+RGu/r1q1L3bp1UavVzJ8/n5SUlGInG969e3fKly9PQkKCbEQz5CD0PNAlu25M32nFfN544w2D+0hKDZ988klhF0cnlm7vJDTrVnR0tGy879y5M/b29qSkpODn52eNnjETzf6rqOT0NSlfvjw3btxAqVTy22+/cfDgQYPHGDIAfPrpp0COWteFCxeYMGGCbLBdvHgxkJNHvagprHekIBTHMpnKtm3bGDVqFLGxsbz22mukpKQQEhLCyZMn6dChA/PmzWP06NHY29uzefNmOnXqxLZt2+RgHomFCxdqyenHx8c/l/uZMGGCPN/Jz3gvYUzfWxKfce4y67rP3377TUtOf+fOnXne96+//hp4Pu/780TXMy+J9eB5EhUVxfvvv09EREQeh5+i4PTp00RHRzN06FB5DVVy4pbWLqyYjq2tLe7u7ly+fFlO9Vq2bFnZsd8SEvpSVL+5cyLrnMqKFSsmReALgnBWFMXmBd2npODs7Mz58+e5f/8+rq6uKJVK/v77bypXrkxUVNTzLp4VK1poGu8jIyPZvHlznn0+/PBDfH19OXfuHNnZ2QYXyv/55x/Onz9P7969TSrLzJkzmTlzJmfPnmXu3Ln8+uuvhIeHEx4eLu9z9uxZVCoVx44do3379nrPd+nSJdavX8+IESNMKoex/PzzzzRr1sxkT2Zzfx9L89dff9G8eXPs7OyYOHEi/fv3f67lKWo05fQ1o9GMxZCkpCFP2XHjxrF3714gp9+4e/eu3vP16tWL0NBQevToke8+z549IygoiOHDh+s9V0nAlPfLz88vTw7sIUOGMHDgQHbu3ElERARnz57Fzc2N0qVLk5GRkcd4L0XV6pNJyo1SqaR3796EhITIxjFJNj8/mTLJiC+1vbGxsZQuXdpgRHJ+KBSKYh/9EB4eriWbrlarS6SM29OnT+nZs6f8rpYuXZquXbvKaRIA3NzccHNz49KlS+zYsYOEhATGjBkjb69QoQInTpzQayCS9unQoQPbtm1DEAQWLFhg0eesGX0vIQgCkydPlvvM9957r0CG8VmzZsnG+1GjRtG4cWPq16+Pv78/N2/e5JtvvmHSpEnFvi48ePBAy3gv1eVvvvmGmzdvMn/+fCZMmCCrbeVHYmIiH3zwgaw2lJu2bdsSEBBAuXKWySy2aNEixowZgyiKuLi4yBEjprB//375e1paWoHr4OXLlzl69KhsFBMEIU8/aU6UiT7Cw8PJzs7WKXNdEMaNG8fp06dN6jMMcevWLUaMGCGnMNBsK5VKJd7e3vK7aw7r16/n8uXLBvcLCwtDoVDw4YcfmnUdtVpNQEAAH3/8MZUrV5aldo1BUtgyxtHAVKS6dfDgQbnP7tKlC56enrz77rvyWMLPz6/AxueSNh7bsGED/fr1M2uRNykpSZYWT0tLo1u3bgQFBbF9+3ZEUWTx4sWy5HJh9/+lS5dmzZo1jBw50qh5VnJyMv369SMoKEjn9k8//ZTly5eTlJREuXLltJwza9SoQZs2bcyOwi/IfPCnn36iX79+hS7fKc0VDWHp/ssSmPvbSIbuH3/8kTlz5pCVlUWHDh3o3bs3giDQqFEjGjZsyM2bNzl16hTTp09nxYoVTJo0CW9vb/m60hxj27ZttG/fnt9//11LDaywEEVRjo7Ozs422lnZmL739OnThISEyEbAgowLNOuWufVH3/xCc31Ds4z53aemnP7UqVNxcnLSet+dnZ3l9z04OBgvLy+Tyiq977169TKpTywIv//+O0qlktatW5t0nKHxam40f/d69eqxaNEiatWqZXJ5ixP379/nr7/+okuXLgb3nTVrlt7tKpWK5ORk5syZw5IlSwgICKBp06aWKqpekpKSCAwMxMnJSUty38nJiWbNmnHu3Dn27t2rNy3ki46fnx8XLlww69g33niDP/74g8jISDp27IiDgwOJiYmAZQz4CoUCe3t7s8dNlp5TWbFipeRhauvRSBCEi3o+lwDzEnoWQ8qXL48gCMTHx1OqVCmqV6/OrVu3jDLQWCka1Go1KSkpssHmZeXEiRPExsYCMHz4cFJSUnTul52djSAIiKJIZGSkzn1EUSQtLU1eoCmIpFHz5s3ZuXMnCQkJhIaG8u6772otKLm6uspSdoZYsGCB2eXID+leO3bsKOeYM4WC/j6WIisriydPnnDnzh1mzpz5vIvzXJCM+JAj7fz111/L6SMMkZWVZfZ1+/Xrx969exEEgRkzZmg5qejjgw8+0Lv96tWrvPvuuy9EX9OpUyej3q+oqCi57Zo0aZKWwVGpVDJixAjOnTsnOwJkZGTQt2/fPMZ7f39/AJPziy9dulReyNLMea8PpVLJkSNH5P+XK1fO5P7I3t7eqEWF4sCqVat48uSJ/ImNjdX6f+5PcWX58uXyu1WhQgUiIyPzfd5ubm4sWLAANzc3rb+vWrXKKCnVChUqyFERO3fuLGDJ83L9+nWqV68uR99LdO7cGZVKhSAIBY6+X7p0KZDTZzdu3BjIGSNLzmI3b96UFaqKM3PnzpUXJzUjkj/55BMUCgVqtZp58+YZPE9ISAhnz57Nt96HhISwa9cui5W7e/fu8ndTo++rVauGQqHg8ePHbNiwgQ0bNrB9+3b5O0DFihVNLtN7773H4sWLzU7JZA6jR49m8ODBbN261WLnvHv3LqGhoTx+/Fiz3SqwVfK7777j1q1bOtvKhw8f8s033xSofzdlTFy9enWj1K50MXHiRH744QdatWpFTEwMqampsnSsIWrUqFHo8vVTp04FcvpeT09PIKdflpRwUlJSCuR0L4oily9fpnv37iViPHb37l3effddrl69avKxUtuu2U5oGsODg4OB/0kuF0WbP2LECJydnY0ez+encCXN90aNGgXkzE9zR09KBseff/7Z5HKaOx8syPMyFWmuaOhj6f6rIHTq1AkbGxsGDRpk9jnWrFnD0KFDycrKokyZMrLxXkIQBJo0acLPP//M+vXrqVixIlOnTs2TV3nhwoVUq1aNhIQEduzYYXZ5TCE9PZ0aNWpgY2PDe++9VyClsdxMnTqVLVu28NNPP/HTTz+xY8cO+buujz4065Y59UcURVasWJHv/MKc9Y2goCDZeSwpKSnP2tjXX3+NIAhMnTpVZwpHfUjvu9QWGtsnmsvmzZsZPHgwo0ePNvlYQ+PV3B/N3/306dN89dVXhXBHRUt6errRjoTSfCc/2rRpw4ABA4Acp7G5c+cWuHyGSEpKYty4cfTu3ZvHjx9ja2ubZ0wn9W0rVqwgIyPDog6pEoV1Xkvx8OFDTpw4QVxcnPwxhcqVK1OlShVu3boF5DhrpKen4+joWCQOW1asWLFiCFNn88aEfLwwWnVPnjxBFEU54uDOnTs0adKE0NBQ2rZt+7yLZ4X/5ZKBHCPIy4oUAeji4kJgYCA//vgjLVu2pHPnznL+OEk2VhRF6tatm+9AVjMX1muvvWaxMrq5ubF69WoAfvjhBwICArhw4QIDBw40eKxKpeLw4cMWK4uEdK92dnZm3aslf5+C8Morr9C/f39UKtVLF32vibu7Ow4ODqSlpbFs2TJ+/fVXo46TcnyaiuTdr1KpCAsLMxi1KaFUKnn69CnJycn5etK6u7ubVabiSLly5YyKxGjcuDF16tTh1q1bzJs3Dx8fH3nClJqayrFjx/j8889JTEykW7du9O/fX8sDXa1W4+npybVr12jUqJEcGWosSqWSc+fOARg9UYuLi6Nz585AziLgkydP8PT0NCqVgkRJSsmzceNGVqxYQVpaGtnZ2aSnp8tOWdnZ2WRmZlKqVCnZ+WLFihXPs7j54uvrS2xsLD///DPx8fG4ublRq1YtPvroI7nPhJx72rZtG+fOnZMXLWrUqMG///7LBx98QHBwMDVq1NB7rfPnz8sOO5JziaUQRRFRFHXmhhUEQb6XgsrSb9++nV69enHlyhVCQ0Px9PTkypUrcjqeTp06lQhJv8DAQNauXStH5vr6+gI5ERtqtRp7e3ujnB2GDRuGs7OzliOkZv1v0qQJPXv2LJR7aNCggUn7N2zYkJMnT3Lt2jW5fMnJyZQtWxbIGV+9+eabpKWlYWNjY1Sk4/Lly2WZ4TNnzuiNerUk0thUilwviFFHwtnZmf3798ttdnZ2NqtWrSpwHocFCxbQrFkzWeFHGmtKdOrUCWdnZ7PPf/jwYWrXrm3QAVGlUnH69GmzrpGdnS0bM7Ozs+nSpQtHjx41Ogd09erVzbquKRw8eJCaNWuSmJjIypUrGT9+PAkJCbIjTt26dWXDtDmkp6fz2muvYWdnV+wVcgC5TlWpUsXoYySH7R07dmgZLZOSkuR2AqB+/foAWvLVRUFiYqLsfG6I2bNn6/y7NN+TooRzR5ROnz6dAwcOUKFCBVle2xRee+012UnA2HYUzHte5iLNFQ2NBxo1alRo/ZeptGzZkmvXrhX4PBs3bmTbtm08e/aMBw8eUK1atTz7CIJAly5daNeuHZ07dyYwMJBOnTrJz1KtVhMfHy8rgxUFNjY2jB07lkmTJllcoWHVqlWyYsSgQYNo166d3rnasGHD8t1WpUoV2ahpTv1JT0/nm2++Yf369XKfptlnCoJg1vpGUFAQ06ZNIygoiA4dOnDixAl5m7OzM/Pnz2fGjBn07duX3bt3Gz33ltZ/pDapMCPwN2/eLDsvSGMgU9A1XtWH5u9euXJlhg4davI1ixum5G6X5jv5ce7cOU6cOEHVqlV58OBBkSiVSO+pIAiUKlWKmJgYHj58KKf4BTh06BAAmZmZbNy4kWHDhlG6dGmLlUGtVhe6o0pBcXJy4vvvv9cax2zatMno41NTU3ny5Ik8z7p79y42NjZW430ho1ar5XanuCv5WbHyvDHJgC+KYkxhFaQ4cvfuXQRBoGrVqnKUcJ06dUhKSqJRo0bPuXRWAHmAqbko9jLTpUsX+vfvz7Jlyzh06BBhYWF07NiRpk2bsnjx4jyysbqQJiGFMRmRFolGjx7NsGHD6NWrF9HR0QaPu3LlSoEWOvPD3HuV7sOURZrCpGrVqsyYMaNYlOV5IxmtAgMDjfLW37t3r1kLVeYa76Vjt23bxtdffy0bkPRRVHKlhYUp78v48eNZuXIlt27dwt/fn2nTpnHhwgVOnDhBamoqb7/9NpMmTaJJkyZax0nG+ytXruDq6kpoaKhZv5Upk7S4uDg6duwo56ScP3++XAZPT08uXrxYIp+XISZMmEBaWpocdSLVfV3Pubga8BUKBStWrCAwMJCJEyeyb98+YmJi8PHxoVatWnz44YeEhIRoGe49PDxYt24dtra27N69m88//xwvLy/Wr19Phw4ddF7n8uXLjBw5kqysLBYsWGARg6MmRbWY0rNnTz788EPWrl3L0aNHefjwIVeuXAH+J1tdEuq6UqnE19dXS14byJO2Qx9SPe/cubOWckZxGxdo4uLiohUJ/fTpUy2nD+l9BowyUi5fvhyALVu28MEHH8hGfHMNxcZiZ2enZcQXRbFAMvQSjRs3lo28oiiyatUqizijazqoPnnyBAcHBzn1S0HH2M7Ozty+fdugA1FBxs+TJk1CFEU8PDxQKpX88ccfdOnShbCwMGrWrGnWOS2Ns7MzPj4++Pv7c+vWLQIDA7l3755R8x1jKMw5UWGj2SbpQ9NxW3JIhLzthIQgCNja2hZJmx8REUFSUhJvvvmmwfalVq1a+bYH0m+gK2fxnDlzCA4OllPeGOugkhvN37E4OnuUxLmiJfvVt956iwMHDrB27Vq9MtlSKqwZM2Zw/Phx+Z1YtmwZqampeHt7F5nzivSuFQbu7v/P3nnHNXV+f/xzk0gIW9xfRVQsUiguHH1RxVE3LtAWd9E6vlVr/VkVcZQvRWsRbW0drTgAJ1QL1qJ1VWtbtXW0KkKr4kBFiwqyIRByf3/Ee5tgEjJukpvwvF8vX5Jx7z15nvPM85xzOuPQoUMIDQ3Fvn370L59e4NDbzdr1oxNVWLIQRamfSofVNDU/+iDVCrF8uXLAYA14qelpbH3ZebkykZ8faLGmLJ+gH+N94y3taH7nf3799c50lt+fj7c3d15O581Bpqm2YOsmqhrT6i6uhoLFy7E4MGDMXDgQLOUD3O4KDIyEqdPn8aqVauwZs0a9rBZXl4ejhw5gjfeeANnz55FSkqKwWmTNCEQCCAWi7WWHR/w8vKCl5cXW9f6GPDv3LkDuVzOHtB58OABGjRoQAz4JsYaHTJfRNvk/8YHweYgSqeFR48eoUmTJrCzs8OTJ0/YU28AjDrNT+AOY3PJ2CL+/v7Ytm0bZs+ejXbt2uHo0aNYs2aNzptZzGLEFBNS5VBj9vb2OHHihE6eDlzkHVKHob/VXCHTdIWiKJtaYHHBoEGDVEKba8IQ432fPn0MNt4DiggUgO6ngs0ZrtQU6Nte5s6di7Zt20Iul2PNmjU4duwY2rVrh8jISGzbts1kxnt9yM/PVzHer1mzBgKBAIcPH4afnx8yMzMREBBgs+ldxGIxJBKJSgg/U44dpkIkErH5z7t27QqKopCTk4OoqCj88ccfoGkanp6eWLduHdLS0mBvb4+KigqEhoYiNjYWMpkM4eHhavPtXblyxaTGe8C8RiU/Pz92Q6i28d6aYIz4jo6OKCsr08t4D2juz6xR/xmY9qyLPn355ZeoqqqCh4cHevXqhXPnzkEkEuH3339Hnz59TC6rRCJBamoqRCIRlixZwuY45ooX9cd5xy2TyVBRUYHi4mLO5o+6GOYNnT8re98nJibiwIED6NGjB2QyGQIDA3kVTt7V1RXLly+HQCDAw4cPOTPeA9bdrnWde+nT/s0NE0lhxYoVdX73jz/+0PiZpnpcvHgxJ8Z7gN/lCFjnWpHL9fbAgQMhEolQUFCAx48fa/3umDFj2KiGNE1DLpfj66+/hlAo5DySkiVh0s+JRCLExMRwkp7GkDozVT/LtMm1a9di3LhxKCwsxOjRo1FYWMh+Z/z48ex8PjQ0FBcvXuRUBkOJj49njfepqalmdVbi2z5XXdTU1KB9+/Zo3749G5VUHdXV1ZBKpWwEKUPo3r07goODDU5LZAgnTpzA8uXLIRQKMWDAADRs2BB//PEH62C4d+9eAIoD9i1atEB1dTX7XR+JSgAAIABJREFUHpfY2dlZzRjC1DX0sHfdunUL9vb2aNWqFWiaxsOHDyEQCMwSZaE+I5FI4OTkZFUOmS8OaxodrY2gnjZt2rBz1tr/akfQqm+Yb+SxAlxdXdlwvM+fP8fu3bsRFhaGwYMHIyMjA6+++iru378PAOjYsaPRIUkJxmEr5c+E19SEofkjO3TowOYEB4ARI0bolNdP2/MePHigVV5t13p4eEAul6O8vBwODg6sgW3BggWYPXs2evTogYyMDPb7IpEI9+7dM8rz3tCyret3enl5vfQ7jKUuWbVhZ2dn8jyj1oibmxvu37+PP//8E9OnT8fTp0/Zz3TxvFdXJ4znvUAgwNKlS/HLL7+89J3Nmzer3LuqqgojRozAs2fPsH//fjx//hyenp7Izs7GX3/9pRJGX109Krcbc1NVVaVRN+tq7wzq2r0mFixYwP4/cuRIfP/99wAUBnN14XiVjfedO3fG5cuX9W6T+vZ5tT3vlXNSMkb84OBgXLlyBR07dtR4oMDQ/sfcbZ1vfYuh/Xpdv+Py5cuoqanBlClTcPjwYfj6+uKHH35QOXmvrMuLFy+Gu7s7ZsyYgZCQEKSlpaFTp04AFMb70NBQyGQybN261aC8lbpgzo0Upm2GhIQgPT0dLVq00CmCiDHjsClQ7mOYAwk7duyoc07JyKlPf2ZJdO2f9WH//v1sftCwsDA2bP7SpUuxcuVK/Pzzz3j99dfVhtPnsh9hjA6hoaGYMWMGCgoK1B6QMUUZaEPbPVu2bIny8nLY29ujsrKSM/2haRq5ubkq4fS5mD+HhoayB5iY0KxhYWF49uwZ7ty5gzZt2mg8wGjusY1p0zNnzsRHH30EoVCI+Pj4Op9Zl4enJcY+LuZcDExfVVBQoLXcNUVTMNV6UBu173n8+HGIxWL4+/vj8uXL+O9//4sbN27gq6++gpubG8aOHYuKigosWbIE7u7uej1r8eLFSE5OhpubG27fvq339cbohyV0y5rWiqYYb9966y08fvwYa9euxTfffINff/2V/Wznzp0vjVvMWBYTE4NWrVqhoqIC77zzjt5pbAyhrnrS1vb07dc8PDxw7tw5BAYGGpyeRlm39KkzU43R6q7dt28fHB0dsX37djacPnNgR9kTPzAwUGM4fUPHNm2oqy9lz3t9QvvXJaeu11rLPFfdGkjZsF477Yqu+ynMdenp6Rg7diykUimEQiEmTZqkU+pPfVGWc8WKFdi0aROGDRuGpKQktWuTDRs2YNKkSdi6dauKs4qybNu2bcO2bdt4nbOeK/r27fvSe0xdQ8uBXCcnJzaCHk3T2LBhA3r27Il+/fqhsLAQlZWVoGlabw98vtkotB1qAcwvb+3nCYVC3kZ20FQ2L/ZubSZ1ON/IycmpF32XIfB3RLYw165dA6Aw1NM0jdu3b6Nnz57IyspC06ZNjQ7pRCCYirS0NAQEBOCDDz5AXl4e+vfvj5ycHJ2M97rChEfTt2MVCARwcnJ6aTFgb2+Pa9euISEhAXZ2dnBycjJ689GUaPodBH6Rm5uLyMhIzJw5kzXeC4VCTsLmf/jhhzpP6Dds2IC//voLn376KXtNSEgIgH+98bVh7fpmqPyHDh1CTk4O+vfvj7y8PLz//vsICAjAd999B+Blz3tDjPf6omy8DwkJUTHeM9T2xA8ODrZZT3xbQygUYs+ePSgsLMS5c+deauO1dXn69Oms505ISAiuXr2qYryPjY01mfHeUgwfPhxff/21TsZ7PiMUCpGUlKRxg0wT1t4fG8OJEycgk8ng7u6ukkPY1dUVMTExrCf+W2+9ZXJZOnfujISEBIhEIkRERHDiOWhKGL0RiUSc6w8TTt/T0xOenp5Gz59rampw5coVAMCMGTNUPpszZw7at2/PeuL/888/RsnOJS1btsT27dtZ4319h9E5Jn+8Ies2S5KRkYHS0lIEBAQAUPyetWvXoqqqCtu3b8fGjRtRUVGBli1bYvbs2Xrd+9ChQ6zx/ueff9bbeE8wD1yPt/PmzYOdnR3u379fZwq/bt26wd3dHceOHcOaNWsgEomwefNmTuTgG927d2c98Y0dT/k8R9q2bRvriR8UFPSSJ/6KFStYT3xmDAT+3fcyx1pO2XifkJCgt/GeC/hch8ag7+8aPnw4ysvL8b///Q/29vZISkrC8OHD8emnn6KystIkMsbExKCgoAC7d+/WuDaZOHEimjdvjlOnTplEBluAqWtduX37Np49e4aePXsCABvdoLq6mnjgE17iRR9CNvcIZscoD3yKoiYAGAnF6RMKwPc0TfN7B0ULVVVVbEitS5cuoWHDhvDw8MDTp09RWlqKnj17IiEhAX5+fhaWlGCryGQy5Ofno1mzZgZdz2xGA0BgYCD27dtnkjyVTGitR48eoV27dpzdNzw8HOHh4ZzdT5nc3FyDNjSLiooA6Jcb21j+/vtvfP/996ipqeHdKU6+U11djcrKSnTt2hXPnj0DoDDUdO3aFbNmzcK0adMMCntWO+c945FWF9evX8emTZsQEhKCgQMHIj8/H4DCU2z9+vVIS0vD//3f/+ktj7nIy8tDXFwcAMUJ5+7du5v1+a1bt8aPP/6I+/fvY/z48Th37hzef/99fPzxx5BKpSguLjZb2Pzanve1c60WFhay3hzKnviMEV8fGZm8n5WVlaAoiuRf04Al+ufajB8/HjRNY8mSJSr5Q00VNt+aMaa+vvnmG+Tk5HAtEkEPTp48CQBqc2s2bNiQ9eL7/fffMWbMGBw4cIDzKBFlZWU4c+YMAKC4uBgRERFYtWoVIiIiUFNTg0mTJnH6PGuBMeJzwZQpU1jve3UhLRcsWIDExERcuHABgYGBBqUSMna9YwhFRUUqxv2Kigr291EUhbffftskayZ9YOZcXMvDrNvy8vLQsmVLzsP/GrrG0sbGjRsBAF27dsWZM2dQXFwMFxcXjBkzBnv27AGgqLfDhw/rfe/nz59zEjafYH3MmzcPa9euxbRp03D27FmN3xOJRHjzzTdZz/x33nnHIpHQ6uLvv/9WSQlQUlICZ2dn0DQNmqYRFBSkk3ejcmSbiIgI/P333zrnTbcmmIPXycnJeOONNxAbGwtnZ2cAQPPmzTF+/Hjs27cPI0eOxKFDh9C5c2eVVHa6GAUvXrzI5nTWBJOju7KykjUQ/vTTT0hISACgiAZQXFzMzncsFYmPr9TlVcx8x9h9NIFAgKioKKxYsQIxMTH49NNPcezYMXY+LJPJ2Lo0pxfx2rVr6+18lyuUIx4xhyF69OgBAKzjT2VlJdmDIRAIvMHY1VsfmqbZWC0URW0CYLUG/NzcXCxevJh93a9fP1AUhbt37wJQdOhLlizBhAkTLCUiwcY5efIkcnNz8e677+p13e3bt9m/AwMDsW7dOrRs2dJkofLEYjEuXLiAu3fvQiwW89ZTniE3NxcnT55Ehw4d8Prrr+t0DWNAO3bsGCiKMotHGcOwYcPYUKgE/WC8iwoKCuDr64sxY8ZgwYIFRm3Q3bx5E7///jsA4OzZszpvVD9+/BjvvfceGjZsiOjoaJXPmPp9+PAhq2t8zJv55MkTbNiwAYAiksD58+ct0t5bt26N5ORk5ObmYsGCBTh//jwAoF27dmYx3gPAwoULUVhYiKFDh2LNmjXsYQxAEVo6IiIChw4dwmuvvQbgXyO+v78/MjMzkZiYqNbwpQ5ms+jIkSOws7Mza/9jTTAHaSxdPqGhoaioqGDbuTmN9xRF4datWyoHSBhEIhGKiopw5coVi3jx1MaQ+qJpGlu3brWpvLOG0LJlS4vmHb9w4QJkMhmEQiGaNm2q9jtNmjRB3759cfLkSVy8eBGZmZlsf8gFbm5uKCkpweTJk9V+HhUVhbFjx0IsFltNnk4+wqTfYkKLqmP69OmsTkyePBknTpzQ6xnjxo3DxYsXcePGDbPVV1hYGLKysjR+/tVXX6mspyyB8pyLS3mY+eWBAwfg4eGBIUOGcHJfAPjtt99w48YNDBgwgNP5IfPbN27cyBrzaxMREaGX9/yqVavYv4nxvn4yb948bNiwAQ8ePIC/vz/WrVun8buOjo4AFPMsPnrf5+bmYtCgQVq/06tXL53zYTNG/DFjxiAhIYE1JtsaykZ8bdE75syZg7Nnz7L9Z10GdOXIcMai3FcxmDPvOt/RxflhwYIF+OKLLzh5HmPI7927N3bu3ImUlBT2EIFSvnWzMXHiRPz3v/+t86DIhQsXWKO0vsjlcjx//hwArCo/ua7cu3cPU6ZMYV+/8sorbJTlv/76C4DCyE+iKBIIBL5g7CxATFFUMIAHAFoB4EXPTlGUgKZpvXvaJk2aYOzYscw92E0nZpO+bdu2KCkpIYs9AqcoG+8CAwPZkD36wEyuGjVqhOTkZK5FfAmKotCrVy+4ubnx3ngPKDa+u3TpotdGMmNA69Gjh9kNq+np6ZgxYwbKy8tBURTrSU6om4yMDNy/fx/t2rWDUCiEVCo1OvSVt7c33N3dUVBQgKFDh+Ly5ct1XvP48WOEhYUhPz8fu3fvVhk3mNB9gMKQxegaHxEKhXBzc4NIJMLYsWMt3t5btGjBevECCoONuUL8DR8+HCdOnEBxcbHK+1VVVVi/fj1kMhnWr1+Pbdu2sZ8JBAKIxWKUlJRgyJAhqKys1MlYwfQ5zEFCgnp69eplaREAKOpr4sSJ8Pb2ZsdHcxEWFobk5GQ2p6cyS5cuxaJFixAaGmpQHk2uYcpFn0NLUqkUI0aMwPPnz5GSksK+X9/GxdOnTwPQr+y4pEePHnB0dERZWRmio6MRFRXFejbV1NRgx44dmDNnDnuIrnv37pxHLPvxxx9VDnJUVlbC3t4egOJQXKdOndixlHmfoD8LFizAJ598gl27dsHOzg6+vr7sZxkZGUhJSWHL2cXFBatXr9b7GRcuXAAAs9QX02bS0tIwatQotu+Qy+Xs/EEikeCDDz4wmQy6wsy5HBwcOJWHoijY29ujf//+aNKkCSf3ZMq1e/fucHBw4Hx+mJ6ezh6KEwgEkEqlrJ7QNI1OnTrh7bff1vl+Y8eOxc2bN9nXZG5Vfzl69ChGjx6NoqIiTJ8+HRKJBGFhYfD392e/wxy8BYAlS5bwzvuZpmk0atQI7du3R3Z2NiiKwuTJk1XaSVJSkkqYeF3o3LkzMjIyEB8fj2fPnqGmpgYymQwpKSk2FU99zZo1mDZtGnbv3g1AMY9hvNyFQiFkMhlGjRoF4N/+U9t6Uy6XY9iwYcjKyoKHh4fO0QsqKytx7do11mA4cOBANG/eHBRFqcxxACA4ONjQn2tzLF26lD3sponIyEjOnysQCBAeHo4pU6agqKgIjo6OrOe9ufN4p6Sk1KkTxhjvZ82axb728vIy6D58pnnz5ipOc6+++ioA4NGjR9i/fz/CwsJQUVGBAwcO4PPPP4ednZ2lRCUQCAQAehrwKYrqDyCDpumnL96aDSAUgD+AhwDmciueflAU1RvAXZqmHxpixHdyckJgYOBL7xcWFsLOzg6Ojo6oqamxyRNoBMuhbLxzcXExythozs0IgUCAjh07mu15xtKxY0c2h5k+BjQ3Nzezb/L4+vqqhPWzdEhPa8Le3h7e3t4qr7kw8F66dAkBAQEoKChAQECA1o3V58+fIywsDM+ePcPu3bvRtWtX9jMmdzoThj02NpY1ePDRA//VV1/F4cOHebHRqbw5wuR0VW7TpiYkJAQrV67E2bNnkZuby26qfPvtt3jw4AECAwNx/PhxXL9+nT0slJaWhmfPniEwMBDu7u46GyuYzaL//Oc/pv1RVo5yHm7GmKBslDEXTH317t3brM8FFJuQNE0jJSUFQUFBSEtLYz0IwsLCIJfLERERwRrxTRWZRxeY+qqsrNT50JJYLEbDhg2xePFilbQV9W1cZPoMfcqOa6KiohAdHa1ixE9OTsaff/7JjmMBAQFITEzkPOQkc/+YmBh2PMrPz2d1nfkOX6PZWBOrVq3Cb7/9hlOnTmH79u149913UVNTo2K4d3V1RVxcnNGe3BKJxOT1xayzJBKJSvqj2vrDB0w95+JyE155/WqK9aC9vb3K4RBj6mvs2LG4cOECRCIRGyUkPDwcaWlpXIlL4DnK44OXlxcyMjJw9OhRLFq0CEVFRUhMTGQN+QKBADt27AAA9O/fH5988omFpX8Zpv2lp6cjNDQUWVlZuHz5Mnbu3Mke0klKSjKoL3FwcMD8+fMB/FtuKSkpNueG6uPjwx4KpGkaeXl5aNasmd5lprw+1Tet29atW5GSkgKRSITk5GS88sorkEgksLe3x7Nnz+Dk5ESiCqlBl2iI+qb20QeBQICGDRuyry1h3OUyko4yjPGeORjEzL9tDRcXFwwYMOCl9zdu3AihUIh169bhypUrOHToEA4dOsQ6etoCcrmcnReTdK0EgvWg7w7nSQAZFEU9oijqOICPAQgBHAOwn6bpcq4F1BWKot4EcAbAboqihIZ44GuCCUtaWVkJgHh1ELhFLBZzuoHFGLRsdbJlDMxiV5cwV4xBhiyYCIDCu+/HH39Ew4YNUVBQgDVr1qjNv1ZYWIj169drNN6PGjWKNd4zIfz4rGsURfFCrtqbI0wI5erqap3btDEw/eqyZcsAKMLpAwrv+40bN6Jz587YsmULXFxcsH79evY6ZmNo3bp1nPf1BFWUc1TWN+Li4hAWFobCwkKMHj1axeNq/PjxiI2NhUwmQ2hoKC5evGhBSRXo0xb43D9aAnVld+TIEbzyyismN0YJhUJERUWxnviLFy/GH3/8AZqm0bZtW2RkZCAtLc0k+SJ1mb8RXeGOwYMHs5GCtm/fjsTERHazb+bMmcjIyOBk85jL+rp+/Tr8/f1fSrdRV3/Dp3UTX+ZcusCXOQ1Tf5rC3Pbp04c13p87dw5bt24FRVG4fPmySkQngm2jbgwZMmQIMjIyMGHCBEgkElRUVCAxMVHFeM9Xr2em/UkkEhw5cgS+vr7IzMzExIkTOQ35zIyrtg5FUWjQoIFZjff79u1DTEwMRCIRUlNT0b17d5U+VSaTmWWNS7BOTLHeVTbet2/fHiNHjuT8GXzm3LlzOH/+PMLDw9GyZUsMGTIEHh4e2Lx5My/miFxRUVGB0tJS3kYAJRAI6tE3hP48ANMAfAPgHIAOAAIAhAN4FYDpjrlpgaKoYVAcJpgCoBuAHgDO6+KFT1HUTAAzAYWn7aNHj176Tl5eHhwcHFgDPvHAJ+iCsm5p8xQzZmHEpHdgBl+5XI68vDxUVVXBzs5O43MfPHig9Z6aPBzq8n7Qdl8AGj3/DL1OX5gFkaU3m7hAV/0yN6aqS0N1lisYnbl8+TK6deuGgoICREdHY/HixezJ1aKiIuzYsQOlpaWIj4+Hp6cn20YZ431xcbGK8V4fzNVOlHXL0JCoXPYFypsjPj4+2LlzJ1t+lZWVkEqlag9TcAmz8Tds2DCsWrUKZ8+exfHjx3Ht2jU8ePAAI0eOxC+//IKgoCCkp6fjq6++QvPmzfH06VMEBgay5VgfNsG0Ycp+q64clca0H1P0P1y357i4OACKkIq9e/fGwYMH2dQdgwYNQmlpKWJiYhAYGKgxnL65vPNNsSFs6jHRXP1vXTBll56ejoqKCmRmZrLGhtDQUNaD8OOPP9Z6H0PlZYz4a9euRVFREZo1a4YpU6agWbNmJjHcM3A9f6urPpXRVbf4oiNcIBKJEBwcDJFIhN9//x1yuZwNMW3oOpiZD2l6z9A+OC4uDrt372bTiV2/fh2nT59GcHAwJBIJhg8frrW/UfYkt8QYrcucS13ZKWMJ3TK0H+d6PJVKpXjy5AmAl+uP8bwXCASIjo7GpUuXAADdunXDxYsXMXLkSCxatAjvvfeenr/COrDkuFhXXRra3uu6VhPaxhBfX18EBASopAgJCgrC4MGD9X6OMqYcE5TbH0VROHLkCLtWGjJkCPbs2QNAYQTWtZ/V8/kq/Za232pNY58m1PXB6tanzDhUF6mpqYiJiYFQKFSZkyv3YSKRyOyHpPgwj1HWrWbNmuGnn34y+TO54N69e1pl7du3L6fP0yWthyZ57t27hzZt2qi8p2y8b926NSIjI7F3714ACnvIvXv3jJTY8ijrVtOmTVFdXc1+JpVKsWHDBrRu3RrDhg1DWVkZAGD27NmIjIzE3LlzERsbC4qi4OjoaBH5uYKZxxO7FurcQyQRCgh8Qi8DPk3TGymK2g6FIX89gC8BfEBb8DgSRVEdAHwIYD5N079SFDUQwCQA53XxwqdpOh5APAB06NCBVpcnZuPGjWjXrh3xwCfohbJudevWTWMbMWYizCyMmcFXIBCgWbNmJgsh2qhRI6MW3ObG0LK1xEJT32fqql/1gbr00lA03fPJkydo2rQpCgoK8MUXX+Dy5ct48uQJwsLCIJVKER8fj379+rHfZ8LmM8b7ffv2cS4rl9TWLUtuvNTeHDl69CgEAgE7Dru4uJg0RB7z2+VyOZsb8fPPP8ekSZMQHx+P58+fo3Xr1mjbti0qKirw+uuv48cff8ShQ4eQn58PiqKwb98+vfTTFja6NMFFv8W38jFV/6MNTc9LTk4GoDDih4SE4Oeff2aN+DNmzACgCEHOhNNXZ8Q3l6xcX2eLY6K2MqhtvH/ttddw+/Zt1oMwLS2NkxDnyixYsID9e9GiRQBU+0ZTpK7QVgbmane2qFt1wdT14sWLObunOmOeMYcvb9y4galTp+Lhw4cAFMaOTp064fLlyzh16hQARc5gTXqibnw3d/oVwPRzLnPOj41F23iq6X3G27j2ulc5bP7SpUthb2/PHtR46623cOnSJdy9excFBQUc/gJ+UR/7Lk1oO8DARNcCgISEBIv3CXWhqS1kZGTA398fWVlZmDJlCgBFv6hLP2vMnKtjx45Wo1tczSk0rU91obbn/YgRI4yWx5aovT+v6XunT5/m3CheF9qeZ+6DBgKBQKtXuD7y1DbeJyQkQCAQwNnZGYDiIEVtg781oqxbXbt2pZXTJ3/yySf4559/kJ6ejtdff519f+7cuXjw4AE2b94MAIiNjTWv0EaizgAtFArRoEEDC0hDICjw9PTUGPHG09OTN/fkG3rPSGmarqBpOhZAXwDtAVygKKon14LpwXMA02ma/vXF62UAer3wyueE/Px8NG7cmF30kZNKBD7DRQhRS4ST5FMISwL31BXiUt/7WFJPhEIhLl++DHd3dxQUFKBTp054++232bD5yrlACwsLERQU9FLYfELd1A5LuGfPHottpAkEAjg5OUEgEGDixIlo3rw5bt++jYKCAgwaNIjtbyUSCYKCgpCZmYl//vkH/fr141WEDAL/4LpPUw6nz/Q9DKGhoSrh9C9cuEDGXCtF2Xjfv39/TJ06FStXrkR4eDgkEgmKioowc+ZM+Pv74+jRoyYbO5X7RgLBUGiaRmlpqU5zxBs3biAwMBADBw7Ew4cPIRQKMXToUMTGxmLChAmYNm0aAODUqVM4fPhwnfcjOmzdMIc6mXkYTdPs+MaEza8dHUQoFKJLly4AFDmoCaZH3zHIkus9a+0TBAKBSjh9AGSOZwKMWZ/u27cPERERrPHeHAdpDYUPey4E01M7bH5UVJRafaZpGlVVVZym6OALd+/exbp16zBmzJiXDmlQFIXY2FjMnj0bmzdvRkREBGkTBIKR3Lt3DzRNq/1naLQPU9yTb+g1K6UoqjdFUTMpivoMQAqAoQDKAJg2drEWaJp+QtP03RfyiWiafvhCNr8X7xkV84LJp9qoUSOLhtcjELTRpEkTAEC7du30vjY4OBitW7dm/3Xp0gWenp7w9vZm/79y5Ype99y1axe8vLxw4MABna9hQliuX78eGzdu1PdnEHjIDz/8wHrpcZWfWiqVonv37hg+fLhFFxDKRvzi4mLk5OS8lPMeUBjMuDbe5+XlYf78+Wy75OpwhCmgaRoLFizAkSNH9L72ww8/RFZWFlq0aKFXTkFzsHbtWgCKzTJvb2+Vzzp16sT+nZCQYFa5CNph2srChQvh5eXFem7qw6JFi/DDDz9wJpNUKsXFixcxb9485OXlcXJPZSN+x44dVcb3iIgIAIqwqpMmTSK5NQ3gypUrmD9/PnJyciyyiVNaWqoxRy+TAzw+Ph6urq6sIX/RokUkl6oa8vLyVObAXB24WrhwIfz9/Tm5ly1Sey0tlUpRXFxc5xzx9u3brOGeoigsXrwY0dHRGDBgAPsdPz8/FSP+zZs3uf8BFoKmaVy4cAHz58/nbLywJP7+/li4cCGn9/zss8/YUPk7d+7UGKVp3LhxAICcnBxOn19fGT169Ev7Ccqv/f399RqDpFIpbt68ifbt2+Obb74xsfSmZ+jQoRg6dKjJn6NsxAegc0h3Y8jIyGDr2dPTU6/9H2vE0PWpNRnvAcXv/P777y06b7x58yb69evH/vvss88sJos+zJgxg418xgdmzZqlUo5Tp05l/37zzTdZ4/2WLVtU9Dk7OxuAYt+ruroaUqnU6L08vvDnn3/CyckJTk5O8Pf3R01NDVavXq32u4wR/7333sPmzZvJwT8CgWAR9N0NPwPgPQD/AHiPpukAmqb70jSt/868kagzzNM0LXvx5yUAcyiK8qFp2qjEuLm5uQCAFi1asHlQnJycjLklgcA5Y8eOxf79+/UyEDKGDOY0kr+/P/z9/fHqq6+yf3fo0AGVlZUIDQ3V2Yi/Z88eLFu2DNXV1ewGii6IxWJIJBIMGjQI/fv31/k6An9544032PyBTP3qkq9LG2KxGEVFRcjIyMCwYcMsarQWCAQ4e/YsAKBDhw4vGe8BhXHA2dmZU8/7Ro0aITAwkDUcc3U4whRIpVIEBQVBXXqaumBOQD99+hTXrl1T+x1LeQdMnDgRTk5OkMvliI6OZvNnFRUVscb9AQMGEO97niGVShEREYFvvvkG1dXVuHXrls7XMro2aNAgvPHGG5zJJBaL4efnh169ehlrEfX1AAAgAElEQVQVTro2cXFx+O6779jxvPb43rZtW4wcOdKsuTVtBW9vb3Tr1g0ODg4W2dicM2cOAEVoXE3zpSFDhiAjIwPx8fEAgP3798POzo7Udy3c3d0xdepUzu/7zTffoKioiHiwaeCHH37A6dOn2ddisRguLi51zhFbtmyJZs2aAVD0yVu2bEFWVtZL32NCxwoEApsI+8oglUrRqlUrdOvWjdPxwlIUFRVxbpwdPnw4e0BkwoQJeOONN/D48WOV79TU1CA6OhoA2BDBBONYu3at1lyxQ4YM0Suft1gsxg8//IDq6mp88cUXXIlpMTIzM1mveFMjEAiQmpqKPXv2YPv27SZ/nkQigb+/Pxo3bgyapvV2/LA2lNenGRkZOl1jbcZ7QHHopF+/fryZNzo6OkI55Dmfyc7OZo3ffICxaXh7e6s4aTH/Bg4c+JLxPi4uDtevX4eLiws6d+6MBg0aQCwWG72XxxckEgk6d+6Mzp07w9PTEzKZDE+fPtX4fYqi4OfnBwBo1aqVucQkmAm5XI6ysjJeOkQRCAwiPb//HgB/AMEAPqQoKh9Axot/12maPsixfC9BUZQ3TdM3aZquoShKqM5AT9P0cYqiDgGYQVHUIpqmDW6FTE7vVq1aoaSkBAAx4BP4h6OjIzp16qTXBJsx+gGKzQsmzGR+fr7KphCz4GBy5mrLx7Vnzx5ERkayr4VCISorKyEWi+sM6c+E/mcmRgTrx8XFhfWKYurXWC9qZT3KysrCsGHDDPLu5gKpVIqqqioAgJ2dndmeKxKJ8Pbbb7OvmXbPxwWVWCzGkCFDDFr8jxo1CqWlpYiMjERoaCgSEhLQp08fle9UV1ez/Zi5+eijjxAdHY2ysjJER0dj/vz5WL16NeRyOdq1a4cTJ05YRC6CZlasWIG0tDSDrmXGzN69e3MaiYmiKLi7uyMsLIyzewIK49arr76K9PR0tt+sPb4TDMPBwQETJ06EVCo1+8ZmaWkp9u7dC5FIBJlMhl9//RUDBw7U+P0hQ4aga9eu+OOPPxAZGYkvv/zSjNLyn5qaGsyfPx+RkZFsu+by4JXyXJvwL15eXiqvKYrSur6maZptbxcvXsTRo0exaNEiFBUVYe/evUhLS0NYWBj8/f2xadMm3LlzBwKBAMuXLzfr/MzUiMViuLu7Y+LEiUalSuMbNE1z9ns6dOiAmzdv4ssvv8SXX36JBw8eYO3atXB3d8e0adPQtGlTdu7m6OiIFStWcPLc+k6rVq3wxx9/QCKRwN7e3uj5BkVR7JrR2vtQSxzgkkgk6N69u1nmKO3bt8fhw4dx5swZTJ482eTPszQjR45EUVERli9fjpCQECQmJiIoKEjj963ReA9A69zSXLzyyivYsmWL1Y53NE2jurqaF/nGHR0dsWXLFgCKUNPaDjfGxcXhyJEjcHZ2xq5duyASKcxGdnZ2vIqIaAw+Pj745ZdfAChSXr722mtYvXo1kpOT1X6/qqoKcXFxCAgIMEs0FYJ5qaioQGlpKQBFWyEQ+IhevS9N01tomp5L03QfmqabARgEIAlANYAxphBQGYqihgO4QlHU3hfy1NT2xFd6nQwgzhjjPQA2vKqyAZ+c1CbwDUPy3jMe0XUxfvx4lZy5Fy9eVPu9+Ph4REZGQiQSsZshcrmchGwlmITXXnsNfn5+rBHfEqcldW1DpoarwxGmwJC+SZmJEydi9erVkMlkmDp16kteHQ0aNNDLo4dLhEIhli1bBgcHB5SVlWHVqlWs8Z7xkCXwh0WLFiElJQVubm5466239L6eae988USpC8ZwSMZf02Bs32Yoc+bMgUwmw5tvvgk/Pz+cOXOmTuMGE27/u+++Y6OFEBSYul1bW7/BV2r3Z8oRJiQSCSoqKpCYmIgPP/xQxXhfO/e5tWOpfsfUmGKcmjdvHrKzs7Fw4UKIRCIUFBRg7dq1WLx4MWu8j4qK0uo1TtAd0tdpxhLzMFvtK/iAVCrFiBEjsHLlSshkMoSHh+Pq1atqv6uP8f7jjz/Gb7/9ZiqxrRKKoqxah5mw89XV1Tp9/59//sG8efMsOldPSEhgjfe7d++Gi4uLxWQxF25ubpgzZw7S09M1tuW9e/ciJycHS5cutWqdJKhHIpHAycmJF3u7BIIm9PXAV+FFvvmHAEzu/khRlCOAuQDmAwikKGo3TdOTXhjxRUrh890A5NM0fU7fZ8hkMjx79kzlvVu3bqFRo0YoLS0lBnyCzWx85ufns38zp8KZ99SFDho0aBBKS0sRExODwMBAdgHCeMR8++23rPE+KSkJhYWFAP6dtNbU1KCsrEyr9359gInooYn6Xj7aUNZZQNEWd+/ejYkTJyIrKwv+/v44cuSIWiO2pnI1pj5qyyOTydS2odrtq6771gdql13tz2p77EycOBEAVDzxKysrASi8UcvKylBWVqbVa9JUbU8sFmP58uVYvXo1SkpKVIz3zDOVPQd19YSu7zpiKJrqmTHeu7q6Ii0tDV9//TUAoKSkhNXHusqc2QytjSZ9Zurdy8uL88M12vSZ0S1mE90cm+lkbDMNtcu1tLQUe/bsgYODA7p16wYvLy9kZmbi9OnT6Nevn8p309PTVV63bdsWd+/exdtvv40pU6Zg9uzZvDn0ZUn90dSuDUFdX1BQUAAAdY5RhqJcdurGGnO3PV36Jk2faUNTfzZkyBAsW7YM2dnZSElJQUVFBXu4zhjjfX3p0yzxO9XVNTOXM8Uz582bhxYtWuDEiRM4efIkZDIZnJyc8NFHH0EoFKKiokJjOTA6S+ZxdWOKvpQ5nCaXy026jtI2XzfmeYzMyh74uvyOutplXc80d6QlZg1cXFwMAKisrLTpdS8zDk2ePBkikQhLlixhPfGVI0mmpqYiJiZGq/E+PT0dFRUV2LhxI+7evYuoqChMmzaNvc+CBQv0lq++jF98g0lLqsyjR49QU1Oj9aCYOmPwhg0b2L8NjeChLA/j6MK8988//6i9JiEhAT///HO9MN7LZDJ2jg4A48aNw4YNGxAdHY3NmzejadOm7GeM933Xrl3Rv39/rTYBcijQOhEIBMTznsB7jDLgmxOapssoipoGoBhAKoCvlYz4MgCgKKoTgN4URW2jabpS32dIJJKXwncXFhbC29sbfn5+bDhcYsAn8AVDJ+DKCztm0qj8nrqF34wZMwAAMTExbDh9Hx8f7Nq1i12cHDx4EB07dsSZM2cAAPb29mjevLnJfgeBf5iqLmvrpEgkQpMmTXD06FEMGTJEJZy+OYwS6uRR14bUtS9DsaZ2YkzfpO7aJUuWAFAY8adOncqGKnR2drZYSHDlTRXl1CEMzAaKcghlLkOvE3RD2Xj/yy+/wM3Nja0HXfXHEH1m6r28vFxtaGhT9pWa7m1NfQjf4EPZrVixAjU1Nfjvf/+LsWPHolGjRrh16xYuXLiAL774QmWjbf/+/SrXhoeHIyoqCpcuXcKIESM06mV9wRT1qa4vMef4xPexRlvfVBfaDj8sW7YMgGLj+fbt2/Dw8LCpsPkAP/ofrlDXJho3bmzUPesqnwULFrBzths3bqBDhw7sZ7oYS/netiyFtnI3RmcZHWE84QQCgVn6Uq7r2RJjgjH9rKEwa2BmDmJvb29z6Zo0lWlERAQAxTo1PDwcaWlp6NSpE/bt28fuj507dw7du3dXe72y8Z6iKNA0jR07dqgY8c0J38YaZ2dn9O3b19Ji6IS6kPTawtSbGuVnM3tjyu/Vli0uLo413t+7dw/u7u5mkNJyUBSlMlds0qQJZs2ahbi4ONy5c0elfPbt24ecnBxs2LCBlykrCYZDDlwQrAl+uF7oCE3Tj2iaLqVp+hmAWQAkFEXtBgCKojoCaA/gG0OM9xqep5IfhsmJUZ83vAj1m9DQUJVw+nFxcS8Z7wkEcyIQCLBnzx6Lh9MnmB7lcPqnTp2ytDg6Q8KKWg7lsPkHDx6Em5ub2Z7N1DtZ6BO4oLS0FAcPHoSDgwPmzZvHvj9//nwUFRUhMTFR6/VOTk7w9PQETdNITU0lemmDkLEG8PLysjnjPYFblI33ukLaVv2A1DPBECZMmIBPP/0UMpkMISEhWLlypUrYfE3GewCs8V4gEGDFihXo378/AEXqo8zMTHP9BAKPMUcEWOWc97t377Z5470mpk+fDldXV6xbt459r6qqCqtXr0a3bt0wdOhQC0pHIPCLNm3asGlOav/z9PS0tHg2iVUZ8JWhaTofCiN+NUVRNwB8C+AcTdNPuHpGfn4+SkpKWAN+SUkJGjRoQCb1BJujpKQEfn5+8PPzQ+/evdm//fz80L9/fzYkPgCMHz+eNeJv3bpVrfH+/v37lvgZVkNRURHee+893LlzB5WVlQaHxqqPMGWVkZHB6mifPn1YncvKysKkSZPY71ZWVupk0L979y7ee+89FBUVGSSXchsh6M7XX3+NjRs36twGJkyYgJiYGPZ1eXm53s9cuHAhfv31V72vM5Ti4mL4+PjA09MTrVu3RuvWrdGlSxf279atW2PLli1mk6e+8NlnnyElJQWAYvE9YsQIts9ISkoyyTO3bNnC1iUTTtbUEUEWLlyIX375hTdjCdO+mP6XDzLZAitXrkRNTQ3Ky8vh7+/PztXGjRsHkUiEdevW4ccff9R6DyaS0tWrV3kTPr825u6fTQUTfcec+h8fH4+kpCTe5Ob84IMP8MEHHwAw73yMa/gmjymgaRpz585l68uc8EVfAWDo0KEqczNmrubp6Qlvb294enpqXC8PHTqUjHccw3jBm8ubm6IoPH78GLNnzzZZe9f1kDnTZ54/f15FJ2v/a9++Pc6fP28SWXUlMzMTfn5+CA8Pt6gclkTZiB8fH88a7318fDTW+YQJE1jj/fLly+Hq6org4GAVI/6TJ8Ztbdcev2iaRmlpKXF2sCIMOXSmjqqqKrX1npiYWO9y3mvC1dUVM2fOxLFjx5CVlQUA2LVrF+7du4ePPvqIjZJRVlZG2hCh3pOTkwOaptX+U5dShGA8VhNCXx00TT+jKOoagKEABtI0/ZjL+2dkZAD4d9AsKCgwq/cWgWAOBgwYgJMnTwJQv9GYnZ2NoKAg/Pzzz+x748ePh0AgwJdffomvvvpKxXh/9epVREVFAVDkpiSop2fPnhAIBCQko55IpVKEhYXhyJEjL33m7OyMsrIyNGnShP2uthDWytjb26Nnz54GydS0aVM8ePAAixYtQlxcnEH3qK/07t0bUqkUUqlUpzYglUpRVVVl1DMHDRqE119/3ah76Eu3bt1w4cIFsz6zvtOhQwe4ubmhqqoKQqFQZXxzdnaGg4MDunbtyukz33zzTU7vpwuDBg1Cly5deDOWMO1LORQtwXjatm0LOzs7tYeI7ezsUF5ejqlTpyIhIUGjHprDi8dYLNE/m4L169fj2bNnOo9tXGCJ/kcbaWlpAIAvvvjCbPMxU8A3eUyBVCrFoUOHACjqy1ysXr3a6vZWSkpKXkqnWFJSgszMTLO29/rAlClTIBaL0aVLF7M909TtXdd0b0yfKZfL0apVKzx8+NBkMnGFg4MDRCIRgoODLS2KRZgwYQLs7OyQn5+Pnj17wsfHR+dxz1TU1mepVIri4mIAJKqsKVGXWs+S+Pj44PLly5g1a9ZLTgPMAaAdO3bUa+O9OtR53zNtGgDJmU4gEMyKVRvwKYpqCGAYgEE0TWdwff8LFy7Azs4OnTp1AgA8ffoUTZs25foxBIJFYTZqaJqGVCpFaWmpSi5CJgRxUFAQ0tLS2FPwYWFhCAsLU7nX1atXERISAplMhtjYWPTq1ct8P8SKcHV1RXh4OFvmJKqH7ojFYsTExGDNmjWs105+fr5a7wymXHUJFdyiRQuDPQdOnjyJoKAg1tuXyddOqBtfX1+92sC3336r4oFvSBjoQYMG6X2NMbi6uuLAgQMq72nSWQJ3BAcHq2wimqPM27dvb9L7q2PQoEG8GkuY9sXklOODTLbArFmzMGvWLPa1sj7TNI1Vq1YhPj6eNeKrY8eOHQBgVmOIvpi7fzYVo0ePNnubtET/oyvmmo+ZAr7JYwos1U9PnDjRIs/VxA8//KDyWrmflcvlGDZsGLKystC6dWvs3LmTPTAcHByMjIwMMt5xDOMNaU5M1d6dnZ1RUlLCpntTdxBdGUaXAgMDce7cOZXPlOd8fIhg4efnh8OHD1taDF4wduxY9m/m4LCmcW/v3r347bffcPfuXaxcuRLLly/Hr7/+yqaJmzZtmtF7z7X1WSwWw8XFhaRRMjFczmVv3Lhh9D3WrFmDWbNmITs7G7NmzVJ7wIDsSyiipMbHx2Pw4MHw9fXF9u3bce/ePWzYsIHtayUSCQQCASQSiYWlJRAI9Q1+xk/UEZqmnwMYQdP0NVPc/+LFi+jcuTM7gX769Cm7UCMQlHkRQseq2xMT7heAStjbuLg4hIWFobCwEKNHj9YYKlzZeL9y5UqMGzfObLJbK0yZ82HxbS3oU2b6hLCuK9wzE0ZL3TWurq74+eef4ebmhpSUFERHR9f9QwgA9KvPPXv2IDIyEiKRiA0vqCt8DufNZ9lsAW3laytlz8exhI8yWTPadJWiKCxfvhyzZ88GAEydOvWlMau0tBQ5OTmgKIq38zNbaY8A0f/a6DIf41P980kWc2AJPeVTGesii0AgwJEjR+Dr64vMzExMmDDhpRC6pL1zA590g0ucnZ3h6+vLGvG1hWDWNobweXyx1bozBF3Gvblz56Jt27aQy+X4+OOPWeP9O++8Az8/P5PI5OTkxNs0SrYITdMaw9frAnMg2hgoisKGDRvg5eWF7OxsREdHk/FLDdu2bUNRURE+/PBD1vu+e/fuKlFlKYqCo6Oj2jYkl8tJigoCgWAyrNoDHwBomq7k6l41NTVsSKGSkhL89ddfePfdd9n3njx5gs6dO3P1OIIN8SJMrPGzKx4gk8leCsXLhAVPSUlB7969cfDgQZWQh5mZmQgPD2eN9yNGjHgpjGB+fr7W53p4eHD9U8zOgwcPLC0CwUCUwz0zevvZZ58BADZu3Ii7d+/C0dERUVFREAqFkEgkGDBgAHuNm5sbfv75ZwQFBeHgwYMAgKioKHYDQ1n/bUHXTYWmfkLZeJ+QkID09HQAirGauUZbuaqr37qeyWDq+tImG8F4mPKVyWQaP6sLbX27Ns9+S+sW36lrzDS0fKqqqrTem0/lrqtu6dJPMNFfNm/ejO3bt2Py5MlsGrBt27YBADp27Gh0GhJTQfpC60ddn6fr/Mfc9a+t7eXl5bEH+NXJYqq+y9wYU1/a0KVf41N711UWxojPeOIPHjwYe/fuZecXZK7PDXzSDWNQ1gdmPbhr1y5MmDABWVlZ8Pf3VxtO35iIUZaed5qj7qyt/9Umb0VFBebOncvuNQAK4723t7fadQtf4Vud/PTTT1o/79u3r1nkAIDq6mpIpVKLplKorq5GdXU1Nm7ciPfffx/Z2dmYOnUqoqKiIJVKAUDnnNV8KltjYA4bMRQVFWHLli0YOHAgvL29sWvXrpe87+uioqICpaWlALhNUVFXCjQuDnkQCAT+Y/UGfC6xs7NDmzZtAADHjx8HTdMYNmwY+x7xwCdoGhxfDND8Ty76Am2T6JYtW6K8vBwODg4qC8rk5GQACiN+SEgI63F89epV1ni/detWTJs2Te31BP4tKK0JbWVnaLkqXyeXy9XqrfKCuqysDNHR0YiKikJFRQW8vLxUrvHw8MDt27fh5eWFgwcPqoQ2JGHJ/kXf+lI23qempqJz5844efIkAIU3iy5lW7uuzIGuOqtJ9wj6o67MtZWv8meG0qhRI7P37XwbS/gmj62grFu19VhTmW/atAkuLi749NNPsWvXLiQkJKBLly5Yvnw5KIrCwYMHebfRo+k3WhuWaAd8a3vqxmNdxmgPDw9e1X+zZs3g7u6uURZbObBraH0Z+0w+1bc2WTS1r4yMDPj7+yMrKwtTpkxh+1Qy1+cGc8/ZTdWPKusDsx5s0qQJjh07hsGDB6uE01f+nZaYVxqDnZ2dzYzjhlBXXWkbL6ZMmQIPDw8sWLAARUVFABRrW2PWJtakO7aEJsN1XWtN5WgVRUVFEAgEcHBwMHquriyPsgw3btxAhw4dkJ2djdWrV8POzg4AWJtHfUEkEqmkjd26dSuKi4vxv//9Dy4uLli9ejV69OiB4OBgFQO+tnpholuQFBUEAsEU1I9ZlQGcPXsWYrEYXbt2BaA4tfb8+XNiwCeo5cUCxSZi5QgEAo2htZTD6QcFBeHXX39VyXk/ffp0rdfXV5gTniScEn9Rp7eM8V4gEGDZsmVwdHRkjfg1NTVqr3F3d1cJp19SUmKJn2MT0DSNpKQkFc97Q6Pg8Llf4rNstoC28iVlb3lIuFXd0EdXV69erRJOPzg4GAAwatQo3hnvlSHt0foxpj3zqf7re5hhc6xb+FTf+spSO5z+9evXTSxh/YJPumEKBAIB9u7dq3M4fWvC1uvOlLi6usLV1dVqy9Aa5vPGhrM3BH3q09XVFc7OzpzP1ZVlEAgE2LJlC9q3b4/s7GzcunWL02dZI4WFhdi0aROGDx+OTp06Ye/evbh37x7+97//6ZVawFrbLoFAsA5Iz6LEo0ePEBUVhaioKKSnpyMgIIAN/VRQUAAAaNq0qSVFJBAsjrIRf8KECazxfvz48TrfIzY2FhcvXuT1BN9YCgoKEBERAZlMxoaTKy8vt7RYBB0ZOHAga7xfvnw53N3dERUVxRrxY2JiNF7LhNNn0kwQI75hfPvtt1ixYgXref/aa6+xn+kS9twQ9u/fj71799p030QwjtjYWFy7dk3v665evYpPPvmE6FYtmPHx0qVLWLNmDSf3zM7ORnBwMIKDgzF8+HB89913nNzXVDCbnvv378eBAwc4ueeSJUswc+ZMAEBubi4oisLnn3/Oyb0JBE0w7ZkJyWotXLt2DWvWrNHb+CCTyRAREcHuE9gKxq5bmD6turraJssHUDXiEwj6oqw/WVlZCAkJ4fwZhs5XrQnl/Ra+O0zY6njBwIwbx44dw9KlSy0tDsuNGzfYNFLK4ezrM8pGfH2Qy+WoqqoCTdOQyWRYu3YtCgsLTSSlafn777/Rq1cv9OrVC2+88QYKCwsRGRmJ6upqxMXFoUePHhgyZIilxSRYERRFzaQo6hJFUZeePn1qaXF0pk2bNqAoSu9/np6elha93kFC6CtRUFCA3bt3A1CcvA8NDWU/Y3KZuLi4WEQ2AoFPxMXFoUGDBrh16xZCQ0P1Mt4DwNChQ+Hg4ACpVGrVue208eTJE/Tu3Rv5+fnswR8STsk6yMnJYUO0L1y4EK6urgAUIbOioqKwePHiOo3ybm5uOHPmDKZPnw4vLy+Ty2yLJCYmAgAbNp/J63jt2jWkpqYCALy9vTl9Zr9+/VBZWWnTfRPBOEaNGqUSck9XGjdujAEDBhDdqgWTZ7pNmzYYMWIEJ/esqKhARkYG+/r9999HaWkpJk6cyMn9uYbZ9OzXrx9bHlywbNkyAMCRI0cwZMgQXnvfE2wDRn/FYjHefvttC0ujO//5z38wePBgvXM35+fno3fv3njy5Anc3d1NKaLJUa4vph4NXbcwfVpxcbHNlI86GCPs1KlTiccdQW8EAgEmT56MyMhI/P3335zf39D5qjWhvN/i6urKHjyyVK5xbdjSeKEOZtz48MMPUVJSgk8++cTCEilo2rQp+vXrBwBo0KABALInB/xrxI+MjNR5fVBeXs4e0CwuLkZAQAAKCgpYpxVroqKiAleuXGFfOzg4wN/fH0+ePEFOTg7mzZunl/c9gUDTdDyAeADo1q2b1Xhs5OTkEAcTK4EY8JV47bXXcPz4ca3fIZ04gaDAmEm5v78/pFIppxvVfMPHxwc+Pj7sa3t7e7K5YyVMnTqV/fvatWsYOHAg+zo5ORkAdDpx2LBhQ3z77bfcC1hPYCaSymHzr127htGjR7ORP1q2bMnpMxs1amTzfRPBOJT7dX34z3/+g0aNGhHdqgVFUbC3t4e9vT1naar8/f1x+PBhAMCVK1cQGhqKyMhIAOClEV/Z6MnlOoOiKCxfvhzLly/n7J4EgjaY9gwAa9eutbA0utO4cWODxv9mzZph+PDhJpTMfCjXF1OPhq5bmDJ0c3OzeQ8dgUCApKQkS4tBsEL27dvHpglLSUnh/P6GzletCeX9FmbdyFfjrC2NF+pgxg2+RR5s2LAhGjZsCEAho52dHdmTe4FAIEBsbKzO33dwcIBYLEaDBg3QuHFj9mCENdKlSxf88ssvABT7e9OnT8fFixfRo0cPODs74+7duxaWkEAgEFQhIxeBQDA7zASfHIgh8I2cnBz89NNPaN68Ofz8/HDmzBnWI6umpgZ//vknAGDGjBmWFLNekpWVpWK81zfyhy6QvolgKohuWYbOnTsjNTUVIpEIkZGR2LNnj6VFegmiGwSC5SHtkDtIWRII2klNTUVERASbJkz5sDLBMIw9eEQgELQjEAhgZ2dnc2P70KFDYWdnh9TUVFAUBR8fH2RmZlpaLAKBQFCBeOArUVNTozGHS3FxsZmlIRCM48GDB1o/9/Dw4OxZNE1DKpXi/v37AMB6sChP7vLz89GoUSPOnqkL5iwDggJrKvPastI0jbCwMNA0jWXLluGvv/5CZmYmTp8+jX79+uGbb74BTdPw8PBATU0N5HJ5vd4k+OyzzwAAhw8fxqlTp+Dl5YXZs2cDUOT5W7hwod7lw4TJZ+7BvJeVlYUpU6agpqYGsbGxGDduHCorKzn3WCXwA6ZtMmNL7Xq2VD+iSR5rwZr6Z+W+QF9kMpnK9R4eHkhISMDUqVPVeuIr12vr1q0NF1oD2srdEnMjAr+Qy+W4ffu21n6FT23TFFhT31Sb2uOCMX0Xn9D2O0i/pR2aplFaWgoHBwe18+D79+9rnUvwWd9tEVPNOZXbEOMdnp+fj9TUVMTExBhsvNd3TqH8u+oD6srH1BsDjYcAACAASURBVPM8feFrnRg6FqsbL2rPw22dn376Sevnffv25fQ6LqBpGtXV1WjQoAHb5927d09FJnXfsQVkMhkKCgrY13369EFqaioWLVqEdu3a4fTp0xaUrm7kcjkqKiogkUhIijQCoZ5ADPhKCIVCjflbXFxczCwNgcA/NE2+S0tLUVxcjLKyMgBQm0OyUaNGNj95t/XfZ+vcuXMHv//+O5o0aYJRo0Zh1KhRuHXrFi5cuIDPP/8cK1asAKDwmrCzs9OYY68+6QFjvAeA27dvY9OmTZg1axZkMplBOQiVN51EIsUUJTc3F++88w5qamqwdetWTJ8+ne1zXFxcjM5zWJ/qy9pg8ugCuuckNgWMjuird0S3tGOq8hGJRC9tYDMbM+rC6Svrmbkx1dyI6J71UF5ezot+jgusSe+MkVX5Wi7nI+bGVPVlTXpgKNp+I6MTANTqBF/mNgRVuK4X5XkIY/g6fvw4a7w/d+4cunfvbvRzaj+ztm4q91G2QF39izojtCXneerktbU6UXegy5KHvExp9LYFmPJRN3+pfaCgurqazXtvZ2dnM2XLpFNgGDVqFE6cOIHr16/Dx8cHKSkpePbsGRo3bmxBKRWoM9BXVFSgtLQUAoEADRo0sIBUBALB3NRf10ECgcAZDg4OcHFxgVgshlgshkQi4d2JYkBxgrSyspI9BU8wLdZW3kuXLgUAfPTRR+x78+fPR1FREQYPHgyaphEQEICmTZtCIpHwNseeuVA23o8bNw4CgQB37tzBli1bIBKJDC6f2nqjHDZ/+vTpAP7tc+p7Hdg6fBtPiN6ZHy7Hkc6dOyMhIeGlcPp80zNC/cLBwYHonxWj67jwog+zmr0Xa5vD84m6dIKMOfzE1PVSUlKiEjafa+M902blcrnK+2Tuyr82V1/qRJNOEtRD0zSqqqrMNu7qoocNGjRg897bMoMGDYKdnR0OHTqEDh06AFCkb+Qr9aUPIRAI/0I88AmEesChQ4fQpUsXk3lECAQCODk54fnz5wAUp9aTkpLw1ltv8WZSkZSUhBEjRrAn4InHg+nJzs7GpUuXEBISwvvyzs3Nxfnz5wEAly5dwqVLl9jPWrVqhYcPHwIAEhMTSY49AMuWLWON9++++y58fX3h7e2NlStX4s6dO4iPj8fixYsNujfjJcH0J+py3jN9DsG2oSgKx48fN+n4pQ+2pHf379/HlStXMHLkSEuLohWpVIqnT59izpw5bD9cF48ePWIjptSmsrISQUFBOHXqFCIjIyEQCDB+/HizjVGmno8RrA+BQKCif3ybP5ub8vJy7N+/H++8846lRdEJbePCgQMHcOXKFQCKVH0ArCbOqbLH6uPHjxEeHo6SkhIAUEkhJRQKMXbsWERERFhMVr5R11yBWUcApL3zCYqiIJfLsXPnTs77H6btcJnzXi6XIzExEWPHjoWLiwvbZmtHQLOluau+KLcvPu1FWEOdpKWloWPHjvDy8jL4Hpp00tbJyMgAAPj7++t1XUlJCX744QeEhISoeIebirr0sLKyEkePHsXo0aNNLoulcXFxQb9+/ZCeno4ZM2YAADIzMxEUFGRhydRjDX0IgUDgFmLA1xFmAWuOgZRA4Jq+ffsiLy/PbM/Lzc3F0KFDcfPmTU4WqFzJc//+ffj4+PDm9LWtQ9M0BgwYYBXlzRijAcViXx09e/aEq6uruUTiNevXrwcA+Pn5wdfXFwDg6uqKt99+G8nJybh9+7bB92b0pVOnTnjy5AlWrlypYrwn1C/MPX7VF6RSqVWEQRSLxThx4gRrBNOF/Px8jf14bTZu3GjW/oXoM0EbfJs/W4KbN29i6NChyM3NRcuWLS0tjlF8+OGHtT3paiwli74wczGxWIyvv/4ad+/e1fjdTZs2YdKkSVZfX+aGtHf+Yar+p0OHDrh//z5SUlI4M9736dMHOTk5yM3NxYoVK9g2Sw6DKCDtyzg++OADAIqDp/qUX//+/fH7778DQL3VyWbNmhl0XW5uLvr06YOCggI0b96cY6n05969e+jduzfy8vIM/k3WRJcuXXDs2DE0aNAAFEUhNzfX0iIRCAQL06ZNG+Tk5Oh9naenJ+7du8epLMSAryPZ2dkAwIZTIRCsCRcXF7Pm2GIWvE2bNjXbM7XBN3nqC97e3pYWQWcmT56MgIAAjYYVJycnzkMdWjMpKSkYMWIEMjMzcfjwYQQHByMzMxPJyckAFIt3Q2E8k77++muuxCVYMeYev+oLr7zyiqVF0AmKojBt2jS0adMGly9fZt/fsGGDxmvatGmD6OhotZ+VlJTA2dmZfd21a1fuhNUBos8EbZD5KmzK0ELTNBo3bozPP/8cADB58mSriSOs7CUeGxuLLl26sLmlKyoqIJFI2O/27duXGO8NgLR3/mGq/ufEiROc3Usul2PYsGHshnJlZSUAkAhxtSDtixtCQ0P1ihqRmJjI/l1fddJQnXv11Vc5lsQ4fHx8LC2CWTl9+jR8fHxQVlYGmqbRvn17S4tEIBAsTE5OjkFpTZjIz1xikwZ8iqKENE1zesL9xo0bEAqFVmWQIhAIBILu+Pr6st7kBO0MHz4c06ZNw44dO3Dq1Cnk5eUhMzMTgMJ4HxwcbGEJCQSCLdG/f3+Vg0HaDPjOzs7o16+f2s/y8/PRqFEjzuUjEAgEdbRo0QJ9+vSxtBhGM27cOPZv0o8SCJaBMd5nZWWhUaNGyM/PN8kmMYEAAI6OjigrK2ON+CT9E8FW+eeff3DhwgUsXLgQN2/eBACyL0ggEHiFTR2FoyiqK0VRYq6N94DCgN++fXurCAVNIKiDpmlUVlYadHqIoD/Lli2Do6Mj0tPTLS0KgSNIG1LFz88P06ZNAwBivCcQrBTSr5kPUtYEgu6Q9mJ9MHUml1tNoAECwaRw2Y/J5XIEBAQgKysLfn5++OyzzziQkEB4GUZf27Vrh9jYWMhkMoSGhuLixYsWlsw6oGkaVVVVZP5iRaSnp4OmaYwYMQI3btwAQAz4BAKBX9iMBz5FUcMArAcwA8AZPa6bCWAmAHh4eMDJyUnt927dugV/f38OJCXUF5R1q3Xr1mZ/fu0TsqWlpSguLoaLi4tGPef6mZbG3PIwC+nDhw+zOdVHjBiBd955Bx07dsSCBQs4e5al9UsTpipzJmwnl8/V9xpztCFtPHjwADRNQyqVQiwWv+RxwVXZ66pbjD4PGTIEhw4dgoeHBz755JM673///n2NvwEwjQ6ZQn8I+qOrbhlaH7XruXZ74eq+tbEW/VEnp3K/xif0LdPauqXpekvUFfNMS48hgMIAcPv2bY39L2A9+myudmmO+Za1lLmpqKtvspU+WB3WOJ/X9BlTZ+Xl5Rr7OFuuS13hci6iPM+pDV91i2+YSuc8PDwMGvfVrfeUPe/9/Pxw+PBh/PLLLyaRWxf4rFv1oQ8xNVKplP17/PjxAICIiAgEBgYiOTkZ3bt3t/g+BN/o27cv+7c+7V75On05ffo0qqur2ZztXNzbGHm08dNPP1nkucpos/0cOXIEvr6+6Nq1KzZs2ABPT0+LrdUIBAJBHTbhgU9RVGsAawHMoGn6DEVROv8umqbjaZruRtN0t8aNG6v9jlQqxZ07d8gJLIJeKOtWkyZNLC0OHBwc4OLiAgcHB0uLYtMoG+/9/PwAAElJSbh27Rqnz+GbfpkLS3pk8aENSaVSVFRUqCysuUZf3RozZgy++uorrFy5Uqf7m+M31AXx7LMM5u63TK1rtuBtyId+jQusYUzkQ1mXl5dbvP81Jabo261Bt2wRpr3Y29vb9HhtS/qlax9H5mDcoW2eY0u6Za0YOu4r16s6471yTvGamhqztyWiW7ZN7QNB48ePx4oVKyCTyTBu3DiTeuLbgm6Za75fXV0NqVSK6upqkz7HVJg7UoEm28/jx49x/vx5hIaGAgD+/vtvYvshEAi8w1Y88IUAsl4Y7/8D4AOKotwA7AOQQdN0vjE3v3XrFmpqalhjHIFgjQgEAnKK0MQoG+/fffdd+Pr6su8lJSVh7NixGD58uIWltG6kUilycnLQsmVLs+szH9oQs6B+9uwZWrVqZVFZGPQtl/9n77zDrSiPBv6bS7k0BURjBWwRGyolYrBhF1Gj0WCJGlvslaDGFtRgjD3EFowldmNi7CnGxBo1sUTl00SjAqJGFBIwIFzKne+PeQ8s19u4d3ffPefM73nuc8/Zs+fM7O68deadt3QNtbW1zJ49G4CePXtmoltjTJ8+ne7duy8Z7Hbp0iU32U5+LFq0iFmzZtGrV69Utz+aPn06ffr0oWPHjksmWJtbbVh0ilCvVQtFuNfdunWja9euS8pE0p7LmUWLFjFz5kx69uzJvHnzYqvjpECpvMyZM2fJM+3SpQsfffQRa665ZmTtWs+///1vnn661ckBy5rW1nGltnP69OmsueaaZV//xGD27NnceOONgDlwO3ToEFkjpzHa2u6X2uhOnTo167wHa//q6up8POOkRmk1d7L9Wm211TjooIO455572H///Xn44YfZYostYqpZWPLq73fq1GnJ/xkzZtCrV6+yaE/nzJkDQOfOnaMFFM+fP59//etfANx///2oKvvuuy+LFy/mnXfeYbfddouil+M4TlMUv3ZvHVOAziKyH3As8BDwBXA48EvgdyIi2sbQrueffx6ATTfdNA1dHcepUErO+wMPPHBJ1OaoUaOYPn06b775JgceeOCSDqvTNmpra3nyySfp378/I0eOjK1O7ogIM2fO5E9/+hMDBgxgq622iq3SciMiSyaZHn/8cQC+9a1v5Sb/kUceYc0112SHHXZI1bHrFIsnnniCjz76iKOOOirV333kkUdYa6212H333ZfYT7mvXneqh5qammUm+ZP2XM6UyvuRRx4JfHn1mFO+JINOPvroI5544omy6v/MmDGDQw89NLYahaJUPn/961/Tt2/fsq9/YnDAAQfw1ltvxVbDyYjSWOmWW27hrbfeQkQadd4DdOzY0ds8JxOaa79OOOGEJfPkThxEhM6dOwOWon7VVVdl2223jaxVy5S2/yi1/aVAhDz5xz/+waBBg5a832STTRgwYAAvvfQSdXV17vtxHKdwlL0DP6TLV+BJYBvgQ1W9Lnx2KnAY8Lu2Ou8XLFjAhAkTGDp0qK/AdxynWdZbbz3ee+897rvvPjbYYAN69uzJW2+9xZtvvgnAqaeeGlnD8kdE2GWXXSjXlGppsOaaazJo0KCKGFhss802ucvcYYcdWGWVVXylSoUzfPhwpk+fnvrvluwHlk6wNjah6jjlQNKey5lSeU8GiDmVQTLopNz6P0888QS33377kvfJ19VMqZzuuOOOFVH/xODBBx9k7733ZsaMGUuOJV87lcF+++3H1VdfzezZs/n+97/PZZdd9qVzOnTo0Oj+147THhq2X/Pnz1/SFi9atIhvfOMbsVRzGmHYsGH07t07thqtYujQocCyAQh5079/f8aNG7fk/ZAhQwC44oor6N27N/vss08UvRynLay99tpMnTq1Td/t379/ytqUH/3792+yH1Wk+1O2DnwR6aCqi1W1Prx/CDgN2ERE9lbVh4GPgS9EpFZV25Sb5e6772bq1KlcffXV3jF2HKdZTjjhBK677jref/99xo8fz+jRo7n33nsB2HHHHbn44osja1gZrLfeerFViM5mm20WW4VUWH311XOX6fZTHay44oqsuOKKqf+u249TSVSKPWdV3p3iUU79nw022IDx48cvee8O/GWplPonBl26dFmSxapEv379ImnjZEXPnj155pln2H777ZfMKTTmxHectGnYfs2cOZM+ffpE1Mhpjr59+8ZWodUUIXBvpZVWYvTo0csce+2113jsscc4//zzc93e0XHay9SpU2njmmUHmDJlSmwVWkXZLRkSkQ0AVHWxiCzZ7EtV3weuAH4DjBaRu4CLgAltdd4vWLCAyy+/nKFDh7LLLrukoL3jOJXOiSeeyLrrrkt9ff0yzvtRo0ZF1sxxHMdxHMdxHMdxnHKgd+/ePP300/Tq1Yt7772XM888M7ZKjuM4Fccll1xC7969Oe6442Kr4jiO8yXKagW+iOwJ3CciD6rqwSUnfvhfo6ofiMgEoBYYDLyjqh8tj4z6+volr++66y6mTp3KFVdc4dEsTrtYsGAB06ZNa/LzcoqYdFrmxBNP5IYbbmDmzJkMGjTInfetpLky4lHfTku4/TgxmDlzZrOfe/teLJqrJ8Cfl+O0By9fDnh/zHHSpuTEL63Er6urY+eddwYstXmyL1oJ9ay3JU4l8dRTTzX7+YgRI3LRw1mWpO+ntPr+3HPPZYUVVoioleM4TuOUjQNfRLoDJ2Fp8oeLyJ2qekhw3ndU1UXh1O6qOhN4cnll1NTU0K1bN8AcrldeeSVDhw5ln3328fT5juO0yJgxYxp97bSfPn36VP1gvVKuP8Z1uP1UB1k9Y7cdp5KoFHuulOtwWqacnnU56RoD74+1Hb9v1UFTz7lv3768++67rL/++jzwwAN88MEHgG2n4EExTho0V8d4/VM8ysnxXzRdk74fgMsvv5xevXoxZsyYZY47juMUhbJJoa+qc4EjgbuBsUAXEbkzfLYIQEQ2Bw4SkS7tlXfHHXcwZcoUfvCDH7jz3nEcx3Ecx3Ecx3Ecx3Gc3OnTp8+SdPqvvPJKbHUcx3HKnldffZVHHnmE0047jZ49e8ZWx3Ecp1HKxoEPoKofq+ocVZ0BHAt0LTnxRWQzYH3gPlWd35bff+WVV+jYsSMdO3bk2GOPpW/fvowcOTK9C3CqlkmTJtGvX78lf3vuuWdslRynsEyfPp3TTjuN1157LbYqThni9uPE4tprr+Xaa6+NrYbTSvx5OU52ePlypk6dynrrrcd9990XWxXHqRhK6fQ7d+4MwKJFi1r4RnkzduxYBg4cGFsNx0mFZ555hssuuyy2GlVP0vez5ZZb0rlzZ04++eTYajmO4zRJ2aTQb4iqzhSRY4HLReRtLBhhO1X9tK2/2a1bNzbccEMAPvzwQ2bNmsXnn3/uUVhOqnTo0IG99torthqOU1j69OnD8OHD2WCDDWKr4pQhbj9OLHbcccfYKjjLgT8vx8kOL1/Or371KxYuXMiECRMYPXp0bHUcp2Lo3bs3L730Eh9//DG9evWKrU6meACQU0kMHjyYTp06xVaj6kn6fv7zn/8wZcoU3n//fQYNGhRZM8dxnMYpWwc+gKrOEJE3gJHALqr67/b83kYbbcRf//pXwNKobLnlllxzzTWcd955KWjrVDMDBw7ksccei62G45QFHTt29Ik+p824/Tix2HjjjWOr4CwH/rwcJzu8fDmqCsC8efMia+I4lUfv3r3p3bt3bDUcx1kOevTowde//vXYalQ9Sd/PrFmzWH/99fnhD3/Ib37zm8iaOZXApEmT2rQVd//+/ZkyZUqjn6299tpMnTq1ye85xaJ///5N2kBzz7k5yiqFfkNEpDewB7Crqk5K87cHDx7MXnvtxU9+8hNmz56d5k87VYiqLpnEcByn9agq8+fP9/LjtAm3Hydv3ObKk9Jzq6+vj62K41QUXic64HbglAeffPIJp5xyCosXL46tSpNUa1mqxmt2KgdVZcGCBW7DBaRXr16ceuqpPPzww/z973+PrY5TAZTK+vL+NeWgB9uWqqnvtcUZ7GTLlClT2vScm6PcV+D/V0T2auue9w2pr6/niy++WPL+jDPO4JFHHuGqq67irLPOYoUVVkhDjFOF1NfXU1dXR5cuXWKrkinTpk1r9vO+ffvmpEkx8fuz/NTV1bVr5U4l3fNKuZY8r6O99pMVlfIsnS+TtLlKavObs9mZM2fSp0+fJj8vB3suPbcvvviCHj165CbX64LyugcLFixoVt8i6doc3g47WTJz5kxg6cr7+vp6pk+fzoIFC+jcuTP9+vWLqV6rKae6yWk7V111FQCzZ89m/Pjx1NfXc8sttzBu3Dg6dOjAmDFjImu4LJXaz0xSqkOSfPrpp3Tu3JlOnTo1W/a83DpFZOHChdTV1QHQuXPnyNo0zVNPPdXs5yNGjKgImQ19P0cddRQTJkzgggsu4J577nHfj+M4haOsHfgAaTnvS9TULE1KMHjwYEaNGsV1113HCSec4JW402Zqa2tZb731lrEvx3GWpbEBdalz3a1btwgaOeWE248Tg4Z2l7Q5b/OLR1MTt15XOE778XbYAZYEdHXt2hWw+ZVVV12Vuro6amtrY6rmOI2SdN7X1NQwd+5cLrzwQsaNGxdbtS+x3nrrVXw/s7Gg0K985SvU1ta2KS2x48RkxIgRPj4sIMnnsNJKK3HiiSdy8cUXM2nSJIYPHx5RM8dxnC/jLUcLnH322cyaNYsbbrghtipOGVNTU+MdNcdpAzU1NfTo0cPLj9Mm3H6cvHGbK0/8uTlONnjZcgBEhC5durjzzSkcSef9uuuuy49//GO6d+++xIlftHT61Vqnev3hlDPVWm7LieOPP55evXpxySWXxFbFcRznS3jr0QJbbLEFo0aN4tprr2Xu3Lmx1XGcsmD27Nkcf/zxTJ48ObYqhaR0f95//33fzy1HJk6cyJ577gmU937HlVS+Jk6cyMSJE2OrEQ1V5fTTT+fZZ5+NrYrjtIrZs2ez9tpr069fvyV/gwYNWub9xIkTvW1rA9VeHwKMHTuW5557DihmOz1p0qRlbP3UU0+NrVK7eeGFF9h6662ZPXt2bFWcCqOU3ru5LVbKhVL9XK37j1cyP/rRj5Y470888UQ6dOjAuHHjljjxBwwYEFvFqqbktF/ecldJ42XHicG0adO44IILmDNnTi7yVJUXX3yRSy+9NBd5DenVqxcnnngijz76KG+99VYUHRzHcZqi7FPo58E+++zDY489xkcffcQGG2wQWx3HKTyqypAhQzxNYjMMGzaMmpqait/Drkj8+Mc/XrKKItZ+x+1BVamrq0NVGTZsWFnbTOladtxxx6peTVFXV8e2227LoEGDYqviOK1CVRk8eDAvv/xyk+csWrTI27Y2sNNOOwFL68dq7EPtuuuubLXVVkB5ttPlyLhx45g2bRq33XYbxxxzTFXanZMe9fX1zJ8/n9raWg477DBqa2sroo9Tqp+T+487jpM9119/PTNmzGhTvzI5Xi71rUrbJDiO0zxdunRh8803Z8GCBahq5nM2CxcuZMCAAdTV1WUqx3EcpxxxB34r6NChQ2wVHKes6NKlC/vtt9+SvQ+dZenZsyeHH354VU/SxyCZArF0z8tpT9bSpGHXrl05/PDDY6vTLkrX0rdv36p28NXW1rLHHnt4HeCUDV26dOHmm2+ma9euS8ruzJkzl1lh6W1b21h//fUBW2VWrQ6iXXfddcnrIrbTAwcO5P7776+ofXhnzJgBwBdffFG1duekR9KOevbsyTHHHBNZo3Qo1c+lFcDevlUO55xzDuPHj+f999/nuuuu47jjjuPCCy9k7ty5dO/enbfffju2ilXNqFGj2tSvLM23lPCgQMdZPlZZZRVGjRpFXV0dCxcupHPnzpnK69SpE927d2e77bbLVE5TzJo1i+uuu44999yTjTfeOIoOjuM4TeGhh47jpE5tbS1du3b1yY0W8P0g41G69+UUgV9J5aqSrqU9FLEOeOedd1iwYEFsNZyC0pqyW0S7Lie8fjSK2k5Xqm136NDB7c5pN926datoO/L2rfLo2bMn5513HjU1Nbz//vuceeaZS5z348aN88U8BSCNclfqWxUpKNBxik6nTp2ora2lU6dOmcsSETp37hytfb3hhhuYNWsWZ599dhT5juM4zeEr8BOUUr41xCeyHcf44IMPlkQ/N9exKg2yypVp06Y1+3nfvn1z0sRpLzNnzmz2WJGeZdLukisNSmWt3MtVkkq6lkrgqquuAuDRRx/lySefpKamhvPOO4+ePXsCMGbMmNRl1tXV8cEHHzTZlhSpbBaNmG2Ul93syfoel1MfJ9leN9YuFknX5ijaPU/e1/r6esBWTs+aNYuOHTvSr1+/XPVxKoeamprCtRF5l7+G8hrWXeVSb5Ub7XnOJSf++PHjqa+vz9x535iuSTvxOjh9ihoU2BRZ1Vtue5XDU0891eznI0aMaLeMklO9qDS8B6rKwoULWxVwUOr/wtLV96NGjWLgwIFpq1lRLFy4cElW0MbqUw96azv9+/dvcm6sf//+OWvjZEVzz7k53IGfoKkBZ5EbLMfJk+S+f42VFZ+QaB6/P/mTTOvc3LGi0VhZqxT7qZTraA9FvAcl5z3YgHb8+PHLOPHTpr6+nrq6usJN9DuN05zNFtGeywW/d62/By31QfOgc+fOFfHMkv2g0uRbbW3tkhWKjtMeKqGMQHrXUYS6y2maZJDqmDFjqKmpoVu3brk7IZJ2Uu20p+xVSv2TJ257Tok0nP4xZS5cuJC6uroWzyvV8yWuvPJKZs2axQUXXOBZOlpg3rx5zJkzB4Du3btH1qaymDJlSmwVnBxo6Tk35dwvj/BDx3EKgad1dZx88LLm5EnSeX/kkUeyzjrrLHHiz549OxOZNTU1bt+O47QabxezxVPoO042eN1VPvTs2ZMVVlghygpCtxMnFm57TqXQlpT/s2bNYsKECey9994MGjQoQ+0qg65du9KjRw8P+HWcnHEHvuM4rSa5/9jkyZM5+uijWbRoUWy1MmXixIlMnDgxthpOlTFlyhROOukkFi9eHFsVp8K55JJLlnHeb7LJJpx00knLOPGz2ErovffeY88992TUqFHsu+++TJ48OXUZ1cDZZ5/Nn//859hqOGVKOdnPjTfeyG233Vb2e08Xuf/se3s7lcyiRYs4+uijc+1vTJ48me9+97t07NjRy1aOlNP4/c9//jPnnHNOKvu8O5VJFvacrA/d9sqfq666ihdffDG2GtFYtGgRZ5xxBscddxwnn3wyxx13XLPnT5s2jbFjxzJ27FgOOeQQZs2axfnnn5+T8ixezAAAIABJREFUtuVNTU0N3bt3L5vtSBynUvAS5zhOmzjrrLN4/PHHufPOO2OrkikXX3wxF198cWw1nCqjWsqXE58JEyYAS533JU466ST69OlDfX0999xzT+py582bx6RJk5g0aRKvvPIKt956a+oyqoG77rqLk08+ObYaTplSTvZTKf0xb98dJw533nknjz/+OGeddVZuMr28x6Gc2ouTTz7Z7cNplizsOUZ96GTHI488wvjx42OrEY3XXnuNl19+mXfeeWfJX3PMmDGDm266iZtuuonnnnuOww8/3FffO45TaNyB7zhOm3j33XcB+OyzzyJr4jiVh5cvJy9UFWAZ532JlVZaCbD95NJm4MCBfPDBB9xxxx0A1NfXpy6jWvjf//4XWwWnjHH7yRdv3x0nDqUyVyqDeeDl3WkJb4OdGMSoD51smTt3bmwVolHKWrnPPvvw5JNPLsku2BSDBg1i1qxZS/5uuummPNR0HMdpM+7AdxzHcRzHcRzHcRzHcRzHcRzHcRzHcZwC4A58x3GcVlBapeqUF6rK/Pnz/fk5Tjvw8lN8vK5zWovbSv74PXecuKjqkhV6TmXj9axTCXi/wWkLqsqCBQvcblpAVZk7d65nAHQcp2wQr9iXIiIzgalAkWrxlYEZsZVohCLqFVun/qq6SmMfiMhnmG3lScz7EUt2FnJrgA7AYpqvG7K85iZtC3KzrxjPNA2ZrX1+acpcHopwX4tWd0H8+tx1MGqAVYDPaFvfqIi2lST2/U3SXl2Wt67LSo80aU6XotlWEery1tIeW6mGNrI1trW8eqVVPpujSGU3SRH1iqWT9+fjycyjDDYmNw9KMovULsYs96Vn3Rv4NJIOJYpQ/6WhQ9q2VY3zVMsrO+06q6jX3ZJtzW3mu3lShLJcojld8mrrWtIjT5rSoznbmgF8RD73qUQR+kKVLDdPmV+yLRE5BjgmvB0AvJ2TLiUq/Z5Xk8xG6y534BccEXlZVYfG1qMhRdSriDrFJOb9iCW7Gq85L2JcXzXIrIZrbAtF0NF1KI4OWVGkayuKLkXRA4qlS0tUS11eDW1kayiiXkXUCYqpVxF1yotqqDdiyYwlt4j2XASdXIfi6NCQap2zcdn5fjdNiqIHFEcX12P5qKb+QTVda1GolnteLTIbw1PoO47jOI7jOI7jOI7jOI7jOI7jOI7jOE4BcAe+4ziO4ziO4ziO4ziO4ziO4ziO4ziO4xQAd+AXnxtjK9AERdSriDrFJOb9iCW7Gq85L2JcXzXIrIZrbAtF0NF1MIqgQ1YU6dqKoktR9IBi6dIS1VKXV0Mb2RqKqFcRdYJi6lVEnfKiGuqNWDJjyS2iPRdBJ9fBKIIODanWORuXne9306QoekBxdHE9lo9q6h9U07UWhWq559Ui80uIqsbWwXEcx3Ecx3Ecx3Ecx3Ecx3Ecx3Ecx3GqHl+B7ziO4ziO4ziO4ziO4ziO4ziO4ziO4zgFwB34juNUDCIisXVwHMdxHMepRLyf5TiO4ziO4ziO4ziOkw/uwHccp5LoGVuBSqM0We+T9k4euL05eeB25jhtxvtZjVDEuqSIOhUVv1dOOeP22zqKcJ+KoEOR8PvhlCNut4aI1MbWwXGc6qNa62B34DvtRkQ6iEiH2HqUEJFu1d6ZEJFNRWSAiGwUQfbOIjIib5sQkd2Am0TkK3nKDbKHi8j+IrJL3rJzoHQ/OwKISObthoj0FZHOItK9kmU6jZK7vTlViduZkxox+lwx+lox+llF71+JyCqxdWiIiHQDUFWNrUuS8Cy3FJGOsXUpISI9oHj3KitEZAsR2agK6qpC1xsZ0Ce2Ak1RhDmiItTTItIbrK6p1onnJoh6L0Skc/ifuR4x6t+E7Cjzc0F2avVxgcpOj1iCY9pRAz12BI4ulaGi4GN6J0m12UOkOj63eywiXUSkJvSlovcv86aqjLncEZENRWRbEaktTX7E7sSIyL7ALcBvRGQrEVkhsj7fBO4Eficie4rIujH1iYGI7AHcA3wPuEVEds9RdifgEuBiILdJOhHZHpgI/FxVP81DZkL2rsAvgE2AX4vIdnnKzxIRGQU8ICI3AheKyNqqWp9lIx1k/g64BrhVRAZUoswG8jvnPfiJIbMlYthbC/pEv0dhsmW0iBxczTqkSdHsLKFXdHsrUZRnXhQ9miNGnytGXytGP6vo/SsR2RO4W0TuBbYNx2KPy0YBPxORX4rI1sFWoiMiI4FfA10Tx2Lfq72Bm0XkXhHZQ0T6xdQna8IzeAQ4AfiViByRg8wYdVW0ekNEBof5kC1zlLkH8IiIrJGXzNYSbO5KEbmtpF/e5b4I9bSI7Aw8HOqcKE78MC/2IxG5RkRWLkLbICI7AFeLyBEi0iuC/F2BK0Rk3ayDuGLUvwnZUebnguzU6uPw3bNEZG8R6ZuSim3RY3fgdhHpHqEcR7OjBnrsDvwEeENVF8TQIaHLKBG5UEQuEZE+qlofU5+WEJFdROREETk5vM8jeCj38XSM60zI7i8imwCU7CH2mCNrQv+zVlUX5yhzWxFZK695tNCfuxF4SERWyvNaEzpEnS90B36ZIOaYfhg4D3OYnxKMNloUr4hsDFwW9PkzcA5wkIisFUmfdYAfYx3UW4CRwKEiskUMfWIgIkOBq4CjgWOBG4CRYuRR3hcBL4b/5wLbBL2yttEBwKWq+gcRWU0s0jfzCRuxiP6LgNNU9ULgh0CNiHw1a9lZIyLrYQ7ts4E7gLnAL0Xkq1k10iKyJnApcBLwA+CvwJMiskkWMkO56IvVG7nIbESH/YC7gUfDAKR3lvJiyWyFTutj9nYOOdlbC/pEv0dhYuseoB8wRkSuz3uCtgg6pEnR7CyhV3R7S+hSiGdeFD2aI2KfK0ZfK9d+VtH7VyIyDLgS6zf8EzgO4q7kDhOqVwA3AW8DpwErxtIn6CQishIwFjhSVZ8GSoFKXZv+ZuZ6bYCV158CLwBbA98TkQGxdMqK8Ax6ACcDJ6rqyVidda6IHJex+Fzrqpj1hphj5U5gNPCgiByYg8ytMRu+UFU/zlre8hDuxxXAH4DFWIB0xzzryILV0z2AwaG/l6sOIjIE+BlWFrsD1wKjRCTaljhijt2fA1OB04GdIqixH1b3nywiGwa9sphriFX/logyP5dmfSy22vs32DUcC5yeRx3biB4jgfOB61V1bl7luCB2VNJlM2x8dpGqPisifcSCgtbJU4+gyzCsPnsb6I0FSg2XAgQoNYaIbION9+cDB4jINcDWkmFQTYzxdIzrTMjeD3gcuE5E7hGRfUSkRyVnvxEL5LwX2CpHmTsBTwN3ikiHrANngh1fjPUbPsXGcJkjIruLyDkiMk5EescOEHIHfhkQKrr9gKNUdTfgV8CqwBkSnPiRVFsVeFdVn1bVCcB1wDBgN7E09nlXkCsCH6rqS6p6J3Arlh53LxHpn7MusVgZuFhV/xrs4n1gM6Amj8omyPwtcCFwP9a5PgU4TbJNcbIAGBI6jr8FDgTuEJGxGcoEmAW8BCwQkU0xp9BRwNMickLGsrNmJvB4mGx9DvgR9kxvF5H+aduTiHQFZgDPAu8An6rqlZhz/XER2SBtmcFeP8Ymb/+Vh8wkYQJ5PDa5dCs2ID1MLHiiYmS2khnA71T1KXKwt+Yowj0K7edI4DJVvQKbbOmJrTxYNXFOReuQAYWxsxJFsLeELoV45kXRoxVE6XNF6mvl3c8qev9qEPBHVX0BuBlYSUQuDRNFMQJeugLfAn6oqs+o6g+wZ3ZY3rokUeM/wFvAH0L5vU9EbsZWXg6JpFot8Jyq/iWMYe8HPgOOlUiB6FkRnsEc4GVgRRHppKovYmX4LBH5TpayybeuilJvBIfGlcB3VXVMkHmg2ArNLOfbvoI5kn4vImuG+meUiMQO3OkJHA6cq6q/U9UjsYDJ/XJWpSj19GzgP5jzcVsR2V5E1hILbsqDDbAx/cPhWTwJjAK2E5GOefangiOyK3AwcJaqXgVcjQU37JiHEzBxvc8CrwDvASeKOZxTdTDFrH+TOhBnfi7N+ngd4IIwJjgB+Duwo4gckKbCTRHsdm3gMeCnqvpHEVlDzFk8XDLevrUIdpSgC3AfsJpYIPNdWPv3BxE5PEc9ADbF6ra7VfU4zL7PBAZD/NWyjbAlcK2q3gzsjLUN+wNfy0JYxPF0rtdZQmwr1MOAb6vqCCxwaXvgYBHpHjPIOivEsoddgfU/n87D5sUCBi7F7vVr2PPOurztBNyvqs8ClwPzROQsEflqVu2YiIwIsv4Pq/eeFJFtYtYrRavQnMYRrKIdCKCqD2Kr8cEqo1jP8S/AHFmaDuwPWGO+P7Bx3hWkqr4OzJKQpkVVX8buUz9gwzx1iYWq/h54InHoNWCehvQiIrJaHmoAJ6nqrcBH2KCsm2ab4uQlYB7wbeAOVT0F2AObiBuZlVBVXQjMAQ7CbH+Cqh4K7A2MF4s+LCtEZBOxVLmrYoPpsWHQoFjn4LdYZosOaXX4ROQb4bfXAFYCjijVH6r6U2ACcI7YnjdpyfyqiHwNW4nQG9g/a5mN0BuYrqovqOo9WPaQTYE9JLvtSFaKILNJxFKNHgp8HRguImOytrdW0IfI9yhc/yvABiKyqqrOB76LlctxiXNSp3Sfw++/CgzIW4e0KaidlYhubyVi2h2Un+1F7nPl3dfKtZ9VBv2rvwHbiMgV2ETyC1jg4/bA7pBvkImqzsMCgR5NTGS8iY0fCfpE2SswjFP7YxO85wIPYSkQ38QcCL0i1Lv/BNYVkeMBVPVVbCulRZizqyhBQmnyCTYB1hWWjJMPxVafZuk0y62uilhv1GLOpb8Ee38H6+OLWnafrGxJgJ3FAgEfALbDVrmOKU3OR2IOFgz9W1m64u4jII95iCSFqKdV9SXgj1gQwevAqVga7D456fAi5mwbHvSZiPWxDgVydWqErvc8zGn+3VAmf4IFRJ4FHC8im2etQ3j5PFCP2ck0LEvBL0VkxQzmV2PVvyVyn59LuT5eDBwptgJyKvB7LADjayLylZRV/xLBbqdg/ZhzwhzSXcB3sMyvp0s+GS1i2xGq+jfgdmB9bAz0MBaYcST2XDfJQ4/AS0BXCRk01AKCngN+IiK9tCDp9BN1/OvAVmKLhOZj7fUX2NgqdfIeT8e6zgT1QC9gPQC1AN2/Yb6gEUHHSvOBdgDeCs77NYBLRGSi2LYJfdIWJpap7HtYZpU7sb7uIbB0u4KMKI3bTsXq/8+AtbA5+40zkrkDcLda8OPZWMagywl+2Ri2VGnGW1GI7YfaJXR+LsNWtu8cPn4emyjclhyfo9h+ijuLyM5q+908i02Gfx2WOPH/hHUi8oj+Ke3ncmg4dDvQX0I0ZhgwvQCcIAVNpZMWiYnvfycOdwTWCk6Jw7G9HjPJjpD4zSeA14NN7IQNVncsDRqzQFXfxKJ89wZWF0uT8yYN9ttMk5J9h8r8eCyNy7Ph2MtYGsXc9hhLgzAJX9rL90zg+8ARInISLGmU/wasoaqL0+jwhWCBS4GHVXUycAZwjIiMSZx2H1CnqvNTkrkPZhvnYClmPwAukmWjwVOV2Riq+lfgg1CHdVRbIXIr5hT5epqyRKRbePk3YHIeMluh097YJP5u2EqQC7DB+QmQjb21oM/q4eWLRLpHIjIk4WR5H+gGbCYiXVX1C+AIYFi4d1lRmlDsiA36ukfQITWKZmcJvaLbW0KXItgdlJHtxepzxepr5dnPKpP+1ZuYbpOBP6jqhap6WTg+AqIEmXygqp8nJuTfI6SrF5F9gZ3ydkqLiIQ69gRsQm2oqv489H9+h03KZ9bPakKnDmFsfR5Wn4wGUNVXsFWypYmo6EFCaVCq21X1eqxu/5mI9BRbwfcc8Abm3ElTZnIOIJe6quQojlFvhPmGp8PrelV9D1txXroPWWV1eApbGXQ08Bu11f/7Y3XQ9hnJbJFQB72pqgtUdVE4/A+svCO2H/vAHFQpUj29JZYt8hNs/u5DbFVxHjrMwPpU2yQcXTdgWVrOyFj2MiTaoHuwuczjgRtV9djwei1sv/Ss9eiAOZdXDw7Jj4FdsDLbLS1HRKKvmFv925h8cu4zpt2PU9VfYHPM54hIT1X9DHPUDsYybWRK4nrOwJxHfwUeCHY7Gqt3h2UoP6odJfQo3Ye/AL/EMgRfDywOevweqMtajwSfYIGXu4jIykG3K7B28dgc9WgSsTT/w8MzfCv8bSMiq6tqHbbNxJaSYvYCEekrIrVi2U5eAFYg4/F0jOtMyJbQt5+HbZW4nYgMDh/fC/ybkJGsKEEdKTIF6Cy2dcAvsHntj7EsSKWV8WmO/f4LHB3KO4RtWcRW5WfJXzBb7gu8oKpnqG0l8gbZ9WM+BmplaUDsq1jgwM/FMjrkbkvuwC8osnQ/1IdFZC+sID4EjBaRXUIU4C+xyc5c9ngX26vqHmBX4GIRuQxzmAPsIyLfCq//g0VYZe1sSe7ncpqIXIXtfzMZaxy+F06dh3XQK20lBSIyQES+LhacUBOOJcv1PGwy/ixs37czVfWLlJygS2SHBlPDRN0irAP7F2Csqh6D7Vn1YXtlNia3dFxVz8ei2XsDp4ilBjsQiwBMhQb3W8IxCcEsAhwlIhuIyFFYuqCpacnOGrEUMROwBnlvLC3j/7DOzukickpo/FfHojhXSKkzMAS4SW1f3X7YHoHnAReKyAliUX4jsNS97d4XWiwS8VjgIFXdF+v4r49FD18iIt8T25stNZkN5A8WS71TGuQ9i+1XtE0YhD2PdTSPlpT2iRKR3bDUgCUnyytYhy4zma3QqQ9wInCwqh6CTWrNA04Bvh+efRb21pQ+I4EJYnukCxHukdhq3ReA20SkJkwIvwicxNIB0DxsAiOTFRPhPtwrIrdiwS3vYak2c9MhTYpmZwm9ottbQpfodhf0KLztxehzxehrxehnlUv/qlQ/qGpdCLa5LRzeMZwyB+gmlsYxV/TLK+lqsP1mv4Wthn0vb6d0wl4/xFb8rSMil4ePhwDrYoE6eepUuk9/w+qTUcGWwVYm1kjG6XCzJvQzDwW7XhHpHF4fgNnFT7BAthMxR++iJn+sbTLrZelEf5Z1VVLmIlnqxM+t3kjUCdNL74P9rIlNqh4OPJRF/0Jte4p3sbmgLUSkj6q+jzn2V05TVnOUrit5feEZJOmI3Y/RmP3NzUGH6PV0Qp/bsfHnNdie748DIySjTEsN2u7/Yaml1wP2FpHtwkd/w+bsMqUxu1fVd1X1+0Gv7iLSLdjuZOCrTX0vRfmLVfVT4HkRuQBzLo3DVvSeXqoz2yjvS33FIDOz+rcx2Xn1GRuTTTb9uF+F/+eLbSM7GXte66d0CcvQoC5JtmlnAdurZWxEVd8AnsHGmGnKj2ZHzeiRvCcvYGOCUl/vACyYYl4WeiT0SdZtn2J16u7AQbI0MOw9cghoaAmxObjbCIGqakHfzwFbY5n2NlRbof4Itno8DZmjsADZa7DsEAswn8lp2BYuqY+nY1xnQvY3sOu8SUS2xoJrpmNt3ZCgz+XAyiKybpqyY5OYg3gS2x7hQ1W9TlUvxLIOlYIWUisLqvppqHsRW3jyIRbMs0k4llq2twZlfbJa9qCfYgvgSk71fwD/TVNuguexILEficj9wODgJ3kNW52fO5LzON5pBWJp0B7C0tCsjaUd+h2Wjq0/FuH3B+BzbJXsDqr6ScY6dcAqxmdU9eYw4HkCq/gvxdKh7IpFd/UFDlTV1zLSpdRxuBT4t6peLSJdsBVrk7HIo/WBY4I+q2P7oPw9C31iISLfxPbv/Sj8vQz8QlU/F5uErw/nvYCl0NxPVf+RtezweQ9ggNpqltRoSW44Z0dsgLoxFtGdyzWHc+7Gok6/Chyjqm+lITsPRGQjYDVVfVLMofMqdo1vhlNGAJOwVQOjVXVSSnJPATqr6hUi8jwW6fZekPMpNrgbDhyZhkyx9GaPAuNU9c/h2ENYA90Rm0yuxybDUpGZkL0nlkJqEhY9/QA2GD0vvH9dVe8QkcOwge0RjUzIL6/MkdjE/alq+36XyudYrF54NW2ZrdSrJ9aJ/ymWVvI1LFL3H1hQ1nrYoHx7UrS3JnQZhj2HwxM20R2bYFsZeCWPeyQWLFIKSvsH8K0wYXAMVgZqsLrnUGBHVX0nZfm7ANdiqdVWw1Kx3qaqL4mlGf4aVkYy0yFtimRnCZ0KYW8JfaLaXdCh8LYXo88Vo68Vo59V9P6ViPTFJoM6qercMCm+OIxHOmNldxjmkBpCDnVJmBRvdhAfytXdWD/uhDzuWUt6ich6wE1YXbMNFlz1fxnrtAa2ArX0/JLltTc24Xw5Nob8GrC32rZsZUeYzOuGTWAKtlfvz8JnXcIEKiJyJLZt1eZY6vc3m/jJ9srsrKoL0q6rWpDZSS3DQmb1htjiinXV0rM2dc4vsZVRWwPHtdfOG8pMljWxIIEhWBD0m1jg2y6q+q/2yFwO3VZW1Rmle99YPRD6ND/CxnjHp10fNaVDnvV0qGs+AWqDgyT52dZYoPwFqvpoqHtqVHVmyjpsUirPpbYq8dkgYC+sz/sZ1scblUN71VGXZmJYRi+xtN8nY862KeH1nmn28RqRX3LE1ottvXksFnD5W7H0/R+rrfBui6zW9GdSq3+XR3ZW83OtkR3OaVd9HMryUGzF++7Ag9iz2zqLuq45u2lw3qFY4O7eakEoaciOZket1SNRx3YEDsbmlg7KQo+gywaleiHZDw86DMJsoRdWl2wJ7JPHuL4ZfbfBHJuHhPnVFRNlcRtgX8yeX8OCoUe0ZzwVysda2LaAJ2P97O9g/YGvY33d0eH01MbTIrIVNqd5cB7X2UD25tg9HoP5yU4AzgdmY3MJa2HBNYuw+dZt1QIfy5pG2vZ1sQCNYcDFqvqwWPD27tj4r91ZMRrKbPDZrli2y91V9Z8pyPpSWU98tjq23c072PZV2wGHpuibaFi3rIf5E78C/FZV54vItcDjqvpw87+WPu7ALyChEvyxqo4I74djKTBewVaJrotVTl8A12uGjukGg8MTscHyNcFwewB/Bp5U1bPEnPxDsBSOmQYUBH0OwJyKF6jqdLEU0b8APlLV08M5XwX+k/bgKDZiEZB3YhMWfxHL2LAV1im+XFVnJ849B0ur1+7KdHllh/OXTJTlLHeZTndeskPnvrtatHtZIiLnYu3DeBH5LrbPyzXY/nA9VHVGirI2xaLv/46lN7xVLIjpCOBFVX1IbL+z/6Yo8zhsQu1xbE+ktTEH/jqqOjac00tVZ6UocxAWmXqoqr4eOlXbquopYqsvDsImUtbGMqsc1t66XUQ2Bh4DLlHVG8VWI68KfKGqU0TkEKxjt1ZaMpdTv/2Bs4GFWIfootAB3Blr614GVmjrJMpy6HEIsJGqnhsm34ZiTsuHscHNLuR0j8TSuj+G7cs+H7geS1XVAXOYbQH8UlXfzkD2lcAbqnpbeH8dtp93qUwMBNbBBoD3ZqFDFhTFzhL6FMbeEjpFs7sgv9C2F6PPFaOvFaOfVfT+ldhKlkuxVWu9gfNV9e0w5qkPg/t+WPDy5sDv05rAbUGnAVjwxJwGnyXHbetjE9wHZDWh2ka9OmAB1jVZT6SJyO7Yqsp/YquQxpXGqA106oj1vz5XW9FV1ojImdjKqs2Bv6vq1U2cV5vGxN5yykxlXNhamWnXG6H/cBlwhqr+scFnSZt6FAtyGtXeyeqmZMqywSjrYHVnX+ChvNpJsUDh72HZIv8J/LyxMZtY8OIvsOC2tJ33TeqQmITNtJ4Odc0PsPHsp8AVqjq3gQ59VHVmmnMUDXT4KpaN8k5VPSwcazgZ3Q1YCVtV9pqqfpC2Hg10Gontj/0KtjrwjnC8Rs2B3gHYE3O4rQlclqZ9NCO/dF86YYEx7S4vbehDpVn/RpmfW17ZLdXHIjIU+K/aNiTNyTwAc9S+ntGYuFm7Da9rsVWYVwP7p9XPimlHbdVDbJumSar6btp6hN/fE9ve8kFVPTgcK5XhUl2yMtZP/xqWYntyFrq0ljC2HgGMxxzKl2ABZCsA31PVj0RkW6zf/FRa905EbsS2C/x3qPNPx5y7WwGC3Z/NSWFcLyJrY4tLh2CBHp+T03UG+bthAYH7hPd7YJkXJ2IBnsOwRZ3/w9qWsl7QKc07tvth88kDsec8GBv/vZGVzAbn/RSbazujPW1LC2W91I/ZAps/64/1d9Jov1t7ncdgvtj9WmqnMkFV/a8gf9h+S2ATubdiEVIdw7GtsVX4I8P7DtjER9Y6rZp4vR228n9A4tiK2KTW13O6R0OwTnbp9W3YZHfX0j3EOlr7xn6eGd+HTsEeDk/YzPbY4P64cGwYsEEk2UOBLSLI/RqW2gRCgFLO9zvVay7KH7af1ZAMf38vbOXTRYljN2POq1SfZfi9nljWkFuBqxPHfwv0yugah5dsJbxfH0tduHbyGjFH2VdSkjkEc8QdjTnqn8CiVP8MXJo4b2BaMtugY29s5dueiWMPAN/IUYcRwHXYxN6rWMaCvwM3J87ZLIt7FOxgaKINOx/r+IINPOqxyd8sr39TzDG6AdA/cXxf4NrE+44xbKRS7KwI9pb4/eh2F2SVhe0Roc/VSpmp9rVaKTPVftZy3Ntc+1fY5EdfLGPOCCz47XtYlqBNknaZZVltRK+vYRNj72KTUj2aOG/t8H+Fgum1bo73agdshcY2oaxciq2EgsQYOk+dcrz2MVh63Z2wDCtXYcGcYP3RLMZKzcncKosy3ILMrdOWGe7ddGDL8L4nNoHYnQbtFJa6dP08ZYbPM58fSsjaFXMYb4fNW00Ahje0LSzDG0CfiDpk2afaBduHdQfgG1iWkU6Jz0ttxSoZP481sSyek7EgDhrRYeUc7WNL4F/YmPsgbLudHyU+79Tg/M45y+/c4Px21Ye0rj+zZUb1b5T5ueWQ3WI/LpSjemxhR7vrzgztJtl/WAVYM8L9zMSO2qjHRhk/j+4aMI+/AAAgAElEQVTYXOQxWBDYnYnPOiZeZzKH1wZ918eC91bDHOc3YFtVnBLu13mYT2XFFGXuhWWZ6YRtwXdOg8/PxrIp16YoczcsG/NgbNu4W7K+zkZ0WBXbnmZYqVwCe2CZiL4e3teSctsSya72xBbw3p041iH8L117F6yPuEMa9VJzMhvRYTihr9cOea0t613yurdJ+diilt8Q0eeT3LfRiYi0vEfxX7DK+IjwfrGmFDXZjE6jgAdE5OcichGW9uQB4HYR2VBEuqqlR3kLsrelcI9+iUVzoZb+6a9YipjSfi5fYA1Jw33XKgq11IBXAd8UkW2DLTyHPaPtgh0Nx6LNYsjeFkshl7fcbbDJVTTUtDnKHk7K1xwDkWX3iQvRtqtgqZay4nfYCqlDROQosb3RNseCg1J9luH3ZqvqXcBRujRbx2FY2q2FacoSyyaA2p7W94djHTA7nQ6UVp99NZz3mrZz9VdC5ivAXdieRNcBv8ZSV30HGCphD0RVndRemW1FbYXMn4H9RGRXEdkbm5jMNH1t6R4F/os5ag7DOorfV9VBwCYicmrQ842071GIMP0N5lj+RVg58ytggVjK5lWwNu6IEAWfOmGFwT3AhUGPpP3Pw1YkIiIHAceJSE3DOqIciGVnJYpgbwldottd0KNsbC9GnytGXytGP6uo/Ss1pgEvYE7gT1X1Sizg5vEQqb8olO0fikiPnOyzKxbgsj82sfwdsYxogK0OC6swfioiK2h+2Qpaq9fVIrJiTvdqEPBDVX1OVV8GZmJlBrXVWhJBp7x4CPhEVf+EZZk5HuvjggVbpD5WakHmMLIpw83JHJqBzJlYW7W6WFarB7HJ+VuxDDqIyDAR2UFVb9d0Vpq1RubXwsozyHff392w4OtnVPU+bILzG7DUtkIf46Iwb5RFRsTW6JB1PT0COFlVn8Qc+dsAF4rIGBHpG9qKgcBJYts+ZoKqfoS1WQOBFUXkThHZRET6BR02AU4Wka451XedsRWXd6nqPdizOlBELg76LhSREWIrRCHlMXgr5C8Qke0Sfe92lZ1W9me2Jt5cVerzc8shu9l+XDhnMJZ1djLwA7EsQg3P20lELkn7GhrQkt3UB7s9WVU/C+UuNWLaURv1SC1jZRN6zMW2Fr4bS9PfRUTuDJ8tAhBLpX6IiHSJ2ZdLjLF/hm2b+RLmK7lIVX+qqn8jZAzGMhmkIXPXIOut8My+j42bz0qcdg+WRj4VH0mQeSk2f7mf2hZGrwEXZnWdCdnDRGR7ERmqqtOxrVcOAPqJrZz+LXb/vyUioqp1qlrWviGxrRZPwgJCFiTsf7FYRp+SX7B7mOd+sr31UksyE6f2Csef13Zm4W5lWd8CODqtsr4c19ldbcX9tzWjrcJbhUaKHPC/ZaI5RmKTyCMSx3pgqU+uxlIug0323k6DaJCMdFoPeB+LstsWSwn2HLaK7ViWOtzOD+etl7E+O2CRkDuE990Tnx0Y7svtWMqWD8lg5XnR/rAIq5Ow/Ua2Sxx/KofnEUV2NV5zRPuqxVKHvQlsmpPMwVj6pSuBgTle65FY5zpVmSyN5rs3cawUIVmDrfhfEZuAexjonZHMLWmQlQTrVG8V286CLr2waN2nsUjdzTOWV7pH9ySOHRfasmuAnuHYmdj+41noMBxL8zkovL8+1C3dsBWMc4Fdw2f3AWtloMMIzDFVWtX1ALBz4vMh2ATxN7A+Slm3q3nbWZHsrUh2V662R4Q+gMuM07+i5ZUsZ2JtaC3Whme+6ifodAKWGWClcGxLLDDpJMKKd5Zmc8tsxUs79co8IwCwN5Z5qAvQj6UZjoaxbN+oS1465f2H7Yt7K/BdbPz8A+BRbJ/arFbrVYvMzbH2+8MgtwYbR9yLrYAeDawRQebqOdrX10M5253ESlkayZ4TdG33+KbAOnwD2D6874GtHjsn1I0XYKvxO2PbAKW++h3LbnEoS1cbXomlzQXbA7me0K5i83t5rsAfgo1vV0ocWw3LPlXScROy62vmLp8qnatKQ3YoI6X2+gYs0+oGDc5ZkUTGrsh207fI97OS9GigUx9sUcyd4f1mwH5EyiaZ0KvhGPtn2NbDkFj5jmV2eIoUxg58OUPPylibNxj4N5alaAMsMOZl0plr3BmbM9gEa9ueCGWmE4mV0WleZ+I3R2J9vRtDGb0qca+vwrYnJdjsdTHtIQP7WgPrY6yMLcq6s8Hnm4frTm11egyZDX4/l7Leyus8mRQzWLT1LxlR4ERAbI/i67F0b0/JsnsUXyBhj2KxFaml/VAb3Y8hZWYCj6vq0yGy5TksaushbDL6DWzv6KFYmtWs93/YFZvEfTGsljhfRBZgK9muAJ4NumwO7KRh/4pKRlXni8hdWKT92SKyIRbhtgowp9kvl6nsarzmiNRjHb9vak77KKrqq9jgKG/+BDyj6e7JlIzmGy4id6rqIbp0vz/BnGVXYWnzD9NG9oxsp8y7VfVgVf2bLM3uUsqqsAn2fKOjqrOw1YK3YgP3z7OS1cw9+pmILMZWDx4hIr2xCdF9s9IF+LEu3YtrHHCLqn4hIqcAc1T1GQBVHZ2R/OnAscE+VsOcGyIio7E29SXgm1h09cHl3q7maWclCmZvJWLbHZSh7cXoA7jM/PtXiZUsZ6mtDvw+8IyILFbVS8Np92FO/TpSXlnSgk5nqs0k/AcglJ/zsP01Z4jt/zlMRI4ggwxcKemV6fMMOl2EPb/52J7YJRRzECAihwIbisgPstYpBqr6sYhMwwLtT1TVR0RkB+Dd8KxcZttlvh5W2e2gqj8Ph28J7VcPtVXgZS+zKcQyGI3H5mU6Yfe+xHyWZs85EJu7ur6945uC6/Aa0F1EPlbVf4nIWFX9v3DOf7D00wuwVcWpktDh79gq2dMxZ8pqIrIGFmT2FraS7Zkc5uuWQVVfEZEPsaCGLcOxT0TkOuAr4X0q+4YXRX61zlWlIVsTe5ar6vEiMhE4V2wv8X2w+fEHsH22MyO23YbfL0S/uCh6NNBppogcC1wuIm9jAVrbaaRskg1IjrHPB24Wkc5hvEDw6ZyCjW3TyFzQMEPPrzCfzZtY8NgQbCw9FFskkEY72AGbt3xTRHphgWLDQrkprZL+LrYX/bdTus5SBtPvYNkM7hCRFYE/iMiNqnqMiJwPHCsi52KZDg9OQ25RUNWPw8s5wf5vLM0vi8hm2NYN94WxT9nKbCA/l7Leyuv8ZakcR6UtXn//SzXao1B7FGNOne2BAdj+zGMTn9VgqU7PThzLJLo98fvbYpHNtdh+OzdikW2nY6lSxmOpoaNHw0S0oc5YhoJ7sRVBgypddjVes/+V3x8tR/M9iE2sDMhQ5l0NPv8O5hzLJatCEf8auUfJldHbYKtmxqf5XBrRoQNhhWR4vRY2AbdyOLYiDfaGzPienAucF14fgaWuGogNyqrWVlK6t9HtLSGvUHYXZJaV7cXoA7jM3J5t7itZ2qBTaf/rFQh7Oob3/wamAZtFulfR9WpGpx7YGHaNYFvfwraq2zBP+8r7D5vAHJJ4n/ne6NUisxEd9gs21a79P8tAZh8sg9Gm4f3NoTytijnSNwt1d2bZcwqqwy1YRsg+QNfEeYdiWStXIOU5syZ02Bubw5uMBS+NDJ89QYarhZvQr3Pi9aPYYqDVwvvvY5kza9K+L0WSTxXOVbVVNokMsyT6Vlh21TeAqcDGeegf026K9CyLqEcDnU7HtmXILWtnC/o0NcZeJRxbF1u4k2rfk8Yz9ByD+Uj6hnOyyEBTyiq6e/I5YPuYXwZslIHMswjZqRPHngcuL10n5j/KJKtLkf6wMeqtwNtYVoLMszDFkBnk5lrWY11na/5KKWqcnBHbO/Gd8HprbBXW3tg+oBOxCv8X2D4iz+Sk00hsL5MpwGfY3snXADeo6rXhnN2AfVT1+Ix1qcFSuv4VG4z9ANtP5sfAVFWdEM7bDosAOzpLfcqBEJWmunQPlIqXXY3X7JQnISr2RmCeWjTfVzFn1Z2q+lZOMjfCBl+/V9X3s5BZbiTu0QJVPShEWc7UlPeza0GHjliKuodVdUcR+Tbm2B2rthdU7ojIH7D0rB+rdxRTowj2ltClcHYX9CoL24vRB3CZmcsdgGXkORGbtP01S1ey/A+bfPscW8lypKpOiqTTPGzl0+9V9ZYwjnwESx2Z6aqwIuvVjE5zgx6/wwKDpgDfyetexUZEJO+6tJpkYn35scC3crLz3GUmZPfEytJPgcex1edvYuX+bSzV6dNYcPKxWehWcB0+x5znV2Lpg48grFTMQYfXsfrtQyww9BhVfSRtua3UrabUfovI2cCLWFalNbE9mDcH9s/KdmPLb6BLVc5VLY/sBs/rh1h5elBtD+IjsfK0TdbPq0h204huhZh3LJAevbFsWN9T1Tdi6tIYiTH2Q6q6k1hW5YHAxZpBBkCxrM47qOp1iWN/wBZevpp1/0hELsL625eFcluTlo008JsdggXS7KGqH4RjK2NzK+dlNadaVELWnbOAXfIYk8aQGausx7i3rcFT6EdALAXafSLysKoeqKp/EZGFWGqrB8Jp08RSwi3ISacRwATgELXUh49gk1WHBV1rMGf+6sAGIrKCqmaWnjFU+HNE5DZgMTYQ6aaqY0SkNnFqf2ANEemhqhWXAnF50Hy2ViiU7Gq8Zqc80WVTAJXSQW+rqtNzkvk2lrZ/e1UtROr8ItDIPeqA7c+dpw6LsPbuAxG5BNsy5vC8nKgNB3ViWyysDNQX2YFajhTB3hK6RLU7KG/bi9EHcJmZy31bREYBD2CrjS7EVncejU3cfl9Vp4lIb005HXMbdDoc2EVEfoulNt1SU9wGqBz1akGnkdgqnVeB06ppki9GXVotMgPvY9uN/bPCZaKqs0Xkp8DZWADBrar6QxHZETgEWwX/CXB8Vk6uMtDhUMxRMxzrU+Wlwy1Bh+2wbEpvwbJOyTxo4AS9DNhaVS8BngyB5N2wwNUplSi/IdU6V9Va2Y08ry2xBWyLxdJzr4rNXeTpvI9uNw0pyrxjgfT4r4jspRml7m4viTH2tMQY+4gsnPdB3luEOh+WGU9/FD7Pun/0OrZK+vIgLy3nfUO/2Z0hWPcvIrK1qn6gqjPEtlZeIQ2Z5UJwbO8B7Jqj8z53mTHKeozrbC2+Aj9nxPZDvR9bTT4cS9NzcPisq6rOC6/3w6KL9lfVqTnotRGWHuhJsf1IX8XSQ5Y6SyOASVhKktE5VhJjgH5YhPF3sUZogaqeLSKnYQEGh2bdqXMcx0mDaoiULEdi3qOwmqoTtnKmE7CTqv4rTx2CHrXY5OcY4AANe3g66VOEMlkUuwu6uO05hSH2Spbl0On3WMaMaOWliHo1odPjwFHAh0UPDnKcohMmN88BnlbVR8Oxh4AfAX/Lo4wVWIcHgKtU9dms5Tejw2+AX6jqw3nokNAl6QS9Atuac6/gzKp4+c7y0dzzKn0mIp1UdWEsPbKU61QuscbYQW6sDD33AWemFeTSiN+sVlUPCp/9EMtefT0WqHAItip/chqyywUR6ZJ3EEsMmTEo6nX6CvycUdW5YqmAPscqo5+JyF2q+u2E8/47wElYlFbmzvug1z+wBgZsguN6VR0vIt/FoogPw/Yw7KGqM/LQKfAQ1vj8SUS2AH6I7UcBthomk7RkjuM4aVMtkZLlRux7FCYZF4TByEuxnKhAPbZf8TdV9e1IOlQ8se2tRIHsDtz2nAJRgJUsrdVpFSDPMdmXKKJezTy/he68d5z2E1ZE/RkYHVa+dQH6Ap/mVcYKrEN/LI19LjShw9rYvuG5knCCXglsxFJnbIc8Vu7Glu8sH615Xlk771urh+MsD5HH2Llm6CkFNavq6DR/twm/2T2qepCqni8irwKrAetg/qKqct4DxHAwF9GpnQVFvU5fgR8ZKYM9isNKinNV9ZUIstcALsbSHp4J3AEMA24Dfq2+/7jjOGWER0oWkyLcoxirOp04FMHeSrjdOU7jxFzJ0hRF1AmKqVcRdXKcSkEsvfVhwH7AfGzl3euuQ3XqkNClH7Yqcp8YTtDY8p3loyjPqyh6OJWFj7HTI+E3W6CqB4nIJsCcvBa8Ok4RcAd+ARCRlbH9QoYTeY/iho1MWLVwDjBKVT+JpNNF2P6FJ6rqI2L7i/1LVafF0MdxHMdxHMdxnMolOIC3Bz7JayVLSxRRJyimXkXUyXEqDRFZAZtTzGRvX9ehvHQIeoiqakRnbFT5zvJRlOdVFD0cx2mcBn6zDsAIVc0t443jxMYd+AVBCrAfagN9CrMfqYj0Bb5SygCQ3KfIcRzHcRzHcRzHcRzHcRzHcRzHqSyK5jdznDzpGFsBpzj7oTagMPuRhpX20xL7q7jz3nEcx3Ecx3Ecx3Ecx3Ecx3EcpwIpqN/McXLDV+AXhCLth+o4juM4juM4juM4juM4juM4juM4sXC/mVPNuAPfcRzHcRzHcRzHcRzHcRzHcRzHcRzHcQpATWwFHMdxHMdxHMdxHMdxHMdxHMdxHMdxHMdxB77jOI7jOI7jOI7jOI7jOI7jOI7jOI7jFAJ34DuO4ziO4ziO4ziO4ziO4ziO4ziO4zhOAXAHvuM4juM4juM4juM4juM4juM4juM4juMUAHfgO47jOI7jOI7jOI7jOI7jOI7jOI7jOE4BcAe+4ziO4ziO4ziO4ziO4ziO4ziO4ziO4xQAd+A7juM4juM4juM4juM4juM4juM4juM4TgFwB77jOI7jOI7jOI7jOI7jOI7jOI7jOI7jFAB34DuO4ziO4ziO4ziO4ziO4ziO4ziO4zhOAXAHvuM4juM4juM4juM4juM4juM4juM4juMUAHfgO47jOI7jOI7jOI7jOI7jOI7jOI7jOE4BcAe+4ziO4ziO4ziO4ziO4ziO4ziO4ziO4xQAd+A7juM4VY+IjBSRi0XE20Wn3bg9OVni9uU4juM4juM4juM41Y2IHCsiKiLbJ46dFI7t3MJ31xaReSLyWuKYisgdifcdReQzEXm0Dbp1FZHXRGSBiKy8vN93HMfwiT+nWRqrzJfz+15ZVzkiso6IPCQiL4vI30RkQDi+hojcLyJ/F5F/isiWjR2Lrb8TDxEZLiIXpvybTdVp2wEvAV9PnOv1l9Msbk9OSwQb+a2IvC0i74jI2cvxvab6X25fTqsQkRVDn+pNEfki2MiLHvzhLC/tHRO2UobXY1VAHraUkDVRRLZu5bluf2WO25aTFSKysYgcLiJ9RWSF2Po45YeI9BSRB0TkFRGZJCJHt+I73vdyWsNmwBvARgAi0g04CvgMmNSK77+nqlsk3s8FNhWRruH9LsBHbVFMVeeF3/64Ld93ikFRgkSqub7yyRunNTSszFuNV9bVjYh0Am4CxqjqUOAC4Psi0hH4HXCrqg4CBgP/aOKYU6Wo6vOqOi6Dn26sTlsMfJuEzXn95bQStyenUYKT9H7gZ6o6ABgIDBWRY1r5E031v9y+nFahqp+HPtURwB9VdQtV3UpV62Pr5pQlbR4Ttgavx6qKTG0pwTDgxZZOEhEB6tz+KgK3LScLOgEnA/sCc5IfuJPVaSX7Af9T1SGqOhC4q5Xf876X0xIDgXuADcP7U4BfAfWqOr2Nv/k7YFR4fVD4fad6KUSQSDXXV+7AryJEZP+w6uZ1EXlORFZpw288GCIG30xOQIdO6/8l3o8VkQtSUt0pX/YBNgHuDwOay4D54fg/VPVRAFX9Atit4TFV/Z+IrCsiN4vIr+NcghMLEfmViGwTIpXHi8izIvJJMsJPUsraoKrnqeq3VPU/6V2BUw6IyN4N6xcROV5EftrW33R7cgK7AVNU9WEAVa0DTgLGtudH3b6cNrAp8GbpjfetnCQisn5Y9TAlOAj+IyLviciKzXxn7dDvuklE/k9E7hKRnUXkLyLyr1J/rLGxo4h0F5HHwpj0/0TkgLyu1UkXEXlKlmZX65OcD1iO32iVLYVzW21PIrIR8A5wgYicmviNi0XklCD3HyJyPfAq0Ld9d8NJkzxtq5k5Lrctp0Rf4FbgXaCxFfjuZHVa4lVge7HMpBcCdcvz5azaSqci2Ai4D9hQRHoCBwDPA8vdbia4FzhQRLpgztu/tltLp5zxIJHIuAO/ungyrLrZHPgjMLoNv3Gkqg4BhgKniEifVDV0Ko3NgXPDiq8tVHVTVT0e2IIvR6w3dgxVfV9Vj8pBV6d4bIpF820KzFLVbYETsJWnSNOZHBxnebgYyw6S5D1g4/xVcSqMjYDXkwdU9d/AiiLSOY5KTpWyMYlJHO9bOUlU9V3gOeDQ4CB4A9hHVT9v4avrAxOwib0NgYOBbbAgpXPCOY2NHXcHPlbVzVV1U+D3aV+TkxvrA/8KrzejdatwmvqdlmwJls+eRobXNwPfgSWZcQ5k6crHAcDtqjpIVae2UXcnG/K0rabmuNy2qgwR2UREnhDb9up8EblGRL4WFpn8WlV/21Lb6I5WpyHBqXoZVg9tBewAfKMNP5VFW+mUMfL/7d1rjFxlGcDx/1OLECjCBwsGMJQYLrYstFAvmIhKuCRqiCIGoig1wQiGiAlRICYkkhgCBdFgiCiSNkECCkGwQYgXSqJg5FZaqyIG1ogREy4lVO708cP7Tnu67GxnZmd2Zzv/35fdOWfOZbLPvnPO+7zneSPeDTybmU8A+wDfBK4GDgHWR4+DtjNzPbCIkli9c8IxV0TEJ/tx/pozHCQyy0zgj5YVUeYgf5SSBHulh8b8a3X7P1JGoR48qJPVTuE/wEn1hpaIGIuIAJ6mPJlPXb6wzTKNqPolvgvwOrAXcFVdNR/YVH+frJLDwl4uUDWaIuJIYF5m/jkiDoyIc+qqXYDs9YZHqt4EFjQX1O/A3YEDjC3NoP0o11lSO0vY1glzGPBYB9s8mZkb6pQMG4HfZmZSEm2L6nsmu3fcABwfEZdFxIcz84U+fg7NkIg4EPh3Y0qOVnnNXnQSS9BdPJ0E3JWZ48CzEbEMOBF4JDOfre/5Z2busAy6ZtZUsRURl9e/9YUd7q7XdgqMrZFS+x9+DpxHeRDlLGD/zHwAIDO7uY4y0aqmrwB3Z+YLmfkGcD/wrjpYY3VE/DgiPt/BfgbxXam5rTnA7UVK+7Ga8sT0hmkO2r4DuII2T0Y3E/kRcVN9vToiLoiIaVUc1PDoYJBIt+0YMPUgkXrcQyPimoi4MiL268dnmctM4I+IiPgi8H7guPoE/mPAxm4a84j4KHA8cEzdxyPAbnX1G2wfT7shwfWUuPhrlBL6F9QLzFXAvnWk8TrgmDbLNLqWAH+pPx/KzDfr8iPY1sH8lqoNPlWoLi0FHqq/n8C2DrvFwKPGk6ZpLfDxmrRvOQF42NjSDLsb+ElEfGS2T0TDJ8r8g7tl5vONTprXOti0Wf51S+P1FmB+u3vHzPw7cDSlw/HSiLi4Tx9FM6tVraHlaEpH3u4RsTIiro2IqyLiuA72NWUsQfu+iMniKcrcnHtnZqvc9HXACuBLlPvTlv91/Gk1k9rFVgBvBx4AftPhvnpqpwCMrZFzPGUQxsbMfJkSa1f2uC8TrWpaRmMqq/p6A3AKpbLDl4GTO9hPX78re/40GiZjbEvgrwTOrX2nY/Q+qLLleuCSzOymAs6vM/MyYHnrQT7NeVMOEqH7dqxp0kEiEfFO4CJKpdSrgStixCtY+s80OsaA+zJzc0R8BvgQ3Zch2wt4PjNfiojDKKV/Wv4L7BNlfrJdAcupqDVX16mZeWgtoX9GXb45M0/OzCV1+R2TLYOtc979EFgWERfN6gfSTGpdcB4OrGssbz7dY9UGTdc8YEFEvI1y4blnTWSsAG6czRPT3JeZj1I6TS4BiIh9ge+y/ZM30sBl5urMPCgz7wWvrfQWi9k2BdF76d90RJPeO9anKF7KzBsonTZH9el4mllHUhOdEXEwpRzwBuAcyhRXK4Glmfm7Ph2vm3j6GHBPY9vbKB2O76MMaNJwaxdb5wGXZeYtwDf6dKy2fVzG1shZRpmnvPW335yZf+hxXyZa1fQ8Jb6IiE8A76CUnz4A+Fd9z5uTb9o1r71Gyxj1AafMXJOZ99fliykPRPUsM5/KzO9P8ZZXqe0ZsEf92Xq9C5DTOb6Gxo4GiUynHWs3SORYShWbTwP7ArfS6PsfRfN3/BbtJFYDt0fEqZTSFE9kZrejgu8Czo6I9ZQn+Lc++ZqZr0fEJZQ5K54E/taf09aoq2Xozp7t89CMG6O0Jx9k+7lwDmfbE/irgBsjYiOl1P7FlBF8UqfupHQGrgO+BVwIPAj8KDMfns0T09xXy7suB86IiHuAc4EDgWsi4lO19Ko047y20gTN8vkvA0dFxGGZOd37uXb3jmPAyojYQrl+O6fN9hpuS4GX69Oj6ykDP86klItudbr9rI/H6yaeVgBbp6jJzNfq9/CmRlUvDa92sTWWmd+LiPdQ2qp+aNvHhbE1al6lJCIALqU8gU9E7AFcA7wGrM3Mn/bpeFMlWp/LzBsiYjMl5jS3rQRujojTKf3lp2Tmloh4ihJz6+jfA5Zee42QzJy0ZHlm7gNl0DbwHeqg7cy8tIN9Lphk2VpKdUEoyflXKQOeLo+Ig4C967oTI+II4E+16ojmvjFKAp2s09dWrUEii+mxHcvMpyj3DBM9DpyYmVcCRMRpwL1dn/lOJPx/Gm2NxvwE4LqJjXlELALW1LmXpnOccWB5Zj4znf1I0lQG0abZfo0u40mDMqjrL+NL0iD0656ww2ONYzs29CLiH8CyzHxxwvKzgEPry/0z83MT1i9iwLEUEQ8DH8jM1+vreZSO5s9m5uM72HYc429WTRFbX6fE1nzg27Xjt7l+EcaWehQRBwC3AwuAaylTkD5NmW5tU2b+MiJuzszTJmy3iEbcTfJ6VX19S3NdrVz6C2B/SqJ1IaVc8K6UhO/WRGtmPlj3NY4xtNOog0N+ALwC/H7i4BCvvTRodeqs+yjTZy3t4P3HAucDZ2bmpgnrVivp7EwAAAFWSURBVADPNJO8tbrl/ZT2bSwzn+vj6WsIDKodi4ivUqrUBHBDZt7aWDfOiLVXJvA1pW4b80m2t7GWNDS6adNsv7QjxpMGpYebaeNL0sBM956ww2PYjs0REbEn8FBmHtLDtgOPpQnHWwysAW7LzPOneJ/xNwSMLQ2bOtXQrzJzXUTcOBuDkhrHGmfEkhajzGsvSXNdP9uxUW6vTOBLkiRJkiRJklRFxBcope7XRMRNmXn6hPUmWSVJ0sCYwJckSZIkSZIkqdpReWBJkqRBMoEvSZIkSZIkSZIkSdIQmDfbJyBJkiRJkiRJkiRJkkzgS5IkSZIkSZIkSZI0FEzgS5IkSZIkSZIkSZI0BEzgS5IkSZIkSZIkSZI0BEzgS5IkSZIkSZIkSZI0BEzgS5IkSZIkSZIkSZI0BEzgS5IkSZIkSZIkSZI0BEzgS5IkSZIkSZIkSZI0BP4PWiBfDJaVu1AAAAAASUVORK5CYII=", - "image/svg+xml": "\n\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n", + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n" + ], "text/plain": [ "
" ] @@ -392,7 +298997,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.5" + "version": "3.11.4" }, "orig_nbformat": 4 }, From f0eff4fd0066f8a53ea1ffd9833597695433e5f4 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 19:55:17 -0600 Subject: [PATCH 10/37] bugfix to get hipparcos fits working again --- orbitize/hipparcos.py | 24 +++++++++++++----------- 1 file changed, 13 insertions(+), 11 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index cf6160a9..42e35a2b 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -253,6 +253,7 @@ def compute_model( self, raoff_model, deoff_model, + n_samples, plx, pm_ra, pm_dec, @@ -272,10 +273,7 @@ def compute_model( offsets from the barycenter incurred from orbital motion of companions (i.e. not from parallactic motion), where M is the number of epochs of IAD scan data. - samples (np.array of float): R-dimensional array of fitting - parameters, where R is the number of parameters being fit. Must - be in the same order documented in ``System``. - TODO (fill in fitting params) + TODO (fill in other params) epochs_to_predict (np.array of float): if None, then uses Hipparcos epochs. If given, then computes prediction at given epochs instead. @@ -288,8 +286,8 @@ def compute_model( epochs_to_predict = self.epochs n_epochs = len(epochs_to_predict) - alpha_C_st = np.zeros_like(raoff_model) - delta_C = np.zeros_like(raoff_model) + alpha_C_st = np.zeros((n_epochs, n_samples)) + delta_C = np.zeros((n_epochs, n_samples)) # add parallactic ellipse & proper motion to position (Nielsen+ 2020 Eq 8) for i in np.arange(n_epochs): @@ -364,18 +362,22 @@ def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): except TypeError: n_samples = 1 - n_epochs = len(self.epochs) - dist = np.empty((n_epochs, n_samples)) - alpha_C_st, delta_C = self.compute_model( - raoff_model, deoff_model, plx, pm_ra, pm_dec, alpha_H0, delta_H0 + raoff_model, + deoff_model, + n_samples, + plx, + pm_ra, + pm_dec, + alpha_H0, + delta_H0, ) # calculate distance between line and expected measurement (Nielsen+ 2020 Eq 6) [mas] dist = np.abs( (self.alpha_abs_st - alpha_C_st) * self.cos_phi + (self.delta_abs - delta_C) * self.sin_phi - ).reshape((n_samples, n_epochs)) + ) # compute chi2 (Nielsen+ 2020 Eq 7) chi2 = np.sum( From b99ce71e30d77b17b5bd70975e87dcd9c7c4d967 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Sun, 12 Nov 2023 20:06:04 -0600 Subject: [PATCH 11/37] messed up too much; abort --- orbitize/hipparcos.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 42e35a2b..3890e2e3 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -315,6 +315,9 @@ def compute_model( ) + (epochs_to_predict[i] - self.alphadec0_epoch) * pm_dec ) + import pdb + + pdb.set_trace() # add in pre-computed secondary perturbations alpha_C_st[i] += raoff_model[i] From 622268005011d070d3c16209c1f4c481860832be Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 20 Nov 2023 15:04:32 -0500 Subject: [PATCH 12/37] separate plx/pm prediction from hipparcos into separate class --- orbitize/hipparcos.py | 243 +++++++++++++++++++++++------------------- 1 file changed, 132 insertions(+), 111 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 3890e2e3..a7f8e26d 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -11,6 +11,103 @@ from astroquery.vizier import Vizier +class PMPlx_Motion(object): + """ + Class to compute the predicted position at an array of epochs given a + parallax and proper motion model (NO orbital motion is added in this class). + + Args: + times_mjd (np.array of float): times (in mjd) at which we have absolute astrometric + measurements + alpha0 (float): measured RA position (in degrees) of the object at alphadec0_epoch (see below). + delta0 (float): measured Dec position (in degrees) of the object at alphadec0_epoch (see below). + alphadec0_epoch (float): a (fixed) reference time. For stars with Hipparcos data, this + should generally be 1991.25, but you can define it however you want. Absolute + astrometric data (passed in via an orbitize! data table) should be defined + as offsets from the reported position of the object at this epoch (with propagated + uncertainties). For example, if you have two absolute astrometric measurements + taken with GRAVITY, as well as a Hipparcos-derived position (at epoch 1991.25), + alphadec0_epoch should be 1991.25, and you should pass in absolute astrometry + in terms of mas *offset* from the Hipparcos catalog position, with propagated + errors of your measurement and the Hipparcos measurement. + """ + + def __init__(self, epochs_mjd, alpha0, delta0, alphadec0_epoch=1991.25): + self.epochs_mjd = epochs_mjd + self.alphadec0_epoch = alphadec0_epoch + self.alpha0 = alpha0 + self.delta0 = delta0 + + epochs = Time(epochs_mjd, format="mjd") + self.epochs = epochs.decimalyear + + # compute Earth XYZ position in barycentric coordinates + bary_pos, _ = get_body_barycentric_posvel("earth", epochs) + self.X = bary_pos.x.value # [au] + self.Y = bary_pos.y.value # [au] + self.Z = bary_pos.z.value # [au] + + def compute_astrometric_model(self, samples, param_idx): + """ + Compute the astrometric prediction at self.epochs_mjd from parallax and + proper motion alone, given an array of model parameters (no orbital + motion is added here). + + Args: + samples (np.array of float): Length R array of fitting + parameters, where R is the number of parameters being fit. Must + be in the same order documented in ``System``. + param_idx: a dictionary matching fitting parameter labels to their + indices in an array of fitting parameters (generally + set to System.basis.param_idx). + + Returns: + tuple of: + - float: predicted RA position offsets from the measured position + at alphadec0_epoch, calculated for each input epoch [mas] + - float: predicted Dec position offsets from the measured position + at alphadec0_epoch, calculated for each input epoch [mas] + """ + # variables for each of the astrometric fitting parameters + plx = samples[param_idx["plx"]] + pm_ra = samples[param_idx["pm_ra"]] + pm_dec = samples[param_idx["pm_dec"]] + alpha_H0 = samples[param_idx["alpha0"]] + delta_H0 = samples[param_idx["delta0"]] + + n_epochs = len(self.epochs) + alpha_C_st_array = np.empty(n_epochs) + delta_C_array = np.empty(n_epochs) + + # add parallactic ellipse & proper motion to position (Nielsen+ 2020 Eq 8) + for i in np.arange(n_epochs): + # this is the expected offset from the photocenter in alphadec0_epoch + alpha_C_st_array[i] = ( + alpha_H0 + + plx + * ( + self.X[i] * np.sin(np.radians(self.alpha0)) + - self.Y[i] * np.cos(np.radians(self.alpha0)) + ) + + (self.epochs[i] - self.alphadec0_epoch) * pm_ra + ) + delta_C_array[i] = ( + delta_H0 + + plx + * ( + self.X[i] + * np.cos(np.radians(self.alpha0)) + * np.sin(np.radians(self.delta0)) + + self.Y[i] + * np.sin(np.radians(self.alpha0)) + * np.sin(np.radians(self.delta0)) + - self.Z[i] * np.cos(np.radians(self.delta0)) + ) + + (self.epochs[i] - self.alphadec0_epoch) * pm_dec + ) + return alpha_C_st_array, delta_C_array + + class HipparcosLogProb(object): """ Class to compute the log probability of an orbit with respect to the @@ -189,6 +286,13 @@ def __init__( if self.solution_type == 1: self.eps = np.sqrt(self.eps**2 - self.var) + self.hipparcos_plxpm_predictor = PMPlx_Motion( + self.epochs_mjd, + self.alpha0, + self.delta0, + alphadec0_epoch=self.alphadec0_epoch, + ) + if self.renormalize_errors: D = len(epochs) - 6 G = f2 @@ -197,18 +301,12 @@ def __init__( self.eps *= f - # compute Earth XYZ position in barycentric coordinates - bary_pos, _ = get_body_barycentric_posvel("earth", epochs) - self.X = bary_pos.x.value # [au] - self.Y = bary_pos.y.value # [au] - self.Z = bary_pos.z.value # [au] - # reconstruct ephemeris of star given van Leeuwen best-fit (Nielsen+ 2020 Eqs 1-2) [mas] changein_alpha_st = ( self.plx0 * ( - self.X * np.sin(np.radians(self.alpha0)) - - self.Y * np.cos(np.radians(self.alpha0)) + self.hipparcos_plxpm_predictor.X * np.sin(np.radians(self.alpha0)) + - self.hipparcos_plxpm_predictor.Y * np.cos(np.radians(self.alpha0)) ) + (self.epochs - 1991.25) * self.pm_ra0 ) @@ -216,13 +314,13 @@ def __init__( changein_delta = ( self.plx0 * ( - self.X + self.hipparcos_plxpm_predictor.X * np.cos(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - + self.Y + + self.hipparcos_plxpm_predictor.Y * np.sin(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - - self.Z * np.cos(np.radians(self.delta0)) + - self.hipparcos_plxpm_predictor.Z * np.cos(np.radians(self.delta0)) ) + (self.epochs - 1991.25) * self.pm_dec0 ) @@ -249,83 +347,13 @@ def _save(self, hf): hf.attrs["alphadec0_epoch"] = self.alphadec0_epoch hf.attrs["renormalize_errors"] = self.renormalize_errors - def compute_model( + def compute_lnlike( self, raoff_model, deoff_model, - n_samples, - plx, - pm_ra, - pm_dec, - alpha_H0, - delta_H0, - epochs_to_predict=None, + samples, + param_idx, ): - """ - Computes the predicted RA/Dec - - Args: - raoff_model (np.array of float): M-dimensional array of primary RA - offsets from the barycenter incurred from orbital motion of - companions (i.e. not from parallactic motion), where M is the - number of epochs of IAD scan data. - deoff_model (np.array of float): M-dimensional array of primary RA - offsets from the barycenter incurred from orbital motion of - companions (i.e. not from parallactic motion), where M is the - number of epochs of IAD scan data. - TODO (fill in other params) - epochs_to_predict (np.array of float): if None, then uses Hipparcos epochs. If - given, then computes prediction at given epochs instead. - - Returns: - 2-tuple of: - np.array of float: RA predictions - np.array of float: Dec predictions - """ - if epochs_to_predict is None: - epochs_to_predict = self.epochs - - n_epochs = len(epochs_to_predict) - alpha_C_st = np.zeros((n_epochs, n_samples)) - delta_C = np.zeros((n_epochs, n_samples)) - - # add parallactic ellipse & proper motion to position (Nielsen+ 2020 Eq 8) - for i in np.arange(n_epochs): - # this is the expected offset from the photocenter in alphadec0_epoch (typically 1991.25 for Hipparcos) - alpha_C_st[i] = ( - alpha_H0 - + plx - * ( - self.X[i] * np.sin(np.radians(self.alpha0)) - - self.Y[i] * np.cos(np.radians(self.alpha0)) - ) - + (epochs_to_predict[i] - self.alphadec0_epoch) * pm_ra - ) - delta_C[i] = ( - delta_H0 - + plx - * ( - self.X[i] - * np.cos(np.radians(self.alpha0)) - * np.sin(np.radians(self.delta0)) - + self.Y[i] - * np.sin(np.radians(self.alpha0)) - * np.sin(np.radians(self.delta0)) - - self.Z[i] * np.cos(np.radians(self.delta0)) - ) - + (epochs_to_predict[i] - self.alphadec0_epoch) * pm_dec - ) - import pdb - - pdb.set_trace() - - # add in pre-computed secondary perturbations - alpha_C_st[i] += raoff_model[i] - delta_C[i] += deoff_model[i] - - return alpha_C_st, delta_C - - def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): """ Computes the log likelihood of an orbit model with respect