From 02466421ed2fcbf8f3ef51fa6f5f5e613c9da907 Mon Sep 17 00:00:00 2001 From: Sayak Paul Date: Wed, 11 Aug 2021 00:23:44 -0700 Subject: [PATCH] cleaning up --- Initial_Notebook.ipynb | 1423 +++++++++++++++++++++------------------- 1 file changed, 748 insertions(+), 675 deletions(-) diff --git a/Initial_Notebook.ipynb b/Initial_Notebook.ipynb index eeb5484..f8f8819 100644 --- a/Initial_Notebook.ipynb +++ b/Initial_Notebook.ipynb @@ -6,6 +6,7 @@ "name": "Handwritten_OCR.ipynb", "provenance": [], "collapsed_sections": [], + "machine_shape": "hm", "include_colab_link": true }, "kernelspec": { @@ -15,7 +16,7 @@ "accelerator": "GPU", "widgets": { "application/vnd.jupyter.widget-state+json": { - "298b7332ff574d2f9cb969a3599d13d2": { + "863bfd50e00a43909f7e36186bcb0e45": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -28,15 +29,15 @@ "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", - "layout": "IPY_MODEL_1a1442aadbf6421ca553640577dd374e", + "layout": "IPY_MODEL_3d1abccd6bf04921a2f2d5a06e485efe", "_model_module": "@jupyter-widgets/controls", "children": [ - "IPY_MODEL_7f78fa9f4f7b4394be64850b8af2131c", - "IPY_MODEL_0aebcbef27a74d4c93047e1885140674" + "IPY_MODEL_3cc7c624c1ca4d958b926e040bc91761", + "IPY_MODEL_c2a3f91652e443c59e180ae7028a5490" ] } }, - "1a1442aadbf6421ca553640577dd374e": { + "3d1abccd6bf04921a2f2d5a06e485efe": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -88,13 +89,13 @@ "left": null } }, - "7f78fa9f4f7b4394be64850b8af2131c": { + "3cc7c624c1ca4d958b926e040bc91761": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", - "style": "IPY_MODEL_8cdf1d35ab3243b08db18c2f37a85eb3", + "style": "IPY_MODEL_0053f7f84f754596963b7544b8080d06", "_dom_classes": [], "description": "100%", "_model_name": "FloatProgressModel", @@ -109,31 +110,31 @@ "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_00ad53a1f6ff4073b1d02cbaf579779e" + "layout": "IPY_MODEL_b2d91c5aeb7a4220a7778b228cb6b833" } }, - "0aebcbef27a74d4c93047e1885140674": { + "c2a3f91652e443c59e180ae7028a5490": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", - "style": "IPY_MODEL_6959401ff3cb494e8c3318f87a399f2f", + "style": "IPY_MODEL_062bdcf2881b4f54a8750c8c30190554", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": " 115338/115338 [00:05<00:00, 19439.42it/s]", + "value": " 115338/115338 [00:00<00:00, 795007.13it/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_6b7ecbe48bbe4385b7319b0c6422ebf8" + "layout": "IPY_MODEL_6433d6803ba84d37bfd4abe39c9c1a9a" } }, - "8cdf1d35ab3243b08db18c2f37a85eb3": { + "0053f7f84f754596963b7544b8080d06": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -149,7 +150,7 @@ "_model_module": "@jupyter-widgets/controls" } }, - "00ad53a1f6ff4073b1d02cbaf579779e": { + "b2d91c5aeb7a4220a7778b228cb6b833": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -201,7 +202,7 @@ "left": null } }, - "6959401ff3cb494e8c3318f87a399f2f": { + "062bdcf2881b4f54a8750c8c30190554": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -216,7 +217,7 @@ "_model_module": "@jupyter-widgets/controls" } }, - "6b7ecbe48bbe4385b7319b0c6422ebf8": { + "6433d6803ba84d37bfd4abe39c9c1a9a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -268,7 +269,7 @@ "left": null } }, - "2b43f57707b949f7af587df2f98055cf": { + "dbf74a73d9824a288c69d6d1e0f3ab96": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -281,15 +282,15 @@ "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", - "layout": "IPY_MODEL_3352fa3b4ad8478690b09745d653859c", + "layout": "IPY_MODEL_e5ca3abd1b634507aa115c823e8cc660", "_model_module": "@jupyter-widgets/controls", "children": [ - "IPY_MODEL_357dd888cbf14c11a6309ae9fa7b395b", - "IPY_MODEL_25008a11bdb04d2fb4588f98821234ce" + "IPY_MODEL_d7b83d9b73dd42c9ac876217de6181ba", + "IPY_MODEL_1783481b39a14cda842025ea2aba6be7" ] } }, - "3352fa3b4ad8478690b09745d653859c": { + "e5ca3abd1b634507aa115c823e8cc660": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -341,13 +342,13 @@ "left": null } }, - "357dd888cbf14c11a6309ae9fa7b395b": { + "d7b83d9b73dd42c9ac876217de6181ba": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", - "style": "IPY_MODEL_053f60bfdf9e4d53b80c81f26b88ed16", + "style": "IPY_MODEL_361567a72c9e4750adc15c850186b313", "_dom_classes": [], "description": "100%", "_model_name": "FloatProgressModel", @@ -362,31 +363,31 @@ "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_bd0f97b5663c470c94363c4773b2f896" + "layout": "IPY_MODEL_e1ece62e03cc4c5a901e51a42bc60d2b" } }, - "25008a11bdb04d2fb4588f98821234ce": { + "1783481b39a14cda842025ea2aba6be7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", - "style": "IPY_MODEL_d17bc71794f44d2c95fe31139ecde18c", + "style": "IPY_MODEL_87a354d4275b47cda0f09a224bce94e2", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": " 86810/86810 [00:47<00:00, 1814.41it/s]", + "value": " 86810/86810 [01:36<00:00, 895.40it/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_8334a20cf60f4c4582df0b7f20996ee3" + "layout": "IPY_MODEL_c7692d2fe18d431f8038a8ab49349b0d" } }, - "053f60bfdf9e4d53b80c81f26b88ed16": { + "361567a72c9e4750adc15c850186b313": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -402,7 +403,7 @@ "_model_module": "@jupyter-widgets/controls" } }, - "bd0f97b5663c470c94363c4773b2f896": { + "e1ece62e03cc4c5a901e51a42bc60d2b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -454,7 +455,7 @@ "left": null } }, - "d17bc71794f44d2c95fe31139ecde18c": { + "87a354d4275b47cda0f09a224bce94e2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -469,7 +470,7 @@ "_model_module": "@jupyter-widgets/controls" } }, - "8334a20cf60f4c4582df0b7f20996ee3": { + "c7692d2fe18d431f8038a8ab49349b0d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -521,7 +522,7 @@ "left": null } }, - "ba2c3ae75357415083989b27b9823eac": { + "d359280a815b445aa70af200057fb4a0": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -534,15 +535,15 @@ "_view_count": null, "_view_module_version": "1.5.0", "box_style": "", - "layout": "IPY_MODEL_013a226fa310490db468bb96390680cc", + "layout": "IPY_MODEL_d5a78f3ea43a42a9814f1270ae7bdac5", "_model_module": "@jupyter-widgets/controls", "children": [ - "IPY_MODEL_f2835f5c8f1d45a2a9b6d9e245729fa8", - "IPY_MODEL_c1f9b831a3504a6aaa3b4373ff261230" + "IPY_MODEL_00bf20c6598b42abaa6ec7a632f8bf0e", + "IPY_MODEL_0a0c4c34c04540d4bc9d43a39e31ae54" ] } }, - "013a226fa310490db468bb96390680cc": { + "d5a78f3ea43a42a9814f1270ae7bdac5": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -594,52 +595,52 @@ "left": null } }, - "f2835f5c8f1d45a2a9b6d9e245729fa8": { + "00bf20c6598b42abaa6ec7a632f8bf0e": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_view_name": "ProgressView", - "style": "IPY_MODEL_ac29e644ff774fc9b82a9fd326fa45ce", + "style": "IPY_MODEL_501285dbd7654b54b8da9633ee3c185f", "_dom_classes": [], "description": "100%", "_model_name": "FloatProgressModel", "bar_style": "success", - "max": 9646, + "max": 4823, "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": 9646, + "value": 4823, "_view_count": null, "_view_module_version": "1.5.0", "orientation": "horizontal", "min": 0, "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_0250a933d69944c3ada84553dd54200c" + "layout": "IPY_MODEL_e4083ace92034ceb8967aa20c78fd545" } }, - "c1f9b831a3504a6aaa3b4373ff261230": { + "0a0c4c34c04540d4bc9d43a39e31ae54": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_view_name": "HTMLView", - "style": "IPY_MODEL_a21ea9de433d4f92bbc37eb00bc0cbaa", + "style": "IPY_MODEL_1638930591bf4a1bb280dd4039aa755b", "_dom_classes": [], "description": "", "_model_name": "HTMLModel", "placeholder": "​", "_view_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "value": " 9646/9646 [00:04<00:00, 2013.51it/s]", + "value": " 4823/4823 [00:34<00:00, 141.57it/s]", "_view_count": null, "_view_module_version": "1.5.0", "description_tooltip": null, "_model_module": "@jupyter-widgets/controls", - "layout": "IPY_MODEL_936ac4151f5f46c88abfaaa3890c4f08" + "layout": "IPY_MODEL_0c7932e4feb04f3c95f5329ea146edcb" } }, - "ac29e644ff774fc9b82a9fd326fa45ce": { + "501285dbd7654b54b8da9633ee3c185f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -655,7 +656,7 @@ "_model_module": "@jupyter-widgets/controls" } }, - "0250a933d69944c3ada84553dd54200c": { + "e4083ace92034ceb8967aa20c78fd545": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -707,7 +708,7 @@ "left": null } }, - "a21ea9de433d4f92bbc37eb00bc0cbaa": { + "1638930591bf4a1bb280dd4039aa755b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -722,7 +723,260 @@ "_model_module": "@jupyter-widgets/controls" } }, - "936ac4151f5f46c88abfaaa3890c4f08": { + "0c7932e4feb04f3c95f5329ea146edcb": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "38d81bcf6f484015bb8144b87ba244c8": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_dbbf026f7d4a4cfa8534df717ccaac16", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_66a1177ecac84aee8621799f315cb0ae", + "IPY_MODEL_5fef5c3fa26c4e748a2f67e57d2b2d76" + ] + } + }, + "dbbf026f7d4a4cfa8534df717ccaac16": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "66a1177ecac84aee8621799f315cb0ae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_a96ebacfc6aa49f88a2a6af3c07e5610", + "_dom_classes": [], + "description": "100%", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 4823, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 4823, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_d8c9ff19908a488098f52232afefbf83" + } + }, + "5fef5c3fa26c4e748a2f67e57d2b2d76": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_e7a3d9a582534898a53130abd42ca2ac", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "​", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 4823/4823 [00:31<00:00, 152.10it/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_a8e7018577444f0fa90f0de6a17f616f" + } + }, + "a96ebacfc6aa49f88a2a6af3c07e5610": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "initial", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "d8c9ff19908a488098f52232afefbf83": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "e7a3d9a582534898a53130abd42ca2ac": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "a8e7018577444f0fa90f0de6a17f616f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -798,49 +1052,6 @@ "- Keras example on [Captcha OCR](https://keras.io/examples/vision/captcha_ocr/)" ] }, - { - "cell_type": "code", - "metadata": { - "id": "lIYdn1woOS1n", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 357 - }, - "outputId": "b18e7e13-af17-42fa-cfd1-c882f639d2d6" - }, - "source": [ - "!nvidia-smi" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "Sun Sep 27 04:03:06 2020 \n", - "+-----------------------------------------------------------------------------+\n", - "| NVIDIA-SMI 450.66 Driver Version: 418.67 CUDA Version: 10.1 |\n", - "|-------------------------------+----------------------+----------------------+\n", - "| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n", - "| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n", - "| | | MIG M. |\n", - "|===============================+======================+======================|\n", - "| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n", - "| N/A 63C P8 11W / 70W | 0MiB / 15079MiB | 0% Default |\n", - "| | | ERR! |\n", - "+-------------------------------+----------------------+----------------------+\n", - " \n", - "+-----------------------------------------------------------------------------+\n", - "| Processes: |\n", - "| GPU GI CI PID Type Process name GPU Memory |\n", - "| ID ID Usage |\n", - "|=============================================================================|\n", - "| No running processes found |\n", - "+-----------------------------------------------------------------------------+\n" - ], - "name": "stdout" - } - ] - }, { "cell_type": "markdown", "metadata": { @@ -859,7 +1070,7 @@ "!wget -q https://github.com/sayakpaul/Handwriting-Recognizer-in-Keras/releases/download/v1.0.0/IAM_Words.zip\n", "!unzip -qq IAM_Words.zip" ], - "execution_count": null, + "execution_count": 1, "outputs": [] }, { @@ -870,10 +1081,10 @@ "source": [ "!mkdir