to the Hipparcos IAD. This is added to the likelihoods calculated with @@ -353,42 +381,35 @@ def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): respect to the Hipparcos IAD. """ - # variables for each of the astrometric fitting parameters - plx = samples[param_idx["plx"]] - pm_ra = samples[param_idx["pm_ra"]] - pm_dec = samples[param_idx["pm_dec"]] - alpha_H0 = samples[param_idx["alpha0"]] - delta_H0 = samples[param_idx["delta0"]] - try: - n_samples = len(pm_ra) + n_samples = len(samples[0]) except TypeError: n_samples = 1 - alpha_C_st, delta_C = self.compute_model( - raoff_model, - deoff_model, - n_samples, - plx, - pm_ra, - pm_dec, - alpha_H0, - delta_H0, - ) + n_epochs = len(self.epochs) + dist = np.empty((n_epochs, n_samples)) - # calculate distance between line and expected measurement (Nielsen+ 2020 Eq 6) [mas] - dist = np.abs( - (self.alpha_abs_st - alpha_C_st) * self.cos_phi - + (self.delta_abs - delta_C) * self.sin_phi - ) + ( + alpha_C_st_array, + delta_C_array, + ) = self.hipparcos_plxpm_predictor.compute_astrometric_model(samples, param_idx) + + for i in np.arange(n_epochs): + # add in pre-computed secondary perturbations + alpha_C_st = alpha_C_st_array[i] + raoff_model[i] + delta_C = delta_C_array[i] + deoff_model[i] + + # calculate distance between line and expected measurement (Nielsen+ 2020 Eq 6) [mas] + dist[i, :] = np.abs( + (self.alpha_abs_st[i] - alpha_C_st) * self.cos_phi[i] + + (self.delta_abs[i] - delta_C) * self.sin_phi[i] + ) # compute chi2 (Nielsen+ 2020 Eq 7) chi2 = np.sum( - [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], - axis=1, + [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], axis=1 ) - - lnlike = -0.5 * chi2 - np.sum(np.log(self.eps * np.sqrt(2 * np.pi))) + lnlike = -0.5 * chi2 return lnlike From 5382c80435685812be2ec93a69c6d45dab3190bb Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 20 Nov 2023 16:09:28 -0500 Subject: [PATCH 13/37] untested full implementation --- orbitize/system.py | 37 +++++++++++++++++++++++++++++++++---- 1 file changed, 33 insertions(+), 4 deletions(-) diff --git a/orbitize/system.py b/orbitize/system.py index fc3d11b0..4244b626 100644 --- a/orbitize/system.py +++ b/orbitize/system.py @@ -1,5 +1,5 @@ import numpy as np -from orbitize import nbody, kepler, basis +from orbitize import nbody, kepler, basis, hipparcos from astropy import table @@ -143,7 +143,7 @@ def __init__( # we have more than 1 companion OR we have stellar astrometry self.track_planet_perturbs = self.fit_secondary_mass and ( ( - len(self.radec[0]) + len(self.seppa[0] > 0) + (len(self.radec[0]) + len(self.seppa[0])) > 0 or (self.num_secondary_bodies > 1) ) ) @@ -236,6 +236,21 @@ def __init__( self.basis.verify_params() self.sys_priors, self.labels = self.basis.construct_priors() + # if we're fitting absolute astrometry of the star, create an object that + # knows how to compute predicted astrometric motion due to parallax and + # proper motion + if (len(self.radec[0]) + len(self.seppa[0])) > 0: + self.stellar_astrom_epochs = self.data_table["epochs"][ + (self.data_table["quant_type"] == "astrom") + & (self.data_table["object_index"] == 0) + ] + alpha0 = self.hipparcos_IAD.alpha0 + delta0 = self.hipparcos_IAD.delta0 + alphadec0_epoch = self.hipparcos_IAD.alphadec0_epoch + self.pm_plx_predictor = hipparcos.PMPlx_Motion( + self.stellar_astrom_epochs, alpha0, delta0, alphadec0_epoch + ) + self.secondary_mass_indx = [ self.basis.standard_basis_idx[i] for i in self.basis.standard_basis_idx.keys() @@ -531,8 +546,6 @@ def compute_all_orbits(self, params_arr, epochs=None, comp_rebound=False): raoff = ra_kepler + ra_perturb deoff = dec_kepler + dec_perturb - # TODO (@sblunt): add in parallactic ellipse here for abs astrometry - if self.fitting_basis == "XYZ": # Find and filter out unbound orbits bad_orbits = np.where(np.logical_or(ecc >= 1.0, ecc < 0.0))[0] @@ -631,6 +644,22 @@ def compute_model(self, params_arr, use_rebound=False): model[self.rv[body_num], 0] = vz[self.rv[body_num], body_num, :] model[self.rv[body_num], 1] = np.nan + # if we have abs astrometry measurements in the input file (i.e. not + # from Hipparcos or Gaia), add the parallactic & proper motion here by + # calling AbsAstrom compute_model + if len(self.radec[0]) > 0: + ra_pred, dec_pred = self.pm_plx_predictor.compute_astrometric_model( + params_arr + ) + model[self.radec[0], 0] += ra_pred + model[self.radec[0], 1] += dec_pred + + + # TODO(@sblunt): check that this is working ok + import pdb + + pdb.set_trace() + if n_orbits == 1: model = model.reshape((n_epochs, 2)) jitter = jitter.reshape((n_epochs, 2)) From 9f0cb08bc9939999f2210e369e1c592d8d265611 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Tue, 21 Nov 2023 13:19:03 -0500 Subject: [PATCH 14/37] linting --- orbitize/read_input.py | 323 ++++++++++++++++++++++++++++------------- 1 file changed, 223 insertions(+), 100 deletions(-) diff --git a/orbitize/read_input.py b/orbitize/read_input.py index d3ab8b15..f37f5e41 100644 --- a/orbitize/read_input.py +++ b/orbitize/read_input.py @@ -9,7 +9,7 @@ def read_file(filename): - """ Reads data from any file for use in orbitize + """Reads data from any file for use in orbitize readable by ``astropy.io.ascii.read()``, including csv format. See the `astropy docs `_. @@ -46,13 +46,13 @@ def read_file(filename): For RA/Dec and Sep/PA, you can also specify a correlation term. This is useful when your error ellipse is tilted with respect to the RA/Dec or Sep/PA. The correlation term is the Pearson correlation coefficient (ρ), - which corresponds to the normalized off diagonal term of the covariance matrix. Let's define the + which corresponds to the normalized off diagonal term of the covariance matrix. Let's define the covariance matrix as ``C = [[C_11, C_12], [C_12, C_22]]``. Here C_11 = quant1_err^2 and C_22 = quant2_err^2 - and C_12 is the off diagonal term. Then ``ρ = C_12/(sqrt(C_11)sqrt(C_22))``. Essentially it is the covariance + and C_12 is the off diagonal term. Then ``ρ = C_12/(sqrt(C_11)sqrt(C_22))``. Essentially it is the covariance normalized by the variance. As such, -1 ≤ ρ ≤ 1. You can specify either as radec_corr or seppa_corr. By definition, both are dimensionless, but one will correspond to RA/Dec and the other to Sep/PA. An example of real world data that reports correlations is `this GRAVITY paper `_ where table 2 reports the - correlation values and figure 4 shows how the error ellipses are tilted. + correlation values and figure 4 shows how the error ellipses are tilted. Alternatively, you can also supply a data file with the columns already corresponding to the orbitize format (see the example in description of what this method returns). This may @@ -60,7 +60,7 @@ def read_file(filename): .. Note:: RV measurements of objects that are not the primary should be relative to the barycenter RV. For example, if the barycenter has a RV - of 20 +/- 1 km/s, and you've measured an absolute RV for the secondary of 15 +/- 2 km/s, + of 20 +/- 1 km/s, and you've measured an absolute RV for the secondary of 15 +/- 2 km/s, you should input an RV of -5.0 +/- 2.2 for object 1. .. Note:: When providing data with columns in the orbitize format, there should be no @@ -88,12 +88,24 @@ def read_file(filename): if ``quant_type`` is "rv", the units of quant are km/s Written: Henry Ngo, 2018 - + Updated: Vighnesh Nagpal, Jason Wang (2020-2021) """ # initialize output table - output_table = Table(names=('epoch', 'object', 'quant1', 'quant1_err', 'quant2', 'quant2_err', 'quant12_corr', 'quant_type', 'instrument'), - dtype=(float, int, float, float, float, float, float, 'S5', 'S5')) + output_table = Table( + names=( + "epoch", + "object", + "quant1", + "quant1_err", + "quant2", + "quant2_err", + "quant12_corr", + "quant_type", + "instrument", + ), + dtype=(float, int, float, float, float, float, float, "S5", "S5"), + ) # read file try: @@ -109,104 +121,118 @@ def read_file(filename): except: raise Exception( - 'Unable to read file: {}. \n Please check file path and format.'.format(filename)) + "Unable to read file: {}. \n Please check file path and format.".format( + filename + ) + ) num_measurements = len(input_table) # Decide if input was given in the orbitize style - orbitize_style = 'quant_type' in input_table.columns + orbitize_style = "quant_type" in input_table.columns # validate input # if input_table is Masked, then figure out which entries are masked # otherwise, just check that we have the required columns based on orbitize_style flag if input_table.masked: - if 'epoch' in input_table.columns: - have_epoch = ~input_table['epoch'].mask + if "epoch" in input_table.columns: + have_epoch = ~input_table["epoch"].mask if not have_epoch.all(): raise Exception("Invalid input format: missing some epoch entries") else: raise Exception("Input table MUST have epoch!") - if 'object' in input_table.columns: - have_object = ~input_table['object'].mask + if "object" in input_table.columns: + have_object = ~input_table["object"].mask if not have_object.all(): raise Exception("Invalid input format: missing some object entries") else: raise Exception("Input table MUST have object id!") - if orbitize_style: # proper orbitize style should NEVER have masked entries (nan required) + if ( + orbitize_style + ): # proper orbitize style should NEVER have masked entries (nan required) raise Exception("Input table in orbitize style may NOT have empty cells") else: # Check for these things when not orbitize style - if 'raoff' in input_table.columns: - have_ra = ~input_table['raoff'].mask + if "raoff" in input_table.columns: + have_ra = ~input_table["raoff"].mask else: have_ra = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'decoff' in input_table.columns: - have_dec = ~input_table['decoff'].mask + if "decoff" in input_table.columns: + have_dec = ~input_table["decoff"].mask else: have_dec = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'radec_corr' in input_table.columns: - have_radeccorr = ~input_table['radec_corr'].mask + if "radec_corr" in input_table.columns: + have_radeccorr = ~input_table["radec_corr"].mask else: - have_radeccorr = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'sep' in input_table.columns: - have_sep = ~input_table['sep'].mask + have_radeccorr = np.zeros( + num_measurements, dtype=bool + ) # zeros are False + if "sep" in input_table.columns: + have_sep = ~input_table["sep"].mask else: have_sep = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'pa' in input_table.columns: - have_pa = ~input_table['pa'].mask + if "pa" in input_table.columns: + have_pa = ~input_table["pa"].mask else: have_pa = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'seppa_corr' in input_table.columns: - have_seppacorr = ~input_table['seppa_corr'].mask + if "seppa_corr" in input_table.columns: + have_seppacorr = ~input_table["seppa_corr"].mask else: - have_seppacorr = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'rv' in input_table.columns: - have_rv = ~input_table['rv'].mask + have_seppacorr = np.zeros( + num_measurements, dtype=bool + ) # zeros are False + if "rv" in input_table.columns: + have_rv = ~input_table["rv"].mask else: have_rv = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'instrument' in input_table.columns: - + if "instrument" in input_table.columns: # Vighnesh: establishes which rows have instrument names provided - have_inst = ~input_table['instrument'].mask + have_inst = ~input_table["instrument"].mask else: have_inst = np.zeros(num_measurements, dtype=bool) # zeros are false else: # no masked entries, just check for required columns - if 'epoch' not in input_table.columns: + if "epoch" not in input_table.columns: raise Exception("Input table MUST have epoch!") - if 'object' not in input_table.columns: + if "object" not in input_table.columns: raise Exception("Input table MUST have object id!") - if not orbitize_style: # Set these flags only when not already in orbitize style - if 'raoff' in input_table.columns: + if ( + not orbitize_style + ): # Set these flags only when not already in orbitize style + if "raoff" in input_table.columns: have_ra = np.ones(num_measurements, dtype=bool) # ones are False else: have_ra = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'decoff' in input_table.columns: + if "decoff" in input_table.columns: have_dec = np.ones(num_measurements, dtype=bool) # ones are False else: have_dec = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'radec_corr' in input_table.columns: + if "radec_corr" in input_table.columns: have_radeccorr = np.ones(num_measurements, dtype=bool) # ones are False else: - have_radeccorr = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'sep' in input_table.columns: + have_radeccorr = np.zeros( + num_measurements, dtype=bool + ) # zeros are False + if "sep" in input_table.columns: have_sep = np.ones(num_measurements, dtype=bool) # ones are False else: have_sep = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'pa' in input_table.columns: + if "pa" in input_table.columns: have_pa = np.ones(num_measurements, dtype=bool) # ones are False else: have_pa = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'seppa_corr' in input_table.columns: + if "seppa_corr" in input_table.columns: have_seppacorr = np.ones(num_measurements, dtype=bool) # ones are False else: - have_seppacorr = np.zeros(num_measurements, dtype=bool) # zeros are False - if 'rv' in input_table.columns: + have_seppacorr = np.zeros( + num_measurements, dtype=bool + ) # zeros are False + if "rv" in input_table.columns: have_rv = np.ones(num_measurements, dtype=bool) # ones are False else: have_rv = np.zeros(num_measurements, dtype=bool) # zeros are False # Rob: not sure if we need this but adding just in case - if 'instrument' in input_table.columns: + if "instrument" in input_table.columns: have_inst = np.ones(num_measurements, dtype=bool) else: have_inst = np.zeros(num_measurements, dtype=bool) @@ -214,12 +240,12 @@ def read_file(filename): # orbitize! backwards compatability since we added new columns, some old data formats may not have them # fill in with default values if orbitize_style: - if 'quant12_corr' not in input_table.keys(): + if "quant12_corr" not in input_table.keys(): default_corrs = np.nan * np.ones(len(input_table)) input_table.add_column(default_corrs, name="quant12_corr") - if 'instrument' not in input_table.keys(): + if "instrument" not in input_table.keys(): default_insts = [] - for this_quant_type in input_table['quant_type']: + for this_quant_type in input_table["quant_type"]: if this_quant_type == "radec": default_insts.append("defrd") elif this_quant_type == "seppa": @@ -227,102 +253,187 @@ def read_file(filename): elif this_quant_type == "rv": default_insts.append("defrv") else: - raise Exception("Invalid 'quant_type' {0}. Valid values are 'radec', 'seppa' or 'rv'".format(this_quant_type)) + raise Exception( + "Invalid 'quant_type' {0}. Valid values are 'radec', 'seppa' or 'rv'".format( + this_quant_type + ) + ) input_table.add_column(default_insts, name="instrument") # loop through each row and format table for index, row in enumerate(input_table): # First check if epoch is a number try: - float_epoch = np.float64(row['epoch']) + float_epoch = np.float64(row["epoch"]) except: raise Exception( - 'Problem reading epoch in the input file. Epoch should be given in MJD.') + "Problem reading epoch in the input file. Epoch should be given in MJD." + ) # check epoch format and put in MJD - if row['epoch'] > 2400000.5: # assume this is in JD - print('Converting input epochs from JD to MJD.\n') - MJD = row['epoch'] - 2400000.5 + if row["epoch"] > 2400000.5: # assume this is in JD + print("Converting input epochs from JD to MJD.\n") + MJD = row["epoch"] - 2400000.5 else: - MJD = row['epoch'] + MJD = row["epoch"] # check that "object" is an integer (instead of ABC/bcd) - if not isinstance(row['object'], (int, np.int32, np.int64)): + if not isinstance(row["object"], (int, np.int32, np.int64)): raise Exception("Invalid object ID. Object IDs must be integers.") # determine input quantity type (RA/DEC, SEP/PA, or RV) if orbitize_style: - if row['quant_type'] == 'rv': # special format for rv rows - output_table.add_row([MJD, row['object'], row['quant1'], - row['quant1_err'], None, None, None, row['quant_type'], row['instrument']]) - - elif row['quant_type'] == 'radec' or row['quant_type'] == 'seppa': # other allowed + if row["quant_type"] == "rv": # special format for rv rows + output_table.add_row( + [ + MJD, + row["object"], + row["quant1"], + row["quant1_err"], + None, + None, + None, + row["quant_type"], + row["instrument"], + ] + ) + + elif ( + row["quant_type"] == "radec" or row["quant_type"] == "seppa" + ): # other allowed # backwards compatability whether it has the covariance term or not - if 'quant12_corr' in row.columns: - quant12_corr = row['quant12_corr'] + if "quant12_corr" in row.columns: + quant12_corr = row["quant12_corr"] if quant12_corr > 1 or quant12_corr < -1: - raise ValueError("Invalid correlation coefficient at line {0}. Value should be between -1 and 1 but got {1}".format(index, quant12_corr)) + raise ValueError( + "Invalid correlation coefficient at line {0}. Value should be between -1 and 1 but got {1}".format( + index, quant12_corr + ) + ) else: quant12_corr = None - output_table.add_row([MJD, row['object'], row['quant1'], row['quant1_err'], - row['quant2'], row['quant2_err'], quant12_corr, row['quant_type'], row['instrument']]) + output_table.add_row( + [ + MJD, + row["object"], + row["quant1"], + row["quant1_err"], + row["quant2"], + row["quant2_err"], + quant12_corr, + row["quant_type"], + row["instrument"], + ] + ) else: # catch wrong formats - raise Exception("Invalid 'quant_type' {0}. Valid values are 'radec', 'seppa' or 'rv'".format(row['quant_type'])) + raise Exception( + "Invalid 'quant_type' {0}. Valid values are 'radec', 'seppa' or 'rv'".format( + row["quant_type"] + ) + ) else: # When not in orbitize style - if have_ra[index] and have_dec[index]: # check if there's a covariance term if have_radeccorr[index]: - quant12_corr = row['radec_corr'] + quant12_corr = row["radec_corr"] if quant12_corr > 1 or quant12_corr < -1: - raise ValueError("Invalid correlation coefficient at line {0}. Value should be between -1 and 1 but got {1}".format(index, quant12_corr)) + raise ValueError( + "Invalid correlation coefficient at line {0}. Value should be between -1 and 1 but got {1}".format( + index, quant12_corr + ) + ) else: quant12_corr = None - + if have_inst[index]: - this_inst = row['instrument'] + this_inst = row["instrument"] else: # sets the row with a default instrument name if none is provided - this_inst = 'defrd' - - output_table.add_row([MJD, row['object'], row['raoff'], - row['raoff_err'], row['decoff'], row['decoff_err'], - quant12_corr, "radec", this_inst]) + this_inst = "defrd" + + output_table.add_row( + [ + MJD, + row["object"], + row["raoff"], + row["raoff_err"], + row["decoff"], + row["decoff_err"], + quant12_corr, + "radec", + this_inst, + ] + ) elif have_sep[index] and have_pa[index]: # check if there's a covariance term if have_seppacorr[index]: - quant12_corr = row['seppa_corr'] + quant12_corr = row["seppa_corr"] if quant12_corr > 1 or quant12_corr < -1: - raise ValueError("Invalid correlation coefficient at line {0}. Value should be between -1 and 1 but got {1}".format(index, quant12_corr)) + raise ValueError( + "Invalid correlation coefficient at line {0}. Value should be between -1 and 1 but got {1}".format( + index, quant12_corr + ) + ) else: quant12_corr = None if have_inst[index]: - this_inst = row['instrument'] + this_inst = row["instrument"] else: # sets the row with a default instrument name if none is provided - this_inst = 'defsp' - - output_table.add_row([MJD, row['object'], row['sep'], - row['sep_err'], row['pa'], row['pa_err'], - quant12_corr, "seppa", this_inst]) + this_inst = "defsp" + + output_table.add_row( + [ + MJD, + row["object"], + row["sep"], + row["sep_err"], + row["pa"], + row["pa_err"], + quant12_corr, + "seppa", + this_inst, + ] + ) if have_rv[index]: if have_inst[index]: - output_table.add_row([MJD, row['object'], row['rv'], - row['rv_err'], None, None, None, "rv", row['instrument']]) + output_table.add_row( + [ + MJD, + row["object"], + row["rv"], + row["rv_err"], + None, + None, + None, + "rv", + row["instrument"], + ] + ) else: # Vighnesh: sets the row with a default instrument name if none is provided - output_table.add_row([MJD, row['object'], row['rv'], - row['rv_err'], None, None, None, "rv", "defrv"]) + output_table.add_row( + [ + MJD, + row["object"], + row["rv"], + row["rv_err"], + None, + None, + None, + "rv", + "defrv", + ] + ) return output_table - -def write_orbitize_input(table, output_filename, file_type='csv'): - """ Writes orbitize-readable input as an ASCII file +def write_orbitize_input(table, output_filename, file_type="csv"): + """Writes orbitize-readable input as an ASCII file Args: table (astropy.Table): Table containing orbitize-readable input for given @@ -336,13 +447,25 @@ def write_orbitize_input(table, output_filename, file_type='csv'): """ # check format - valid_formats = ['aastex', 'basic', 'commented_header', 'csv', 'ecsv', - 'fixed_width', 'fixed_width_no_header', 'fixed_width_two_line', - 'html', 'ipac', 'latex', 'no_header', 'rdb', 'rst', 'tab'] + valid_formats = [ + "aastex", + "basic", + "commented_header", + "csv", + "ecsv", + "fixed_width", + "fixed_width_no_header", + "fixed_width_two_line", + "html", + "ipac", + "latex", + "no_header", + "rdb", + "rst", + "tab", + ] if file_type not in valid_formats: - raise Exception('Invalid output format specified.') + raise Exception("Invalid output format specified.") # write file write(table, output=output_filename, format=file_type) - - From 0950f63bfc6dd4185946312588568d7ca5359fd0 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Tue, 21 Nov 2023 13:19:19 -0500 Subject: [PATCH 15/37] bugfixes --- orbitize/system.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/orbitize/system.py b/orbitize/system.py index 4244b626..69ec1e48 100644 --- a/orbitize/system.py +++ b/orbitize/system.py @@ -239,10 +239,11 @@ def __init__( # if we're fitting absolute astrometry of the star, create an object that # knows how to compute predicted astrometric motion due to parallax and # proper motion + if (len(self.radec[0]) + len(self.seppa[0])) > 0: - self.stellar_astrom_epochs = self.data_table["epochs"][ - (self.data_table["quant_type"] == "astrom") - & (self.data_table["object_index"] == 0) + self.stellar_astrom_epochs = self.data_table["epoch"][ + (self.data_table["quant_type"] == "radec") + & (self.data_table["object"] == 0) ] alpha0 = self.hipparcos_IAD.alpha0 delta0 = self.hipparcos_IAD.delta0 @@ -654,7 +655,6 @@ def compute_model(self, params_arr, use_rebound=False): model[self.radec[0], 0] += ra_pred model[self.radec[0], 1] += dec_pred - # TODO(@sblunt): check that this is working ok import pdb From eebe42ed5afb70f81f3fd291ef8047de97e04c25 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Tue, 21 Nov 2023 14:24:10 -0800 Subject: [PATCH 16/37] fits running --- orbitize/hipparcos.py | 18 ++++++------------ orbitize/system.py | 10 +++------- 2 files changed, 9 insertions(+), 19 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index a7f8e26d..243e0bf7 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -198,6 +198,7 @@ def __init__( "e_pmDE", "F2", "Sn", + "var", ], ).query_constraints(HIP=self.hip_num)[0] @@ -214,6 +215,8 @@ def __init__( self.solution_type = hip_cat["Sn"][0] f2 = hip_cat["F2"][0] + if self.solution_type == 1: + self.var = hip_cat["var"][0] # [mas] else: # read the Hipparcos best-fit solution from the IAD file @@ -282,10 +285,6 @@ def __init__( self.epochs = epochs.decimalyear self.epochs_mjd = epochs.mjd - # if the star has a type 1 (stochastic) solution, we need to undo the addition of a jitter term in quadrature - if self.solution_type == 1: - self.eps = np.sqrt(self.eps**2 - self.var) - self.hipparcos_plxpm_predictor = PMPlx_Motion( self.epochs_mjd, self.alpha0, @@ -347,13 +346,7 @@ def _save(self, hf): hf.attrs["alphadec0_epoch"] = self.alphadec0_epoch hf.attrs["renormalize_errors"] = self.renormalize_errors - def compute_lnlike( - self, - raoff_model, - deoff_model, - samples, - param_idx, - ): + def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): """ Computes the log likelihood of an orbit model with respect to the Hipparcos IAD. This is added to the likelihoods calculated with @@ -407,7 +400,8 @@ def compute_lnlike( # compute chi2 (Nielsen+ 2020 Eq 7) chi2 = np.sum( - [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], axis=1 + [(dist[:, i] / self.eps) ** 2 for i in np.arange(n_samples)], + axis=1, ) lnlike = -0.5 * chi2 diff --git a/orbitize/system.py b/orbitize/system.py index 69ec1e48..f4336a96 100644 --- a/orbitize/system.py +++ b/orbitize/system.py @@ -650,15 +650,11 @@ def compute_model(self, params_arr, use_rebound=False): # calling AbsAstrom compute_model if len(self.radec[0]) > 0: ra_pred, dec_pred = self.pm_plx_predictor.compute_astrometric_model( - params_arr + params_arr, self.param_idx ) - model[self.radec[0], 0] += ra_pred - model[self.radec[0], 1] += dec_pred - # TODO(@sblunt): check that this is working ok - import pdb - - pdb.set_trace() + model[self.radec[0], 0] += ra_pred.reshape(model[self.radec[0], 0].shape) + model[self.radec[0], 1] += dec_pred.reshape(model[self.radec[0], 0].shape) if n_orbits == 1: model = model.reshape((n_epochs, 2)) From fc50ccf200122bc251a3ac168369f9f8a568a62d Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 27 Nov 2023 08:46:04 -0800 Subject: [PATCH 17/37] bugfix for type 1 solution --- orbitize/hipparcos.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 243e0bf7..045ffcc0 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -245,6 +245,9 @@ def __init__( f2 = solution_details["F2"].values[0] + # if the star has a type 1 (stochastic) solution, we need to undo the addition of a jitter term in quadrature + self.eps = np.sqrt(self.eps**2 - self.var**) + # sol types: 1 = "stochastic solution", which has a 5-param fit but # there were significant residuals. 5 = standard 5-param fit. if self.solution_type not in [1, 5]: From 1267f612cec5288a3ae7bf7905b1319b9dc96202 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 27 Nov 2023 10:39:20 -0800 Subject: [PATCH 18/37] add back in var term for type 1 solutions refitting test --- orbitize/hipparcos.py | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 045ffcc0..513421f1 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -245,9 +245,6 @@ def __init__( f2 = solution_details["F2"].values[0] - # if the star has a type 1 (stochastic) solution, we need to undo the addition of a jitter term in quadrature - self.eps = np.sqrt(self.eps**2 - self.var**) - # sol types: 1 = "stochastic solution", which has a 5-param fit but # there were significant residuals. 5 = standard 5-param fit. if self.solution_type not in [1, 5]: @@ -284,6 +281,9 @@ def __init__( self.R = self.R[good_scans] self.eps = self.eps[good_scans] + # if the star has a type 1 (stochastic) solution, we need to undo the addition of a jitter term in quadrature + self.eps = np.sqrt(self.eps**2 - self.var**2) + epochs = Time(times, format="decimalyear") self.epochs = epochs.decimalyear self.epochs_mjd = epochs.mjd @@ -303,6 +303,9 @@ def __init__( self.eps *= f + # also add back in the var term for type 1 solutions + self.eps = np.sqrt(self.eps**2 + self.var**2) + # reconstruct ephemeris of star given van Leeuwen best-fit (Nielsen+ 2020 Eqs 1-2) [mas] changein_alpha_st = ( self.plx0 From 6a3883315458cb093568c677b91b323f1c771f44 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Wed, 27 Dec 2023 13:04:45 -0800 Subject: [PATCH 19/37] formatting --- orbitize/gaia.py | 125 ++++++++++++++++++++++------------------------- 1 file changed, 59 insertions(+), 66 deletions(-) diff --git a/orbitize/gaia.py b/orbitize/gaia.py index 39974632..f28212ab 100644 --- a/orbitize/gaia.py +++ b/orbitize/gaia.py @@ -5,20 +5,21 @@ from astroquery.gaia import Gaia from astropy import units as u + class GaiaLogProb(object): """ - Class to compute the log probability of an orbit with respect to a single + Class to compute the log probability of an orbit with respect to a single astrometric position point from Gaia. Uses astroquery to look up Gaia astrometric data, and computes log-likelihood. To be used in conjunction with orbitize.hipparcos.HipLogProb; see documentation for that object for more - detail. + detail. Follows Nielsen+ 2020 (studying the orbit of beta Pic b). Note that this class currently only fits for the position of the star in the Gaia epoch, not the star's proper motion. - .. Note:: - + .. Note:: + In orbitize, it is possible to perform a fit to just the Hipparcos IAD, but not to just the Gaia astrometric data. @@ -29,9 +30,9 @@ class currently only fits for the position of the star in the Gaia epoch, all info relevant to Hipparcos IAD fitting dr (str): either 'dr2' or 'edr3' query (bool): if True, queries the Gaia database for astrometry of the - target (requires an internet connection). If False, uses user-input + target (requires an internet connection). If False, uses user-input astrometric values (runs without internet). - gaia_data (dict): see `query` keyword above. If `query` set to False, + gaia_data (dict): see `query` keyword above. If `query` set to False, then user must supply a dictionary of Gaia astometry in the following form: gaia_data = { @@ -43,40 +44,41 @@ class currently only fits for the position of the star in the Gaia epoch, Written: Sarah Blunt, 2021 """ - def __init__(self, gaia_num, hiplogprob, dr='dr2', query=True, gaia_data=None): + def __init__(self, gaia_num, hiplogprob, dr="dr2", query=True, gaia_data=None): self.gaia_num = gaia_num self.hiplogprob = hiplogprob self.dr = dr - if self.dr == 'edr3': + if self.dr == "edr3": self.gaia_epoch = 2016.0 - elif self.dr == 'dr2': + elif self.dr == "dr2": self.gaia_epoch = 2015.5 else: raise ValueError("`dr` must be either `dr2` or `edr3`") self.hipparcos_epoch = 1991.25 - if query: query = """SELECT TOP 1 ra, dec, ra_error, dec_error FROM gaia{}.gaia_source WHERE source_id = {} - """.format(self.dr, self.gaia_num) + """.format( + self.dr, self.gaia_num + ) job = Gaia.launch_job_async(query) gaia_data = job.get_results() - self.ra = gaia_data['ra'] - self.ra_err = gaia_data['ra_error'] - self.dec = gaia_data['dec'] - self.dec_err = gaia_data['dec_error'] + self.ra = gaia_data["ra"] + self.ra_err = gaia_data["ra_error"] + self.dec = gaia_data["dec"] + self.dec_err = gaia_data["dec_error"] - # keep this number on hand for use in lnlike computation + # keep this number on hand for use in lnlike computation self.mas2deg = (u.mas).to(u.degree) - + def _save(self, hf): """ Saves the current object to an hdf5 file @@ -85,91 +87,82 @@ def _save(self, hf): hf (h5py._hl.files.File): a currently open hdf5 file in which to save the object. """ - hf.attrs['gaia_num'] = self.gaia_num - hf.attrs['dr'] = self.dr + hf.attrs["gaia_num"] = self.gaia_num + hf.attrs["dr"] = self.dr self.hiplogprob._save(hf) - def compute_lnlike( - self, raoff_model, deoff_model, samples, param_idx - ): + def compute_lnlike(self, raoff_model, deoff_model, samples, param_idx): """ - Computes the log likelihood of an orbit model with respect to a single - Gaia astrometric point. This is added to the likelihoods calculated with - respect to other data types in ``sampler._logl()``. + Computes the log likelihood of an orbit model with respect to a single + Gaia astrometric point. This is added to the likelihoods calculated with + respect to other data types in ``sampler._logl()``. Args: raoff_model (np.array of float): 2xM primary RA - offsets from the barycenter incurred from orbital motion of - companions (i.e. not from parallactic motion), where M is the + offsets from the barycenter incurred from orbital motion of + companions (i.e. not from parallactic motion), where M is the number of orbits being tested, and raoff_model[0,:] are position predictions at the Hipparcos epoch, and raoff_model[1,:] are position predictions at the Gaia epoch deoff_model (np.array of float): 2xM primary decl - offsets from the barycenter incurred from orbital motion of - companions (i.e. not from parallactic motion), where M is the + offsets from the barycenter incurred from orbital motion of + companions (i.e. not from parallactic motion), where M is the number of orbits being tested, and deoff_model[0,:] are position predictions at the Hipparcos epoch, and deoff_model[1,:] are position predictions at the Gaia epoch - samples (np.array of float): R-dimensional array of fitting - parameters, where R is the number of parameters being fit. Must - be in the same order documented in ``System``. + samples (np.array of float): R-dimensional array of fitting + parameters, where R is the number of parameters being fit. Must + be in the same order documented in ``System``. param_idx: a dictionary matching fitting parameter labels to their - indices in an array of fitting parameters (generally + indices in an array of fitting parameters (generally set to System.basis.param_idx). - + Returns: - np.array of float: array of length M, where M is the number of input - orbits, representing the log likelihood of each orbit with + np.array of float: array of length M, where M is the number of input + orbits, representing the log likelihood of each orbit with respect to the Gaia position measurement. """ - alpha_H0 = samples[param_idx['alpha0']] # [deg] - pm_ra = samples[param_idx['pm_ra']] # [mas/yr] - delta_alpha_from_pm = pm_ra * (self.gaia_epoch - self.hipparcos_epoch) # [mas] + alpha_H0 = samples[param_idx["alpha0"]] # [deg] + pm_ra = samples[param_idx["pm_ra"]] # [mas/yr] + delta_alpha_from_pm = pm_ra * (self.gaia_epoch - self.hipparcos_epoch) # [mas] - delta_H0 = samples[param_idx['delta0']] # [deg] - pm_dec = samples[param_idx['pm_dec']] # [mas/yr] - delta_delta_from_pm = pm_dec * (self.gaia_epoch - self.hipparcos_epoch) # [mas] + delta_H0 = samples[param_idx["delta0"]] # [deg] + pm_dec = samples[param_idx["pm_dec"]] # [mas/yr] + delta_delta_from_pm = pm_dec * (self.gaia_epoch - self.hipparcos_epoch) # [mas] # difference in position due to orbital motion between Hipparcos & Gaia epochs - alpha_diff_orbit = (raoff_model[1,:] - raoff_model[0,:]) # [mas] - dec_diff_orbit = (deoff_model[1,:] - deoff_model[0,:]) + alpha_diff_orbit = raoff_model[1, :] - raoff_model[0, :] # [mas] + dec_diff_orbit = deoff_model[1, :] - deoff_model[0, :] # RA model (not in tangent plane) - alpha_model = ( # [deg] - self.hiplogprob.alpha0 + self.mas2deg * ( - alpha_H0 + - delta_alpha_from_pm + - alpha_diff_orbit - + alpha_model = self.hiplogprob.alpha0 + self.mas2deg * ( # [deg] + alpha_H0 + + delta_alpha_from_pm + + alpha_diff_orbit # divide by cos(dec) to undo projection onto tangent plane - ) / np.cos(np.radians(self.hiplogprob.delta0)) - ) + ) / np.cos(np.radians(self.hiplogprob.delta0)) alpha_data = self.ra # again divide by cos(dec) to undo projection onto tangent plane - alpha_unc = self.mas2deg * self.ra_err / np.cos(np.radians(self.hiplogprob.delta0)) + alpha_unc = ( + self.mas2deg * self.ra_err / np.cos(np.radians(self.hiplogprob.delta0)) + ) # technically this is an angle so we should wrap it, but the precision # of Hipparcos and Gaia is so good that we'll never have to. - alpha_resid = (alpha_model - alpha_data) - alpha_chi2 = (alpha_resid / alpha_unc)**2 - - delta_model = ( # [deg] - self.hiplogprob.delta0 + self.mas2deg * ( - delta_H0 + - delta_delta_from_pm + - dec_diff_orbit - ) + alpha_resid = alpha_model - alpha_data + alpha_chi2 = (alpha_resid / alpha_unc) ** 2 + + delta_model = self.hiplogprob.delta0 + self.mas2deg * ( # [deg] + delta_H0 + delta_delta_from_pm + dec_diff_orbit ) dec_data = self.dec delta_unc = self.mas2deg * self.dec_err - delta_chi2 = ((delta_model - dec_data) / delta_unc)**2 + delta_chi2 = ((delta_model - dec_data) / delta_unc) ** 2 chi2 = alpha_chi2 + delta_chi2 - lnlike = -0.5 * chi2 + lnlike = -0.5 * chi2 return lnlike - - From e1aae01933100b6890a05633f5a83c3c90a83e36 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Wed, 27 Dec 2023 13:18:22 -0800 Subject: [PATCH 20/37] update label on corner plot to me mu_alpha* --- orbitize/plot.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/orbitize/plot.py b/orbitize/plot.py index c3936092..8c226105 100644 --- a/orbitize/plot.py +++ b/orbitize/plot.py @@ -82,7 +82,7 @@ def plot_corner(results, param_list=None, **corner_kwargs): 'mtot': '$M_T$ [M$_{{\\odot}}$]', 'm0': '$M_0$ [M$_{{\\odot}}$]', 'm': '$M_{0}$ [M$_{{\\rm Jup}}$]', - 'pm_ra': '$\\mu_{{\\alpha}}$ [mas/yr]', + 'pm_ra': '$\\mu_{{\\alpha^{{*}}}}$ [mas/yr]', 'pm_dec': '$\\mu_{{\\delta}}$ [mas/yr]', 'alpha0': '$\\alpha^{{*}}_{{0}}$ [mas]', 'delta0': '$\\delta_0$ [mas]', From 2e54a39202e8082b3d3146fe52f0458c5cd8cd51 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 29 Dec 2023 17:08:11 -0800 Subject: [PATCH 21/37] pep8 --- orbitize/lnlike.py | 94 ++++++++++++++++++++++++++++------------------ 1 file changed, 58 insertions(+), 36 deletions(-) diff --git a/orbitize/lnlike.py b/orbitize/lnlike.py index f3f1c1c2..0609c6bc 100644 --- a/orbitize/lnlike.py +++ b/orbitize/lnlike.py @@ -6,7 +6,9 @@ """ -def chi2_lnlike(data, errors, corrs, model, jitter, seppa_indices, chi2_type='standard'): +def chi2_lnlike( + data, errors, corrs, model, jitter, seppa_indices, chi2_type="standard" +): """Compute Log of the chi2 Likelihood Args: @@ -56,55 +58,63 @@ def chi2_lnlike(data, errors, corrs, model, jitter, seppa_indices, chi2_type='st jitter.shape = (1,) + jitter.shape third_dim = False - if chi2_type == 'standard': - residual = (data - model) + if chi2_type == "standard": + residual = data - model # if there are PA values, we should take the difference modulo angle wrapping if np.size(seppa_indices) > 0: - residual[:, seppa_indices, 1] = (residual[:, seppa_indices, 1] + 180.) % 360. - 180. + residual[:, seppa_indices, 1] = ( + residual[:, seppa_indices, 1] + 180.0 + ) % 360.0 - 180.0 - sigma2 = errors**2 + jitter**2 # diagonal error term + sigma2 = errors**2 + jitter**2 # diagonal error term if corrs is None: # including the second term of chi2 # the sqrt() in the log() means we don't need to multiply by 0.5 - chi2 = -0.5 * residual**2 / sigma2 - np.log(np.sqrt(2*np.pi*sigma2)) + chi2 = -0.5 * residual**2 / sigma2 - np.log(np.sqrt(2 * np.pi * sigma2)) else: has_no_corr = np.isnan(corrs) yes_corr = np.where(~has_no_corr)[0] no_corr = np.where(has_no_corr)[0] chi2 = np.zeros(residual.shape) - chi2[:,no_corr] = -0.5 * residual[:,no_corr]**2 / sigma2[:,no_corr] - np.log(np.sqrt(2*np.pi*sigma2[:,no_corr])) + chi2[:, no_corr] = -0.5 * residual[:, no_corr] ** 2 / sigma2[ + :, no_corr + ] - np.log(np.sqrt(2 * np.pi * sigma2[:, no_corr])) # analytical solution for 2x2 covariance matrix # chi2 = -0.5 * (R^T C^-1 R + ln(det_C)) - chi2[:,yes_corr] = _chi2_2x2cov(residual[:,yes_corr], sigma2[:,yes_corr], corrs[yes_corr]) + chi2[:, yes_corr] = _chi2_2x2cov( + residual[:, yes_corr], sigma2[:, yes_corr], corrs[yes_corr] + ) - elif chi2_type == 'log': - #using the log version of chi squared - #split the data up into sep, pa, and rv data using seppa_indices and quant + elif chi2_type == "log": + # using the log version of chi squared + # split the data up into sep, pa, and rv data using seppa_indices and quant sep_data = data[seppa_indices, 0] sep_model = model[:, seppa_indices, 0] sep_error = errors[seppa_indices, 0] pa_data = data[seppa_indices, 1] pa_model = model[:, seppa_indices, 1] - pa_error = errors[seppa_indices, 1]*np.pi/180 + pa_error = errors[seppa_indices, 1] * np.pi / 180 - #calculating sep chi squared - sep_chi2_log = (np.log(sep_data)-np.log(sep_model))**2/(sep_error/sep_data)**2 + # calculating sep chi squared + sep_chi2_log = (np.log(sep_data) - np.log(sep_model)) ** 2 / ( + sep_error / sep_data + ) ** 2 - #calculting pa chi squared Log - pa_resid = (pa_model-pa_data +180.) % 360. - 180. - pa_chi2_log = 2*(1-np.cos(pa_resid*np.pi/180))/pa_error**2 + # calculting pa chi squared Log + pa_resid = (pa_model - pa_data + 180.0) % 360.0 - 180.0 + pa_chi2_log = 2 * (1 - np.cos(pa_resid * np.pi / 180)) / pa_error**2 - residual = (data - model) - sigma2 = errors**2 + jitter**2 # diagonal error term + residual = data - model + sigma2 = errors**2 + jitter**2 # diagonal error term - chi2 = residual**2/sigma2 - chi2[:,seppa_indices,0] = sep_chi2_log - chi2[:,seppa_indices,1] = pa_chi2_log + chi2 = residual**2 / sigma2 + chi2[:, seppa_indices, 0] = sep_chi2_log + chi2[:, seppa_indices, 1] = pa_chi2_log - chi2 = -0.5 * chi2 - np.log(np.sqrt(2*np.pi*sigma2)) + chi2 = -0.5 * chi2 - np.log(np.sqrt(2 * np.pi * sigma2)) if third_dim: # move M dimension back to the last axis @@ -118,6 +128,7 @@ def chi2_lnlike(data, errors, corrs, model, jitter, seppa_indices, chi2_type='st return chi2 + def _chi2_2x2cov(residual, var, corrs): """ Analytical solution for when quant1/quant2 have a covariance term @@ -135,12 +146,18 @@ def _chi2_2x2cov(residual, var, corrs): and the second dimension is 0 """ - det_C = var[:,:,0] * var[:,:,1] * (1 - corrs**2) + det_C = var[:, :, 0] * var[:, :, 1] * (1 - corrs**2) - covs = corrs * np.sqrt(var[:,:,0]) * np.sqrt(var[:,:,1]) - chi2 = (residual[:,:,0]**2 * var[:,:,1] + residual[:,:,1]**2 * var[:,:,0] - 2 * residual[:,:,0] * residual[:,:,1] * covs)/det_C + covs = corrs * np.sqrt(var[:, :, 0]) * np.sqrt(var[:, :, 1]) + chi2 = ( + residual[:, :, 0] ** 2 * var[:, :, 1] + + residual[:, :, 1] ** 2 * var[:, :, 0] + - 2 * residual[:, :, 0] * residual[:, :, 1] * covs + ) / det_C - chi2 += np.log(det_C) + 2 * np.log(2*np.pi) # extra factor of 2 since quant1 and quant2 in each element of chi2. + chi2 += np.log(det_C) + 2 * np.log( + 2 * np.pi + ) # extra factor of 2 since quant1 and quant2 in each element of chi2. chi2 *= -0.5 @@ -148,18 +165,19 @@ def _chi2_2x2cov(residual, var, corrs): return chi2 + def chi2_norm_term(errors, corrs): """ - Return only the normalization term of the Gaussian likelihood: + Return only the normalization term of the Gaussian likelihood: .. math:: - -log(\\sqrt(2\\pi*error^2)) + -log(\\sqrt(2\\pi*error^2)) - or + or .. math:: - + -0.5 * (log(det(C)) + N * log(2\\pi)) Args: @@ -174,16 +192,20 @@ def chi2_norm_term(errors, corrs): sigma2 = errors**2 if corrs is None: - norm = -np.log(np.sqrt(2*np.pi*sigma2)) + norm = -np.log(np.sqrt(2 * np.pi * sigma2)) else: has_no_corr = np.isnan(corrs) yes_corr = np.where(~has_no_corr)[0] no_corr = np.where(has_no_corr)[0] norm = np.zeros(errors.shape) - norm[no_corr] = -np.log(np.sqrt(2*np.pi*sigma2[no_corr])) - - det_C = sigma2[yes_corr[0], 0] * sigma2[yes_corr[0],1] * (1 - corrs[yes_corr]**2) - norm[yes_corr,0] = -0.5 * (det_C + 2 * np.log(2 * np.pi)) # extra factor of 2 since quant1 and quant2 in each element of chi2. + norm[no_corr] = -np.log(np.sqrt(2 * np.pi * sigma2[no_corr])) + + det_C = ( + sigma2[yes_corr[0], 0] * sigma2[yes_corr[0], 1] * (1 - corrs[yes_corr] ** 2) + ) + norm[yes_corr, 0] = -0.5 * ( + det_C + 2 * np.log(2 * np.pi) + ) # extra factor of 2 since quant1 and quant2 in each element of chi2. return np.sum(norm) From ee5720ec10ed70608d7a32b6ec7610e51f9b75a9 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 29 Dec 2023 17:09:05 -0800 Subject: [PATCH 22/37] remove unused imports --- orbitize/lnlike.py | 1 - orbitize/system.py | 1 - 2 files changed, 2 deletions(-) diff --git a/orbitize/lnlike.py b/orbitize/lnlike.py index 0609c6bc..8713186c 100644 --- a/orbitize/lnlike.py +++ b/orbitize/lnlike.py @@ -1,5 +1,4 @@ import numpy as np -import pdb """ This module contains functions for computing log(likelihood). diff --git a/orbitize/system.py b/orbitize/system.py index f4336a96..4d9c3e37 100644 --- a/orbitize/system.py +++ b/orbitize/system.py @@ -1,6 +1,5 @@ import numpy as np from orbitize import nbody, kepler, basis, hipparcos -from astropy import table class System(object): From 3b1d84e17bba628b82d54fd8f68047a521e40335 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 29 Dec 2023 17:09:48 -0800 Subject: [PATCH 23/37] pep8 --- orbitize/sampler.py | 651 ++++++++++++++++++++++++++++---------------- 1 file changed, 415 insertions(+), 236 deletions(-) diff --git a/orbitize/sampler.py b/orbitize/sampler.py index ca7fe9af..0c3ea1b5 100644 --- a/orbitize/sampler.py +++ b/orbitize/sampler.py @@ -18,6 +18,7 @@ import orbitize.results import matplotlib.pyplot as plt + class Sampler(abc.ABC): """ Abstract base class for sampler objects. @@ -26,7 +27,9 @@ class Sampler(abc.ABC): Written: Sarah Blunt, 2018 """ - def __init__(self, system, like='chi2_lnlike', custom_lnlike=None, chi2_type='standard'): + def __init__( + self, system, like="chi2_lnlike", custom_lnlike=None, chi2_type="standard" + ): self.system = system # check if `like` is a string or a function @@ -38,7 +41,7 @@ def __init__(self, system, like='chi2_lnlike', custom_lnlike=None, chi2_type='st self.custom_lnlike = custom_lnlike self.chi2_type = chi2_type # check if need to handle covariances - self.has_corr = np.any(~np.isnan(self.system.data_table['quant12_corr'])) + self.has_corr = np.any(~np.isnan(self.system.data_table["quant12_corr"])) @abc.abstractmethod def run_sampler(self, total_orbits): @@ -64,15 +67,18 @@ def _logl(self, params): model, jitter = self.system.compute_model(params) # fold data/errors to match model output shape. In particualr, quant1/quant2 are interleaved - data = np.array([self.system.data_table['quant1'], self.system.data_table['quant2']]).T + data = np.array( + [self.system.data_table["quant1"], self.system.data_table["quant2"]] + ).T # errors below required for lnlike function below - errs = np.array([self.system.data_table['quant1_err'], - self.system.data_table['quant2_err']]).T + errs = np.array( + [self.system.data_table["quant1_err"], self.system.data_table["quant2_err"]] + ).T # covariances/correlations, if applicable # we're doing this check now because the likelihood computation is much faster if we can skip it. if self.has_corr: - corrs = self.system.data_table['quant12_corr'] + corrs = self.system.data_table["quant12_corr"] else: corrs = None @@ -80,80 +86,93 @@ def _logl(self, params): seppa_indices = self.system.all_seppa # compute lnlike - lnlikes = self.lnlike(data, errs, corrs, model, jitter, seppa_indices, chi2_type=self.chi2_type) + lnlikes = self.lnlike( + data, errs, corrs, model, jitter, seppa_indices, chi2_type=self.chi2_type + ) # return sum of lnlikes (aka product of likeliehoods) lnlikes_sum = np.nansum(lnlikes, axis=(0, 1)) if self.custom_lnlike is not None: lnlikes_sum += self.custom_lnlike(params) - - if self.system.hipparcos_IAD is not None: + if self.system.hipparcos_IAD is not None: # compute Ra/Dec predictions at the Hipparcos IAD epochs raoff_model, deoff_model, _ = self.system.compute_all_orbits( params, epochs=self.system.hipparcos_IAD.epochs_mjd - ) + ) - raoff_model_hip_epoch, deoff_model_hip_epoch, _ = self.system.compute_all_orbits( - params, epochs=Time([1991.25], format='decimalyear').mjd - ) + ( + raoff_model_hip_epoch, + deoff_model_hip_epoch, + _, + ) = self.system.compute_all_orbits( + params, epochs=Time([1991.25], format="decimalyear").mjd + ) # subtract off position of star at reference Hipparcos epoch - raoff_model[:,0,:] -= raoff_model_hip_epoch[:,0,:] - deoff_model[:,0,:] -= deoff_model_hip_epoch[:,0,:] + raoff_model[:, 0, :] -= raoff_model_hip_epoch[:, 0, :] + deoff_model[:, 0, :] -= deoff_model_hip_epoch[:, 0, :] # select body 0 raoff/deoff predictions & feed into Hip IAD lnlike fn lnlikes_sum += self.system.hipparcos_IAD.compute_lnlike( - raoff_model[:,0,:], deoff_model[:,0,:], params, self.system.param_idx + raoff_model[:, 0, :], + deoff_model[:, 0, :], + params, + self.system.param_idx, ) if self.system.gaia is not None: - gaiahip_epochs = Time( - [self.system.gaia.hipparcos_epoch, self.system.gaia.gaia_epoch], - format='decimalyear' + [self.system.gaia.hipparcos_epoch, self.system.gaia.gaia_epoch], + format="decimalyear", ).mjd # compute Ra/Dec predictions at the Gaia epoch raoff_model, deoff_model, _ = self.system.compute_all_orbits( params, epochs=gaiahip_epochs - ) + ) # select body 0 raoff/deoff predictions & feed into Gaia module lnlike fn lnlikes_sum += self.system.gaia.compute_lnlike( - raoff_model[:,0,:], deoff_model[:,0,:], params, self.system.param_idx + raoff_model[:, 0, :], + deoff_model[:, 0, :], + params, + self.system.param_idx, ) return lnlikes_sum -class OFTI(Sampler,): +class OFTI( + Sampler, +): """ OFTI Sampler Args: system (system.System): ``system.System`` object like (string): name of likelihood function in ``lnlike.py`` - custom_lnlike (func): ability to include an addition custom likelihood - function in the fit. The function looks like + custom_lnlike (func): ability to include an addition custom likelihood + function in the fit. The function looks like ``clnlikes = custon_lnlike(params)`` where ``params`` is a RxM array - of fitting parameters, where R is the number of orbital paramters + of fitting parameters, where R is the number of orbital paramters (can be passed in system.compute_model()), - and M is the number of orbits we need model predictions for. + and M is the number of orbits we need model predictions for. It returns ``clnlikes`` which is an array of length M, or it can be a single float if M = 1. Written: Isabel Angelo, Sarah Blunt, Logan Pearce, 2018 """ - def __init__(self, system, like='chi2_lnlike', custom_lnlike=None,chi2_type='standard'): - super(OFTI, self).