data\n", "!mkdir data/words\n", - "!tar -xf words.tgz -C data/words\n", - "!mv words.txt data" + "!tar -xf IAM_Words/words.tgz -C data/words\n", + "!mv IAM_Words/words.txt data" ], - "execution_count": null, + "execution_count": 2, "outputs": [] }, { @@ -881,15 +1092,14 @@ "metadata": { "id": "OwwnL7cwL8q0", "colab": { - "base_uri": "https://localhost:8080/", - "height": 357 + "base_uri": "https://localhost:8080/" }, - "outputId": "a97aa81f-af37-468e-ff2b-c076ae8e59a9" + "outputId": "42be5c86-2b9e-4026-80c6-86a37a638ded" }, "source": [ "!head -20 data/words.txt" ], - "execution_count": null, + "execution_count": 3, "outputs": [ { "output_type": "stream", @@ -928,6 +1138,32 @@ "## Imports" ] }, + { + "cell_type": "code", + "metadata": { + "id": "JdA5uc6ATAWx", + "outputId": "c8be0648-3d44-43af-835c-589dcc1a335e", + "colab": { + "base_uri": "https://localhost:8080/" + } + }, + "source": [ + "!pip install -q -U imgaug" + ], + "execution_count": 4, + "outputs": [ + { + "output_type": "stream", + "text": [ + "\u001b[?25l\r\u001b[K |▍ | 10 kB 30.6 MB/s eta 0:00:01\r\u001b[K |▊ | 20 kB 37.9 MB/s eta 0:00:01\r\u001b[K |█ | 30 kB 23.9 MB/s eta 0:00:01\r\u001b[K |█▍ | 40 kB 18.9 MB/s eta 0:00:01\r\u001b[K |█▊ | 51 kB 8.1 MB/s eta 0:00:01\r\u001b[K |██ | 61 kB 8.7 MB/s eta 0:00:01\r\u001b[K |██▍ | 71 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██▊ | 81 kB 8.3 MB/s eta 0:00:01\r\u001b[K |███ | 92 kB 6.8 MB/s eta 0:00:01\r\u001b[K |███▌ | 102 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███▉ | 112 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████▏ | 122 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████▌ | 133 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████▉ | 143 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████▏ | 153 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████▌ | 163 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████▉ | 174 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████▏ | 184 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████▋ | 194 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████ | 204 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████▎ | 215 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████▋ | 225 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████ | 235 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████▎ | 245 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████▋ | 256 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████ | 266 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████▎ | 276 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████▊ | 286 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████ | 296 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████▍ | 307 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████▊ | 317 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████ | 327 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████▍ | 337 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████▊ | 348 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████ | 358 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████▍ | 368 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████▉ | 378 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████▏ | 389 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████▌ | 399 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████▉ | 409 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████▏ | 419 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████▌ | 430 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████▉ | 440 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████▏ | 450 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████▌ | 460 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████ | 471 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████▎ | 481 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████▋ | 491 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████ | 501 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████▎ | 512 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████▋ | 522 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████ | 532 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████▎ | 542 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████▋ | 552 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████ | 563 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████▍ | 573 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████▊ | 583 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████ | 593 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████▍ | 604 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████▊ | 614 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████ | 624 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████▍ | 634 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████▊ | 645 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████▏ | 655 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████▌ | 665 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████▉ | 675 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████▏ | 686 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████▌ | 696 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████▉ | 706 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████▏ | 716 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████▌ | 727 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████▉ | 737 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▎ | 747 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████████▋ | 757 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████████ | 768 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▎ | 778 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████████▋ | 788 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████ | 798 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▎ | 808 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████▋ | 819 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████████ | 829 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▍ | 839 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████████▊ | 849 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████ | 860 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▍ | 870 kB 7.4 MB/s eta 0:00:01\r\u001b[K |█████████████████████████████▊ | 880 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████ | 890 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▍ | 901 kB 7.4 MB/s eta 0:00:01\r\u001b[K |██████████████████████████████▊ | 911 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████ | 921 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▌| 931 kB 7.4 MB/s eta 0:00:01\r\u001b[K |███████████████████████████████▉| 942 kB 7.4 MB/s eta 0:00:01\r\u001b[K |████████████████████████████████| 948 kB 7.4 MB/s \n", + "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", + "albumentations 0.1.12 requires imgaug<0.2.7,>=0.2.5, but you have imgaug 0.4.0 which is incompatible.\u001b[0m\n", + "\u001b[?25h" + ], + "name": "stdout" + } + ] + }, { "cell_type": "code", "metadata": { @@ -936,19 +1172,19 @@ "source": [ "from imutils import paths\n", "from tqdm.notebook import tqdm\n", - "from pickle import dump\n", "from itertools import groupby\n", "\n", "import tensorflow as tf\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", + "import imgaug\n", "import cv2\n", "import os\n", "\n", "np.random.seed(42)\n", "tf.random.set_seed(42)" ], - "execution_count": null, + "execution_count": 1, "outputs": [] }, { @@ -960,38 +1196,50 @@ "## Dataset preparation" ] }, + { + "cell_type": "code", + "metadata": { + "id": "5nw0wiDWssNI" + }, + "source": [ + "BASE_IMAGE_PATH = os.path.join(\"data\", \"words\")" + ], + "execution_count": 2, + "outputs": [] + }, { "cell_type": "code", "metadata": { "id": "M0OnjVA6MQTu", "colab": { - "base_uri": "https://localhost:8080/", - "height": 102 + "base_uri": "https://localhost:8080/" }, - "outputId": "eab34b9d-a147-467d-ddfa-0d6470aebe6f" + "outputId": "fa95e066-14e3-4abb-d1c9-f70f43d1ec6a" }, "source": [ - "# filename: part1-part2-part3 --> part1/part1-part2/part1-part2-part3.png\n", - "all_images = list(paths.list_images('/content/data/words'))\n", + "# Image path: part1-part2-part3 --> part1/part1-part2/part1-part2-part3.png\n", + "# The above format DOES NOT include the base path which is \"data/words\" in\n", + "# this case.\n", + "all_images = list(paths.list_images(BASE_IMAGE_PATH))\n", "all_images[:5]" ], - "execution_count": null, + "execution_count": 3, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ - "['/content/data/words/c04/c04-110/c04-110-00-11.png',\n", - " '/content/data/words/c04/c04-110/c04-110-03-02.png',\n", - " '/content/data/words/c04/c04-110/c04-110-01-03.png',\n", - " '/content/data/words/c04/c04-110/c04-110-03-12.png',\n", - " '/content/data/words/c04/c04-110/c04-110-03-04.png']" + "['data/words/j01/j01-045/j01-045-07-04.png',\n", + " 'data/words/j01/j01-045/j01-045-01-01.png',\n", + " 'data/words/j01/j01-045/j01-045-00-06.png',\n", + " 'data/words/j01/j01-045/j01-045-03-00.png',\n", + " 'data/words/j01/j01-045/j01-045-07-00.png']" ] }, "metadata": { "tags": [] }, - "execution_count": 4 + "execution_count": 3 } ] }, @@ -1003,37 +1251,37 @@ "base_uri": "https://localhost:8080/", "height": 83, "referenced_widgets": [ - "298b7332ff574d2f9cb969a3599d13d2", - "1a1442aadbf6421ca553640577dd374e", - "7f78fa9f4f7b4394be64850b8af2131c", - "0aebcbef27a74d4c93047e1885140674", - "8cdf1d35ab3243b08db18c2f37a85eb3", - "00ad53a1f6ff4073b1d02cbaf579779e", - "6959401ff3cb494e8c3318f87a399f2f", - "6b7ecbe48bbe4385b7319b0c6422ebf8" + "863bfd50e00a43909f7e36186bcb0e45", + "3d1abccd6bf04921a2f2d5a06e485efe", + "3cc7c624c1ca4d958b926e040bc91761", + "c2a3f91652e443c59e180ae7028a5490", + "0053f7f84f754596963b7544b8080d06", + "b2d91c5aeb7a4220a7778b228cb6b833", + "062bdcf2881b4f54a8750c8c30190554", + "6433d6803ba84d37bfd4abe39c9c1a9a" ] }, - "outputId": "f86b38b1-9fe7-4247-d339-152bc2e86e10" + "outputId": "0ba72633-3d43-4e12-930b-d95c8c208209" }, "source": [ "words_list = []\n", "\n", - "words = open('/content/data/words.txt', 'r').readlines()\n", + "words = open('data/words.txt', 'r').readlines()\n", "for line in tqdm(words):\n", " if line[0]=='#':\n", " continue\n", - " if line.split(\" \")[1]!=\"err\": # We don't need to deal with errored entries\n", + " if line.split(\" \")[1]!=\"err\": # We don't need to deal with errored entries.\n", " words_list.append(line)\n", "\n", "len(words_list)" ], - "execution_count": null, + "execution_count": 4, "outputs": [ { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "298b7332ff574d2f9cb969a3599d13d2", + "model_id": "863bfd50e00a43909f7e36186bcb0e45", "version_minor": 0, "version_major": 2 }, @@ -1062,7 +1310,7 @@ "metadata": { "tags": [] }, - "execution_count": 5 + "execution_count": 4 } ] }, @@ -1074,7 +1322,7 @@ "source": [ "np.random.shuffle(words_list)" ], - "execution_count": null, + "execution_count": 5, "outputs": [] }, { @@ -1083,7 +1331,7 @@ "id": "Q_1JJr-joiMb" }, "source": [ - "### Prepare the splits (90:10)" + "### Prepare the splits (90:5:5)" ] }, { @@ -1091,31 +1339,35 @@ "metadata": { "id": "OlWJ8FP2Rpht", "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 + "base_uri": "https://localhost:8080/" }, - "outputId": "df4b1159-3711-4221-89d2-21ff017f7ee3" + "outputId": "4611f0eb-c891-45d9-c691-fbe5715edf4a" }, "source": [ - "splitIdx = int(0.9 * len(words_list))\n", - "trainSamples = words_list[:splitIdx]\n", - "validationSamples = words_list[splitIdx:]\n", + "split_idx = int(0.9 * len(words_list))\n", + "train_samples = words_list[:split_idx]\n", + "test_samples = words_list[split_idx:]\n", + "\n", + "val_split_idx = int(0.5 * len(test_samples))\n", + "validation_samples = test_samples[:val_split_idx]\n", + "test_samples = test_samples[val_split_idx:]\n", "\n", - "len(trainSamples), len(validationSamples)" + "assert len(words_list) == len(train_samples) + len(validation_samples) + len(test_samples)\n", + "\n", + "print(f\"Total training samples: {len(train_samples)}\")\n", + "print(f\"Total validation samples: {len(validation_samples)}\")\n", + "print(f\"Total test samples: {len(test_samples)}\")" ], - "execution_count": null, + "execution_count": 6, "outputs": [ { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(86810, 9646)" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 7 + "output_type": "stream", + "text": [ + "Total training samples: 86810\n", + "Total validation samples: 4823\n", + "Total test samples: 4823\n" + ], + "name": "stdout" } ] }, @@ -1124,49 +1376,41 @@ "metadata": { "id": "c9oBlfUkNGVz", "colab": { - "base_uri": "https://localhost:8080/", - "height": 85 + "base_uri": "https://localhost:8080/" }, - "outputId": "ba757b01-40b9-4b49-ea06-4958bd4463d2" + "outputId": "990d7f0b-98ec-49ee-dcd2-f782f1c7c941" }, "source": [ - "train_words = [line.split(' ')[8:][0].strip() for line in trainSamples]\n", + "# Since the labels start appearing after eighth index we use that\n", + "# to retrieve the grounth-truth labels. Remember indexing starts from\n", + "# zero in Python.