__init__(system, like=like, chi2_type=chi2_type, custom_lnlike=custom_lnlike) + def __init__( + self, system, like="chi2_lnlike", custom_lnlike=None, chi2_type="standard" + ): + super(OFTI, self).__init__( + system, like=like, chi2_type=chi2_type, custom_lnlike=custom_lnlike + ) - if ( - (self.system.hipparcos_IAD is not None) or - (len(self.system.rv[0] > 0)) - ): + if (self.system.hipparcos_IAD is not None) or (len(self.system.rv[0] > 0)): raise NotImplementedError( """ You can only use OFTI with relative astrometry measurements @@ -172,38 +191,63 @@ def __init__(self, system, like='chi2_lnlike', custom_lnlike=None,chi2_type='sta if len(self.system.radec[body_num]) > 0: # only print the warning once. if not convert_warning_print: - print('Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_table.') + print( + "Converting ra/dec data points in data_table to sep/pa. Original data are stored in input_table." + ) convert_warning_print = True self.system.convert_data_table_radec2seppa(body_num=body_num) # these are of type astropy.table.column - self.sep_observed = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'seppa')]['quant1'].copy() - self.pa_observed = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'seppa')]['quant2'].copy() - self.sep_err = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'seppa')]['quant1_err'].copy() - self.pa_err = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'seppa')]['quant2_err'].copy() - self.meas_object = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'seppa')]['object'].copy() + self.sep_observed = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "seppa") + ]["quant1"].copy() + self.pa_observed = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "seppa") + ]["quant2"].copy() + self.sep_err = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "seppa") + ]["quant1_err"].copy() + self.pa_err = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "seppa") + ]["quant2_err"].copy() + self.meas_object = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "seppa") + ]["object"].copy() # this is OK, ONLY IF we are only using self.epochs for computing RA/Dec from Keplerian elements - self.epochs = np.array(self.system.data_table['epoch']) - self.system.tau_ref_epoch + self.epochs = ( + np.array(self.system.data_table["epoch"]) - self.system.tau_ref_epoch + ) # distinguishing all epochs from sep/pa epochs - self.epochs_seppa = np.array(self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'seppa')]['epoch']) - self.system.tau_ref_epoch + self.epochs_seppa = ( + np.array( + self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "seppa") + ]["epoch"] + ) + - self.system.tau_ref_epoch + ) - self.epochs_rv = np.array(self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'rv')]['epoch']) - self.system.tau_ref_epoch + self.epochs_rv = ( + np.array( + self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "rv") + ]["epoch"] + ) + - self.system.tau_ref_epoch + ) # choose scale-and-rotate epoch # for multiplanet support, this is now a list. # For each planet, we find the measurment for it that corresponds to the smallest astrometric error self.epoch_idx = [] - min_sep_indices = np.argsort(self.sep_err) # indices of sep err sorted from smallest to higheset - min_sep_indices_body = self.meas_object[min_sep_indices] # the corresponding body_num that these sorted measurements correspond to + min_sep_indices = np.argsort( + self.sep_err + ) # indices of sep err sorted from smallest to higheset + min_sep_indices_body = self.meas_object[ + min_sep_indices + ] # the corresponding body_num that these sorted measurements correspond to for i in range(self.system.num_secondary_bodies): body_num = i + 1 this_object_meas = np.where(min_sep_indices_body == body_num)[0] @@ -212,17 +256,25 @@ def __init__(self, system, like='chi2_lnlike', custom_lnlike=None,chi2_type='sta self.epoch_idx.append(None) continue # get the smallest measurement belonging to this body - best_epoch = min_sep_indices[this_object_meas][0] # already sorted by argsort + best_epoch = min_sep_indices[this_object_meas][ + 0 + ] # already sorted by argsort self.epoch_idx.append(best_epoch) - if len(self.system.rv[0]) > 0 and self.system.fit_secondary_mass: # checking for RV data - self.rv_observed = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'rv')]['quant1'].copy() - self.rv_err = self.system.data_table[np.where( - self.system.data_table['quant_type'] == 'rv')]['quant1_err'].copy() - - self.epoch_rv_idx = [np.argmin(self.rv_observed), - np.argmax(self.rv_observed)] + if ( + len(self.system.rv[0]) > 0 and self.system.fit_secondary_mass + ): # checking for RV data + self.rv_observed = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "rv") + ]["quant1"].copy() + self.rv_err = self.system.data_table[ + np.where(self.system.data_table["quant_type"] == "rv") + ]["quant1_err"].copy() + + self.epoch_rv_idx = [ + np.argmin(self.rv_observed), + np.argmax(self.rv_observed), + ] # create an empty results object self.results = orbitize.results.Results( @@ -230,7 +282,7 @@ def __init__(self, system, like='chi2_lnlike', custom_lnlike=None,chi2_type='sta sampler_name=self.__class__.__name__, post=None, lnlike=None, - version_number=orbitize.__version__ + version_number=orbitize.__version__, ) def prepare_samples(self, num_samples): @@ -252,62 +304,80 @@ def prepare_samples(self, num_samples): for i in range(len(self.priors)): if hasattr(self.priors[i], "draw_samples"): samples[i, :] = self.priors[i].draw_samples(num_samples) - else: # param is fixed & has no prior + else: # param is fixed & has no prior samples[i, :] = self.priors[i] * np.ones(num_samples) # Make Converison to Standard Basis: samples = self.system.basis.to_standard_basis(samples) - - for body_num in np.arange(self.system.num_secondary_bodies) + 1: - sma = samples[self.system.basis.standard_basis_idx['sma{}'.format(body_num)],:] - ecc = samples[self.system.basis.standard_basis_idx['ecc{}'.format(body_num)],:] - inc = samples[self.system.basis.standard_basis_idx['inc{}'.format(body_num)],:] - argp = samples[self.system.basis.standard_basis_idx['aop{}'.format(body_num)],:] - lan = samples[self.system.basis.standard_basis_idx['pan{}'.format(body_num)],:] - tau = samples[self.system.basis.standard_basis_idx['tau{}'.format(body_num)],:] - plx = samples[self.system.basis.standard_basis_idx['plx'],:] + for body_num in np.arange(self.system.num_secondary_bodies) + 1: + sma = samples[ + self.system.basis.standard_basis_idx["sma{}".format(body_num)], : + ] + ecc = samples[ + self.system.basis.standard_basis_idx["ecc{}".format(body_num)], : + ] + inc = samples[ + self.system.basis.standard_basis_idx["inc{}".format(body_num)], : + ] + argp = samples[ + self.system.basis.standard_basis_idx["aop{}".format(body_num)], : + ] + lan = samples[ + self.system.basis.standard_basis_idx["pan{}".format(body_num)], : + ] + tau = samples[ + self.system.basis.standard_basis_idx["tau{}".format(body_num)], : + ] + plx = samples[self.system.basis.standard_basis_idx["plx"], :] if self.system.fit_secondary_mass: - m0 = samples[self.system.basis.standard_basis_idx['m0'],:] - m1 = samples[self.system.basis.standard_basis_idx['m{}'.format(body_num)],:] + m0 = samples[self.system.basis.standard_basis_idx["m0"], :] + m1 = samples[ + self.system.basis.standard_basis_idx["m{}".format(body_num)], : + ] mtot = m0 + m1 else: - mtot = samples[self.system.basis.standard_basis_idx['mtot'],:] + mtot = samples[self.system.basis.standard_basis_idx["mtot"], :] m1 = None - + min_epoch = self.epoch_idx[body_num - 1] if min_epoch is None: # Don't need to rotate and scale if no astrometric measurments for this body. Brute force rejection sampling continue period_prescale = np.sqrt( - 4*np.pi**2*(sma*u.AU)**3/(consts.G*(mtot*u.Msun)) + 4 * np.pi**2 * (sma * u.AU) ** 3 / (consts.G * (mtot * u.Msun)) ) period_prescale = period_prescale.to(u.day).value - meananno = self.epochs[min_epoch]/period_prescale - tau + meananno = self.epochs[min_epoch] / period_prescale - tau # compute sep/PA of generated orbits ra, dec, _ = orbitize.kepler.calc_orbit( - self.epochs[min_epoch], sma, ecc, inc, argp, lan, tau, plx, mtot, - tau_ref_epoch=0, mass_for_Kamp=m1 + self.epochs[min_epoch], + sma, + ecc, + inc, + argp, + lan, + tau, + plx, + mtot, + tau_ref_epoch=0, + mass_for_Kamp=m1, ) - sep, pa = orbitize.system.radec2seppa(ra, dec) # sep[mas], PA[deg] + sep, pa = orbitize.system.radec2seppa(ra, dec) # sep[mas], PA[deg] # generate Gaussian offsets from observational uncertainties - sep_offset = np.random.normal( - 0, self.sep_err[min_epoch], size=num_samples - ) - pa_offset = np.random.normal( - 0, self.pa_err[min_epoch], size=num_samples - ) + sep_offset = np.random.normal(0, self.sep_err[min_epoch], size=num_samples) + pa_offset = np.random.normal(0, self.pa_err[min_epoch], size=num_samples) # calculate correction factors - sma_corr = (sep_offset + self.sep_observed[min_epoch])/sep - lan_corr = (pa_offset + self.pa_observed[min_epoch] - pa) + sma_corr = (sep_offset + self.sep_observed[min_epoch]) / sep + lan_corr = pa_offset + self.pa_observed[min_epoch] - pa # perform scale-and-rotate - sma *= sma_corr # [AU] - lan += np.radians(lan_corr) # [rad] + sma *= sma_corr # [AU] + lan += np.radians(lan_corr) # [rad] lan = (lan + 2 * np.pi) % (2 * np.pi) if self.system.restrict_angle_ranges: @@ -316,17 +386,25 @@ def prepare_samples(self, num_samples): lan[lan >= np.pi] -= np.pi period_new = np.sqrt( - 4*np.pi**2*(sma*u.AU)**3/(consts.G*(mtot*u.Msun)) + 4 * np.pi**2 * (sma * u.AU) ** 3 / (consts.G * (mtot * u.Msun)) ) period_new = period_new.to(u.day).value - tau = (self.epochs[min_epoch]/period_new - meananno) % 1 + tau = (self.epochs[min_epoch] / period_new - meananno) % 1 # updates samples with new values of sma, pan, tau - samples[self.system.basis.standard_basis_idx['sma{}'.format(body_num)],:] = sma - samples[self.system.basis.standard_basis_idx['aop{}'.format(body_num)],:] = argp - samples[self.system.basis.standard_basis_idx['pan{}'.format(body_num)],:] = lan - samples[self.system.basis.standard_basis_idx['tau{}'.format(body_num)],:] = tau + samples[ + self.system.basis.standard_basis_idx["sma{}".format(body_num)], : + ] = sma + samples[ + self.system.basis.standard_basis_idx["aop{}".format(body_num)], : + ] = argp + samples[ + self.system.basis.standard_basis_idx["pan{}".format(body_num)], : + ] = lan + samples[ + self.system.basis.standard_basis_idx["tau{}".format(body_num)], : + ] = tau return samples @@ -352,34 +430,32 @@ def reject(self, samples): lnp = self._logl(samples) # we just want the chi2 term for rejection, so compute the Gaussian normalization term and remove it - errs = np.array([self.system.data_table['quant1_err'], - self.system.data_table['quant2_err']]).T + errs = np.array( + [self.system.data_table["quant1_err"], self.system.data_table["quant2_err"]] + ).T if self.has_corr: - corrs = self.system.data_table['quant12_corr'] + corrs = self.system.data_table["quant12_corr"] else: corrs = None lnp_scaled = lnp - orbitize.lnlike.chi2_norm_term(errs, corrs) # account for user-set priors on PAN that were destroyed by scale-and-rotate for body_num in np.arange(self.system.num_secondary_bodies) + 1: - - pan_idx = self.system.basis.standard_basis_idx['pan{}'.format(body_num)] + pan_idx = self.system.basis.standard_basis_idx["pan{}".format(body_num)] pan_prior = self.system.sys_priors[pan_idx] if pan_prior is not orbitize.priors.UniformPrior: - # apply PAN prior - lnp_scaled += pan_prior.compute_lnprob(samples[pan_idx,:]) + lnp_scaled += pan_prior.compute_lnprob(samples[pan_idx, :]) # prior is uniform but with different bounds that OFTI expects elif (pan_prior.minval != 0) or ( - (pan_prior.maxval != np.pi) or (pan_prior.maxval != 2*np.pi) + (pan_prior.maxval != np.pi) or (pan_prior.maxval != 2 * np.pi) ): - samples_outside_pan_prior = np.where( - (samples[pan_idx,:] < pan_prior.minval) or - (samples[pan_idx,:] > pan_prior.maxval) + (samples[pan_idx, :] < pan_prior.minval) + or (samples[pan_idx, :] > pan_prior.maxval) )[0] lnp_scaled[samples_outside_pan_prior] = -np.inf @@ -392,7 +468,9 @@ def reject(self, samples): return saved_orbits, lnlikes - def _sampler_process(self, output, total_orbits, num_samples=10000, Value=0, lock=None): + def _sampler_process( + self, output, total_orbits, num_samples=10000, Value=0, lock=None + ): """ Runs OFTI until it finds the number of total accepted orbits desired. Meant to be called by run_sampler. @@ -424,7 +502,6 @@ def _sampler_process(self, output, total_orbits, num_samples=10000, Value=0, loc # add orbits to `output_orbits` until `total_orbits` are saved while n_orbits_saved < total_orbits: - samples = self.prepare_samples(num_samples) accepted_orbits, lnlikes = self.reject(samples) @@ -433,9 +510,12 @@ def _sampler_process(self, output, total_orbits, num_samples=10000, Value=0, loc else: n_accepted = len(accepted_orbits) maxindex2save = np.min([n_accepted, total_orbits - n_orbits_saved]) - output_orbits[n_orbits_saved: n_orbits_saved + - n_accepted] = accepted_orbits[0:maxindex2save] - output_lnlikes[n_orbits_saved: n_orbits_saved+n_accepted] = lnlikes[0:maxindex2save] + output_orbits[ + n_orbits_saved : n_orbits_saved + n_accepted + ] = accepted_orbits[0:maxindex2save] + output_lnlikes[n_orbits_saved : n_orbits_saved + n_accepted] = lnlikes[ + 0:maxindex2save + ] n_orbits_saved += maxindex2save # add to the value of the global variable @@ -462,27 +542,27 @@ def run_sampler(self, total_orbits, num_samples=10000, num_cores=None): """ - if num_cores!=1: - if num_cores==None: - num_cores=mp.cpu_count() - - results=[] - # orbits_saved is a global counter for the number of orbits generated - orbits_saved=mp.Value('i',0) - - manager = mp.Manager() + if num_cores != 1: + if num_cores == None: + num_cores = mp.cpu_count() + + results = [] + # orbits_saved is a global counter for the number of orbits generated + orbits_saved = mp.Value("i", 0) + + manager = mp.Manager() output = manager.Queue() # setup the processes lock = mp.Lock() - nrun_per_core = int(np.ceil(float(total_orbits)/float(num_cores))) + nrun_per_core = int(np.ceil(float(total_orbits) / float(num_cores))) processes = [ mp.Process( target=self._sampler_process, - args=(output, nrun_per_core, num_samples, - orbits_saved, lock) - ) for x in range(num_cores) + args=(output, nrun_per_core, num_samples, orbits_saved, lock), + ) + for x in range(num_cores) ] # start the processes @@ -491,10 +571,15 @@ def run_sampler(self, total_orbits, num_samples=10000, num_cores=None): # print out the number of orbits generated every second while orbits_saved.value < total_orbits: - print(str(orbits_saved.value)+'/'+str(total_orbits)+' orbits found', end='\r') + print( + str(orbits_saved.value) + "/" + str(total_orbits) + " orbits found", + end="\r", + ) time.sleep(0.1) - print(str(total_orbits)+'/'+str(total_orbits)+' orbits found', end='\r') + print( + str(total_orbits) + "/" + str(total_orbits) + " orbits found", end="\r" + ) # join the processes for p in processes: @@ -510,14 +595,11 @@ def run_sampler(self, total_orbits, num_samples=10000, num_cores=None): for p in results: num_to_fill = np.min([len(p[0]), total_orbits - pos]) - output_orbits[pos:pos+num_to_fill] = p[0][0:num_to_fill] - output_lnlikes[pos:pos+num_to_fill] = p[1][0:num_to_fill] + output_orbits[pos : pos + num_to_fill] = p[0][0:num_to_fill] + output_lnlikes[pos : pos + num_to_fill] = p[1][0:num_to_fill] pos += num_to_fill - self.results.add_samples( - np.array(output_orbits), - output_lnlikes - ) + self.results.add_samples(np.array(output_orbits), output_lnlikes) return output_orbits else: @@ -537,19 +619,21 @@ def run_sampler(self, total_orbits, num_samples=10000, num_cores=None): n_accepted = len(accepted_orbits) maxindex2save = np.min([n_accepted, total_orbits - n_orbits_saved]) - output_orbits[n_orbits_saved: n_orbits_saved + - n_accepted] = accepted_orbits[0:maxindex2save] - output_lnlikes[n_orbits_saved: n_orbits_saved + - n_accepted] = lnlikes[0:maxindex2save] + output_orbits[ + n_orbits_saved : n_orbits_saved + n_accepted + ] = accepted_orbits[0:maxindex2save] + output_lnlikes[ + n_orbits_saved : n_orbits_saved + n_accepted + ] = lnlikes[0:maxindex2save] n_orbits_saved += maxindex2save # print progress statement - print(str(n_orbits_saved)+'/'+str(total_orbits)+' orbits found', end='\r') + print( + str(n_orbits_saved) + "/" + str(total_orbits) + " orbits found", + end="\r", + ) - self.results.add_samples( - np.array(output_orbits), - output_lnlikes - ) + self.results.add_samples(np.array(output_orbits), output_lnlikes) return output_orbits @@ -564,31 +648,40 @@ class MCMC(Sampler): Args: system (system.System): system.System object - num_temps (int): number of temperatures to run the sampler at. + num_temps (int): number of temperatures to run the sampler at. Parallel tempering will be used if num_temps > 1 (default=20) num_walkers (int): number of walkers at each temperature (default=1000) num_threads (int): number of threads to use for parallelization (default=1) chi2_type (str, optional): either "standard", or "log" like (str): name of likelihood function in ``lnlike.py`` - custom_lnlike (func): ability to include an addition custom likelihood - function in the fit. The function looks like - ``clnlikes = custon_lnlike(params)`` where ``params`` is a RxM array - of fitting parameters, where R is the number of orbital paramters - (can be passed in system.compute_model()), and M is the number of - orbits we need model predictions for. It returns ``clnlikes`` + custom_lnlike (func): ability to include an addition custom likelihood + function in the fit. The function looks like + ``clnlikes = custon_lnlike(params)`` where ``params`` is a RxM array + of fitting parameters, where R is the number of orbital paramters + (can be passed in system.compute_model()), and M is the number of + orbits we need model predictions for. It returns ``clnlikes`` which is an array of length M, or it can be a single float if M = 1. - prev_result_filename (str): if passed a filename to an HDF5 file - containing a orbitize.Result data, MCMC will restart from where it - left off. + prev_result_filename (str): if passed a filename to an HDF5 file + containing a orbitize.Result data, MCMC will restart from where it + left off. Written: Jason Wang, Henry Ngo, 2018 """ + def __init__( - self, system, num_temps=20, num_walkers=1000, num_threads=1, chi2_type='standard', - like='chi2_lnlike', custom_lnlike=None, prev_result_filename=None + self, + system, + num_temps=20, + num_walkers=1000, + num_threads=1, + chi2_type="standard", + like="chi2_lnlike", + custom_lnlike=None, + prev_result_filename=None, ): - - super(MCMC, self).__init__(system, like=like, chi2_type=chi2_type, custom_lnlike=custom_lnlike) + super(MCMC, self).__init__( + system, like=like, chi2_type=chi2_type, custom_lnlike=custom_lnlike + ) self.num_temps = num_temps self.num_walkers = num_walkers @@ -600,7 +693,7 @@ def __init__( sampler_name=self.__class__.__name__, post=None, lnlike=None, - version_number=orbitize.__version__ + version_number=orbitize.__version__, ) if self.num_temps > 1: @@ -616,7 +709,6 @@ def __init__( self.sampled_param_idx = {} sampled_param_counter = 0 for i, prior in enumerate(system.sys_priors): - # check for fixed parameters if not hasattr(prior, "draw_samples"): self.fixed_params.append((i, prior)) @@ -635,7 +727,7 @@ def __init__( for prior in self.priors: # draw them uniformly becase we don't know any better right now # TODO: be smarter in the future - random_init = prior.draw_samples(num_walkers*self.num_temps) + random_init = prior.draw_samples(num_walkers * self.num_temps) if self.num_temps > 1: random_init = random_init.reshape([self.num_temps, num_walkers]) @@ -662,7 +754,11 @@ def __init__( if self.use_pt: expected_shape = (self.num_temps,) + expected_shape if prev_pos.shape != expected_shape: - raise ValueError("Unable to restart chain. Saved walker positions has shape {0}, while current sampler needs {1}".format(prev_pos.shape, expected_shape)) + raise ValueError( + "Unable to restart chain. Saved walker positions has shape {0}, while current sampler needs {1}".format( + prev_pos.shape, expected_shape + ) + ) self.curr_pos = prev_pos @@ -671,11 +767,11 @@ def _fill_in_fixed_params(self, sampled_params): Fills in the missing parameters from the chain that aren't being sampled Args: - sampled_params (np.array): either 1-D array of size = number of + sampled_params (np.array): either 1-D array of size = number of sampled params, or 2-D array of shape (num_models, num_params) Returns: - np.array: same number of dimensions as sampled_params, + np.array: same number of dimensions as sampled_params, but with num_params including the fixed parameters """ if len(self.fixed_params) == 0: @@ -718,8 +814,9 @@ def _logl(self, params, include_logp=False): if np.isinf(logp): return -np.inf else: - logp = np.array([orbitize.priors.all_lnpriors(pset, self.priors) - for pset in params]) + logp = np.array( + [orbitize.priors.all_lnpriors(pset, self.priors) for pset in params] + ) else: logp = 0 # don't include prior @@ -746,7 +843,9 @@ def _update_chains_from_sampler(self, sampler, num_steps=None): if self.use_pt: # chain is shape: Ntemp x Nwalkers x Nsteps x Nparams - self.post = sampler.chain[0, :, :num_steps].reshape(-1, num_params) # the reshaping flattens the chain + self.post = sampler.chain[0, :, :num_steps].reshape( + -1, num_params + ) # the reshaping flattens the chain # should also be picking out the lowest temperature logps self.lnlikes = sampler.loglikelihood[0, :, :num_steps].flatten() self.lnlikes_alltemps = sampler.loglikelihood[:, :, :num_steps] @@ -764,21 +863,28 @@ def _update_chains_from_sampler(self, sampler, num_steps=None): def validate_xyz_positions(self): """ - If using the XYZ basis, walkers might be initialized in an invalid - region of parameter space. This function fixes that by replacing invalid + If using the XYZ basis, walkers might be initialized in an invalid + region of parameter space. This function fixes that by replacing invalid positions by new randomly generated positions until all are valid. """ - if self.system.fitting_basis == 'XYZ': + if self.system.fitting_basis == "XYZ": if self.use_pt: all_valid = False while not all_valid: total_invalids = 0 for temp in range(self.num_temps): - to_stand = self.system.basis.to_standard_basis(self.curr_pos[temp,:,:].T.copy()).T + to_stand = self.system.basis.to_standard_basis( + self.curr_pos[temp, :, :].T.copy() + ).T # Get invalids by checking ecc values for each companion - indices = [((i * 6) + 1) for i in range(self.system.num_secondary_bodies)] - invalids = np.where((to_stand[:, indices] < 0.) | (to_stand[:, indices] >= 1.))[0] + indices = [ + ((i * 6) + 1) + for i in range(self.system.num_secondary_bodies) + ] + invalids = np.where( + (to_stand[:, indices] < 0.0) | (to_stand[:, indices] >= 1.0) + )[0] # Redraw samples for the invalid ones if len(invalids) > 0: @@ -786,20 +892,26 @@ def validate_xyz_positions(self): for prior in self.priors: randompos = prior.draw_samples(len(invalids)) newpos.append(randompos) - self.curr_pos[temp, invalids, :] = np.stack(newpos).T + self.curr_pos[temp, invalids, :] = np.stack(newpos).T total_invalids += len(invalids) if total_invalids == 0: all_valid = True - print('All walker positions validated.') + print("All walker positions validated.") else: all_valid = False while not all_valid: total_invalids = 0 - to_stand = self.system.basis.to_standard_basis(self.curr_pos[:,:].T.copy()).T + to_stand = self.system.basis.to_standard_basis( + self.curr_pos[:, :].T.copy() + ).T # Get invalids by checking ecc values for each companion - indices = [((i * 6) + 1) for i in range(self.system.num_secondary_bodies)] - invalids = np.where((to_stand[:, indices] < 0.) | (to_stand[:, indices] >= 1.))