\n", + "start_idx = 8\n", + "train_words = [line.split(' ')[start_idx:][0].strip() for line in train_samples]\n", "max_label_len = max([len(str(text)) for text in train_words])\n", - "print(max_label_len)\n", + "print(f\"Maximum label length: {max_label_len}\")\n", "\n", + "padding_method = \"post\"\n", + "padding_token = 99\n", "tokenizer = tf.keras.preprocessing.text.Tokenizer(filters=\"\\n\", char_level=True)\n", "tokenizer.fit_on_texts(train_words)\n", "tokenized_words = tokenizer.texts_to_sequences(train_words)\n", "padded_train_words = tf.keras.preprocessing.sequence.pad_sequences(tokenized_words,\n", " maxlen=max_label_len,\n", - " padding='post',\n", - " value=99)\n", + " padding=padding_method,\n", + " value=padding_token)\n", "\n", - "# maximum sequence length is 4, hence a word is padded to that length\n", - "padded_train_words.shape, padded_train_words[0]" + "# Maximum sequence length is 4, hence a word is padded to that length.\n", + "print(f\"Integer representation of a word: {padded_train_words[0]}\")" ], - "execution_count": null, + "execution_count": 9, "outputs": [ { "output_type": "stream", "text": [ - "21\n" + "Maximum label length: 21\n", + "Integer representation of a word: [ 7 13 8 1 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99]\n" ], "name": "stdout" - }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "((86810, 21),\n", - " array([ 7, 13, 8, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n", - " 99, 99, 99, 99], dtype=int32))" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 8 } ] }, @@ -1175,16 +1419,15 @@ "metadata": { "id": "6aBAK36wos4G", "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 + "base_uri": "https://localhost:8080/" }, - "outputId": "0fd73f14-d28d-4dbc-f0f1-95d4dadbc38f" + "outputId": "655dfad9-e7d4-4695-87f8-94bdc83d737c" }, "source": [ - "# unique characters\n", + "# Unique characters.\n", "len(tokenizer.word_index)" ], - "execution_count": null, + "execution_count": 10, "outputs": [ { "output_type": "execute_result", @@ -1196,7 +1439,7 @@ "metadata": { "tags": [] }, - "execution_count": 9 + "execution_count": 10 } ] }, @@ -1206,7 +1449,7 @@ "id": "nU9pG8p8nRd_" }, "source": [ - "# view some integer mappings\n", + "# View some word index mappings.\n", "def process_word(word):\n", " processed_word = []\n", " for i in word:\n", @@ -1219,7 +1462,7 @@ " word = process_word(t)\n", " print (f\"{t.tolist()}----> {word}\")" ], - "execution_count": null, + "execution_count": 11, "outputs": [] }, { @@ -1227,15 +1470,14 @@ "metadata": { "id": "V5Z3bGvk7n9e", "colab": { - "base_uri": "https://localhost:8080/", - "height": 867 + "base_uri": "https://localhost:8080/" }, - "outputId": "3af0cdc9-672d-47fd-f14d-c9be55b742b8" + "outputId": "aa9f6af3-f929-466a-e548-ca7ea28d86e2" }, "source": [ - "view_sample_mappings(padded_train_words[:50])" + "view_sample_mappings(padded_train_words[:15])" ], - "execution_count": null, + "execution_count": 12, "outputs": [ { "output_type": "stream", @@ -1254,42 +1496,7 @@ "[15, 10, 19, 5, 6, 17, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> flying\n", "[18, 8, 1, 7, 1, 6, 2, 1, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> presented\n", "[6, 4, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> no\n", - "[3, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> as\n", - "[15, 1, 16, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> few\n", - "[16, 4, 8, 24, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> work\n", - "[4, 15, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> of\n", - "[5, 2, 1, 14, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> items\n", - "[2, 4, 4, 24, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> took\n", - "[27, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> \"\n", - "[40, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> :\n", - "[5, 6, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> in\n", - "[21, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> .\n", - "[7, 1, 11, 3, 2, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> sedate\n", - "[4, 23, 1, 8, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> over\n", - "[14, 13, 12, 9, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> much\n", - "[12, 4, 14, 18, 1, 10, 10, 1, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> compelled\n", - "[5, 6, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> in\n", - "[7, 1, 23, 1, 8, 3, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> several\n", - "[3, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> a\n", - "[4, 15, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> of\n", - "[7, 3, 5, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> said\n", - "[15, 3, 14, 5, 10, 5, 1, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> families\n", - "[16, 9, 5, 10, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> while\n", - "[3, 2, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> at\n", - "[12, 3, 18, 5, 2, 3, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> capital\n", - "[3, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> a\n", - "[17, 1, 2, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> get\n", - "[3, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> a\n", - "[8, 1, 3, 7, 4, 6, 3, 20, 10, 19, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> reasonably\n", - "[2, 9, 4, 13, 17, 9, 2, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> thought\n", - "[4, 15, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> of\n", - "[7, 9, 3, 12, 24, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> shack\n", - "[14, 1, 2, 9, 4, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> method\n", - "[21, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> .\n", - "[16, 3, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> was\n", - "[2, 4, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> to\n", - "[24, 5, 10, 10, 1, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> killed\n", - "[7, 2, 13, 15, 15, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> stuff\n" + "[3, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> as\n" ], "name": "stdout" } @@ -1298,112 +1505,34 @@ { "cell_type": "code", "metadata": { - "id": "FhOEwqXcpMPH", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 68 - }, - "outputId": "98df6f59-7747-45ab-99a8-f3fda7717a25" + "id": "FhOEwqXcpMPH" }, "source": [ - "valid_words = [line.split(' ')[8:][0].strip() for line in validationSamples]\n", + "valid_words = [line.split(' ')[start_idx:][0].strip() for line in validation_samples]\n", "tokenized_valid_words = tokenizer.texts_to_sequences(valid_words)\n", "padded_valid_words = tf.keras.preprocessing.sequence.pad_sequences(tokenized_valid_words,\n", " maxlen=max_label_len, \n", - " padding='post',\n", - " value=99)\n", - "padded_valid_words.shape, padded_valid_words[0]" + " padding=padding_method,\n", + " value=padding_token)" ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "((9646, 21),\n", - " array([ 3, 20, 10, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,\n", - " 99, 99, 99, 99], dtype=int32))" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 12 - } - ] + "execution_count": 14, + "outputs": [] }, { "cell_type": "code", "metadata": { - "id": "f1d8444YpgQa", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 867 - }, - "outputId": "32acc4b9-5aca-4231-ce65-2fd20df938a6" + "id": "f1d8444YpgQa" }, "source": [ - "view_sample_mappings(padded_valid_words[:50])" + "test_words = [line.split(' ')[start_idx:][0].strip() for line in test_samples]\n", + "tokenized_test_words = tokenizer.texts_to_sequences(test_words)\n", + "padded_test_words = tf.keras.preprocessing.sequence.pad_sequences(tokenized_test_words,\n", + " maxlen=max_label_len, \n", + " padding=padding_method,\n", + " value=padding_token)" ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "[3, 20, 10, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> able\n", - "[15, 13, 10, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> full\n", - "[21, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> .\n", - "[3, 12, 2, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> act\n", - "[19, 4, 13, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> you\n", - "[6, 3, 2, 5, 4, 6, 3, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> national\n", - "[26, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> -\n", - "[3, 20, 19, 7, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> abyss\n", - "[7, 3, 5, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> said\n", - "[5, 6, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> in\n", - "[3, 23, 5, 3, 2, 5, 4, 6, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> aviation\n", - "[21, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> .\n", - "[5, 6, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> in\n", - "[14, 5, 6, 5, 7, 2, 8, 19, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> ministry\n", - "[2, 9, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> the\n", - "[4, 2, 9, 1, 8, 16, 5, 7, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> otherwise\n", - "[5, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> i\n", - "[3, 18, 18, 1, 3, 8, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> appears\n", - "[4, 15, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> of\n", - "[20, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> be\n", - "[1, 28, 18, 4, 7, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> expose\n", - "[11, 1, 15, 1, 6, 12, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> defence\n", - "[4, 13, 8, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> our\n", - "[17, 1, 7, 2, 13, 8, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> gesture\n", - "[19, 4, 13, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> you\n", - "[22, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> ,\n", - "[6, 4, 8, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> nor\n", - "[21, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> .\n", - "[2, 4, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> to\n", - "[7, 3, 19, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> say\n", - "[27, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> \"\n", - "[3, 20, 4, 13, 2, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> about\n", - "[13, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> us\n", - "[1, 12, 4, 6, 4, 14, 5, 12, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> economic\n", - "[2, 9, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> the\n", - "[9, 3, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> had\n", - "[4, 6, 10, 19, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> only\n", - "[3, 6, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> and\n", - "[15, 1, 16, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> few\n", - "[8, 4, 20, 20, 1, 8, 19, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> robbery\n", - "[20, 19, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> by\n", - "[16, 1, 1, 24, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> week\n", - "[12, 5, 8, 12, 13, 14, 7, 2, 3, 6, 12, 1, 7, 99, 99, 99, 99, 99, 99, 99, 99]----> circumstances\n", - "[9, 4, 10, 11, 7, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> holds\n", - "[7, 4, 5, 10, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> soil\n", - "[27, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> \"\n", - "[4, 12, 12, 13, 8, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> occur\n", - "[21, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> .\n", - "[29, 1, 3, 6, 6, 5, 1, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> jeannie\n", - "[1, 6, 11, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99]----> end\n" - ], - "name": "stdout" - } - ] + "execution_count": 15, + "outputs": [] }, { "cell_type": "code", @@ -1411,25 +1540,33 @@ "id": "RROe32g7GD6k" }, "source": [ - " # Credit: https://github.com/githubharald/SimpleHTR/blob/master/src/SamplePreprocessor.py\n", - " def distortion_free_resize(img, imgSize):\n", - " # create target image and copy sample image into it\n", - " (wt, ht) = imgSize\n", - " (h, w) = img.shape\n", + "# Credit: https://github.com/githubharald/SimpleHTR/blob/master/src/SamplePreprocessor.py\n", + "def distortion_free_resize(image, img_size):\n", + " # Target size and current image size. \n", + " (wt, ht) = img_size\n", + " (h, w) = image.shape\n", + " \n", + " # Compute the individual resolution scales and take\n", + " # the maximum between them.\n", " fx = w / wt\n", " fy = h / ht\n", " f = max(fx, fy)\n", - " newSize = (max(min(wt, int(w / f)), 1), max(min(ht, int(h / f)), 1)) # scale according to f (result at least 1 and at most wt or ht)\n", - " img = cv2.resize(img, newSize)\n", - " target = np.ones([ht, wt]) * 255\n", - " target[0:newSize[1], 0:newSize[0]] = img\n", - "\n", - " # transpose for TF\n", - " img = cv2.transpose(target)\n", + " \n", + " # Compute the new image size such that the aspect ratio is respected.\n", + " new_size = (max(min(wt, int(w / f)), 1), max(min(ht, int(h / f)), 1))\n", "\n", - " return img" + " # First, resize the image to this newly computed size. Then\n", + " # copy its pixels over appropriately to another blank image\n", + " # having the target size. \n", + " image = cv2.resize(image, new_size)\n", + " target = np.ones([ht, wt]) * 255\n", + " target[0:new_size[1], 0:new_size[0]] = image\n", + " \n", + " # Tranpose to (w, h) format.\n", + " image = cv2.transpose(target)\n", + " return image" ], - "execution_count": null, + "execution_count": 16, "outputs": [] }, { @@ -1441,67 +1578,97 @@ "IMG_WIDTH = 128\n", "IMG_HEIGHT = 32\n", "\n", - "def process_images(img_path, imgSize=(IMG_WIDTH, IMG_HEIGHT)): \n", - " # read image in grayscale mode\n", + "def process_image(img_path, img_size=(IMG_WIDTH, IMG_HEIGHT)): \n", + " # Read image in grayscale mode.\n", " image = cv2.imread(img_path, 0)\n", - " # scale pixel values to [0, 1]\n", + " # Scale pixel values to [0, 1].\n", " image = image.astype(\"float32\")/255\n", - " # resize image\n", - " image = distortion_free_resize(image, imgSize)\n", - " image = np.expand_dims(image, axis=-1) # Add channel otherwise Conv2D won't be compatible\n", - "\n", + " # Resize image.\n", + " image = distortion_free_resize(image, img_size)\n", + " # Add channel otherwise Conv2D won't be compatible.\n", + " image = np.expand_dims(image, axis=-1) \n", " return image" ], - "execution_count": null, + "execution_count": 17, "outputs": [] }, { "cell_type": "code", "metadata": { - "id": "EqB7lQTwsTRk", + "id": "HBVTcwqBZMnX" + }, + "source": [ + "def prepare_images(samples):\n", + " images = np.zeros(shape=(len(samples), IMG_WIDTH, IMG_HEIGHT, 1))\n", + " for (i, file_line) in enumerate(tqdm(samples)):\n", + " line_split = file_line.strip()\n", + " line_split = line_split.split(\" \")\n", + " \n", + " # Each line split will have this format for the corresponding image:\n", + " # part1/part1-part2/part1-part2-part3.png\n", + " image_name = line_split[0] \n", + " partI = image_name.split(\"-\")[0]\n", + " partII = image_name.split(\"-\")[1]\n", + " img_path = os.path.join(\"/content/data/words/\", partI, \n", + " partI + \"-\" + partII,\n", + " image_name + \".png\"\n", + " )\n", + " if os.path.getsize(img_path):\n", + " preprocessed_image = process_image(img_path)\n", + " images[i] = preprocessed_image\n", + " return images" + ], + "execution_count": 18, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "E806c2cVa2mI", + "outputId": "6fea8a9c-feee-4b3f-b47d-bf88f1dfc2d0", "colab": { "base_uri": "https://localhost:8080/", - "height": 83, + "height": 164, "referenced_widgets": [ - "2b43f57707b949f7af587df2f98055cf", - "3352fa3b4ad8478690b09745d653859c", - "357dd888cbf14c11a6309ae9fa7b395b", - "25008a11bdb04d2fb4588f98821234ce", - "053f60bfdf9e4d53b80c81f26b88ed16", - "bd0f97b5663c470c94363c4773b2f896", - "d17bc71794f44d2c95fe31139ecde18c", - "8334a20cf60f4c4582df0b7f20996ee3" + "dbf74a73d9824a288c69d6d1e0f3ab96", + "e5ca3abd1b634507aa115c823e8cc660", + "d7b83d9b73dd42c9ac876217de6181ba", + "1783481b39a14cda842025ea2aba6be7", + "361567a72c9e4750adc15c850186b313", + "e1ece62e03cc4c5a901e51a42bc60d2b", + "87a354d4275b47cda0f09a224bce94e2", + "c7692d2fe18d431f8038a8ab49349b0d", + "d359280a815b445aa70af200057fb4a0", + "d5a78f3ea43a42a9814f1270ae7bdac5", + "00bf20c6598b42abaa6ec7a632f8bf0e", + "0a0c4c34c04540d4bc9d43a39e31ae54", + "501285dbd7654b54b8da9633ee3c185f", + "e4083ace92034ceb8967aa20c78fd545", + "1638930591bf4a1bb280dd4039aa755b", + "0c7932e4feb04f3c95f5329ea146edcb", + "38d81bcf6f484015bb8144b87ba244c8", + "dbbf026f7d4a4cfa8534df717ccaac16", + "66a1177ecac84aee8621799f315cb0ae", + "5fef5c3fa26c4e748a2f67e57d2b2d76", + "a96ebacfc6aa49f88a2a6af3c07e5610", + "d8c9ff19908a488098f52232afefbf83", + "e7a3d9a582534898a53130abd42ca2ac", + "a8e7018577444f0fa90f0de6a17f616f" ] - }, - "outputId": "bbd80887-1425-4b12-d790-3693c8990c98" + } }, "source": [ - "train_images = np.zeros(shape=(len(trainSamples), IMG_WIDTH, IMG_HEIGHT, 1))\n", - "for (i, file_line) in enumerate(tqdm(trainSamples)):\n", - " lineSplit = file_line.strip()\n", - " lineSplit = lineSplit.split(\" \")\n", - " # part1/part1-part2/part1-part2-part3.png\n", - " imageName = lineSplit[0] \n", - " partI = imageName.split(\"-\")[0]\n", - " partII = imageName.split(\"-\")[1]\n", - " img_path = os.path.join(\"/content/data/words/\", partI, \n", - " partI + '-' + partII,\n", - " imageName + \".png\"\n", - " )\n", - " if os.path.getsize(img_path)!=0:\n", - " preprocessed_image = process_images(img_path)\n", - " \n", - " train_images[i] = preprocessed_image\n", - "\n", - "train_images.shape" + "train_images = prepare_images(train_samples)\n", + "validation_images = prepare_images(validation_samples)\n", + "test_images = prepare_images(test_samples)" ], - "execution_count": null, + "execution_count": 19, "outputs": [ { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "2b43f57707b949f7af587df2f98055cf", + "model_id": "dbf74a73d9824a288c69d6d1e0f3ab96", "version_minor": 0, "version_major": 2 }, @@ -1520,72 +1687,16 @@ ], "name": "stdout" }, - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(86810, 128, 32, 1)" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 17 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "vFXR2IvRxLAu", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 83, - "referenced_widgets": [ - "ba2c3ae75357415083989b27b9823eac", - "013a226fa310490db468bb96390680cc", - "f2835f5c8f1d45a2a9b6d9e245729fa8", - "c1f9b831a3504a6aaa3b4373ff261230", - "ac29e644ff774fc9b82a9fd326fa45ce", - "0250a933d69944c3ada84553dd54200c", - "a21ea9de433d4f92bbc37eb00bc0cbaa", - "936ac4151f5f46c88abfaaa3890c4f08" - ] - }, - "outputId": "cbd35cbd-215b-41a4-fd83-20168a7c29e5" - }, - "source": [ - "validation_images = np.zeros(shape=(len(validationSamples), IMG_WIDTH, IMG_HEIGHT, 1))\n", - "for (i, file_line) in enumerate(tqdm(validationSamples)):\n", - " lineSplit = file_line.strip()\n", - " lineSplit = lineSplit.split(\" \")\n", - " # part1/part1-part2/part1-part2-part3.png\n", - " imageName = lineSplit[0] \n", - " partI = imageName.split(\"-\")[0]\n", - " partII = imageName.split(\"-\")[1]\n", - " img_path = os.path.join(\"/content/data/words/\", partI, \n", - " partI + '-' + partII,\n", - " imageName + \".png\"\n", - " )\n", - " if os.path.getsize(img_path)!=0:\n", - " preprocessed_image = process_images(img_path)\n", - " \n", - " validation_images[i] = preprocessed_image\n", - "\n", - "validation_images.shape" - ], - "execution_count": null, - "outputs": [ { "output_type": "display_data", "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "ba2c3ae75357415083989b27b9823eac", + "model_id": "d359280a815b445aa70af200057fb4a0", "version_minor": 0, "version_major": 2 }, "text/plain": [ - "HBox(children=(FloatProgress(value=0.0, max=9646.0), HTML(value='')))" + "HBox(children=(FloatProgress(value=0.0, max=4823.0), HTML(value='')))" ] }, "metadata": { @@ -1600,16 +1711,27 @@ "name": "stdout" }, { - "output_type": "execute_result", + "output_type": "display_data", "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "38d81bcf6f484015bb8144b87ba244c8", + "version_minor": 0, + "version_major": 2 + }, "text/plain": [ - "(9646, 128, 32, 1)" + "HBox(children=(FloatProgress(value=0.0, max=4823.0), HTML(value='')))" ] }, "metadata": { "tags": [] - }, - "execution_count": 18 + } + }, + { + "output_type": "stream", + "text": [ + "\n" + ], + "name": "stdout" } ] }, @@ -1619,32 +1741,47 @@ "id": "9cv3QeQ-SGJS" }, "source": [ - "# Construct TensorFlow datasets\n", + "# Construct TensorFlow datasets.\n", "\n", - "BS = 64\n", - "AUTOTUNE = tf.data.experimental.AUTOTUNE\n", + "BATCH_SIZE = 64\n", + "AUTOTUNE = tf.data.AUTOTUNE\n", "\n", - "def make_dicts(image, label):\n", - " return {\"image\": image, \"label\": label}\n", + "augmenter = imgaug.augmenters.Sequential([\n", + " imgaug.augmenters.GammaContrast(gamma=(0.25, 3.0)),\n", + " imgaug.augmenters.Sometimes(\n", + " 0.3,\n", + " imgaug.augmenters.GaussianBlur(sigma=(0, 0.5))\n", + " )\n", + "])\n", "\n", - "train_dataset = tf.data.Dataset.from_tensor_slices((train_images, padded_train_words))\n", - "train_dataset = (train_dataset\n", - " .shuffle(1024)\n", - " .map(make_dicts, num_parallel_calls=AUTOTUNE)\n", - " .cache()\n", - " .batch(BS)\n", - " .prefetch(AUTOTUNE)\n", - ")\n", "\n", - "validation_dataset = tf.data.Dataset.from_tensor_slices((validation_images, padded_valid_words))\n", - "validation_dataset = (validation_dataset\n", - " .map(make_dicts, num_parallel_calls=AUTOTUNE)\n", - " .cache()\n", - " .batch(BS)\n", - " .prefetch(AUTOTUNE)\n", - ")" + "def augment(images):\n", + " return augmenter(images=images.numpy())\n", + "\n", + "\n", + "def make_dicts(images, labels):\n", + " return {\"images\": images, \"labels\": labels}\n", + "\n", + "\n", + "def make_datasets(images, labels, training=True):\n", + " dataset = tf.data.Dataset.from_tensor_slices((images, labels))\n", + " if training:\n", + " dataset = dataset.shuffle(BATCH_SIZE * 25)\n", + " dataset = dataset.batch(BATCH_SIZE)\n", + "\n", + " if training:\n", + " dataset = dataset.map(\n", + " lambda x, y: (tf.py_function(augment, [x], [tf.float32])[0], y),\n", + " num_parallel_calls=AUTOTUNE\n", + " )\n", + " dataset = dataset.map(make_dicts).prefetch(AUTOTUNE)\n", + " return dataset\n", + "\n", + "train_dataset = make_datasets(train_images, padded_train_words)\n", + "validation_dataset = make_datasets(validation_images, padded_valid_words, False)\n", + "test_dataset = make_datasets(test_images, padded_test_words, False)" ], - "execution_count": null, + "execution_count": 23, "outputs": [] }, { @@ -1663,7 +1800,7 @@ " ax[i // 4, i % 4].axis(\"off\")\n", " plt.show()" ], - "execution_count": null, + "execution_count": 24, "outputs": [] }, { @@ -1674,18 +1811,18 @@ "base_uri": "https://localhost:8080/", "height": 594 }, - "outputId": "6691aaea-27c8-4fe3-dee1-af49b6d788e4" + "outputId": "c28c0e90-e091-4396-d4b1-48e697d9f978" }, "source": [ "batch = next(iter(train_dataset))\n", - "plot_samples(batch[\"image\"], batch[\"label\"])" + "plot_samples(batch[\"images\"], batch[\"labels\"])" ], - "execution_count": null, + "execution_count": 25, "outputs": [ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAJBCAYAAACDGOdsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdeXDcZ3on9u+Lvg80Gmgc3Y37IA6C9yVpJOsejz2HJzve8WQ8HtvrspOtSqVcrkx2trI5Nql1srWJK+WtTWV9xdn4mMhObM9lRSOXRiNRFHWQFG/iJu4G0OgG+r5/+QN4Xv66CVLSiBJb5PdTxSIJNLp/jf7128/veZ/3eZVhGCAiIiIiqlcN9/sAiIiIiIjuhgErEREREdU1BqxEREREVNcYsBIRERFRXWPASkRERER1jQErEREREdU1BqwfklLqqlLq6ft9HERE9NEppW4qpZ6/38dBRHfHgPVDMgxj3DCMV+/3cRAREdGnGy+YPjgGrERE9LFSSlkfpMchok8eA9YPSa6GlFL/Uin1V0qp/0spldwtFThxv4+PqJZS6p8rpWZ2z9NrSql/tPv1X1dKnVZK/S9KqbhSak4p9fP3+3jpwbA7Vn5bKXUJQFop9YRS6oxSakspdVFKq5RSX1NKvVvzs7+jlPre7r8du+foglJqTSn175VSrt3vPa2UWtp9nAiAP1VKNZjO+c3dcbrFdN/fVErN737vX3xivxB6oO2e799SSl1SSm0rpV5QSjl3v/dFpdR7u+f+GaXUod2v/xmAHgDfV0qllFL/7H4+h3rHgPWj+QUA/zcAP4DvAfh39/dwiPY0A+BnADQB+O8B/LlSKrT7vUcATABoBfBvAPyJUkrdl6OkB9HXAXwBwACA7wL4VwBaAHwLwP+rlGoD8H0AI0qpfaaf+2UAf7n7738NYBjAEQBDADoB/Lem2wZ377MXwH8C4D8H8B8BeApAGEAcwP8GAEqp/QD+dwDf3P1eAEDXvXzC9FD7JQA/B6AfwCEAv66UOgrg/wDwn2LnfPsDAN9TSjkMw/gmgAUAXzIMw2sYxr+5T8f9qcCA9aM5bRjG3xuGUQbwZwAO3+8DIqplGMZfG4axYhhGxTCMFwBMATi1++15wzD+aPcc/g8AQgA67tex0gPn3xqGsQjgVwD8/e54WTEM42UA7wL4vGEYGewEs18HgN3AdRQ7H+oKO0Ho7xiGETMMIwngfwTwH5seowLgvzMMI28YRhbAPwXwLwzDWDIMIw/gXwL4x7vlAv8YwA8Mw3ht93v/ze7PE90L/3Z3rI1h50LsCHbO3z8wDOMtwzDKhmH8BwB5AI/ezwP9NGLA+tFETP/OAHCyhorqjVLqV03TUVsADmAnowqYzuHdwAEAvJ/0MdIDa3H3714AX5VzcPc8fAI7F0jATjb167v//mUAf7d7PrYBcAM4Z/q5/2/362LDMIyc6f+9AP7WdPvrAMrYuRALm44JhmGkAWzeu6dLD7namMCLnfPxv6g597uxcy7Sh8DgiugBppTqBfBHAJ4D8KZhGGWl1HsAOO1PnwRj9+9FAH9mGMZv3eF2LwNoU0odwU7g+ju7X48CyAIYNwxj+X0eQywC+A3DMN6ovaFSahXAmOn/buxM0xJ9XBYB/K5hGL97h+/Xnr90B8ywEj3YPNgZEDcAQCn1T7CTYSX6JP05gC8ppT6nlLIopZy7C6a6AMAwjCKAvwbwP2OnHvXl3a9XsHPB9b8qpdoBQCnVqZT63F0e698D+N3dizUopdqUUl/e/d7/A+CLuwvA7AD+B/BzkD5efwTgnyqlHlE7PEqpLyilGne/v4adGm96H3yjEj3ADMO4BuD3ALyJnYHxIIDbMk9EH6fdOtYvA/ivsHPxtAjgv0T1Z9BfAngewF8bhlEyff3bAKYBnFVKJQD8A4CRuzzc72NnEeyPlFJJAGexs7gQhmFcBfCf7T7WKnYWZC191OdHdCeGYbwL4Lewsyg7jp1z+ddNN/mfAPzXu+UC3/rkj/DTQxkGs9FEREREVL+YYSUiIiKiusaAlYiIiIjqGgNWIiIiIqprDFiJiIiIqK4xYCUiIiKiunbXjQP++I//2JidnYXFYoHVaoXP50M4HMbAwAAGBwfh9Xpht9s/qWP9yL71rW/h937v9+73YTx0DMP4xJvUG7vtLwqFAvL5PACgoaEBpVIJLpfrbj+nb2sYhv6/YRgol8vI5XJIJpNYXl7GxsYG0uk0isUiKpUKisUikskk1tbWYLFY4Pf70dTUhJ6eHnR3d6OlpQUOh0M/VqFQQKVSgcPhgN1uh81mg81m2/O4GhoaYLFYsLNTJVAsFvWx2Ww2/XXDMFAqlWCz2VAoFKCUgsVigWEYqFQq+jnJ7S0Wi/65SuXWDpVyG8MwYLVaYbFYUKlUUC6X9ePK9wHgV3/1V/FXf/VXH/wF+pS4H+cu2Ej8Y1cqld7/RvdAuVzG1NQUXn31VUxMTCCdTuNP//RPP5HH/qTP3Xw+byiloJRCQ0ODHmNMxwPDMNDQ0KD/D+yMIzI2NTQ0oKGhQY8zcl/lcln/28z8GOaOR+b7No+N8u873Z+McTMzM/jOd76Dl19+GQBw5MgR5PN5/NzP/Ryee+45uN3uquco46iMyzJmyhi5sbGBYDD4EX67D4+7nbd3DVgjkQhyuRwsFgt8Ph/S6TQmJyexubmJxcVF9Pf349ChQ/rFIqoX5g8kCQIleLsTCfbkZwqFAorFIgqFAnK5HDKZDLa2trCwsICbN2/qn8lkMsjn8ygWiygWi4hEIlBKIRQKIZlMwmrdeZslk0nYbDaUy2Vks1kkk0k0NDQgGAyivb0dPp+v6nhrj61SqVQN7ubnah64rVarfh4SaO/Vvk6e7/sN+uVyGZVKRQfNcn9siUd0Z8ViEfPz8zh9+jQk8ePxeO73YX1sJCFgvrCWMUuYg0f5W24jY3O5XNb3J7cpl8s6mDWrHa+UUigWi1W3la+bL7DNgWztcRQKBczNzSEajQIAPB4Pjh8/jnfeeQdvv/02jh8/DpfLpQNW+SPHKGOjjK0yZtNHd9eA1el0oqenBy0tLWhtbUWpVML6+jpSqRRmZmbQ0NCAAwcOMGCluiMDhAye5gHUzDyQyRV+pVJBoVBAKpVCOp1GOp3G9vY24vG4Dlg3Nzdht9tRqVSwvb2NbDYLi8UCh8NRFSzmcjlsbm4in8/rwFWC4Gw2C6vViu3tbeTzeXR1daG5uVkHrJIZlT9y7IVCAVartWrwr81WyG1rPxgqlYo+jkqlglKpVJW9lYHWHBRLtkCOSTIeRLQ3wzCwvb2NixcvYn5+HplMBm1tbWhubr7fh/axUUrBarVWBZXmcVeCOWH+9/tlTs0xxl5Br/nv2qyq+X5kjKsNWOX75XIZ09PTmJychNVqxdGjR9HT04NDhw6hUCjg3XffRSaTQblc1uOoPD9zcGp+LF7Y3zt3DVhHR0fR2NiIYDAIn8+HYrGIaDSKlZUVxONxuN3u2150onoggSdwa4CrPVf3GrQkWE0kEohGo4jFYkgmk0gmkzqTms1mYbfb9QBXLpdhs9ng8XjQ3NwMr9eLXC4Hj8ejA9b19fWq0gR5LMlYOhwO+Hw+NDU1VR0fUD0gmwfA2rIFuc2dgkkJWCVIBW5loiVbYBgGisUi8vm8ntqy2+2wWCz6z15TaUR0S6lUwurqKqamppBMJuF0OhEOhxEKhe73oX1sagNLoLpsyHw7c6JgrxKBWlar9baSJfN9yb9lzDLfBoAOIiUJYD4+831ubGzgzJkzuHnzJtrb2zE2Noa+vj60tbUhGAzCarVWjfvmzxBzAFubVWacdG/cNWD9mZ/5GVgsFtjtdn1ytbW1YXBwEIVCQWdmiOqNDEwfJBMo2cdSqaQDzIWFBSwuLiIajSKbzcIwDNjtdrjdbvj9ftjtduRyOSil0NbWBpfLBb/fD5/PB4fDgWg0is3NTczPzyMajSKVSiGfz8Nms8Hn86GhoUGXB6RSKaRSKRSLxdsG0NrBXiml349WqxXFYvED/T7MtaxS5iP1tLlcDsViUQ/CUrJQLBbhdrtht9v1e91ms8HhcMDr9TJoJUJ1oCVjydbWFm7cuIFYLIZKpYJQKISxsbG71s9/2pnrQmvrRmWsqE0e7DVVb/4589eEOYMpt5XxyVyCUFs+VXsM8rNyn4VCAZcvX8aZM2fgdrsxMjKCRx55BB6PB6lUCisrK2hqaoLT6dTP1xyk1mZ4JcDeq56Xfjp3DVjN2R6zB/lNRw+GDxLImRcilUolZLNZxGIxzM3N4cKFC4hGo1WLARwOBywWCxobG+H1ehEKhdDY2AiXywWXy6UXIJZKJSQSCczPz2N5eRmpVAqZTEY/5ubmJjweDxobGwHcCkKdTmfVAHinYLu2Ftc8gO8VRMr9yIKCUqmEcrmMfD6PRCKB7e1tJBIJpFIpZLNZZLNZpNNp5PN5HYDb7Xb4fD60tbWhra1NLxLjYEwPO/P5X6lUkM/nce7cOZw5cwaFQgGNjY3Yv38/Dh48iMXFxft4pB+v2gDTHAyay632Gi+k/nOv75nr8M3lTDIOmjOvEijuFQTvFQBLUqBYLGJ9fR0vvfQS8vk8nnrqKRw4cAA+n08/fjQaRVNTE7xer34cWeBqDob3+j2whvXeuGvASvSgk6xqOp1GNBrF3NwcpqamsLa2hkKhoIM9r9eL5uZm9Pb2oqurC01NTfB4PHC73VWLDMrlMra2tpBKpXDz5k0kk0kUCgUAO4up7HY7HA4HPB4P0uk0KpUKWlpaPlS2UgZYqXWV7Kg5a2q+rWRQZfGYlDesrq4iHo8jFothe3tbB6wyuG5ubiKXy6GhoQFerxctLS3o7OzE2NgYRkZG0NbWhsbGxqogm+jTzpy9+7ByuRzOnz+P733ve/prnZ2dCIVCD3yiR8ZB81S5efrfPMtTG8zKz5vr9WUcstlssFgsOglRuwBrr8eRAFnuS4Jhc8As35NZrjNnzmB6eho2mw3t7e3w+/1oaGhAPp/H9vY2SqWSzpI7nc7bssPm469dcMU61nuDnzT00DEPYsViEfF4HMvLy5idncXExATm5+eRTqdhsVjgdrsRCAQQCoUwMDCA/v5+hEIhHaTVXq0XCgVEIhGcP38ek5OTWFtbQzweh8vlQmtrK0KhECwWCzY2NlCpVOD3+xEKhRAOh+H3+/UAeqdsqfnqXbIOewWp5i4J+Xwem5ubWFtb00FqOp3G/Pw8YrEYbDYb3G43DMPQ5QnAzodvqVSC3W5HOp1GLpdDPB7X5Qujo6MwDAONjY0ckOmB8dMEq/KeSyaTuHTpkv661WrFsWPH0N3djVKp9MC/T/bKatYuQJKLawk6JYiUr0tgW1v/KhfoUs9qrn+927Hs1VmgNrjN5XJ444034PV68eyzz+LgwYN6Biyfz2NxcRFWqxUnT56Ey+Wqej5yvOaFtUIem6WT9wYDVnqg7bWSvlQq6X55sVgMs7OzuHHjBqanp7GxsYFcLgebzYaOjg6MjIygu7sb7e3tCAQC8Pl8cLvdt334SA1ULBbD1NQUIpEIbDYbrFZrVWbVbrfrga21tRXd3d0YGhpCMBjUHQbK5bIuL6hdINDQ0KA7BEjGofYKXqYly+WyPqbJyUlMT0/rVi3yM5ItcDqdevCVGlmXywWr1YqtrS2dpc1ms5ibm9OLz06dOgWLxfKJ9bUkqkf5fB6xWAzT09NYXl7WAc3Y2BhCoZCeiXmQ6773Wp1f251FgkxzwCeZyb2m9+V25qxqbUmUMN+u9riEBMi1rf4Mw9AX7iMjI7r9WKlUQiwWw+XLlzEyMoJAIHDbMcrzMwfZcgySfHjQL1Q+KQxY6YFm7hYA7AxA+XweqVQKsVgMi4uLmJiYwMzMDFZXV1EsFtHU1IT29naMjo5ifHwcbW1t8Hg8OgCtrcmSYDWZTOpp9ObmZjQ1NaGhoUF307BYLEgkEnoBlyzE6O3t1XVR5k4AsgDKPOUkC7XMA6WULkiwK4FqoVDA1tYWVlZWcOPGDczPzyOfz8Pr9erfh9frRUdHB5qbm+FwOKrqYWVF7MrKCjY3NxGLxZBIJJDNZrGwsAC3242+vr4HulUPUa3aBT/FYhHXr1/HzMwMDMPQLe7sdjuOHDmC5uZmHcw8LLWMtYkCc5a1tsbTPE1fW38qAaq5I8peC7PM36vtnlKbDa1dwV8ul7G9vQ1gZ1bJ5/PpcVZ6b+fzeezfv/+O3WdqSw3utqaAfnoMWOmBZm5/IrtRZbNZrKysYGJiAgsLC1hYWEA0GkU+n4fD4UBHRwfGxsYwNjaGnp6eql1N9qpZKpVKSKVSiEajWF9fh81mQyAQgFJK73a1tbWFTCaD7e1teL1e+P1+9Pb2ore3VweLtQX70ojbXINlfi7yYSmbGqTTaWQyGV2Ta7PZcPPmTayurmJxcRGJRELXg0lWVbK8LS0tcDqdunWVbBZQLpfR3t6O5eVlzM3NoVgs6hrdWCyGzc1NXaNL9DAwB0rlchkbGxtYXFzE8vKyniWx2WwYGhpCb2+vnkKuDZYeNLXPzRysArfa6tXWnkp2svY+9vqd1d6n+evA3Vfk71U3W6lUkMvlsLy8rNv9yVgs6xFWV1fR2tqKYDCoL+TNxyjHY+4zax6zH6YLlY8bA1Z6oJmnoqQTQDwex7Vr13DhwgVsbGwgmUwCABobGxEIBDA8PIxDhw4hHA5X7WhintIzB2mZTAbr6+uYn5/H2toavF4vrFYrnE4n2tvboZTShfuyarizsxP9/f3w+/1wOBy6LYvcv/xfspzmui4h2eLt7W3dRisWi2FjYwOxWAzhcBg3btxAMplEpVLRi8QCgQCCwSACgQC6urrQ2tqqg1Vp/C0LuQBULUCQQDWXy+kMrjTSJnoQ3Wm1ebFYxObmJqamppDL5eB2uxGJRHSpzSOPPAKfz1dV7/6wZNwkOJXfnfRw93q98Hq9ty2+MpcHmIPaWuaL9drb3O1nzBle2cFQXsd0Oo3l5WUUCgX9ehnGzg6Ga2triEQiGBsb02sFzOUI5uOR521ObHyUBXx0Owas9ECTQNU8bT81NYULFy5gdnZW9yRtampCOBzG6OgoTp06hXA4XLVFqnzYSAsTqYMtFouIxWKYmJjA1atXkU6nEQqFEAgEYLPZkMlkkEgkkMlkoJRCY2MjhoaGMDIygq6uLn01L7Wptduyyv9lUDQPgPl8HplMBvPz85idndWB6uzsLNLpNPr7+7GxsQGv16sDVCl3GB4ehsfjgdPp1M9JAnPZCEEeW24DAIlEAjdv3oTNZtPB/9bWFrOs9KkiC3w+iNqAQ4KRZDKJV155BbFYDMFgEH6/H5cvX9arzAcHB3U9+MPQ/m2vzKfM0kQiEbz44ot49NFHMTIyUnVhXtvuyry63zCM2zKatcGg/C2Bbu0uf/IzMm6n02msrKzo7ifpdFqXc42NjQHYCbBXVlawsLAAu92O0dFRfWyyBkHOH/PjFYtF3f7Q/Huhe4MBKz2QJFCVBUHZbBbJZBI3b97Em2++iRs3bugsZkdHB/bt24f9+/dj37596Ojo0EGcDIwy8MrVt0gmk5icnMSVK1cwNTWls56yKCuXy2FtbQ35fB6NjY3o7u7GyZMn0draqhdWmY8XuJVdra3RkkFd7jubzWJ+fh7nz5/H/Pw8EokEtra2EIlEoJTC6uoqQqEQhoaG0N/fj2AwqGtrvV5vVVZUBnT5I/txm3fGknrXYDCIhoYGrK+v4+rVq+jp6UE2m/2EXlmij+6jrtrO5/P6fd/R0YFoNKr7Nvt8Pnzta1/TO8Q96KUAYq/nWSgUsL6+ju985ztYXFzEM888o79unlWSbiS191fb7L9YLN51+1cZI811pjJeS5nTa6+9hnfeeQfr6+s6q5tKpRCJRDA4OKi3n3/vvfcQj8fx+OOP6zUG5kVUkqWVi3lpCShrHcwLxlgScG8wYKUHllwJ5/N5bG1t4ebNmzh37hxu3LiBcrkMl8uFtrY27N+/H+Pj4+jv70dTU5MOVu12uw7YJHiU/noyYK2vr2N2dhbLy8u656rD4UBTUxNSqZQePAOBAHp7ezE6OnpbsGrOwMjAVjv9L/8uFArIZDJIJpO4evUqrly5guvXryOZTCKdTiORSADYCXrb2trw2GOP4cCBAwgEAnC5XHA4HLf1NTSTqTbzAqxCoYBSqQSr1YrGxkb4fD4sLS0hmUxifX0d6+vryOVyH+dLSVQ3CoUCVldX8YMf/AButxv79u3D2toaNjc34fV68bM/+7Pw+/36ffawME/VywV4PB7H6dOn8dZbb+HRRx/VC1Fla2tzYsE83tXuEmXOlspYVNtntTaINWdj5Tblchmtra3wer1YXl7G5uYmyuUyVlZWUCgU8Prrr+PatWs6MA2Hw3C73ZidncX4+DjsdjtaW1tRLBZ1hxUpMZDAVRbKcvHVvceAlR5YhmEgnU7rafJLly7h0qVLiMViCAQCuhPAoUOH0NPTU1VvZt5RxTz1JMGr1G/Ozs7qRVvSZN8wDGxvb+ttTVtaWnQZQCgUgt1uh9Vq1RnV2uymmXnxkyywikQiuHHjBt59910sLy8jl8shn8+jUChAKQWPx4NgMIgTJ07g8OHDaG9v19NU5udVO8CbywIkO2zOJpsH3nQ6rcsZmD2gT5uftrYwl8thcnISP/zhD2EYBp555hncuHEDc3NzurSor68PAKouPh8GkuGUjiUrKyt499138cYbbyAYDOLzn/88vF6vLs8yT6vXTpvfaRGWuURKxjBzsCtjtIxT5sVY8vf+/fvR1dWFZDKpy7leeOEFxONx9PT06IV0lUoFi4uLiMfjCAQCeP311/X229lsFk6nU/evzmQyaGxsxIEDB9Da2gpgp5TK4/Ho50wfHQNWeiBJYJlOp7G0tITr169jYmIC0WgUSim0tLRgeHgYo6Oj6OrqQnNzs77ql8Gwtl+fuUZLFlzMzs5ibW1NZxglK5tMJuF2u9HU1IT+/n4MDg6io6ND75BiJtNG5kyArNSXOtlisYh0Oo2NjQ1MTEzg0qVLWFpawvb2tv5Zc3A8OjqK/fv362BVsj0SYJqfJ3DrA8Jcl2VeCCHPTTLDlUpFB78ul+uh+VD+JNR+uEk2Px6P4+2338YjjzwCv9+PaDQKh8MBr9d72+YRcj9K7fTr3djYwOzsLMLhMPbt23fbbc2lL4lEAjMzM2hvb6/qHiHBQDqdxttvv41IJIL9+/djaGgIfr9fn8dyXpjfI7lcDr29vejp6bmtTrv2OMyrxsW9nlb/MPclxySryV966SWEw2EMDQ1ha2tL74oXCoVw5MgReL1eHSDVdvh4kJlrSeWiemZmBrlcDseOHdMXwrW/G1loJf+vHYMB6IzqXi2t5L7MdaxCvmYuF5BttGW3wng8DpvNhlAohC984Qt4++23MTw8jK6uLgQCAf24MzMzKBaLuuRLus5IT++VlRVYrVaUy2V4vV4d0Lrdbr0ZC300DFjpgVQsFvWU1OLiIhYXFxGNRpHNZtHY2IhwOIyRkRH09vbC7/fDbrdXFeybAzbg9gyAFOUvLS0hlUrpD2qZJpKNB/r6+tDX14e2tjbd3kbuv3bKytwuS+q6pGXV9vY21tfXsbS0hImJCZ1ZLZVKKBQKsNlsaG5uxvDwMI4fP47+/n7dLkvqqcyk64A5UJHaVTk+uZ18WEggIgusJEPsdDq5Pes9VBuwVioVbG1t4ezZs/j+97+PtbU19Pb2YmZmBhaLBfv378fhw4d1twl5rUulEkqlEhYWFnD58mXMzMygra1tz4BVHqdSqWBlZQVvvPEGmpubcfz4cfT29sLpdCKXy2FlZQWXL1/G1atXoZTCwMBAVWAhQWs2m9UBy8LCAgqFAlZWVuBwOBAKhapaAZkX0Zhr/sxBiXl24JNi7gmaz+exvLyMt956CxsbG3jiiSfQ2tqKc+fOIRaLweVyIRwOY3h4uGoL1odxKjgej+PGjRu4du0aNjY24PF4UCwW8e6776KxsRHBYLDqtaxdNAXc3pFBLsprM6fmc6/2Z+V28jrK+C7nksVi0cFrQ0MDXC4XSqUSvF4vjh07huHhYTQ1NenHD4fDegOVcrkMp9Opx2mLxYJkMgmv16vbmslW2TIG00fH3yI9kGSh1fr6OpaXl3WfVavVipaWFvT396Nvt+m9rOQFqgfC2r6rQnaSmp+f1/Wbkon0er1oaWmBz+fDvn37MDAwgJaWFt0eSx5DBl/zwi5zgCxX7/F4HLFYTAfHy8vLWF5eRiKR0EEnAN3E/9ChQxgfH0dzc7MepM07sMiHg7lNljnjag6ozR+2ElgUCgXkcrmq7PPD+KH8STHXAp47dw7Xr19HLpdDT08Prl69CrfbDavVitHRUV17Ddw6f5aXl/Hee+/hwoUL2N7eRiQSuePjyDkwNzeHiYkJWK1WhMNhdHR0wDAMrK2t4Z133sG7774LADh+/DiCwaDeJU2USiXcuHEDb7zxBm7evIlsNqs/2E+cOHFbc3h53Hw+j3g8jkwmg7a2Nl2XDUBvj7zXBaRkfbe3t5HJZOD1etHV1fWBz0vzokr53dntdr1rkgTbly5dwrVr1xAKhRAMBjE9PY2lpSXk83l0d3ejv79fdweR99nDNvOQzWb1rnqrq6vIZDJobm7GysoKpqamcPDgQbS1teks+50uXABUlQvIxZd54xbz96QuVn6udlbMXG5Vmxgwv/7z8/MIh8N6RsxchywbpNTW2wK3Nqgx912VzwSr1YqNjY2P7Xf+MGHASg8kwzCQSCSwtLSESCSid5hqampCd3c3BgcHEQgEdFbK/IEtzFsFmgdAqV+dm5tDPB7XU0JWqxV+v19nVWWxkzTj34t8qJkDwHK5XNWy6ubNm1hZWcH6+jpisRjS6TSy2SxcLpfOEPT19eHgwYMYGxtDc3Oz/kDYa6UtcCsAtdlsVR/W5u/LQC/PL5fLYXt7G6lUqur3VCgUWKP1MZHddjY3N7G5uakXBW5uburWZd3d3VX9giX429rawltvvYWLFy8imUzCYrEgEAjs+TiyuLBQKODixYv6PJQs//b2Ns6fP48zZ87A4XBgcHAQT/RV7MwAACAASURBVDzxhA4+JNMlm2i89NJLWFlZ0YtX3G43gsEg2traquqlhZQtvPXWW1hdXcXjjz+Oubk53LhxQ/c0bW9vr1rxLcHKxsYGJicncfnyZSwuLmJoaAi/9mu/Bp/P94F/x7JgUQLknp4e2O12FAoFnVm9ePEinE4nTp06hXK5jDfeeAO5XA6NjY0YGRnBgQMHdEC116zGg05qP69fv45EIlE1YyVN+NfX19HX16fHQ/PMjXkclO/ttco/nU7rGTTZ3c/lcule0Q6H47YFT+bMqpR3yM9LTa3FYoHb7cbjjz+Ojo6Oqqyo3Ie5ewyAqosSOe5CoVC1tfZe28XST4cBKz2QZM/7GzduYH19HaVSCQ6HA4FAAOPj4xgYGNCtnczT4+b+jLWZVflaOp3G/Pw8VldXkUqlkMvlYLVa4XA40N3djWPHjqGrqwstLS16YdJezMGw+U8+n0ckEkEkEsHs7CympqZ0gJJOp6vqubxeL7q7u3H06FFds2quEZQ2XOZWMOZFZABuCx7kNjLVJQN6IpGo2mgBeLiaod8vi4uLOHv2LOLxONLpNK5evYoDBw5g//79+MIXvoDjx4/rAEk+8JPJJH74wx/iypUriMVisFgs6OzsxDe/+c09H0Na9sTjcSwsLAAAWlpa0NTUhO3tbVy6dAmnT5+Gw+HA2NgYfumXfgkul0tncgHoxYbnz5/H8vKyfm/Z7XaMjIzg85//PJxOZ9XjyvTq+vo63n77bbz66qsAgImJCQA75+/Q0FDVNLvU9NrtdkxNTeEf/uEfMD09rc/nq1evYnp6GocPH37fDGexWEQmk8HExATOnj2LiYkJuN1u/PZv/zZaWlqwsbGB119/HRMTE/B6vXjssccwODiIV155BZubm3A4HDh06BD27dunXwN5/+Vyubu+/x80xWIRS0tLOHXqFF577TXdw1QphaNHj+IHP/gBXn31VQwMDMDj8eipeHndZLypHYMlO5/NZrG8vIzp6Wmsra0hHo8jkUigWCzq+tNQKKQTBOYLdQk4zS37ZKtrj8ejx8Bnn31WXwDWlmpJEGpeMCuPIVnXUql0W0nIXuMr/XQYsNIDKZFI4L333sPk5KQOVj0eD3p7ezE+Po7GxsY9A1KguixAmBdArays4J133tE1sTIgOhwOhMNhdHZ23ta66k7kA1+m2tPpNNbX1zExMYGNjQ2kUikdqGQyGWSzWd3wv7W1FcePH8fo6Ch6enp0K53a+zeXAUgmrPZ25gyyZApsNpsOKPL5PGKxGCKRCFKplL59d3c3uru74fF4PuArQx+ULF5555138MorryAej8Pj8WB0dBSBQAC/8iu/gt7e3qrm9MViEWtra/jDP/xDXL58GaVSCc3NzTh48CC++tWvoqOjY8/HkpXOr732mv7awYMHsba2hjNnzmBmZgYA4PP58KUvfQkOh0PXbcvjplIpnD59Gi+++CISiYRupfbUU0/h8ccfR3Nzc9XiGsmSZrNZXLt2reqxLRYL7HY7PvvZz+LQoUN6xzi5oAOAa9eu4e/+7u+wtrZWlfHyer0YHBx83yChUChgaWkJP/rRjzA5OakXTmYyGXz3u99FKBTC2bNnkclkcOrUKTz33HPw+/2YnZ3F2bNnAeyURZw8eVL3JjarDc4fdIVCAePj45ienkY8HkcymdQ1qydOnMB7772HSCSCra0tHVjKNLoEmUopnSGVc0XG3L/4i7/A9evXq/pqZzIZlEol+P1+rK2t4dFHH8UzzzwDr9cLoLqzAHCr1aGce7KbVbFYREdHB9ra2vSsW+0Uf6VSgcvl0j1khbm0y9xpRciMB310dw1YZbolnU7rq8WWlhb4/f49VzqbPxhrmevkgFtXJLUF0ne7D7kN8OFWeZqPgR4O29vbiMfjAG4NKI2NjRgYGEBzc3PVVI0MTuYFV7XkAzkajeLq1atYXV3VnQjMtYMS7MnCE+DWwiXzFFO5XEYul9MD7+bmJtbX1xGNRvUGAPl8XgeqMoXldrv1lP+JEydw7NgxBINBeDye2wr7nU7nbdP9e71vZKrNnA2QqWBzsBqNRnWwKlmJo0ePoqur66H7cP4kpFIpvPbaa/jxj3+MjY0NWCwW9PX1obe3F1/5ylcQDoerMuXZbBYrKyv4kz/5EyQSCTQ3N2NpaQnBYBBPP/20rsGrJRnLaDSqAzFgZ4y+cuUKVlZWdE/KX/7lX9Zba0rQmcvlsLi4iDfffBN/+7d/q8/H/fv347HHHkNvby88Hk/VbIa5mfrly5dx/vz5287Tr371qxgeHobb7dZBQ6FQgGEYiEajeOGFF/T7BAD8fj8OHDiAz33uc1ULHPciweoLL7yg38t2ux3BYBCnTp3C4uIiTp8+jXw+j6NHj+LAgQOw2WyIRCJ4/fXXUS6X0dXVhaNHjyIUCunzf6/PxYclw+pyuVAsFnH9+nXEYjHYbDYEAgE8+eSTCAaDePLJJ/E3f/M32NjYQG9vr36NzLNLklmVMqN8Po/p6Wl897vfhWEY6O/vx9DQkA5Uc7kcpqensbCwgGKxiDNnzmB4eBh9fX26c4Z5ExT5W86/aDSKixcvQimF4eFhPWZKtldKCMzxSm1WWGpra3u/mksS9uriQR/eXQPWZDKJ1157DYlEAuVyGQ6HA52dnTh58iQaGxsBVK/iA1D1YpoXbpTLZb3SOZFIoLu7G+3t7Xfcwsw8bVlboF8b1JoHBXNAa15AQg8XuZIHbu2q4vF40NnZCbfbrW9Xu1LfTLKL5XIZiURCL+BaX19HPp+HYRh6NxtZnCGN9IFb2UopF5DFGOVyWQe/MsWeSqWQSqWQTqeRz+eRTCaxvb2t67VkAHc6nXC5XDh06BAOHTpUFayaV9bKcUlQLVP8AG4LbGVQlZ83N/6W481ms8hms1UBeWdnJ3p7e+F2uznldY/J9KrUgTY3NyOZTMLn8+GLX/wiQqGQvgiS1lXr6+v4y7/8SyQSCV2nNzg4iKNHjyIcDt/1Ndre3sbly5f16xsKhXDhwgUkk0kopdDf34/PfvazaG1t1VnVSqWCzc1NXL58GZcuXcLy8jL8fj9isRh+4Rd+ASdPnkRnZ2dVKzTzNK306pyamkIkEqka1w8fPozBwcGqc0uyq1evXsWPf/xjbG1tYWtrCy6XCwcPHsSjjz6Kzs5OXct4N7lcDn//93+vy4VcLpeefTl79qwOhA8fPoyTJ0+iu7sb+XweU1NTmJmZgcPhwOc+9zl0dnbqspu92lc9LMGqiMViWFhYQCwWg9vt1p/zSik0NzejUChgcnISAwMDaGpq0hfz5nIs+V3KRcVrr72GSCSCvr4+fPazn4XdbtdlKDabDUopZDIZ5PN5vPrqq1hfX9fnqbmziVwoydg2Pz+Py5cvIx6Pw+Fw6JaEtYu/AOhZKdkgwFyXKpvJ1C5iBaq3haWP7q4Bq9TqSXZHXvChoaE7fkiZ2+EAt6aaZHXz2toaUqkUstmsznTd6cpEfl7+Ni+MqV2BaQ42alcuP0xXubTDvGCoWCzC4/GgsbFRN3GWgUcGytryAGknJYsxJLiMRqPIZDJwu9162hK4dUE2PT2tSwMA6Ckuc92pZFY3NzcRiUSQyWRue+x4PK4/TIXdbofP50M4HMbY2BjC4fBtwao8d8mamWc27rbwy/zzMgCb34+S3ZKOCDabDWNjY3ojBLq3tre3ceHCBayvr8NqtcLr9aK1tRXPPPMMOjs7q1ZZSxnA2bNnsbq6qsc+p9OJwcFB9Pf3o7GxUdft1ZLa06mpKf0+kOnWhoYGDA0N4cSJE+ju7taZIsMwEIvF8Pbbb+PKlSu6F7Hb7Ybf78eRI0eqglXgVr1fsVhEJBLBzZs3MTMzg7m5uapNNHw+H06cOKGz+PJ46XQaFy9exJtvvomlpSWdkTtw4AAee+wxDA0Nwel06n7Kd2IYBi5evIj5+XkUCgV4PB5dvjAxMYFIJAKn04lHH31U14WXy2Wsra1henoa+XweIyMj+vdR+96T5/EwWl5exsrKCorFIrq6unDgwAF9zki/YEkmmMdgGa+z2ayOM7a2tjA9PY3p6WkEg0F85jOfQV9fnw4KAehSAsMwsLGxgYaGBiQSCZ2JN7e0kqxqPp/H3Nwcpqensbm5CZ/Pp+tZza3+JMYwd94wb2ggf2T8lW4Fci6bs7JMmt0bdw1YZaGFpMilH2AymdyzQW9thlT+TiQSmJycxM2bN5FIJJDL5aCUwsGDB3Vblr3e4Ob7AG71XNvrsff69/uVF9CDS7YhlYAVuNV82nx1bL4QkmyqTI+ur69je3sb0WgUW1tbSKVSKBQKKJfL8Pl8epvBXC6HQqGAZDKJpaUlFAoFLC4u6kBVSgZk0JJauWQyqXdUsdvtup+plAlISYEMmj6fDwMDAxgbG0N3dzcaGxvv+N6RQbO2y8Fe/QBr663MGYJyuYxCoYBsNquzwFarFR0dHbp9liyeoHujUqlgenoaExMTSKfTsNvtujfkiRMndAAgmfBoNKqznEopjIyMYGJiAk6nE+FwWM9k3ek1qlQqyGQyuuxAZgCUUujp6cGRI0cwOjqqL9LknMpms1hcXMT6+rreZc1ms2FoaAidnZ16etXc07hYLGJxcRFXr17VGWRz6Yzdbsfhw4fR09NTNY1bKpWwubmJd955B3Nzc3qnoa6uLhw+fFgHq+JuY75hGDh37hyy2ay++AKAzc1NrK2toampCePj43qXOKUUVlZWcP36dayursLtduPIkSNVrer4GbMTL1y5cgWRSAStra0YHBxEn6kjQFNTE9ra2pBIJLC2tqbr7s01oOZOKZFIBBMTE4jH43jkkUcwOjqqd+yrbd8m52U+n9ddTeT7AKqyofPz87h06RIymQx8Pl/V54P0Z90rASbxhJQU7JU93aurjLncjD6a9110JdOi8iJJPZ25/m+vgNF8wmQyGb3qWepOpIdlT09PVVC519WqfF1OZGm/UiwWYbVaddArx/KwT8sQdN2bBKFSqC+Nny0Wiy4VkEFPsqrJZBI3b97E/Pw8ksmkvmKXAU02BbBarVhZWdHZpVKppKfx19bW9JW7BJXmQn+n04l8Po9UKqVXqgI756qc2+Yp+sbGRnR3d+Pw4cMYGxuD3++/a+sc8wAprWPk9nfLPgGoCt7T6TSi0SjW1tawsbGBXC6nawUHBwfh8Xj0IgW6N7a2tvDOO+9ga2sLlUoFPp8P/f39ePbZZ9HU1KSDOMkGRSIRXLlyBYVCAR0dHXj22WcxPz+vN8mQCzeLxaLXIpiZs+fm/qMtLS04deoUxsfHq7Ytltfa5XKho6MD2WwWiUQC29vbsFgsVVsBA6h638Xjcbz++uuYnJxES0uLLjsBdi7Mmpub8eSTT+7ZUzYajWJqakpn4pxOJw4cOIC+vj5d5iPJlbvVDBqGgdnZWR2I5HI5/f71er04cuQInn32Wf0ct7a2MDMzg8uXL6NYLKK/vx+HDh3SZTe1s4oPq2Qyiffeew+xWAwHDx7E4OBgVWux5uZmjI2N4c0338Tc3BxCoZDeFczcHUBew5WVFUxOTqJSqSAcDldls82BonxNNnCRndnkNuaAMRqN4sKFC4hEIujv70c4HMbExIQen/fKqppnbGuDTzl3GxoadKmAMJcHMGC9N+4asMoVs7TSAXauoqTg2XxlJGr/LRkuc58/qX1666230NLSsueU4l4fqvJhvrq6iqmpKSSTSbS0tGD//v1obGzU00G1ta8P+0DyMJIpJck0FotFJBIJRCIRPfUj00DSsHxzc1PXjm5sbOjyFZvNpnevstvtaG1txdjYGJRSeO+99/Q5LnWewK1+rQB0JtR8bJubm3og9Pv9elcq6XlpXoDgdrsxMDCAI0eOYGhoSPfivNN5XVvbbbfbP3RfSMlWLC4uYm5uDgsLC0gkEnC73QiHwzh58qSeRn0Ye05+nM6ePYupqSkkEgm4XC4MDQ3hqaeeQjgc1i11zNP7DocDzc3N6OrqwsmTJ9HW1gafz4d8Pq83z0gkEvB4PNjY2MAjjzxS9XgyqyA1ojIt//M///MYGRnRF161Y2lTUxOefPJJfOYzn8Hy8jJefvllrK2twWq1IpPJ6FrBWCyGpaUlXf8ppQPHjx/X3TaAneBwdHQUXq9XXxhKACCfB3a7HW63WwcA+/bt05tkyJ/ansJ7Mc+sFAoFuFwutLa2ore3F88991xVtnZqagqTk5PIZDIIBoP44he/WBWQcxZvRzweR6lUgs/nQ3d3N9ra2qp6UBeLRTzzzDOYnJzUW//29fXBarUin8/rRVsSZG5tbWFzcxONjY2657Q5ADVf6GSzWczPz6OpqQkdHR1VFzBywZPNZnHu3DlsbGzg6NGjGB4ehs1m0yVe0WhUX7RJgCozcsCtANTcY7U2TjFndOU9UzsjTD+9uwassnOPlAXIgLa8vIzx8XF9NW4eJMz9yCqVClZXVzE9PY1kMolSqYRMJqNPoKtXr2JwcBBjY2O6Fm+vfpDArUB5bm4Or7zyCs6dOwcAenrm1KlT6OvrQ1NTk75KM9e3cEB5uNhsNl3HZBgGUqkUpqenUSgU0N7eDgB6a75SqYStrS09/ZpIJHTGSBr0+/1+uN1utLe348iRI+ju7obVakV7ezt6e3sxMTGB+fl5vaNJMpmEx+PRq+rlsSTY9Hg8ut6vpaUFALC+vo7Jycmqlc8ulwvj4+NV9XR3m4JvaGjQU7FSerPXziwfRDwex+zsLGZmZrCysoJcLofOzk488sgjGBkZueO2r/TRvPnmm7hw4QKamprwxS9+Ec899xy6u7v16167EYVsGGEO7lpaWhCPx/GTn/wEp0+f1j83NjZ2W8AqGXjgVg3pb/7mb6K9vb3qQqv2dbZarXrhTLlcRl9fH5aWlnDp0iUcPXoUL774IpaWlhCLxXQZTENDA44cOYLnn38eL774oq7flvfSk08+CZfLpWcj5HlKPe7XvvY1eDwe/MEf/EFVyZf5uWezWZ39vBNzxmtoaAijo6MYGBhAMBhEY2Mj8vk8GhoasLW1pddxSC1vV1cXAFQlbQi4cOECNjY2cPDgQYyPjyMQCOgAU+KBxsZGdHR0IJlMYnl5GTMzMzhw4ICOJSTTKn+UUnpjhmKxqGfOzIrFIubm5nDx4kW0t7ejq6tLb2Yh528mk8FLL72EWCyGxx9/HH19fXA6nSgWiwgGg+jo6EA8HtcLwIBb3WWkUwCAqp22ZGw1B6ZybOZzT8oM6KO7a8Dq8/ng9Xp1r0mr1YpcLoeFhQW9GEBaU5gbjMs0otvtxtmzZzE9PQ2bzQa3241EIqEHFOnbl0qlsH//frS2turMkXkQkF1bJiYmcP78eUxOTupeatFoFGfOnMH8/DzGx8exf/9+dHd3w+v1VvWG3OtqiB5c7e3t2L9/v25KLtORyWQSExMTcDgc+srdarWiUCjoGtV0Oq2nloLBILq6utDT06P/mNvYNDU1obW1Ffv378fm5qbuTCAfZvJ/ea9IWzifz6cXHFQqlaoPdcl2BYNBPProozhy5Aj6+vrg9/vftxG5OVCVwf1uH6iyY4zcTjJOiUQC169fx8zMDBYXF5FIJNDe3o7x8XGMjY3p+85kMlWNsumjy+VyOHjwIJ5//nkcP35c96yUD/HaDz+ZCZOMZLFYxNe//nX8+Z//ORYXF2EYBjo6OnDy5EkcPnz4tsdraGiA1+vFyMgI2tra8Nhjj+mgbK/aV/MxyGPabDa0trbq2bPf//3f1x/sTqcTnZ2dGBgYwPHjx9HZ2am3U5UZkO7ubjz99NPw+Xy6s4Y5a2qxWOD3+3H06FEkEomqgHxmZgbpdBpLS0t6pfe3v/3tO/5+ldppYdTQ0IDx8XH09vYiEAjoGnJgJ2udz+dx8eJFLC4u6j6dR44c0b8z82YNzLIC8/PzKJfLGB0dRUtLS9ViKpnNKhaL+PKXv4yXX34Z77zzDpaWlvCLv/iLOHLkiB5zJdnkcrl0yZGUa5iz5xJvRCIRnD59Gh0dHfjSl74Er9erS0oymQyWlpZw/vx5GIaBp59+GgMDA3o74UKhoDuvSDZWZmbNFyQSsEq5jHkxqhyLdFKqXXhnzgbTR3PXgFWuDGQqXjoFRCIRnD17Fk8++aRe6Z/NZvXWa5FIRO+uInVY0vRcTgQpdN/Y2MDly5eRzWZ1MCBTPGJ2dhY3btzQO1zIVZAMeJlMBouLi0gmk5iZmdG1foODg/B6vXA6nQ/9YPKw8fv9OHbsGFKpFDKZDGKxmN7Vxu1265q6xsbG26Zu3G43PB6PzrxIqxyv1wufz1e12MIwDP299vZ2vVhFdkoxb2NqsVjgdDqr+ljK+8Fisej90IGdQGB0dFRnVWUQNp/HEjRLmY3Uy0p2NpfL6R6AewWtkvWQDJX8P5vNYnp6WtdRSt3q8PCwvrCU+5MSHLp3/H4/nnzySRw7dgyBQEDPPN0pS2PO8knnCpfLhd/4jd+oWrHsdDr37Jdrs9kwPDysWzSZA7e9Xlv5TDBnlXw+H8bHx7G9vY333ntPB9GygMrv98Pj8VTtcNTU1IRCoYC+3W2Fe3t79WeOPFdzf2A5Vq/Xi6effho/+MEPMD8/j+XlZbhcLrS3t2Pfvn0YHR2960VaQ0MDvvGNb+g2cXa7vSpRIqVs+Xwek5OTSKfTGBoawsGDB/WFg/n+mWHdsb29je7uboyOjuqZIDlX5DO7Uqmgvb1dl128+eab+N73vodMJoPjx49X1ai2tLSgtbUVa2trOHfuHB5//HF97hQKBWxubmJ+fh7T09OIRCL4yle+Ao/Ho9cnRKNRzM3NYWZmBoVCAc8//7yeNZCLdOnAMTAwgKmpqarMu7zvzO0A5dyQ80XGb8m4mltzmTO1zLDeG3cNWGVQMddxSAZnamoKpVIJvb29yOVySCQSuhVKJpPRV5zZbFb3MAsGgwiFQlhcXNSbEUj9Xy6XQyQSQSgUQl9fH+x2u97Z5fz587q3m3wIh0IheDweLC8vA4DejrBQKOgaxOXlZYyOjqK1tVU3rqaHg9VqxfDwMDKZDGw2G6amprC2tqZr6wDo89Tr9cLr9cLlcumAsrOzE4ODgwiHw/D5fDroMy8GAW5tCiAZBFnsIZket9tddcUt9yH/lwyE1H3Z7XaEw2G4XC50d3cjEAjoqXdzxwFg7+yXWe3iAAlI5RjM29GaV3Gvra1hcnJSb8EqxzIwMIBQKASfz6c/NH7acgO6s6997Wt6W9S71SqLvRa9ygKmD8put3/g9mS1C18kA2qz2fDUU09hfHxcB5ktLS1wu9060JDPBZvNhs997nMoFApobGzUF4Jyv+YFh+bnJ+ftiRMnEAwGq3Zlk5Ib+cy6m0AgoM/92sXDcvF2+vRprK6uoqWlBYODg+js7Kw63xmoVnvqqadQKBQQCoXgcrn0rKt0YpBxp1KpIBAI4MiRIygUCnpL3kgkguPHj+seqh0dHRgZGcHCwgJef/119PX1oa2tDdlsFjMzM7h27RoikQj8fj+eeOIJfcEli2Zv3LiBzc1NtLa24sSJEwiHw/rxzRdbbrcbBw8exMzMjF5kLmO0lBVIJh1AVdmAZFbN9yvjqfmcYob13njfgLWnpwft7e26XY90DNja2sK1a9cQjUZ1Y3PZ9UEppRvxSv1fa2sr2traYLPZ0NnZiWvXrmFpaUk3YI9EIkgkEnr7R5vNho2NDfh8Pj0lKVddHR0d6OrqQi6Xw+XLl7G5uYlMJqN35ZFOBNIeKBAIoKWlRRf304PP4XCgtbUV4+PjehvTpaUlRKNRnUWUQLG1tRUtLS3w+Xxwu91oamrS26u63e6qIPFuC50kM2RejW9eBW2+be3PyS5ybrcboVBIZ5IkmysDYG29oTAvgJSpNwBVGdw7HbNkB4rFIpLJJBYXF7GyslIVdAwMDOi+r/Izd/t90E9vdHT0fh/CB2YOLi0WC4LBIILB4Af62f7+/g90/7X/b2hoQCAQQCAQ+PAHXHO/d8p8Saswq9WKkZERDAwMVG04Qrc7duwYisUi/H7/bReytQuhbTYbwuEwTpw4gYaGBiwvL+PKlStIp9Noa2vTC1WdTieam5sxPT2NH/3oR+ju7kYqlcLq6ioSiQS8Xq+e+ZE1Mzdv3sTKygpSqRQCgQBGRkb0Fsbm9lTCbrejp6cHjz32mB7ra5MS5hm1O3VakfeCubWV3JYB673xvouu+vr6cODAAZRKJSwtLemMlaxAlb6Mtel/u90Ov9+Pjo4OdHd3IxwO6ytfKXhuaGhAJBLRtSiSvZXm18lkUtdmOZ1OtLW1oa+vD0NDQ3pQDIVCuHbtGqampvTqajlpzMfb3t6O1dXVT+SXSvefBI7BYBAulwvhcFj3WSwWi9je3obVaoXf70cgEEBzc7Nuj+Z2u+H1evV0d+2HpjmANJOBSbKh5l6mdxrgzAOo1G2Zi/cle2veSa52wDS31TG3hpHskbl5tvn45etSDy4dChYWFpBKpeB0OuFwONDX14f+/n6d+TBnEYg+jcwLtmoDGKUUpqenkUqlMDw8jLGxMXR0dFTVLvJC7Xbt7e1VYxeAqgti83a8UnolWdPZ2VmcPn0aCwsLWFxc1Mkuaem3srKCl156SW/i4HA40NXVpS+kM5mM7hG/sLCg+wH39fUhGAze1vZSxkM53qamJjz33HO3dVQxB5t3+pp5XDWP6eYxlmPlvfG+AWtTUxM+85nP6Bd3dXUVFotFt5+QKRqXywW32w232w2fz4dgMIhAIKCvTM290TweD5566il0d3fjJz/5CTY2Nqp25ZETXKaImpqaMDw8jIMHD6Jvd49gWXzS3NyMnp4eeL1e3VBaKYV0Oq3rB1OpFOx2u17UQg8+ea1lP2s5T8xtp4BbU/rSskq+Zv7bTCmltwaUc19uJ5l96dkqt5WZidpBS+oNa3v7mbOjUjJjuAyV5QAAIABJREFUXthYmxWSQn95fMnYSq9Kc7ZX+nHKfZkH11KphFQqpevP29vbde/Ezs5OeL1efXxy3ESfRnuVUQC32tFduXIFnZ2deOKJJ9DR0VEV6NCdmafBawM887gDQAeeTqcTfr8fg4ODuH79ut5QQmZOi8Ui2tvbsbKygvX1dV13LKUB8/PzOiCVrK30eDUvDpQLf3OwCtxa+S/j5l5BqnmDAvN6B5nxksep3bLVXA5BH937bhzgcDjg9Xpx4sQJ9Pf3Ix6PI5VKIZ/PI51Ow+fz6W1WZcGUXKVIELBXSt3j8ehVqRsbG0in0wB2XvCNjQ3EYjF0dnYiEAigvb0dTU1NejtY8y4TDocDPT09+PKXv6ybvKdSKSQSCWxtbenV2IFAAKurqzh79uzH+xuluuJ0OnWpiixAupMP82Hkcrl0Q3RZ2SobEbjdbqRSKXg8HuTz+ar93s3kuCQjK1P9drtd79gizAsA9mqlY57idDqdSKfTVR8cUjcotVm1ZGGB0+lEf38/0uk0QqEQBgYG0NraWtVSSWZYOEVKDxoJVjKZDL7xjW8gFApVtfZiT827k/Uqd8tQyu9TgryGhga9sPPRRx/Vi2OlvE92UZubm8Pk5CTW1tZ0ImprawsdHR2oVCp4/PHHcezYMZ2ZNccdshBVXj+JIcxjb21vV7mYN99WFozX9uCVYzRnWyUBwi4B947iL5KIiIiI6hkvFYmIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJSIiIqK6xoCViIiIiOoaA1YiIiIiqmsMWImIiIiorjFgJXrAKKV+XSl1+n4fB9FPSyl1Uyn1/B5f/xml1MT9OCain5ZSKqWUGrjfx/Fpx4CViD6wOwUSRJ8EwzBeNwxj5H4fB9GHYRiG1zCMWQBQSv2fSql/db+P6dOIASsRERER1TUGrESfUkqpf66UmlFKJZVS15RS/6j62+rfKaW2lVI3lFLPmb4RVkp9TykVU0pNK6V+y/S9qqt/pdTTSqml3X//GYAeAN/fneL6Z5/A06SH1xGl1KXdc/gFpZTTfD4CgFLq20qp5d33wIT5PCf6uCml/olS6vum/08ppf7a9P9FpdQRpZTx/7N359FxZfl92L+3dtQKFFCFHSAWLuDWJJtk90x3a6ZnMmc844lyRokUaRwpkqM4UaJYVrwoUmRrOZYlH8dHPop0EseKJcejkWQljrZMFI81rT6tmSZ7yG6SzQUk9qUKQO37XnXzR+HeflUEQXY32XhNfj/n8BBAba9evbrv9+793d8VQswKIf4GgL8G4O/ttqF/sns/HsePwHbQG0BEH9gSgFcAbAP4XgBfFULM7t72AoD/E8AAgO8B8G+FEFNSyhSA3wNwE8AIgGMAviGEWJJSfnO/F5NS/qAQ4hUAPyql/PdP5B0Rvef7APwVABUA3wLwwwDm1Y1CiKMAfhzABSllVAhxCID1I99Kepa9DuBXhRAWAEMAHAA+AQC7OateADfUnaWU/5sQ4pMANqWUP7t7Px7Hj4g9rEQfU1LKP5BSRqWULSnl7wNYAHBx9+YYgH8mpazv3nYXwF8VQowDeAnAT0kpK1LKawB+E8APHcR7INrHr+0e3ykAfwLgTNftTQBOAMeFEHYp5aqUcukj30p6Zu3mpebRPja/C8D/ByAqhDgG4FMA3pBSth7yNDyOHxEDVqKPKSHEDwkhrgkhMkKIDICTaPeoAkBESikNd19Du0d1BEBKSpnvum30I9looke3bfi5hHZvlSalXATwtwD8PICYEOL3hBAjH93