[0] + indices = [ + ((i * 6) + 1) for i in range(self.system.num_secondary_bodies) + ] + invalids = np.where( + (to_stand[:, indices] < 0.0) | (to_stand[:, indices] >= 1.0) + )[0] # Redraw saples for the invalid ones if len(invalids) > 0: @@ -807,17 +919,20 @@ def validate_xyz_positions(self): for prior in self.priors: randompos = prior.draw_samples(len(invalids)) newpos.append(randompos) - self.curr_pos[invalids, :] = np.stack(newpos).T + self.curr_pos[invalids, :] = np.stack(newpos).T total_invalids += len(invalids) if total_invalids == 0: all_valid = True - print('All walker positions validated.') - - + print("All walker positions validated.") def run_sampler( - self, total_orbits, burn_steps=0, thin=1, examine_chains=False, - output_filename=None, periodic_save_freq=None + self, + total_orbits, + burn_steps=0, + thin=1, + examine_chains=False, + output_filename=None, + periodic_save_freq=None, ): """ Runs PT MCMC sampler. Results are stored in ``self.chain`` and ``self.lnlikes``. @@ -845,7 +960,9 @@ def run_sampler( """ if periodic_save_freq is not None and output_filename is None: - raise ValueError("output_filename must be defined for periodic saving of the chains") + raise ValueError( + "output_filename must be defined for periodic saving of the chains" + ) if periodic_save_freq is not None and not isinstance(periodic_save_freq, int): raise TypeError("periodic_save_freq must be an integer") @@ -853,100 +970,145 @@ def run_sampler( if nsteps <= 0: raise ValueError("Total_orbits must be greater than num_walkers.") - with Pool(processes=self.num_threads) as pool: + with Pool(processes=self.num_threads) as pool: if self.use_pt: sampler = ptemcee.Sampler( - self.num_walkers, self.num_params, self._logl, orbitize.priors.all_lnpriors, - ntemps=self.num_temps, threads=self.num_threads, logpargs=[self.priors, ] + self.num_walkers, + self.num_params, + self._logl, + orbitize.priors.all_lnpriors, + ntemps=self.num_temps, + threads=self.num_threads, + logpargs=[ + self.priors, + ], ) else: sampler = emcee.EnsembleSampler( - self.num_walkers, self.num_params, self._logl, pool=pool, - kwargs={'include_logp': True} + self.num_walkers, + self.num_params, + self._logl, + pool=pool, + kwargs={"include_logp": True}, ) print("Starting Burn in") - for i, state in enumerate(sampler.sample(self.curr_pos, iterations=burn_steps, thin=thin)): + for i, state in enumerate( + sampler.sample(self.curr_pos, iterations=burn_steps, thin=thin) + ): if self.use_pt: self.curr_pos = state[0] else: self.curr_pos = state.coords - if (i+1) % 5 == 0: - print(str(i+1)+'/'+str(burn_steps)+' steps of burn-in complete', end='\r') + if (i + 1) % 5 == 0: + print( + str(i + 1) + + "/" + + str(burn_steps) + + " steps of burn-in complete", + end="\r", + ) if periodic_save_freq is not None: - if (i+1) % periodic_save_freq == 0: # we've completed i+1 steps + if (i + 1) % periodic_save_freq == 0: # we've completed i+1 steps self.results.curr_pos = self.curr_pos self.results.save_results(output_filename) sampler.reset() - print('') - print('Burn in complete. Sampling posterior now.') + print("") + print("Burn in complete. Sampling posterior now.") - saved_upto = 0 # keep track of how many steps of this chain we've saved. this is the next index that needs to be saved - for i, state in enumerate(sampler.sample(self.curr_pos, iterations=nsteps, thin=thin)): + saved_upto = 0 # keep track of how many steps of this chain we've saved. this is the next index that needs to be saved + for i, state in enumerate( + sampler.sample(self.curr_pos, iterations=nsteps, thin=thin) + ): if self.use_pt: self.curr_pos = state[0] else: self.curr_pos = state.coords - + # print progress statement - if (i+1) % 5 == 0: - print(str(i+1)+'/'+str(nsteps)+' steps completed', end='\r') + if (i + 1) % 5 == 0: + print(str(i + 1) + "/" + str(nsteps) + " steps completed", end="\r") if periodic_save_freq is not None: - if (i+1) % periodic_save_freq == 0: # we've completed i+1 steps - self._update_chains_from_sampler(sampler, num_steps=i+1) + if (i + 1) % periodic_save_freq == 0: # we've completed i+1 steps + self._update_chains_from_sampler(sampler, num_steps=i + 1) # figure out what is the new chunk of the chain and corresponding lnlikes that have been computed before last save # grab the current posterior and lnlikes and reshape them to have the Nwalkers x Nsteps dimension again post_shape = self.post.shape - curr_chain_shape = (self.num_walkers, post_shape[0]//self.num_walkers, post_shape[-1]) + curr_chain_shape = ( + self.num_walkers, + post_shape[0] // self.num_walkers, + post_shape[-1], + ) curr_chain = self.post.reshape(curr_chain_shape) curr_lnlike_chain = self.lnlikes.reshape(curr_chain_shape[:2]) # use the reshaped arrays and find the new steps we computed - curr_chunk = curr_chain[:, saved_upto:i+1] - curr_chunk = curr_chunk.reshape(-1, curr_chunk.shape[-1]) # flatten nwalkers x nsteps dim - curr_lnlike_chunk = curr_lnlike_chain[:, saved_upto:i+1].flatten() + curr_chunk = curr_chain[:, saved_upto : i + 1] + curr_chunk = curr_chunk.reshape( + -1, curr_chunk.shape[-1] + ) # flatten nwalkers x nsteps dim + curr_lnlike_chunk = curr_lnlike_chain[ + :, saved_upto : i + 1 + ].flatten() # add this current chunk to the results object (which already has all the previous chunks saved) - self.results.add_samples(curr_chunk, curr_lnlike_chunk, - curr_pos=self.curr_pos) + self.results.add_samples( + curr_chunk, curr_lnlike_chunk, curr_pos=self.curr_pos + ) self.results.save_results(output_filename) - saved_upto = i+1 + saved_upto = i + 1 - print('') + print("") self._update_chains_from_sampler(sampler) if periodic_save_freq is None: # need to save everything - self.results.add_samples(self.post, self.lnlikes, curr_pos=self.curr_pos) + self.results.add_samples( + self.post, self.lnlikes, curr_pos=self.curr_pos + ) elif saved_upto < nsteps: # just need to save the last few # same code as above except we just need to grab the last few post_shape = self.post.shape - curr_chain_shape = (self.num_walkers, post_shape[0]//self.num_walkers, post_shape[-1]) + curr_chain_shape = ( + self.num_walkers, + post_shape[0] // self.num_walkers, + post_shape[-1], + ) curr_chain = self.post.reshape(curr_chain_shape) curr_lnlike_chain = self.lnlikes.reshape(curr_chain_shape[:2]) curr_chunk = curr_chain[:, saved_upto:] - curr_chunk = curr_chunk.reshape(-1, curr_chunk.shape[-1]) # flatten nwalkers x nsteps dim + curr_chunk = curr_chunk.reshape( + -1, curr_chunk.shape[-1] + ) # flatten nwalkers x nsteps dim curr_lnlike_chunk = curr_lnlike_chain[:, saved_upto:].flatten() - self.results.add_samples(curr_chunk, curr_lnlike_chunk, - curr_pos=self.curr_pos) + self.results.add_samples( + curr_chunk, curr_lnlike_chunk, curr_pos=self.curr_pos + ) if output_filename is not None: self.results.save_results(output_filename) - print('Run complete') + print("Run complete") # Close pool if examine_chains: self.examine_chains() return sampler - def examine_chains(self, param_list=None, walker_list=None, n_walkers=None, step_range=None, transparency = 1): + def examine_chains( + self, + param_list=None, + walker_list=None, + n_walkers=None, + step_range=None, + transparency=1, + ): """ Plots position of walkers at each step from Results object. Returns list of figures, one per parameter Args: @@ -972,13 +1134,17 @@ def examine_chains(self, param_list=None, walker_list=None, n_walkers=None, step # Get the flattened chain from Results object (nwalkers*nsteps, nparams) flatchain = np.copy(self.results.post) total_samples, n_params = flatchain.shape - n_steps = int(total_samples/self.num_walkers) + n_steps = int(total_samples / self.num_walkers) # Reshape it to (nwalkers, nsteps, nparams) chn = flatchain.reshape((self.num_walkers, n_steps, n_params)) # Get list of walkers to use - if n_walkers is not None: # If n_walkers defined, randomly choose that many walkers - walkers_to_plot = np.random.choice(self.num_walkers, size=n_walkers, replace=False) + if ( + n_walkers is not None + ): # If n_walkers defined, randomly choose that many walkers + walkers_to_plot = np.random.choice( + self.num_walkers, size=n_walkers, replace=False + ) elif walker_list is not None: # if walker_list is given, use that list walkers_to_plot = np.array(walker_list) else: # both n_walkers and walker_list are none, so use all walkers @@ -993,7 +1159,9 @@ def examine_chains(self, param_list=None, walker_list=None, n_walkers=None, step if i in self.system.basis.param_idx: params_plot_list.append(self.system.basis.param_idx[i]) else: - raise Exception('Invalid param name: {}. See system.basis.param_idx.'.format(i)) + raise Exception( + "Invalid param name: {}. See system.basis.param_idx.".format(i) + ) params_to_plot = np.array(params_plot_list) # Loop through each parameter and make plot @@ -1001,8 +1169,8 @@ def examine_chains(self, param_list=None, walker_list=None, n_walkers=None, step for pp in params_to_plot: fig, ax = plt.subplots() for ww in walkers_to_plot: - ax.plot(chn[ww, :, pp], 'k-', alpha = transparency) - ax.set_xlabel('Step') + ax.plot(chn[ww, :, pp], "k-", alpha=transparency) + ax.set_xlabel("Step") if step_range is not None: # Limit range shown if step_range is set ax.set_xlim(step_range) output_figs.append(fig) @@ -1012,8 +1180,8 @@ def examine_chains(self, param_list=None, walker_list=None, n_walkers=None, step def chop_chains(self, burn, trim=0): """ - Permanently removes steps from beginning (and/or end) of chains from the - Results object. Also updates `curr_pos` if steps are removed from the + Permanently removes steps from beginning (and/or end) of chains from the + Results object. Also updates `curr_pos` if steps are removed from the end of the chain. Args: @@ -1028,7 +1196,7 @@ def chop_chains(self, burn, trim=0): # Retrieve information from results object flatchain = np.copy(self.results.post) total_samples, n_params = flatchain.shape - n_steps = int(total_samples/self.num_walkers) + n_steps = int(total_samples / self.num_walkers) flatlnlikes = np.copy(self.results.lnlike) # Reshape chain to (nwalkers, nsteps, nparams) @@ -1050,21 +1218,25 @@ def chop_chains(self, burn, trim=0): self.curr_pos = chopped_chain[:, -1, :] # Flatten likelihoods and samples - flat_chopped_chain = chopped_chain.reshape(self.num_walkers*n_chopped_steps, n_params) - flat_chopped_lnlikes = chopped_lnlikes.reshape(self.num_walkers*n_chopped_steps) + flat_chopped_chain = chopped_chain.reshape( + self.num_walkers * n_chopped_steps, n_params + ) + flat_chopped_lnlikes = chopped_lnlikes.reshape( + self.num_walkers * n_chopped_steps + ) # Update results object associated with this sampler self.results = orbitize.results.Results( - self.system, + self.system, sampler_name=self.__class__.__name__, post=flat_chopped_chain, lnlike=flat_chopped_lnlikes, - version_number = orbitize.__version__, - curr_pos = self.curr_pos + version_number=orbitize.__version__, + curr_pos=self.curr_pos, ) # Print a confirmation - print('Chains successfully chopped. Results object updated.') + print("Chains successfully chopped. Results object updated.") def check_prior_support(self): """ @@ -1076,8 +1248,10 @@ def check_prior_support(self): """ # Flatten the walker/temperature positions for ease of manipulation. - all_positions = self.curr_pos.reshape(self.num_walkers*self.num_temps,self.num_params) - + all_positions = self.curr_pos.reshape( + self.num_walkers * self.num_temps, self.num_params + ) + # Placeholder list to track any bad parameters that come up. bad_parameters = [] @@ -1094,14 +1268,19 @@ def check_prior_support(self): # Throw our ValueError if necessary, if len(bad_parameters) > 0: - raise ValueError("Attempting to start with walkers outside of prior support: check parameter(s) "+', '.join(bad_parameters)) + raise ValueError( + "Attempting to start with walkers outside of prior support: check parameter(s) " + + ", ".join(bad_parameters) + ) # We're not done yet, however. There may be errors in covariant priors; run a check for that. else: for y in all_positions: - lnprob = orbitize.priors.all_lnpriors(y,self.priors) + lnprob = orbitize.priors.all_lnpriors(y, self.priors) if not np.isfinite(lnprob).all(): - raise ValueError("Attempting to start with walkers outside of prior support: covariant prior failure.") - + raise ValueError( + "Attempting to start with walkers outside of prior support: covariant prior failure." + ) + # otherwise exit the function and continue. return From 0e30855347e2aa370149d55aef64a137f6e53be7 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 29 Jan 2024 18:07:18 -0800 Subject: [PATCH 24/37] fix bug causing unit test failures --- orbitize/hipparcos.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 513421f1..938b91ec 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -217,6 +217,8 @@ def __init__( f2 = hip_cat["F2"][0] if self.solution_type == 1: self.var = hip_cat["var"][0] # [mas] + else: + self.var = 0 else: # read the Hipparcos best-fit solution from the IAD file @@ -242,6 +244,8 @@ def __init__( if self.solution_type == 1: self.var = astrometric_solution["var"].values[0] + else: + self.var = 0 f2 = solution_details["F2"].values[0] From d4c20b4685a250fdb3c5f451ad9d2a454bc5d447 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 29 Jan 2024 18:29:32 -0800 Subject: [PATCH 25/37] add test that type 1 hipparcos sols pass --- orbitize/example_data/H027989.d | 79 +++++++++++++++++++++++++++++++++ tests/test_hipparcos.py | 11 ++++- 2 files changed, 89 insertions(+), 1 deletion(-) create mode 100644 orbitize/example_data/H027989.d diff --git a/orbitize/example_data/H027989.d b/orbitize/example_data/H027989.d new file mode 100644 index 00000000..e2597b1c --- /dev/null +++ b/orbitize/example_data/H027989.d @@ -0,0 +1,79 @@ +# This file contains residual records, extracted from the Hipparcos 2 +# Interactive Data Access Tool (2014). For more information, see: +# https://www.cosmos.esa.int/web/hipparcos/interactive-data-access +# https://www.cosmos.esa.int/web/hipparcos/catalogues +# +# HIP MCE NRES NC isol_n SCE F2 F1 +# 27989 27917 66 1 1 0 -0.11 1 +# Hp B-V VarAnn NOB NR +# 0.4997 1.500 2 66 1 +# RAdeg DEdeg Plx pm_RA pm_DE e_RA e_DE e_Plx e_pmRA e_pmDE dpmRA dpmDE e_dpmRA e_dpmDE ddpmRA ddpmDE e_ddpmRA e_ddpmDE upsRA upsDE e_upsRA e_upsDE var +# 88.79287149 7.40703653 6.55 27.54 11.30 0.71 0.58 0.83 1.03 0.65 --- --- --- --- --- --- --- --- --- --- --- --- 0.15 +# +# IORB EPOCH PARF CPSI SPSI RES SRES + 282 -1.0633 0.6611 -0.7125 0.7017 -0.32 2.47 + 387 -0.9356 0.3807 -0.2826 0.9592 1.60 2.47 + 387 -0.9356 0.3804 -0.2821 0.9594 1.68 2.47 + 691 -0.5661 -0.6505 -0.6040 -0.7970 3.77 2.47 + 692 -0.5649 -0.6478 -0.6015 -0.7988 21.59 -2.46 + 753 -0.4908 0.6486 0.6216 -0.7834 2.95 2.47 + 798 -0.4361 -0.4301 -0.6454 -0.7639 0.36 2.47 + 798 -0.4361 -0.4317 -0.6457 -0.7636 0.72 2.46 + 798 -0.4361 -0.4350 -0.6490 -0.7608 0.99 2.46 + 798 -0.4361 -0.4341 -0.6482 -0.7614 1.47 2.46 + 1063 -0.1141 0.5102 -0.6970 0.7171 0.67 2.46 + 1063 -0.1141 0.5072 -0.6943 0.7197 2.55 2.46 + 1114 -0.0521 -0.6726 0.6547 0.7559 5.05 2.47 + 1115 -0.0509 -0.6733 0.6564 0.7544 -0.90 2.47 + 1169 0.0148 0.6033 -0.5666 0.8240 -2.16 2.47 + 1169 0.0148 0.6034 -0.5667 0.8239 -1.12 2.48 + 1169 0.0148 0.6043 -0.5680 0.8230 -0.88 2.47 + 1169 0.0148 0.6040 -0.5676 0.8233 -0.42 2.47 + 1473 0.3841 -0.4717 -0.3829 -0.9238 -1.55 2.47 + 1473 0.3841 -0.4699 -0.3806 -0.9247 1.44 2.47 + 1473 0.3841 -0.4686 -0.3791 -0.9254 -0.59 2.46 + 1473 0.3841 -0.4671 -0.3768 -0.9263 -1.56 2.46 + 1473 0.3841 -0.4658 -0.3755 -0.9268 1.94 2.46 + 1473 0.3841 -0.4645 -0.3736 -0.9276 -2.51 2.47 + 1515 0.4351 0.6506 0.7141 -0.7001 2.52 2.47 + 1580 0.5140 -0.6365 -0.7034 -0.7108 -0.90 2.47 + 1580 0.5140 -0.6367 -0.7036 -0.7106 0.41 2.46 + 1580 0.5140 -0.6377 -0.7045 -0.7097 0.46 2.48 + 1580 0.5140 -0.6374 -0.7046 -0.7096 -3.08 2.47 + 1850 0.8420 0.1561 -0.4675 0.8840 0.06 2.47 + 1851 0.8432 0.1549 -0.4620 0.8869 3.25 2.47 + 1851 0.8432 0.1533 -0.4602 0.8878 1.28 2.46 + 1851 0.8432 0.1508 -0.4573 0.8893 -1.48 2.47 + 1851 0.8432 0.1516 -0.4579 0.8890 4.22 2.46 + 1851 0.8432 0.1456 -0.4504 0.8928 -1.98 2.48 + 1851 0.8432 0.1449 -0.4500 0.8930 2.14 2.46 + 1851 0.8432 0.1413 -0.4453 0.8954 -2.71 2.47 + 1851 0.8432 0.1421 -0.4462 0.8949 0.19 2.47 + 1875 0.8724 -0.4268 0.3368 0.9416 2.14 2.48 + 1875 0.8724 -0.4303 0.3435 0.9392 6.27 2.48 + 1875 0.8724 -0.4306 0.3438 0.9390 -3.36 2.47 + 1875 0.8724 -0.4342 0.3486 0.9373 1.60 2.48 + 1875 0.8724 -0.4344 0.3489 0.9371 1.67 2.47 + 1876 0.8736 -0.4438 0.3611 0.9325 1.99 2.47 + 1876 0.8736 -0.4427 0.3604 0.9328 -4.72 2.47 + 1950 0.9634 0.6769 -0.6867 0.7270 2.16 2.46 + 1950 0.9634 0.6770 -0.6868 0.7268 -2.11 2.47 + 1950 0.9634 0.6771 -0.6869 0.7267 1.20 2.47 + 1950 0.9634 0.6772 -0.6870 0.7267 3.33 2.47 + 2029 1.0594 -0.4110 0.6402 0.7682 -4.40 2.47 + 2029 1.0594 -0.4111 0.6400 0.7684 -0.18 2.47 + 2029 1.0594 -0.4075 0.6359 0.7718 -2.07 2.47 + 2029 1.0594 -0.4069 0.6357 0.7719 1.83 2.47 + 2029 1.0594 -0.4022 0.6307 0.7760 1.49 2.46 + 2029 1.0594 -0.4014 0.6301 0.7765 0.62 2.47 + 2029 1.0594 -0.3979 0.6261 0.7798 -0.06 2.46 + 2029 1.0594 -0.3970 0.6253 0.7803 1.96 2.48 + 2049 1.0836 0.1519 0.0450 0.9990 -1.03 2.47 + 2049 1.0836 0.1521 0.0438 0.9990 -3.43 2.47 + 2049 1.0836 0.1558 0.0394 0.9992 -4.13 2.47 + 2049 1.0836 0.1561 0.0390 0.9992 0.12 2.47 + 2049 1.0836 0.1606 0.0332 0.9994 -0.14 2.47 + 2049 1.0836 0.1603 0.0336 0.9994 -1.90 2.47 + 2049 1.0836 0.1648 0.0269 0.9996 -1.70 2.47 + 2049 1.0836 0.1648 0.0273 0.9996 3.36 2.47 + 2050 1.0849 0.1717 0.0203 0.9998 -3.24 2.47 diff --git a/tests/test_hipparcos.py b/tests/test_hipparcos.py index d2079cdd..cb39df40 100644 --- a/tests/test_hipparcos.py +++ b/tests/test_hipparcos.py @@ -8,7 +8,7 @@ def test_hipparcos_api(): """ - Check that error is caught for a star with solution type != 5 param, + Check that error is caught for a star with solution type != 1 or 5, and that doing an RV + Hipparcos IAD fit produces the expected list of Prior objects. """ @@ -24,6 +24,15 @@ def test_hipparcos_api(): except ValueError: pass + # check sol type == 1 doesn't throw an error message + hip_num = "027989" + num_secondary_bodies = 1 + path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) + + # just make sure it doesn't throw an error + myFirstHip = HipparcosLogProb(path_to_iad_file, hip_num, num_secondary_bodies) + assert myFirstHip.var == 0.15 + # check that RV + Hip gives correct prior array labels hip_num = "027321" # beta Pic num_secondary_bodies = 1 From 3b8a6287a6197548bd90ecd2ac28a6e4a23ad67d Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 29 Jan 2024 20:05:53 -0800 Subject: [PATCH 26/37] add test of pm calculation --- tests/test_abs_astrometry.py | 108 ++++++++++++++++++++++++++++++++++- 1 file changed, 106 insertions(+), 2 deletions(-) diff --git a/tests/test_abs_astrometry.py b/tests/test_abs_astrometry.py index d1344f84..ea453dc1 100644 --- a/tests/test_abs_astrometry.py +++ b/tests/test_abs_astrometry.py @@ -1,10 +1,11 @@ import numpy as np import os import astropy.table as table +from astropy.time import Time import astropy.units as u import orbitize -from orbitize import kepler, read_input, system +from orbitize import kepler, read_input, system, hipparcos, DATADIR def test_1planet(): @@ -72,5 +73,108 @@ def test_1planet(): os.system("rm {}".format(filename)) +def test_arbitrary_abs_astrom(): + """ + Test that proper motion and parallax model parameters are applied correctly + when we have astrometry from an arbitrary (i.e. not Hipparcos or Gaia) + instrument. This test assumes test particle (i.e. zero-mass) companions. + """ + + epochs = Time(np.array([0, 0.5, 1.0]) + 1991.25, format="decimalyear").mjd + ra_model = np.array([0, 25, 0]) + dec_model = np.array([0, 25, 0]) + + # generate some fake measurements to feed into system.py to test bookkeeping + t = table.Table( + [ + epochs, + np.zeros(epochs.shape, dtype=int), + ra_model, + np.zeros(epochs.shape), + dec_model, + np.zeros(epochs.shape), + ], + names=["epoch", "object", "raoff", "raoff_err", "decoff", "decoff_err"], + ) + filename = os.path.join(orbitize.DATADIR, "rebound_1planet.csv") + t.write(filename, overwrite=True) + + # just read in any file since we're not computing Hipparcos-related likelihoods. + hip_num = "027321" + num_secondary_bodies = 1 + path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) + testHiPIAD = hipparcos.HipparcosLogProb( + path_to_iad_file, hip_num, num_secondary_bodies + ) + + astrom_data = read_input.read_file(filename) + mySystem = system.System( + 1, astrom_data, 1, 1, fit_secondary_mass=True, hipparcos_IAD=testHiPIAD + ) + + # Zero proper motion, but large parallax = yearly motion should only + # reflect parallax. Check that this parallax-only model matches the data. + plx = np.sqrt(25**2 + 25**2) + pm_ra = 0 + pm_dec = 0 + alpha0 = 0 + delta0 = 0 + m1 = 1 + m0 = 1e-10 + + plx_only_params = np.array( + [ + 1, # start test particle params + 0, + 0, + 0, + 0, + 0, # end test particle params + plx, + pm_ra, + pm_dec, + alpha0, + delta0, + m1, + m0, + ] + ) + plxonly_model = mySystem.compute_model(plx_only_params) + assert False # TODO + + # very high proper motion, but very small parallax = yearly motion should only + # reflect proper motion + plx = 0.0000001 + pm_ra = 25 + pm_dec = 25 + pm_only_params = np.array( + [ + 1, # start test particle params + 0, + 0, + 0, + 0, + 0, # end test particle params + plx, + pm_ra, + pm_dec, + alpha0, + delta0, + m1, + m0, + ] + ) + + pmonly_model = mySystem.compute_model(pm_only_params) + + pmonly_expectation = np.array([[0, 0], [12.5, 12.5], [25.0, 25.0]]) + + assert np.all(np.isclose(pmonly_model[0], pmonly_expectation, atol=1e-6)) + assert np.all( + np.isclose(pmonly_model[1], np.zeros(pmonly_model[1].shape), atol=1e-6) + ) + + if __name__ == "__main__": - test_1planet() + # test_1planet() + test_arbitrary_abs_astrom() From ee0e7e74c91e8913eff13407a396f3d96482aa5c Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 29 Jan 2024 20:58:20 -0800 Subject: [PATCH 27/37] add plx test for arbitrary abs astrom --- tests/test_abs_astrometry.py | 65 +++++++++++++++++++++--------------- 1 file changed, 38 insertions(+), 27 deletions(-) diff --git a/tests/test_abs_astrometry.py b/tests/test_abs_astrometry.py index ea453dc1..8678624b 100644 --- a/tests/test_abs_astrometry.py +++ b/tests/test_abs_astrometry.py @@ -3,6 +3,7 @@ import astropy.table as table from astropy.time import Time import astropy.units as u +from astropy.coordinates import get_body_barycentric_posvel import orbitize from orbitize import kepler, read_input, system, hipparcos, DATADIR @@ -80,9 +81,20 @@ def test_arbitrary_abs_astrom(): instrument. This test assumes test particle (i.e. zero-mass) companions. """ - epochs = Time(np.array([0, 0.5, 1.0]) + 1991.25, format="decimalyear").mjd - ra_model = np.array([0, 25, 0]) - dec_model = np.array([0, 25, 0]) + # just read in any file since we're not computing Hipparcos-related likelihoods. + hip_num = "027321" + num_secondary_bodies = 1 + path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) + testHiPIAD = hipparcos.HipparcosLogProb( + path_to_iad_file, hip_num, num_secondary_bodies + ) + + epochs_astropy = Time( + np.array([0, 0.5, 1.0]) + testHiPIAD.alphadec0_epoch, format="decimalyear" + ) + epochs = epochs_astropy.mjd + ra_model = np.zeros(epochs.shape) + dec_model = np.zeros(epochs.shape) # generate some fake measurements to feed into system.py to test bookkeeping t = table.Table( @@ -99,22 +111,14 @@ def test_arbitrary_abs_astrom(): filename = os.path.join(orbitize.DATADIR, "rebound_1planet.csv") t.write(filename, overwrite=True) - # just read in any file since we're not computing Hipparcos-related likelihoods. - hip_num = "027321" - num_secondary_bodies = 1 - path_to_iad_file = "{}H{}.d".format(DATADIR, hip_num) - testHiPIAD = hipparcos.HipparcosLogProb( - path_to_iad_file, hip_num, num_secondary_bodies - ) - astrom_data = read_input.read_file(filename) mySystem = system.System( 1, astrom_data, 1, 1, fit_secondary_mass=True, hipparcos_IAD=testHiPIAD ) - # Zero proper motion, but large parallax = yearly motion should only - # reflect parallax. Check that this parallax-only model matches the data. - plx = np.sqrt(25**2 + 25**2) + # Test case 1: zero proper motion, but large parallax = yearly motion should only + # reflect parallax + plx = 100 pm_ra = 0 pm_dec = 0 alpha0 = 0 @@ -139,14 +143,23 @@ def test_arbitrary_abs_astrom(): m0, ] ) - plxonly_model = mySystem.compute_model(plx_only_params) - assert False # TODO - - # very high proper motion, but very small parallax = yearly motion should only - # reflect proper motion - plx = 0.0000001 - pm_ra = 25 - pm_dec = 25 + + plxonly_fullorbit_ra, plxonly_fullorbit_dec, _ = mySystem.compute_all_orbits( + plx_only_params, epochs=np.linspace(epochs[0], epochs[0] + 365.25 / 2, int(1e6)) + ) + + # check that min and max of RA and Dec outputs are close to 0 and plx magnitude, + # respectively + assert np.isclose(0, np.min(np.abs(plxonly_fullorbit_ra)), atol=1e-4) + assert np.isclose(0, np.min(np.abs(plxonly_fullorbit_dec)), atol=1e-4) + assert np.isclose(-100, np.min(plxonly_fullorbit_ra), atol=1e-4) + assert np.isclose(100, np.max(plxonly_fullorbit_dec), atol=1e-4) + + # Test case 2: very high proper motion, but very small parallax = motion + # should only reflect proper motion + plx = 1e-10 + pm_ra = 100 + pm_dec = 100 pm_only_params = np.array( [ 1, # start test particle params @@ -167,12 +180,10 @@ def test_arbitrary_abs_astrom(): pmonly_model = mySystem.compute_model(pm_only_params) - pmonly_expectation = np.array([[0, 0], [12.5, 12.5], [25.0, 25.0]]) + pmonly_expectation = np.array([[0, 0], [50, 50], [100.0, 100.0]]) - assert np.all(np.isclose(pmonly_model[0], pmonly_expectation, atol=1e-6)) - assert np.all( - np.isclose(pmonly_model[1], np.zeros(pmonly_model[1].shape), atol=1e-6) - ) + assert np.all(np.isclose(pmonly_model[0], pmonly_expectation)) + assert np.all(np.isclose(pmonly_model[1], np.zeros(pmonly_model[1].shape))) if __name__ == "__main__": From e20eaf46f02f1fb0071e4213452a71af59f6c110 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 29 Jan 2024 20:58:43 -0800 Subject: [PATCH 28/37] remove unused import --- tests/test_abs_astrometry.py | 1 - 1 file changed, 1 deletion(-) diff --git a/tests/test_abs_astrometry.py b/tests/test_abs_astrometry.py index 8678624b..ddf2422b 100644 --- a/tests/test_abs_astrometry.py +++ b/tests/test_abs_astrometry.py @@ -3,7 +3,6 @@ import astropy.table as table from astropy.time import Time import astropy.units as u -from astropy.coordinates import get_body_barycentric_posvel import orbitize from orbitize import kepler, read_input, system, hipparcos, DATADIR From 98148b7de4c5089b40ba5db5df7729697eb9207c Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 9 Feb 2024 15:51:28 -0800 Subject: [PATCH 29/37] fix cos(delta) bug --- orbitize/hipparcos.py | 4 ++-- orbitize/system.py | 4 +++- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 938b91ec..267961e5 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -63,8 +63,8 @@ def compute_astrometric_model(self, samples, param_idx): Returns: tuple of: - - float: predicted RA position offsets from the measured position - at alphadec0_epoch, calculated for each input epoch [mas] + - float: predicted RA*cos(delta0) position offsets from the measured + position at alphadec0_epoch, calculated for each input epoch [mas] - float: predicted Dec position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] """ diff --git a/orbitize/system.py b/orbitize/system.py index 4a3ffa4b..9f757828 100644 --- a/orbitize/system.py +++ b/orbitize/system.py @@ -654,7 +654,9 @@ def compute_model(self, params_arr, use_rebound=False): params_arr, self.param_idx ) - model[self.radec[0], 0] += ra_pred.reshape(model[self.radec[0], 0].shape) + # divide by cos(delta0) because orbitize! input is delta(ra), not + # delta(ra)*cos(delta0) + model[self.radec[0], 0] += ra_pred.reshape(model[self.radec[0], 0].shape) / np.cos(np.radians(self.pm_plx_predictor.delta0)) model[self.radec[0], 1] += dec_pred.reshape(model[self.radec[0], 0].shape) if n_orbits == 1: From bffd022f97aaffef08a6e1022ec7bacb4394ad73 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Wed, 13 Mar 2024 16:52:04 -0700 Subject: [PATCH 30/37] add abs astrometry tutorial --- docs/tutorials.rst | 1 + docs/tutorials/abs_astrometry.ipynb | 275 ++++++++++++++++++++++++++++ 2 files changed, 276 insertions(+) create mode 100644 docs/tutorials/abs_astrometry.ipynb diff --git a/docs/tutorials.rst b/docs/tutorials.rst index a001d4b6..46798550 100644 --- a/docs/tutorials.rst +++ b/docs/tutorials.rst @@ -56,6 +56,7 @@ us if you are still confused). tutorials/Changing_bases_tutorial.ipynb tutorials/Hipparcos_IAD.ipynb tutorials/HGCA_tutorial.ipynb + tutorials/abs_astrometry.ipynb diff --git a/docs/tutorials/abs_astrometry.ipynb b/docs/tutorials/abs_astrometry.ipynb new file mode 100644 index 00000000..fd8219db --- /dev/null +++ b/docs/tutorials/abs_astrometry.ipynb @@ -0,0 +1,275 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Fitting Arbitrary Absolute Astrometry\n", + "\n", + "by Sarah Blunt (2023)\n", + "\n", + "This tutorial walks you through using orbitize! to perform a fit on arbitary absolute astrometry. By \"arbitrary,\" I mean astrometry not taken by Gaia or Hipparcos (which orbitize! has dedicated modules for; see the HGCA and [Hipparcos IAD tutorials](https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html)). Let's imagine we have astrometry for a single star derived from wide-field images taken over several years, and we want to combine these data with measurements from Hipparcos. We are going to perform a fit to jointly constrain astrometric parameters (parallax and proper motion) and orbital parameters of a secondary companion. \n", + "\n", + "This tutorial will take you through:\n", + "- formatting absolute astrometry measurements for input into orbitize!\n", + "- setting up an orbit fit incorporating these measurements\n", + "\n", + "This tutorial assumes the following prerequities:\n", + "- [Using the Hipparcos IAD](https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Input Data Format\n", + "\n", + "Following Nielsen et al 2020 (see the Hipparcos IAD tutorial), orbitize! defines astrometric data points as offset from the *reported Hipparcos position* at the *reported Hipparcos epoch*. Let's start by defining an `orbitize.hipparcos.Hipparcos` object, which holds onto information from the Hipparcos mission observations of our object of interest. I'm going to use beta Pictoris as an example since you already have that IAD file in your orbitize! distribution. See the [IAD tutorial](https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html) for info on how to download the data for your object." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from orbitize import hipparcos, DATADIR\n", + "\n", + "hip_num = \"027321\" # beta Pic\n", + "\n", + "# Location of the Hipparcos IAD file.\n", + "IAD_file = \"{}H{}.d\".format(DATADIR, hip_num)\n", + "\n", + "# The HipparcosLogProb object needs to know how many companions are in your fit\n", + "# in order to compute likelihood. There are 2 known planets around beta Pic, but let's\n", + "# keep it simple for the tutorial\n", + "num_secondary_bodies = 1\n", + "\n", + "betaPicHipObject = hipparcos.HipparcosLogProb(IAD_file, hip_num, num_secondary_bodies)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Generally, when you're deriving (or using published) absolute astrometry, it will be in the form 82 02 14.35787 (J2000). However, `orbitize!` expects astrometry to be input *relative* to the Hipparcos position. Our friends at `astropy` have made these calculations very easy to do! Here's an example:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 377.81305615 1425.17609269] [1044.81957171 933.70290544]\n" + ] + } + ], + "source": [ + "from astropy.coordinates import SkyCoord\n", + "from astropy import units as u\n", + "import numpy as np\n", + "\n", + "# let's imagine our data look like this:\n", + "datapoints = [\"05 47 17.123456 -51 03 59.123456\", \"05 47 17.234567 -51 03 59.234567\"]\n", + "data_epochs = [\"2020.1234\", \"2020.2345\"]\n", + "num_datapoints = len(datapoints)\n", + "\n", + "hipparcos_coordinate = SkyCoord(\n", + " betaPicHipObject.alpha0, betaPicHipObject.delta0, unit=(u.deg, u.deg)\n", + ")\n", + "\n", + "raoffs = np.zeros(num_datapoints)\n", + "deoffs = np.zeros(num_datapoints)\n", + "for i in range(num_datapoints):\n", + " my_data_coordinate = SkyCoord(datapoints[i], unit=(u.hourangle, u.deg))\n", + "\n", + " # take difference between reported Hipparcos position and convert to mas\n", + " raoff, deoff = hipparcos_coordinate.spherical_offsets_to(my_data_coordinate)\n", + "\n", + " # n.b. orbitize! expects raw ra offsets, NOT multiplied by cos(delta0). Don't\n", + " # multiply by cos(delta0) here.\n", + " raoffs[i] = raoff.to(u.mas).value\n", + " deoffs[i] = deoff.to(u.mas).value\n", + "\n", + "print(raoffs, deoffs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Sweet! These absolute astrometry points are now suitable for an orbitize! input file. You can add them to an existing file with other types of data (relative astrometry and RVs) and/or fit them on their own. Here's what the data file for our two points would look like:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
epochobjectraoffdeoffdeoff_errraoff_err
058894.16440377.8130561044.819572123.4123.4
158934.827001425.176093933.702905123.4123.4
\n", + "
" + ], + "text/plain": [ + " epoch object raoff deoff deoff_err raoff_err\n", + "0 58894.1644 0 377.813056 1044.819572 123.4 123.4\n", + "1 58934.8270 0 1425.176093 933.702905 123.4 123.4" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from pandas import DataFrame\n", + "from astropy.time import Time\n", + "\n", + "df_orbitize = DataFrame(Time(data_epochs, format=\"decimalyear\").mjd, columns=[\"epoch\"])\n", + "\n", + "# this line tells orbitize! \"these measurements are astrometry of the primary\"\n", + "df_orbitize[\"object\"] = 0\n", + "\n", + "df_orbitize[\"raoff\"] = raoffs\n", + "df_orbitize[\"deoff\"] = deoffs\n", + "\n", + "df_orbitize[\"deoff_err\"] = 123.4 # error on the declination measurement, in mas\n", + "df_orbitize[\"raoff_err\"] = 123.4 # error on the RA measurement, in mas\n", + "\n", + "df_orbitize.to_csv(\"data_for_orbit_fit.csv\", index=False)\n", + "df_orbitize" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up & Running Your Fit\n", + "\n", + "The hard part is over-- we have formatted our input data! `orbitize!` will now function the same as any other fit. Behind the scenes, `orbitize!` will automatically recognize that you have inputted absolute astrometry, and set up a fit that includes position, parallax, and proper motion terms as free parameters. Observe:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from orbitize import read_input, system, priors, sampler\n", + "import os\n", + "\n", + "data_table = read_input.read_file(\"data_for_orbit_fit.csv\")\n", + "\n", + "fit_secondary_mass = True # tell orbitize! we want to get dynamical masses\n", + "m0 = 1\n", + "plx = 1\n", + "\n", + "# this sets up a joint fit of Hipparcos time series data and the absolute astrometry\n", + "# from the data table we just created.\n", + "betaPicSystem = system.System(\n", + " num_secondary_bodies,\n", + " data_table,\n", + " m0,\n", + " plx,\n", + " hipparcos_IAD=betaPicHipObject,\n", + " fit_secondary_mass=fit_secondary_mass,\n", + ")\n", + "\n", + "# change any priors you want to:\n", + "plx_idx = betaPicSystem.param_idx[\"plx\"]\n", + "betaPicSystem.sys_priors[plx_idx] = priors.UniformPrior(10, 15)\n", + "\n", + "# run the fit!\n", + "tutorialSampler = sampler.MCMC(betaPicSystem)\n", + "# tutorialSampler.run_sampler(you_choose, burn_steps=you_choose)\n", + "\n", + "# clean up\n", + "os.system(\"rm data_for_orbit_fit.csv\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "python3.12", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 7dfe1c4e67cb8cd4f762e0407a79816a601087de Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 18 Mar 2024 12:51:56 -0700 Subject: [PATCH 31/37] fix bug with loading hipparcos iad from saved run --- orbitize/hipparcos.py | 37 +++++++++++++++++++++++++++---------- 1 file changed, 27 insertions(+), 10 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 267961e5..f23e3fc9 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -47,7 +47,7 @@ def __init__(self, epochs_mjd, alpha0, delta0, alphadec0_epoch=1991.25): self.Y = bary_pos.y.value # [au] self.Z = bary_pos.z.value # [au] - def compute_astrometric_model(self, samples, param_idx): + def compute_astrometric_model(self, samples, param_idx, epochs=None): """ Compute the astrometric prediction at self.epochs_mjd from parallax and proper motion alone, given an array of model parameters (no orbital @@ -60,10 +60,12 @@ def compute_astrometric_model(self, samples, param_idx): param_idx: a dictionary matching fitting parameter labels to their indices in an array of fitting parameters (generally set to System.basis.param_idx). + epochs: if None, use self.epochs for astrometric predictions. Otherwise, + use this array passed in [in decimalyear]. Returns: tuple of: - - float: predicted RA*cos(delta0) position offsets from the measured + - float: predicted RA*cos(delta0) position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] - float: predicted Dec position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] @@ -75,7 +77,21 @@ def compute_astrometric_model(self, samples, param_idx): alpha_H0 = samples[param_idx["alpha0"]] delta_H0 = samples[param_idx["delta0"]] - n_epochs = len(self.epochs) + if epochs is None: + epochs = self.epochs + X = self.X + Y = self.Y + Z = self.Z + else: + # compute Earth XYZ position in barycentric coordinates + bary_pos, _ = get_body_barycentric_posvel( + "earth", Time(epochs, format="decimalyear") + ) + X = bary_pos.x.value # [au] + Y = bary_pos.y.value # [au] + Z = bary_pos.z.value # [au] + + n_epochs = len(epochs) alpha_C_st_array = np.empty(n_epochs) delta_C_array = np.empty(n_epochs) @@ -86,24 +102,25 @@ def compute_astrometric_model(self, samples, param_idx): alpha_H0 + plx * ( - self.X[i] * np.sin(np.radians(self.alpha0)) - - self.Y[i] * np.cos(np.radians(self.alpha0)) + X[i] * np.sin(np.radians(self.alpha0)) + - Y[i] * np.cos(np.radians(self.alpha0)) ) - + (self.epochs[i] - self.alphadec0_epoch) * pm_ra + + (epochs[i] - self.alphadec0_epoch) * pm_ra ) + print(epochs[i] - self.alphadec0_epoch) delta_C_array[i] = ( delta_H0 + plx * ( - self.X[i] + X[i] * np.cos(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - + self.Y[i] + + Y[i] * np.sin(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - - self.Z[i] * np.cos(np.radians(self.delta0)) + - Z[i] * np.cos(np.radians(self.delta0)) ) - + (self.epochs[i] - self.alphadec0_epoch) * pm_dec + + (epochs[i] - self.alphadec0_epoch) * pm_dec ) return alpha_C_st_array, delta_C_array From 44c9755b4db9e0ef866019c258f8ab264c3edaad Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 18 Mar 2024 12:53:37 -0700 Subject: [PATCH 32/37] Revert "fix bug with loading hipparcos iad from saved run" This reverts commit 7dfe1c4e67cb8cd4f762e0407a79816a601087de. --- orbitize/hipparcos.py | 37 ++++++++++--------------------------- 1 file changed, 10 insertions(+), 27 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index f23e3fc9..267961e5 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -47,7 +47,7 @@ def __init__(self, epochs_mjd, alpha0, delta0, alphadec0_epoch=1991.25): self.Y = bary_pos.y.value # [au] self.Z = bary_pos.z.value # [au] - def compute_astrometric_model(self, samples, param_idx, epochs=None): + def compute_astrometric_model(self, samples, param_idx): """ Compute the astrometric prediction at self.epochs_mjd from parallax and proper motion alone, given an array of model parameters (no orbital @@ -60,12 +60,10 @@ def compute_astrometric_model(self, samples, param_idx, epochs=None): param_idx: a dictionary matching fitting parameter labels to their indices in an array of fitting parameters (generally set to System.basis.param_idx). - epochs: if None, use self.epochs for astrometric predictions. Otherwise, - use this array passed in [in decimalyear]. Returns: tuple of: - - float: predicted RA*cos(delta0) position offsets from the measured + - float: predicted RA*cos(delta0) position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] - float: predicted Dec position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] @@ -77,21 +75,7 @@ def compute_astrometric_model(self, samples, param_idx, epochs=None): alpha_H0 = samples[param_idx["alpha0"]] delta_H0 = samples[param_idx["delta0"]] - if epochs is None: - epochs = self.epochs - X = self.X - Y = self.Y - Z = self.Z - else: - # compute Earth XYZ position in barycentric coordinates - bary_pos, _ = get_body_barycentric_posvel( - "earth", Time(epochs, format="decimalyear") - ) - X = bary_pos.x.value # [au] - Y = bary_pos.y.value # [au] - Z = bary_pos.z.value # [au] - - n_epochs = len(epochs) + n_epochs = len(self.epochs) alpha_C_st_array = np.empty(n_epochs) delta_C_array = np.empty(n_epochs) @@ -102,25 +86,24 @@ def compute_astrometric_model(self, samples, param_idx, epochs=None): alpha_H0 + plx * ( - X[i] * np.sin(np.radians(self.alpha0)) - - Y[i] * np.cos(np.radians(self.alpha0)) + self.X[i] * np.sin(np.radians(self.alpha0)) + - self.Y[i] * np.cos(np.radians(self.alpha0)) ) - + (epochs[i] - self.alphadec0_epoch) * pm_ra + + (self.epochs[i] - self.alphadec0_epoch) * pm_ra ) - print(epochs[i] - self.alphadec0_epoch) delta_C_array[i] = ( delta_H0 + plx * ( - X[i] + self.X[i] * np.cos(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - + Y[i] + + self.Y[i] * np.sin(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - - Z[i] * np.cos(np.radians(self.delta0)) + - self.Z[i] * np.cos(np.radians(self.delta0)) ) - + (epochs[i] - self.alphadec0_epoch) * pm_dec + + (self.epochs[i] - self.alphadec0_epoch) * pm_dec ) return alpha_C_st_array, delta_C_array From 822b5015eecfb4d83b94b8fb5c9cd13c66388719 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 18 Mar 2024 12:56:50 -0700 Subject: [PATCH 33/37] Revert "Revert "fix bug with loading hipparcos iad from saved run"" This reverts commit 44c9755b4db9e0ef866019c258f8ab264c3edaad. --- orbitize/hipparcos.py | 37 +++++++++++++++++++++++++++---------- 1 file changed, 27 insertions(+), 10 deletions(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index 267961e5..f23e3fc9 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -47,7 +47,7 @@ def __init__(self, epochs_mjd, alpha0, delta0, alphadec0_epoch=1991.25): self.Y = bary_pos.y.value # [au] self.Z = bary_pos.z.value # [au] - def compute_astrometric_model(self, samples, param_idx): + def compute_astrometric_model(self, samples, param_idx, epochs=None): """ Compute the astrometric prediction at self.epochs_mjd from parallax and proper motion alone, given an array of model parameters (no orbital @@ -60,10 +60,12 @@ def compute_astrometric_model(self, samples, param_idx): param_idx: a dictionary matching fitting parameter labels to their indices in an array of fitting parameters (generally set to System.basis.param_idx). + epochs: if None, use self.epochs for astrometric predictions. Otherwise, + use this array passed in [in decimalyear]. Returns: tuple of: - - float: predicted RA*cos(delta0) position offsets from the measured + - float: predicted RA*cos(delta0) position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] - float: predicted Dec position offsets from the measured position at alphadec0_epoch, calculated for each input epoch [mas] @@ -75,7 +77,21 @@ def compute_astrometric_model(self, samples, param_idx): alpha_H0 = samples[param_idx["alpha0"]] delta_H0 = samples[param_idx["delta0"]] - n_epochs = len(self.epochs) + if epochs is None: + epochs = self.epochs + X = self.X + Y = self.Y + Z = self.Z + else: + # compute Earth XYZ position in barycentric coordinates + bary_pos, _ = get_body_barycentric_posvel( + "earth", Time(epochs, format="decimalyear") + ) + X = bary_pos.x.value # [au] + Y = bary_pos.y.value # [au] + Z = bary_pos.z.value # [au] + + n_epochs = len(epochs) alpha_C_st_array = np.empty(n_epochs) delta_C_array = np.empty(n_epochs) @@ -86,24 +102,25 @@ def compute_astrometric_model(self, samples, param_idx): alpha_H0 + plx * ( - self.X[i] * np.sin(np.radians(self.alpha0)) - - self.Y[i] * np.cos(np.radians(self.alpha0)) + X[i] * np.sin(np.radians(self.alpha0)) + - Y[i] * np.cos(np.radians(self.alpha0)) ) - + (self.epochs[i] - self.alphadec0_epoch) * pm_ra + + (epochs[i] - self.alphadec0_epoch) * pm_ra ) + print(epochs[i] - self.alphadec0_epoch) delta_C_array[i] = ( delta_H0 + plx * ( - self.X[i] + X[i] * np.cos(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - + self.Y[i] + + Y[i] * np.sin(np.radians(self.alpha0)) * np.sin(np.radians(self.delta0)) - - self.Z[i] * np.cos(np.radians(self.delta0)) + - Z[i] * np.cos(np.radians(self.delta0)) ) - + (self.epochs[i] - self.alphadec0_epoch) * pm_dec + + (epochs[i] - self.alphadec0_epoch) * pm_dec ) return alpha_C_st_array, delta_C_array From 1739d5be8bb4b59e02d3f5e0a3079cda5ca2d319 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 18 Mar 2024 13:00:45 -0700 Subject: [PATCH 34/37] fix bug with hipparcos IAD objects loaded from saved file --- orbitize/results.py | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/orbitize/results.py b/orbitize/results.py index dee48b8d..331521ef 100644 --- a/orbitize/results.py +++ b/orbitize/results.py @@ -211,7 +211,11 @@ def load_results(self, filename, append=False): renormalize_errors = bool(hf.attrs['renormalize_errors']) hipparcos_IAD = orbitize.hipparcos.HipparcosLogProb( - tmpfile, hip_num, alphadec0_epoch, renormalize_errors + tmpfile, + hip_num, + num_secondary_bodies, + alphadec0_epoch, + renormalize_errors, ) os.system('rm {}'.format(tmpfile)) From bf81c75a41667a8648a352f5247f52f5e1ea62a6 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Mon, 18 Mar 2024 13:01:33 -0700 Subject: [PATCH 35/37] delete rogue print stmt --- orbitize/hipparcos.py | 1 - 1 file changed, 1 deletion(-) diff --git a/orbitize/hipparcos.py b/orbitize/hipparcos.py index f23e3fc9..72bc4084 100644 --- a/orbitize/hipparcos.py +++ b/orbitize/hipparcos.py @@ -107,7 +107,6 @@ def compute_astrometric_model(self, samples, param_idx, epochs=None): ) + (epochs[i] - self.alphadec0_epoch) * pm_ra ) - print(epochs[i] - self.alphadec0_epoch) delta_C_array[i] = ( delta_H0 + plx From b80e8995e306648873f7222adbb19e0821abe580 Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Fri, 29 Mar 2024 11:51:49 -0700 Subject: [PATCH 36/37] fix test bug causing test_abs_astrom test to fail --- tests/test_abs_astrometry.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/tests/test_abs_astrometry.py b/tests/test_abs_astrometry.py index ddf2422b..ca6c3a8a 100644 --- a/tests/test_abs_astrometry.py +++ b/tests/test_abs_astrometry.py @@ -179,12 +179,16 @@ def test_arbitrary_abs_astrom(): pmonly_model = mySystem.compute_model(pm_only_params) - pmonly_expectation = np.array([[0, 0], [50, 50], [100.0, 100.0]]) + cosdelta0 = np.cos(np.radians(mySystem.pm_plx_predictor.delta0)) + + pmonly_expectation = np.array( + [[0, 0], [50 / cosdelta0, 50], [100.0 / cosdelta0, 100.0]] + ) assert np.all(np.isclose(pmonly_model[0], pmonly_expectation)) assert np.all(np.isclose(pmonly_model[1], np.zeros(pmonly_model[1].shape))) if __name__ == "__main__": - # test_1planet() + test_1planet() test_arbitrary_abs_astrom() From 436a866da836ac05a367c812397c92bdb607f83c Mon Sep 17 00:00:00 2001 From: Sarah Blunt Date: Thu, 11 Apr 2024 15:47:03 -0700 Subject: [PATCH 37/37] add last two v3 changes to changelog! --- docs/index.rst | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/docs/index.rst b/docs/index.rst index 53308dd9..f3737eb4 100644 --- a/docs/index.rst +++ b/docs/index.rst @@ -55,13 +55,15 @@ User Guide: Changelog: ++++++++++ -**3.0.0 (TBD)** +**3.0.0 (2024-4-11)** +- implementation of Hipparcos-Gaia catalog of accelerations fitting! (@semaphoreP) +- fit arbitrary absolute astrometry (@sblunt) +- implement O'Neil observation-based priors (@sblunt/@clarissardoo) - discuss MCMC autocorrelation in MCMC tutorial (@michaelkmpoon) - add time warning if OFTI doesn't accept an orbit in first 60 s (@michaelkmpoon) - add first parts of orbitize! manual (@sofiacovarrubias/@sblunt) - bugfix for rebound MCMC fits (issue #357; @sblunt) -- implementation of Hipparcos-Gaia catalog of accelerations fitting! (@semaphoreP) - implementation of residual plotting method for orbit plots (@Saanikachoudhary and @semaphoreP) - plot companion RVs (@chihchunhsu) - add documentation about referencing issues when modifying priors to tutorial (@wcroberson)