mEQFo97J+Gu2A9XUAf4F2sPqp3d/3xeP40TFgJfoYEkJMAvgXaA8l9Uspe9Ee5he7dxkVQgjDQyYARHf/BYUQvq7bIrs/FwG4DbcNdb20BJFJSCm/JqV8GcAk2sfmPz7gTaJnjwpYX9n9+XXsH7De14byOH40DFg/pN1JKr990NtBzxwP2g1bHGgn/6Pdw6qEAfxNIYRdCPG9AOYAfF1KuQHg2wB+eXcSy2kA/wWAr+4+7hqALwohgkKIIbSv/I12ALCeIB04IcRRIcRnhBBOtPNcywAeNvxK9Li9DuBVAD1Syk0Ab6Cde90P4J097t/RhvI4fnQMWD+8cbQnBBB9ZKSUtwH8UwBvot0AnkLncXgZwGEACQC/BOA/kVImd2/7AQCH0O5t/b8B/JxhEtW/BnAdwCqAfwfg97te+pcB/OxuGsLfebzviuh9cQL4FbSP8W20L9J++kC3iJ45Usp7AApoB6qQUuYALAP4lpSyucdD/ne081UzQog/BI/jRyY609zo/RBCONA+uZ+WUtYPenuIiIiInkYMWImIiIjI1JgSQERERESmxoCViIiIiEyNASsRERERmRoDViIiIiIyNdtDbr9vRlaz2USxWMT8/Dxu3ryJer0Om82G3/zN38SlS5ee0GbSx5mUUjz8Xo//ZQ/gNalLJpPRPwshoCZ5CiFgsVjQarVQq9UQiUSwvLyMRCIBr9eLcDiMz33ucwe12dpBHLuFQqHj2JVSQkoJi6Xdv9BqtfTPxtuFEHofN5tNCCFQr9exsLCAq1evYnV1FR6PB7/wC7/wWLf3Z37mZ/DLv/zLj/U56cM7gGP3Y9HmNptNxONxLC8vIxKJoFqtwu12IxwOY3V1FTs7OwCACxcu4MyZM3C73Q95xv1dunQJr7zyyuPY9GfCfsftwwLW+zSbTeRyOSQSCZRKJVgsFlit1g+3hUSPWS6XQ7PZhMVigVrwSZ30m80mbDZbx4ndeB8pJer1OpxOJ6SUaLXeq+HcarVgt9v1fYG9AzF1X/V86rZWq4WtrS3EYjHMzMzA5/PBZrPB6XTq532aqH2u9oVxX6t9L6VEqVRCq9VCT08P7HY7ent7D3jLD47aT91/U4Gq8bbufapYrVYIIfDuu+/i0qVLSKVSuHDhAlZXVz+Kt0BkWlJKbGxswGaz4fz583A6nbDZbLBarTh06BAikQguXbqEq1evol6v4+WXX2aMYxLvK2BVJ/hKpYJKpQKgfdJpNBpPZOOIPqhqtaqDJHWSNwZK9XodFoulI5gE3uu9Uj1/KuA0PpcKepvNdk1o43PYbDbU63W4XC40Go2O5y2Xy0gkElhaWsKtW7ewurqKz3zmM/B6vbDZbE9lwArgvouCVqulf7ZYLGg0GtjY2MDa2hqklOjv74fL5TrITT5QKohX+0hdBHUHpeq2buqxqVQKqVQKgUAAg4ODsNls6OnpeeLbT2RmzWYT/f39cDgcGBgYgM3WDoOklPD7/fB4PMhms5ifn8f6+jo2NzcxOTl5wFtNwCPmsKqTtpQSjUYDtVpNn6yNJx8iszEGm+p3499VINV9DBsbMaO9ek+7X6P7NgBoNBrIZDJYXl7G3bt3cffuXdy4cQOlUum+13iaGHufle7Po1qt6pSAtbU1pNNpOJ3Og9hcU+oOVo29+HuRUqJcLmN5eRlSShw7dgxHjx5FMplEMBj8KDaZyLRarRaGh4cRDod1Ow9Anwe8Xi+OHj2Kvr4+xONxLC4uPtVt9MfJIwWs6oNstVqo1+uoVqtoNBr6Q+zp6en44IkOmhoStVqtuldUnfitVitsNltHT5axN0tdjBmDApX6IoTQIwpWqxVWqxV2ux12u10PGzmdTtTr7YXP1AhENptFNBrF+vq6zptyOp1oNBodKQdPG7Xfgb1zMavVKiqVCkqlEnK5HIrFok7leJYZA9Tu40Mdd/uJRCJYWlqCz+fD6OgorFYrCoUCZmdnn8j2En1cqJGwB7UxrVYLwWAQDocDyWQSm5ubDFhN4n2dFRqNBkqlEgqFAiqVCmq1ms43Y48ImUn3SV4FSypQbTQaOiWg2Wzq3lZjr6gayjYGXOpn4wQXY2CserdqtZoOOur1OlZWVnDlyhUsLy+jWq3C5XLBZrOh1Wp19Dg+bZrN5p7vzbifK5WKvkhwOBzw+/064H9Wqbw6dUypY6TVaumUlm7GY/kv/uIv4PP5MDQ0pNNT3G43hzbpmWe32/cdFVYdE0BnuhcdvEcOWFVOXyaTwdbWFtLpNFqtFqxWK3tYyXRUwGjsGVXBoerVVFfaQDuorNVqOrd1r4lYxscaU2NUECGl1D2uVqsV9XodzWYTGxsbyOVy8Pl86O3tRaVSQSAQwAsvvACPx9PRQD5tugMrtV9Vfq/FYsHm5iay2SwAoK+vD3Nzc8/0JAc1T6DRaMDhcKCnp0fnVVsslo62tntSn8Viwb1791Cv13H8+HGEQiHs7Ozg3r17APDM91wT7ceY1qW+e90Tb+ngPHKUqWZOl0ol5PP5jolWDFjJbNSJWU2QAqB7QbtnWRsnU6meVxWAGnu1jCf7B+W4qqBV/WyxWFAqlfT3JhqNwuVyYXh4GOPj40/998a4n4yBlcPh0BPXdnZ2UCgUAAB+vx8jIyPPdMBqvFhSk1sB6H2i2t7uagKtVgulUglXr17F7OwsvF4v6vU6tre3kc1m8cILLzz1xxvRh6G+T9VqFeVyGfV6/aE54/TReeRPQdVfzWQyyOfzANoNZ7PZ1MNXRGZiLAWkeqgajYZOCzAGtWp4v3s4SN3PmPNkzGU1phEY0wSsVqueaNVqtVAoFBCPx1GpVOD3+3Hx4kX4/X44nc6nuoe1m+rlVhUYisUitra2UKlUMDAwgImJCZ3b+6zqzvl9EOOogQpW//Iv/xKlUglzc3NwOByIRCLI5XIIhUIYHh7miZdoHyr1JpfL6VGf/v7+pzZl6+PmkaJMKSVqtRpyuRzS6bSumQi0G1en08mGkEzFmPtnrARgnECoclSN1GPU49R91N+MeYVAZ8km9Z1Q/9tsNuTzeaRSKcTjcZRKJQwNDWFiYgJjY2Ow2+0d6QRPI9Uzbcz9VSeFZrOJSCSi04tGR0cxPT39wBJOz5q9jk3jcda9T4vFItbW1nD48GFdDSCTycBms2F0dBRut5v7lWgfqi0vFAoolUpwuVwYGhri98Yk3lfAWigUkMlk9IIBDocDXq8XHo+HPaxkKnud7NUQvTHY7C5qb1xFSN3W/TwqwFS9qcYeWpV+oHJbG40GotEoYrEYms0m+vr6MDs7C7/fD5vN1pET+6Ch3u7XrlarsFqtusycqvvqcrl0g2um7+NeaRNCCNRqNayurqJQKMBmsyEYDKK/v58nBwPjvuuuzar+V/syHo+j2WxiZmYGdrsdsVgM6XQaPT09CIfDHY8jovup70cqlUK1WkUgEGDAaiKPdFZrtVqoVCrI5/PIZrMolUqwWq1wOBwIhUIIBAKmOkESdQenxtqoqsfPOKv6QT2cxl4s42P26rVVr2vMP6xUKtjY2EAmk0EwGERfXx8mJib0IgEq8KzVah2VCowjFqqcXK1WQ6VSQTabRU9PD+r1OgqFAgqFAgYHBzE8PAyHwwGLxQKPx2OKRrZ7eNuYx5rJZLC6uopyuYz+/n7djphhuw9Sd5AKdOa1dv8spUShUMDGxgaCwSAGBgbQbDaxvLyMQqGAYDAIl8uFarXKhQPoI6HSfQqFAux2O4LB4If+XqtUItXGPSlSSqTTaTSbTf19InN45IC1XC4jk8kgnU6jWCzC5XLB4XBgcHAQbrebASuZinFWf3cNVtUr6XQ6dbCqejjVxCzjaljGNABjXmulUtHP292ANptN5PN5LCwsYHt7G1JKjIyM4MyZM/D7/XobVa9utVrVeZ3q9VTvbrlcRjKZRCqVQqFQQC6Xw+DgIAqFAmKxGLLZLGZnZ2Gz2dDf369XNFLbbMyzVcH248ibrdfr95X1MjKuZrXXQgurq6uIRqMQQmB2dhYjIyP6ZPQsB63GYX9jz333/lX7slKpIJ1OI5PJYHR0FEII5PN5rK6uYnBwECMjI7DZbKhUKs/0CmL0ZBnzzqWUmJ+fx5tvvonBwUF8+ctf/tDf6Xw+j0gkgkOHDj3RC3KV/uVwOBjbmMwjfRKNRgOFQgH5fB6VSkX3APX29qK3t/eZntFL5mS329FoNGC32zsK1avg0uFwAGgHltvb2zqXMhAI4PnnnwfQmc9qHO63Wq06uFQBhXE2aalUQrFYxNLSEl577TWUy2UcPnwYx44dQygU0iWvVA6rMaXAWLu1VqshkUggHo9jZ2cH6XQaUkoMDAwgn88jFAqhVqvpOpvJZBI+nw82mw2JRAIWiwX1el2nHmxvb2NjYwM9PT2YmZlBIBDQk8fUd1ptW/fCC8b7AO024bXXXkM2m0UgEMCxY8cwODioe4wtFgsCgYDO0TXWqVWLj+zs7OhJaf39/RgYGNCfF3Pi0XGRZAzijXnAQDtPNRqNwuPx4PTp05BS4u2334bVasXExATC4TDsdrtOGSF60rLZLHK5HCqVCra3t9FsNj9U4NdoNPDbv/3byGQy+MpXvoKpqSndhj9umUwGGxsbaDab8Pv996WK0cHZ9whSDWK9Xke5XEa1WoUQAj09PfD7/QiHw3C73QxYyXSMwaQ6bm02my6lpHo1I5EI7t27h0gkgmQyiVwuB6/Xi0OHDunePmPNVtVoNZtNPcxqs9lgt9t1T63T6UQkEsEbb7yBTCaDQCCA8fFxTE5OwmazoVwu6+ex2Wz39Tyq29LpNL7zne/oC0W3242JiQn09/djaGgINpsNQ0NDWF1dRSaT0UFwtVrVz22329FsNrG6uoqNjQ3k83nU63VkMhm8+OKLetKkscfV6XTqlbiMjDPSl5eXsb29jbt37+LQoUO6IL3aT8aJQcZqCirwzWazuHHjBiqVCk6dOgW73Y6VlRVYLBaEw2F4PJ4nf5CYlPEYUBcN3YypFrFYDMvLyxgdHYXL5cKNGzcQjUbxmc98BsPDwzr9xFjiba/XrNVqqFar8Hq9bNPpQ1lYWMDS0hJ6e3tx9uzZ+9KujClUqp67kfHiXT2ur68P0WgUxWJR1yh+3FqtFu7cuQMAOHr0KA4fPqwvwt8P42I0rOH6+Dz0kkcNjaohS6Bdd7W/v18PPz7NK/XQx5NxdSDjwgFq0tLq6iqSySTi8Tjy+TzS6TS2trZgtVpx7do1PXGle0hdHefquLfb7ajX67pclloNbn5+HisrK3A4HDhx4gQOHz4Mu92OSCSC7e1tOJ1OzM3NoaenB1arVW8b0F70IJlM4o033oDFYoHdbsfY2BjGxsbQ29urFxtQvb6hUAhDQ0Pw+XwAoJ9PrURXq9V0j4cK2NXCCqrHs7v8lzH/VwWZQgiUSiWsrKzg8uXLWFxc1D136n7qf3UCUu9JPUez2UQul8M777yDjY0NVCoVrK2tIZ/PY2JiAkeOHIHX632mG/m9enKMPa3Gv1UqFb1y2uTkJObn53H58mW8+OKL8Pl8HfmuD+olqlQqSKVS2NzcxNtvv425uTmcPn26o0dMlWhbW1uDEAKxWAxOpxMDAwPY3t5+AnuBPq5UJ8Hw8DBOnDiBvr6+PVeXklIiEongz/7sz+D1evF93/d9HRdqRhaLBSdOnMBbb73VcUw/CTdv3kQ6ncbJkyd1/ur7fb16vY5r165hdXUVd+/efRKb+UzaN2BVJ9FSqYRUKqXrr7pcLj2jl5MkyKyMk6uMuaqxWAybm5soFApoNpsYHx9HOByG0+nE/Py8XhjDeIWsjnHjJK3u3q9Go4FyuYy3334bV69eRbVaxcTEBA4fPozBwUGUy2Xcu3cPuVxO97SeOXOmI69QlVSZn59HuVyGlBJjY2OYmJjAwMBAR6+nGsJXaTmqB1mV41InCbWCV7Vahd1u10Xl1far/Ei1n4D3KhIYgx0V3GazWd2zPDg4qHtRjY9V91flYVqtli7vlc1m8Z3vfAfpdBpCCAQCARw+fBgzMzMYGRmB0+lEuVx+4seHWXX3LhknXqmf1f9LS0tYW1sD0D4e7t69i2AwiPHxcZ3nZ5yAuFdbLYSA0+lEKBTC4cOHsbCwgCNHjqCnpwfNZhNbW1tYXV1FIpGA2+3G3NwcAoEA1tbWsL6+jlQq9VHsFvqYSKfTSCaTsFqt8Hg8D5zop2oHq5J/Dxt2VxfHqv77Xs9nnGS7vb2NWCymj9lHsbGxoVMY7Ha7Hp14P/L5PK5cuYL5+XmkUilsbW297+egvT20h7VeryOdTiMej+vVaIQQuqQVA1Yyq+4AqlqtYnt7G2tra4jH4xBCYHR0FMPDw7qXaXFxEclkEouLi7r4unqOvYII44pYlUoFkUgEy8vL2NnZgdvtxrFjxzAyMgK32617YdUM1Gg0CrvdjlAopHtOG40GFhcX9epPvb29GBwcRH9/P9xuN4DOyQ1CiPvydLvTIZLJJAqFgq4jq7ZHBduqB7o7X7L7PdfrdVQqFd1LqwLlwcFBeDwefUFgHEK7ffs2yuWyrgqgepij0Sjq9TqOHDmC5557DjMzMwiFQrpNeZbzxfaqDNB9m/pst7a20Gg00N/fj/X1deTzeZw9exZ+v7/jZNsd6BqpCzK/34+ZmRlEo1EA7eNsbW0NS0tLKBQKGBgYwODgIEKhECwWC3K5HPL5vB55IwKA7e1t5HI5BIPBfWu0q4to42jKgy6qgPbx+KBqA8aLbQC63YvH4xgZGXmk7ZZS4s6dO8hmszhy5Mi+Jfb22k51gX7lyhVcv34dqVSqY+4DfXj7BqxCCNTrdcRiMSSTSZTLZT3cqIZD1cmFQSuZjQqggHYDFo/HsbCwgFgspoesxsfH4fP5sL29rYOtZDKJmzdvYnp6Wgd1xqEq47GuGspms4lsNoulpSXs7OygUqng6NGjmJubQ29vL2w2G7xeLyYmJpBIJBCNRhGNRtHb26vzwh0OB7LZLFZWVpBIJFCv1zEyMoKBgYGO9eS7A2f1e6PRQC6XQyqVwsjICFwul570kEqlYLFYEAwG4fP54HK5dE6jMUBV71Expg1kMhld2zOfz+vUhOHhYT05oTsgun37tp6MVq1Wkc1mkUwmUavV4Ha7ceHCBZw6dQqBQECf3J70kN/HQfdnAHTmZQPtWpFqYQC3243FxUWEw2HMzMx0DOfv1UNrZMwj9Pv9OiBNJpNYWlpCMpnE0NAQzpw501Fzu6+vTxdXJwLeG+aXUqK3t1ePCHW3mUC7TS4WizqO2C+tULV1qkTbwy5oq9UqCoUCqtXqfbmu6oLbOJFU5fovLS2hWq3qUbH9tke9L3XxmMvlsLy8jBs3buiLOIfDgb6+vn23lR7dQ3tYi8WiXt7P2KukJlI86ycWMi8VkDUaDSQSCdy9exeLi4uwWCwYHBzEqVOnEAwGUa1Wde+fGupWQa3D4bhvdqsqjaUaKzW0tb29jcXFRd1gX7x4UZdqAtq536oG65//+Z9jZWVFp9f4/X49CaxQKCAajeLYsWM4evSoDmpVmS01jG9MR2i1Wshms7hz5w6uXLmC7/7u78bY2JheEjadTmN4eBgzMzM6MFQpBA/bf1JKXTN1aWkJS0tLyGazaLVaevu6UxVUT2+5XIbX69WBcSAQQKlUQrlcxtDQEM6fP49AINBRHaC7t+RZo06gxrJhxjJnqrLD5uYmisWi/oysVivOnTsHr9erH9tdcWGvoEClk6iLO7fbrXubMpkMxsfHcezYMfT29urjRQgBt9uN6elpvSgBkRqK7+3txejo6J6dWardLBaLSKfT943wPIjVaoXT6UQgENhzwpXx4r1QKCCZTCKdTt+XXqRW6ywWi7qN7+vrQ71eRzweh81mQzgc1jng3c+t3oOqj10sFhGPx3Hv3j3cvHlT19peWFiA3W7H0NCo1VtjAAAgAElEQVTQB96f1OmhVQJKpRKSyaSemafK06irHE62IjNSQzGqnNPy8jK2trb0SXxiYgKBQEAPX6v6pj09PXC5XBgfH+8YNu9eeEA1YPV6HalUCvPz87h16xZ2dnaQSqVw6tQpjI+P6xnXanuklAgEAujr64PVasXY2BjC4TAsFgt2dnZw+/Zt7OzsoNls4sUXX0Rvb69+T2pbVG+EcYJUtVrF2toa3nrrLX0iGBwcxObmJtLpNHK5HPr7+3UpLdUrrH42TpJSAVKtVtPf+dXVVbz77rtYW1vDzs4O+vv78YlPfAJnz569L89LPS8APP/888jlcrrRXlhYwOLiIlwuF86dO6dPPsbqCyrN4VmmJsWpqgtWqxWVSkXnJ1cqFdy8eRPZbBZWqxVWqxUXLlxAb2+vPgkbAwH1Xeiu/KCoNr3RaGBwcBBSSqysrMDr9erFYYyTviwWC/r6+nTgSgRA12kfHh7eM+AzxgvFYhHb29tIJpMIBoO6PeuuGKCeIxKJ6OoAD+phVSNQa2trWF5ehtvtvi8l4LXXXtPzFNSokdfrRS6XgxACHo8H9XodpVIJDodDt0XGoLparSKfz2N5eRnXr19HNptFX18fzp8/j+PHj+O1115DIpFAOBxmSsBjtG/AqmpBqlnQxp4Pr9cLl8v1WAqQEz1u6iQdj8dx69YtLC8vo1qtwufz4eWXX9aTUqRsrzKVz+eRz+fRarX0sKqatGTMD1WNl8qJjUajuHHjBlZWVrC1tYVYLIZgMIgvfOELGBgY6Fi0wBi0qtxDj8eDVquFeDyOaDSKXC6HbDaLz33ucxgeHta9u93LxBqDh1arhZ2dHSwvLyOZTOoeMbvdjlwuh/X1dR14OJ1O/ZzGHF9jfVVVXUAFOffu3cPi4iKWlpawsbEBl8uF559/HqdOndLBlHG7jE6dOoVarYZms4nFxUVdEaCvrw+f+MQn4HK5Oh6jLoif5UlXwHs9OGpCmypVBkD3eKse9/HxcRw/fhxTU1O65797hTHVi7pfW62qR4TDYcRiMUgpMTo6isHBQd0rr47fZrOpe7me5Xxjeo+UEt/85jeRTCZx6tQpXZpur2BVjXqtra0hl8vpCaYPyruWUuqqJHstUmK8f7PZxNraGmKxGA4fPoxAINBxPyEEXn75ZQwPD6NWqyGXyyEWi+HXfu3XkMvl0Nvbi9/5nd9BX18fent70dfXh4GBAZ3KpCquqDbZ4XDg85//PKampnTqlvqu+P1+TExMPPZ9/azaN2BVJy919d1sNuF0OuH1etHX19eRc0ZkJpVKBfF4HO+88w62t7fRarUQCoXwXd/1Xejv7+9YOCCXy6FUKqGnpwfBYFAP46iTs6JyOdXfY7EY5ufnEY1GEYvFdM3Vz372swiHwx31SFWj22q1UCwWkUgkcOjQIV2KKplM6slgqhSWSkcwzsBXDbXD4dC9o9VqFTdu3MC1a9d0npfVakWhUMD6+joKhQIOHTqEoaGh+5Z8VUPx6j2p3ttarYbt7W3E43Ekk0msr69jZ2cHTqcTL730Ei5cuKBzWI37pztNyGq1wuVyYWdnB5FIRM/a/dSnPoVAINDRY2es8/ostynqMzd+VsYqFfV6HZcvX0Yul8Ps7CxOnjyJkZERvf97enp07WHjyf1R9qs6RsvlMmw2G/r6+jpq4hpzuTm6RkaqCkogENATroy62wU1UdViseDChQsdC4wA79V9Vt+HeDyOV199Vc+j6Q5a1chXLBbTKUdTU1P3HaenT5/WK3Q6nU44nU7Y7XYcPXoUq6ur+OIXv4hkMolEIqHTCu7cuaPrHDscDszNzWFychLDw8N6JE7lclerVV2yz9hBQB/evntSHRjG5SqtVitCoRD6+/tZXJpMq9Vq4fbt29je3kY2m8XAwABOnDihZ7arOqX1eh2RSATlchnBYBC1Wg2nTp2Cz+fTdViNV/qtVguVSgVbW1vY2NhAJBLBzs4O8vm8Hk6anp7uGCY1rmalAsFWq4Vjx47p/M5sNotMJgMAmJmZgc/n05PG9poMpagGOhaLoVKpIBwO48iRIxBCYGNjAysrK6hWq/B4PB0F4VUurLFslRrKLxaL2Nraws7Ojg5UNzY24PP5cOrUKVy8eFEPBwPvnXyMOZbqZGK1WnV+79bWFqrVKvr7+3HixIn7Pi+1Xc9ysAq8ty8cDoeeIGIMELe2tvDuu+8iFAphamoKg4ODsNls+sSuggD1uajgV6UTrK6uYnJysmM/G4MD44WHsWKDsWSQOo6e9c+K3qPypkdGRvSF+IOqXDSbTZTLZRQKBV1D2Dh6pY5fFYSqyYUqaHzQcddsNvHOO+8gGo1idnZWL1lt1NfXB4fD0VGWMJ1OIxaLYWZmRncWqPJZ6gJenROA9nezp6dHd9qpi3/j6IfT6eyYpEgf3r57UuVKqaFBtQyk2+3WdRyJzCgajSKbzaJUKuk8JrWmulomsNFoYGdnB4lEAqVSSeeXTk9Pd5SzUv+rvKaVlRU9mz+VSkEIAZfLBZvNBp/PB6/X2zEpQJ38Ve5TJBJBMBjUK1+VSiWk02m99Org4GBHoW01PKyG7tXvqtFXk2OCwSBGR0d17/Di4iKKxSJcLhcCgUBHWSxjAKOGeCuVCnK5HHZ2dhCNRrG+vo7t7W2k02m0Wi1MTk7i1KlTevsUFazuNfSnhtw2NjYQi8Xg8Xhw/Phx9PT0dJTA6g5Un+VJV8aawWr/qB7TeDyON998E1arFadPn9a51uoiwXhyNB4/Sq1Ww9WrVzE2Nqbvq45PFZjW63Vdg7VcLusV1NTn+rBJXPRsisViaDab6O/vf2DtVdVGqAVcVCDo8/n0BZPxflJK5PN5XLp0CQ6HQy/f/KCL91KphNXVVZTLZfj9/o4La8Xv9+tAVfXy3r59G41GA+fOnUMoFOrYftX2qxUB1QWb8XlVYN1oNLC+vo56vY6xsTGMjo6iXq9/6H1LbQ/NYc1kMiiVSqhWq7qH1ePxwOl0MmAl01pbW0O5XEatVsPY2BgmJyfh9Xo7ityrntJCoaBzqKanp3Xuqep1UqML+XwekUgEW1tbSCQS2NrawsDAgL4ar9Vq6O3thdvt7piYpX6u1WrIZDLIZrMIh8N60lehUEAmk0GhUIDH49ETEPaalWpcharRaGBpaQmbm5twOBwIhUIYHh7WK0Wtr6+j0WjoVbBUQ68CVGOVA5WmEI1Gde9qOp1GrVZDrVbTxehVDwfw3sIMe1EBp5p5u7W1pYfpjh492tF7bezpUJ7lvEhVBUJN1lA/l8tlzM/PY3t7G263G+Pj4/oYAt4b8lePN14oAdAzs5eWlu5LdTGSUupKAYVCQS8L3L2NxnrAREtLS2g2m7pEnfG46i7Fp4baLRaLHlLfq5xerVZDOp3GysqKXgVvv7hDpVX19fUhFArtWU3A4XB0jBYUCgU9o//IkSO619S4QmL3RFD13TJuizqvLC0toVwu4/jx4xgdHdULe9CHt+9ZQZ2gc7kc6vW6Lv/Q29u7Z3I0kVlEo1GkUinYbDaMjY1hZGSkY7ZnrVZDIpFAJpPRvUg9PT04duyYngikgqnuslVqspXdbsexY8f0DGq73Y5wOAyv1wugfVJXkwRU2alIJAIAOqVGCIFsNqtnrapaqcYKHCp4NZbpAtqlW65fvw4hBIaGhjA6OqpraLZaLSSTSV1sW/XCAZ0lWoxLbt6+fRs3b97EwsICkskkent74fV64XQ60dfXh/7+/o5lYdV7NDbuxkoKQLtHLxKJIJVKwel06h5gVWVEnQi6Fwt4lofRVE+pOk6r1aruObp37x6CwWBHFQAAejKIsUJDNzW5T40mKOoCxnhsqWoZhUIBhUKhI03A2MPETgtSlpeXAUAPg3eXqVLHZT6fx8LCAqLRKBwOh16RrXtiqbqQjkajcLlcePnll/dtF6SUuHr1KnK5HGZmZjA2NvbA41Mdu6p2tao13NfXd1/ba/y31yhS9/vr7uF9li++H7d996SaxVcsFmG1WuHz+RAOhzEwMNBx0mKjRWajegtVEGdsQFUA+s4776DZbOri1dPT03qygDGpP5vN6hqkyWQSCwsLCAaD+MpXvoLBwUHdUPX29uqhVmPvo3o9lROqvktqaKpYLOqSRS6XSwe8xh5QFYioslRqRaxWq6UDQBUQWiwWHYg3m014PB79OGOwqiacXb58Gd/5zndw7949bG9vo1ar4aWXXsKXvvQlHUgbg2/Vi1epVHTpK5VaoHKD1Wttbm7qHoYTJ07ghRde0NUZjD2AxvzX/YKuZ4GqygK0LwhqtRpWVlbw+uuv62LmKr1FBZvpdBrvvPOOLlhuvHhQ+1lNzuvuzVafn+qZVZPvpqamkM/n9UIY3akF3QEJPduKxaJuG9QFl7H9krJdl/n69et66Wmv16svoFS7AbSDz1wuh6WlJVy/fh3hcFgvTvIgtVoNd+/ehRACw8PDOh2g+zHGyZ3lchmJRAIA8PnPf17npaoLQqDzAhLAfe+tVquhUCigVqshmUzqTglVRelZbsset327MVQOoHEJR1W8l+WsyMwymQxcLheOHj2KYDCoA1B1lXzt2jUdjJVKJYTDYb0Uq7GRKZfL+Pa3v42trS1YLBYUCgWcPn0an/zkJ2GxWPRypWrFn3K5rB+rZnQnEglsbm5idXUV8Xgchw4dwtTUlB7yLRaLqNVqsFqtusagyhvsnvgItBvQaDSKRCKB0dFRpNNpTE5OYnZ2Fh6PRwcwqtc4GAzqXgy1H/L5PDY3N3Hp0iVsbW0hnU7D6XRidnYWr7zyCnp7e3UgrfLN1DKKxklB6mQEtAOtQqGAfD6vh5XVql3Hjh3DyZMn4fP50Gg0dK+qMXhSvSwquHrWqQudW7du4Z133sHY2Bg++9nP4k//9E8xMTEBh8OhT/JqNKxcLutlgNXQpwoqVU3is2fPdux3u92uUz9UNZhKpYIzZ87o47avrw+zs7P31ctl7xEpKlBTPfXGXFOVB/r222+jVqthZmYGXq8X9+7dQyaTQSqVQjgc1sdrJpPB5cuXcfXqVQwMDOCLX/zifR0JRq1WC9/61reQSCTw4osvYmhoSLed3SlHxrSotbU1/Pmf/7lu+9QolvrfOGFWtcPGiYzNZhPb29v45je/qS/wcrkcXnzxRb1ozLM8WvS47bsnY7FY+042G1wul15LWp38WNqEzCqfz2NiYkInz6vZ9qVSCe+++y7u3bsHv9+PjY0NAEA4HNYVBFT94VgshuvXr2NzcxPVahWBQAAXL17EqVOn4HK5UKvV9Mz7er2ug0C1bGmlUsGdO3dw69YtRCIR1Go1DA4O4vTp03piVq1W08OvxrxZ1aCq75dq9FSPwNLSkr7/yZMndYqBCjCNjeTOzg4mJibg8/n0KlpXrlzBxsYGisUiHA4HTp8+jRMnTuDQoUMdhbk9Hg9KpRIKhQJWVlZ0T7SavFar1ZBKpZBOp/WKWlarFS+++CIcDgfi8TguXLiAubk5XW5L9VCoiW9SSn0x3F2K6VmWzWZx6dIlrK+vY2xsDK+++ioqlQqSySReeeUVneKysbGBd955B8ViUR/vFosFlUpFp2fk83m89dZbiMVi91UIAN5L7ahWq7qMYa1Ww9mzZ3H79m1cu3YNDocDk5OT+qRt7BknUgGqKpVnzLcvFAr4+te/jng8jrNnz2J2dhanTp3C2NgY/uiP/gi/8Ru/ge///u9HpVLBwsKCXoBgcnISX/7yl9HT07Nn2TxFSomFhQWEQiF89rOfxcjIyAPTVlTcolaoymazut1Tx7Zqh4wVUIyTGB0Oh859vXv3Lubm5nDs2DH8/b//92Gz2XDu3DkMDw93lCSkD2/fgFX1KqnE6P7+fr2CBa8ayMysVivcbrdOulcn+oWFBdy5c0f3ROZyOd2jVK/X9ZrQt2/fxuLiIlZXV+H3+zE3N4eTJ0/q9IJKpQKHwwGXy4VQKITe3l7k83ksLi6i0WhgYGBAL/eaSqXQbDYxNDSECxcu6OBS9U4aZ2cXCgVEIhEdPAPQE8RisRgWFhaQz+f1xK3JyUmEw+GOgNdisehVrcrlMpaXl5HP52Gz2fTkya2tLVQqFczNzeH06dMYHR3VS6SqYMRqteL8+fN47bXXkMvlsLKygnQ6jevXr+tAOpfL6bSAYDCImZkZzM7O6iHrH/uxH4Pdbt+zZnP3Ba/xtgetyPQsaDabuH37Nm7fvg2LxYJz587h8OHDAKDTPFTQn0gk9OeiFosA2idwY1mseDyOq1evwufz3TdzWl142Gy2jv0uZXvhgEQigTt37uDGjRsIBAIIBAIdvfVEQHv2varOombzq5UAv/GNb6BQKODo0aM4fPgw+vr6IKXEoUOH8PLLL+PNN9/EV7/6VV3V5PDhw3jppZdw+PDhjolTDzrepJSIRCL4whe+0FFyc6+0FfU3VcrK5XLhc5/7nI5pumtL71VLWy3WsrS0hFQqhU9+8pO4cuUKstkszp0711FJhd+Rx+ehdViB9tCf2+2Gz+e7r1g40wLIjFRvarFYRKlUwtbWFqLRqK7LevLkSb0Oe7lcxubmJi5fvgyXy4VSqYSFhQVsb29jYGAAp0+fxpEjRxAKhXQFAGNi/tTUFFKpFO7evYtMJoONjQ1Eo1G9epYqSn327FkcOnSoYwUYNcnK5/PpCgYrKysIh8P6Cr1arSIWi2FpaQkLCwsolUoYGhrC2NgY+vr6Oobe1HfT5XLh1KlTePPNN5FIJJDL5QC0e5objQZsNhsuXLiA5557Tge8KvdWCKEnWR49ehTRaFSvSKP2mXr/rVYLwWAQZ86c0TnAfr9fVxLo7+//QJ/fs3xB/NZbbyEajWJychKhUAh9fX26x1OlANjtdiSTSdy7dw8rKyuwWCyYnZ3VJ1f1GavZ/I1GA263G88//3zHBDygPXlve3sbFotF1+sF3js+p6amUK/XMT8/j/n5eVy8eLFj8gl7kAgA5ubmEIlEcO3aNb1SnWpv19bW8Morr+hJquriur+/HxcuXMD4+DhSqRQajQb6+/t1rXfj0tYP43Q6MTU1pS/elb1qwVYqFUQiEWxvb6Ovrw+Tk5MA3stv7X68ccEMJZlMIh6Po1qtIpVK4cqVK5BS4uLFiwgEAvr7xxjp8dn3rKCKlwPt7n7j0CXAYJXMq9VqIZPJ4NatW2g2m0gkEkilUqhUKpidncXMzIwOLre2tpDJZHRZlmq1inK5jNnZWUxNTWFubg4DAwO6ATJOppJSYmhoCMeOHUOz2cTm5ibq9bou2RIKhTA2NqaXzlTBqvru2O129Pf3Y3BwEJFIRM8GF0JgZmZGz9JOJBLY3t5GIpGAy+XC+Pg4BgYGOnqRgfcqdthsNpw+fRo7Ozu6h9c4UjIyMoJz585haGhI5zp2z9S12+0YHBzExYsXMTQ0hEwmo5ex9fl8etWXgYEBzM7O6t7n7kkK9P54vV5MTExgampKT8xTNSoLhQLsdjvu3buHdDqNZDKJZrOpe06NVRqME+yEEPD5fJiZmbnv5K/um0qlsLKyAq/XC4/Hoy+gFDVce/LkyY7SbURAewWp69ev615HoH3M9Pb24rnnnsPx48cxMDCgL3TUkPvQ0BDC4TAKhQKA9vFvvAh/lOPMarXiU5/6lC4z2D2SY6RyZGOxGOx2O06cOAGv16u/O+oizDgipL5/xt5Wt9sNj8eDZDKJGzduYH19XadVGct+8jvy+OwbsKqcM3VwqWXMWM6EzM7hcCCTyeDmzZsdQ+XhcBgvvPACBgcH4fP5cPz4cdhsNuTzeVSrVT3UPzk5iZdfflmXcVN1BY3/VG+m3+/H7Owsenp60Nvbi0KhgGw2q9eRnpqa0tUHVGNtLFXl8/kwOTmJRCKBW7duYXt7G9vb23pZ1Ww2q5P8VTBz5MgRXQ/ZOFtcBdFutxsnTpyAlBJra2uoVquw2Wzw+/2Ynp7G2NgYenp67us9UL2rNpsNdrsdbrcbwWAQc3NzKJVKyOfzKBQKCAQCurydsXFWJa66J1TRozt58iQA3BdwNptNZDIZWCwWnbMaDod1mSs1saVaraKnp0fn3QnRXoFtbGwMfr//viFK9RlXq1Wsr68jm83qSg4qiGi1WvB4PHrdd9VLy4lXpMzMzODChQvY2NhAtVqF1WrFyMgIZmdncebMGX0R9KBh+t7e3o7qKsZ5Msb0ob1iD4vFgldfffWRt7VarcLhcOhtNr6GMb7pLgVo3O5wOIxQKIRr167pxWdeeeUV+Hy++1YRpMdj34B1cnISfr8f9XodLpdLDxsSmd3U1BTu3Lmj80ydTicGBwdx5swZjI6OotFooKenB2fPnkUoFNJ1WwHg+PHjGB4e1vUEjSsCqYBQXXFbLBY9493r9eLw4cN66FYFfMYG2NibqZ5HBciVSkWvvNVoNDA/P6/zwCwWC0ZHR3H+/HmcPHlSpwJ0L4uqeoCHh4dhtVoxNTV1MB8AfSjG40PlOqtVw9TJ1uFwIBwO61q6yWQSQgikUilMTU3pguxWq1WvumOxWNDX19fxWjabTV+Yzc3NoVAoYGdnB/F4XF8E2Ww2BAIB1Ov1jiV+1bYSOZ1OfM/3fM9Bb8ZDWSwWDA4O6sUxXC6X/k6p8m6qQ8HY1quOBnUhqDoMCoUCisUixsbG9KIoxgt2Xrg/PvtGn0eOHMG5c+dw69Yt9PT06JnNxi5zIjP6kR/5EWxuburVp9REQeMa0ir4HBgYwJkzZwC8dyWthtnVFb9xrXU1Q97Y29qdz6d6u4zPY7ziVt8dNVvV5XJhbm4O4+PjWFxcxM2bN3W+aCAQwMTEBKanpzEyMtJRosq4zd15rPTx1D0jWf3vcrlw/vx5OJ1OHDlyBL29vWg2m5ifn+8Yzj958iR6enr0hc7D2mkV/Co+nw/Dw8OPvL3GRWSIzE5NSOzt7QXQuWKfGh1SpatUkKrKdKkaxWqS4pEjR/ClL30Jly5dwo/+6I/q84xqm7sXQ6APRzC/goiIiIjMjF2kRERERGRqDFiJiIiIyNQYsBIRERGRqTFgJSIiIiJTY8BKRERERKbGgJWIiIiITI0BKxERERGZGgNWIiIiIjI1BqxEREREZGoMWImIiIjI1BiwEhEREZGpMWAlIiIiIlNjwEpEREREpsaAlYiIiIhMjQErEREREZkaA1YiIiIiMjUGrERERERkagxYiYiIiMjUGLASERERkakxYCUiIiIiU2PASkRERESmxoCViIiIiEyNASsRERERmRoDViIiIiIyNQasRERERGRqDFiJiIiIyNQYsBIRERGRqTFgJSIiIiJTY8BKRERERKbGgJWIiIiITI0BKxERERGZGgNWIiIiIjI1BqxEREREZGoMWImIiIjI1BiwEhEREZGpMWAlIiIiIlNjwEpEREREpsaAlYiIiIhMjQErEREREZkaA1YiIiIiMjUGrERERERkagxYiYiIiMjUGLASERERkakxYCUiIiIiU2PASkRERESmxoCViIiIiEyNASsRERERmRoDViIiIiIyNQasRERERGRqDFiJiIiIyNQYsBIRERGRqTFgJSIiIiJTY8BKRERERKbGgJWIiIiITI0BKxERERGZGgNWIiIiIjI1BqxEREREZGoMWImIiIjI1BiwEhEREZGpMWAlIiIiIlNjwEpEREREpsaAlYiIiIhMjQErEREREZkaA1YiIiIiMjUGrERERERkagxYiYiIiMjUGLASERERkakxYCUiIiIiU2PASkRERESmxoCViIiIiEyNASsRERERmRoDViIiIiIyNQasRERERGRqDFiJiIiIyNQYsBIRERGRqTFgJSIiIiJTY8BKRERERKbGgJWIiIiITI0BKxERERGZGgNWIiIiIjI1BqxEREREZGoMWImIiIjI1BiwEhEREZGpMWAlIiIiIlNjwEpEREREpsaAlYiIiIhMjQErEREREZkaA1YiIiIiMjUGrERERERkagxYiYiIiMjUGLASERERkakxYCUiIiIiU2PASkRERESmxoCViIiIiEyNASsRERERmRoDViIiIiIyNQasRERERGRqDFiJiIiIyNQYsBIRERGRqTFgJSIiIiJTY8BKRERERKbGgJWIiIiITI0BKxERERGZGgNWIiIiIjI1BqxEREREZGoMWImIiIjI1BiwEhEREZGpMWAlIiIiIlNjwEpEREREpsaAlYiIiIhMjQErEREREZkaA1YiIiIiMjUGrERERERkagxYiYiIiMjUGLASERERkakxYCUiIiIiU2PASkRERESmxoCViIiIiEyNAetjIoQoCCGmH3DbDwsh/vKj3iYioo+aEGJVCPEffJjHCSF+Rgjxm49/6x66DVIIMftRvy49PYQQR4UQ14QQeSHE3zzo7Xma2A56A54WUkrvQW8DEdHTQEr5jw56G4g+oL8H4DUp5ZmD3pCnDXtYiYiIiB6PSQC33u+DhBDsQHwIBqx7EEL8lBAistulf1cI8VkhxEUhxJtCiIwQYksI8etCCIfhMXooSQjRL4T4YyFETgjxFoCZA3szRF2EEP+DEGJp9/i+LYT48kFvEz11LuweW2khxG8JIVwAIIT40u5waUYI8W0hxOm9HiyE+HkhxFcNv7+4e/+MEOK6EOLTu3//T4UQV7oe+5NCiD/e/dkphPifhBDrQogdIcT/KoToMdz37+6251EhxF9/AvuBniFCiG8CeBXAr++mCT4nhPg/hBBxIcSaEOJnhRCW3fv+sBDiW0KIXxVCJAH8/EFu+8cBA9YuQoijAH4cwAUppQ/A5wGsAmgC+EkAAwA+AeCzAP6bBzzNbwCoABgG8Nd3/xGZxRKAVwAEAPwCgK8KIYYPdpPoKfPX0G47ZwAcAfCzQoizAP4lgP8KQD+Afw7gj4UQzv2eSAgxCuD/AfAPAQQB/B0A/5cQIgTgTwAcFUIcNjzkKwC+tvvzr68UWFoAACAASURBVOy+/hkAswBGAfyD3ef9K7vP9TkAhwG877xbIiMp5WcAvAHgx3fTBP822u3sNIBPAfghAD9ieMgLAJYBDAL4pY92az9+GLDerwnACeC4EMIupVyVUi5JKa9KKS9JKRtSylW0G9tPdT9YCGEF8B8D+AdSyqKU8iaAf/VRvgGi/Ugp/0BKGZVStqSUvw9gAcDFg94ueqr8upRyQ0qZQvtE/AMA/gaAfy6lvCylbEop/xWAKoAXH/Jc/xmAr0spv757zH4DwBUAX5RSlgD80e7zYzdwPYZ2ICx2X/MnpZQpKWUewD8C8P27z/t9AH5LSnlTSlkEe7joMdqNBb4fwE9LKfO7ccM/BfCDhrtFpZT/825cUT6I7fw4YcDaRUq5COBvod14xYQQvyeEGBFCHBFC/KkQYlsIkUO74RvY4ylCaE9m2zD8be1JbzfRoxJC/JBhWDYD4CT2PpaJPqju9m8E7dy+v62Ou91jb3z3tv1MAvjerse9jPYIFtDuTf2B3Z+/AuAPdwPZEAA3gKuGx/3Z7t+x+7psp+lJGQBgR+dxtYZ2L7+yAXpkDFj3IKX8mpTyZbQbSgngHwP4XwDMAzgspfQD+BkAYo+HxwE00G6IlYknu8VEj0YIMQngX6Cd9tIvpewFcBN7H8tEH1R3+xdF++T8S1LKXsM/t5Tydx/yXBsA/nXX4zxSyl/Zvf0bAEJCiDNoB64qHSABoAzghOFxAUNFl609tpPocUkAqKMdRygTACKG3+VHukUfcwxYu+zWUPvMbl5VBe0GrwXAByAHoCCEOAbgx/Z6vJSyCeDfAvh5IYRbCHEcwH/+0Ww90UN50G4k4wAghPgRtHtYiR6n/1YIMSaECAL4HwH8PtoXSv+1EOIF0eYRQvxVIYTvIc/1VQD/oRDi80IIqxDCJYT4tBBiDACklHUAfwDgn6Cd4/qN3b+3dl/zV4UQYaCdDyuE+Pzu8/4bAD8shDguhHAD+LnHugfombYbC/wbAL8khPDtdhb892gfz/QBMGC9nxPtRP0EgG0AYQA/jXZy/lcA5NFuBH9/n+f4cQDe3cf/NoDfenKbS/TopJS30c6jehPADoBTAL51oBtFT6OvAfh3aE8oWQLwD6WUVwD8lwB+HUAawCKAH37YE0kpNwD8R2iPasXR7nH9u+g8f30N7UlTfyClbBj+/lO7r3NpN5Xr3wM4uvu8/y+Afwbgm7v3+eYHe6tED/TfASii/T34S7SP0395oFv0MSakZI80EREREZkXe1iJiIiIyNQYsBIRERGRqTFgJSIiIiJTY8BKRERERKZme8jtnJH1AUgpkc/n8dprr2F5eRmnT59Gf38/+vv74fP54HA4YLPZIISAEAI228M+ho/etWvXcPbs2cfyXFLKg6jxqY9dKSXai97sc+cHTD6UUqLRaKBSqSCXyyGRSKBSqaBWq6HVasFqtcLlcsHr9aKnpwf1eh2RSASLi4uo1WoYGBhAMBhEOBxGMBiEy+WCw+GA3W6HzWaD1Wp96LY9CvUcxvfxOJ5X6d4/6nd1DBv/trq6iunp6cf22gfpII7dRqMhs9ks/vAP/xB+vx/PPfccpqamHvp5CiFgsVge6+dOB+/Tn/40Xn/99ff9uI/62K1UKlK1iUKIjjai1WrBYrHo/6WUaLVaAACr1ap/V7e98cYbuHz5MtxuN37wB38QoVBov5fe08/93M/hF3/xFx/re6Qnb7/j1nyR0lOg2WwinU7j9ddfx+rqKlZWVnDo0CEMDQ1henoas7Oz8Hg8jy1YoQ9mryBV/U1KiWaziUajgWKxiJ2dHWxsbGBtbQ0WiwV2ux1utxsejweVSgX5fB6tVgv5fB6RSATxeBz5fB53796Fx+PB+Pg4Dh06hFAoBJfLBafTCb/fD5/PB6fTCYvlYAc73m+gazwhdT+ePrxms4mdnR0A6Lg4IjIrdfGq2g9jG6HaN3WburBS7azVaoXFYoHFYkE+n8c3vvENJBIJnDp1Cl/72tfwEz/xEwfzpshUGLA+IerLWK/Xsbm5CZvNhmKxiFQqhXg8jrm5OYRCIbjd7oPe1KeaMQB9lNtbrRZarRYKhQJyuRwKhQLS6TR2dnYQjUYRj8dhs9nQ09ODYDCog9RaraY/31QqhXK5jFKphFqtBqfTiXq9jnK5jGQyiVAoBKfTiXQ6jVAopHteVaPd3Tvxft7nXn97vxdF3cHrXsGssdeawerjV6vV0Nvbi2aziWKxqE/qRGZVr9c7elGB99qJVqvV0V40m00A740KqNubzSbefvttDA8P48yZMwgGg7h8+fKBvScyFwasT4DFYoHH48G5c+fg9XpRLBbh9/shhEA8HkcqlUI2m8X58+cxOTkJu91+0Jv8VHtQSoAxWFVDUrVaDdVqFRsbG9jZ2UE6nUY2m0Umk0Emk0GpVILFYkGj0YDNZkO9Xte9sNlsFul0GqVSSb+ezWaDxWJBtVpFIpHQDbXX60WhUECtVtPBicfj0b2txp6KB9nvPT3otg8avO73WOPfGbw+HoVCAcViEVarFbVa7cB74IkeRl1wGxlTVOr1esdFOfBer6wKYiuVCm7duoXx8XEcOXIExWIRgUDgI38vZE4MWJ8AIQTcbjfOnz+PUCiESCSCYrEIKSWSySSi0SiKxSKCwSCGh4fR09Oz7/Pt1zv4YVIKWq0WEokE4vE4Go0Genp60N/fj0AgoPOLPs4eFLztlY/ZbDZ1L2gqlcLKygo2NjaQzWZRKpVQqVRQrVZ1T4B6zkKhoAPWTCaDYrGoP3819K9yVaWUKBQKKBQKsNvtqNfrqNVqqFQqKJfLGBgYQG9vb0fQ+n7t95gPE1g+am/qowTatL9Wq4V4PI5oNAqv14tarcZ9SqZnbLPUucmYAgC0U13U0H/3xXCr1cLVq1dRrVYxMjICp9OJWCyGmZmZg3lDZDoMWJ8AIQTsdjuGh4fhdrshpcT6+jrsdjtqtRpisRjS6TSWlpZw/vz5hwaerVZr36HtR+1p6x7GLZfLeOutt/Dtb38b+XweQ0NDeOmll3D69Gk0Go37nvPjRPWaAvsHaipYVUP66XQaGxsbWF1dxdbWlg5IVQCvnqtcLqNSqejnUYGnlBJ+vx/BYBA+nw8ul0v3xKqAt1wuw+/3w2azIZ/PI5vN6tex2+2w2+0P7FFT7+v9Bobdx1j3UP/DqPt3P0b9nQHV49NoNLC5uYnNzU2EQiFUq9WD3qQ9tVotVKtVndPNXuBnW3d7a2wXhBBwOBz6XKZu625Pfvd3fxdf+tKXMDQ0hLW1NWxsbODVV1/9aN8ImRYD1ifEYrHoYGV6ehr1el1/OdUEnq2tLZRKpUd+zu6g6VEYGxFjQ1Gv15FIJHD9+nVsbGygVCohm81ibGwM09PTH/sA5GH7Su2LRqOBUqmEXC6HeDyOzc1NLC8vI5lM6s+s0Wig2Wx2VHSo1+s6V0u9hspDnZ6extDQEFwul769UCggn8+j2Wyi1WqhXq/D6XSi1WrpgLXZbMLr9cLtdsNmsz0woPwoP5tHqa7wQXJu6cGazSa2trZ0jvN+x8LDGC92H7dcLodbt27B7/fj0KFD8Hg87+vxzMltM+Z0fpwn4u4VqBpzU9V9VDqVMR1ASolKpYJKpYLp6Wl4PB5sb29ja2sL/f39B/aeyFwYsD4hKrixWCwYHx+Hx+NBJBKB3W7XX9parYb19XWMj48/UuOtktOllA/tzXhQo6cmFZVKJayvr2NjYwO5XA71eh2HDh3C6Ogo/H4/4vH4B3rfZqIawr32VavVQqPRQCaTQTQaxcrKCpaWlrC5uYlC4f9n786D486ue7F/b2/ofUE3GjvQWAgCJLiKizgkZx8tI808ybKk2C+KXhK5XqyyVa7Ejp2U/3guJe/ZL6VUrPiPlF8cW46XZ1mbJVvKSJqd5AwJDleQBEBiRzcaje5G73v3L38A5/LXTSzkDDFscM6nijVDAmj8uvvXv9+55557bkpmydWBmF6vh81mQ6VSQUNDAxobG2G326HX66tas3i9XtlBwGKxoFwuI5FIIBKJYGVlBcViEZlMBtlsVh5nPB5HpVKB3W6H1WqVba9qV9c+arzQavtptVp0dXVVZaQ+yPu/He9VLpfDK6+8gnA4jLa2Nuj1enR2dsJoND703/W4UAemardu3cLbb7+NXC6HZ599FkNDQ/dMr+8E+XweBoNB3svoXkPXsGKxKNv60dfU3/dXf/VXOHToEFwuFyYnJ6HRaHDkyBEYDIZH9pxYfeGAdZsJIaDVauHxeGA2m9Hd3Y14PA6LxYKJiQksLi4+UMua+512q+1rR3VDFCzHYjFMTEwgFAohkUhAp9PJNksUVD8u6MJIr0m5XJYr9hcWFjAzM4P5+XkEg0HZnsrpdMJgMCCfzyOfz0NRFJhMJvh8Pni9XrS2tsLpdMqsKj0+TX1R3Sq9/k1NTWhtbUU8HsfCwgJmZ2eRyWRkB4FMJoNisYjFxUW0trbC7XZvWMf6fhZOPcjPbLW4qvbxdsoNdacQQqCvrw9GoxH5fF6eG+prxKPuGpBIJPDWW2/B6XTKjJnb7eaA9X1oampCR0cHrl69ip/85CfIZDI4cuTIjrsGNzQ0ALi3R7OiKFVBLGVXa1sIjoyM4I/+6I+g0Whw9epVOJ1OHDp0aN0gn300ccC6jWqnSWn0KYRAb28vAoEAEonEfT3O+wk6tFqtzNDQf6lH7J07d+D3+1Eul5HP52E2m9HS0gKHw1FVEL9TrdcBgLKq6XQai4uLmJubw9zcHBYXFxGNRpFMJlEqldDQ0CAzAQ0NDXA4HDAYDGhqasLw8DA8Hg9cLpec8ifUooVeP/W0mF6vl4+bz+fh9/uRSCRk9oC6DUSjUUQiEbS0tMBgMGz6nm/UO1Xdomu76wrXywLt9HPnUVNn9mmRXu014FEGq4qiIJ1Ow2g0orGxET09Pejt7YXNZntkx7STuVwuDA4OIhqN4vz583jttdcwNDQEq9W6o4JWamu13kBbfS9U35PK5TLK5TL8fj80Gg1MJhMuXLgge5ZvdQ1kHy0csG6T2g8oTSlT5s3r9cLlciEWi93XDf79fmjVu4rQjeb27dt4/fXXEQqFkM1mZZDmdDplx4LHoUsAcHenKmpXlU6nsby8LMshlpaW5Or+YrGIcrksg0ij0QibzSan6d1uN7q6umC322VmVV0jSGUg6rosCjI0Go0crDidTlitVtnvVVEUmUFLpVKIx+Oynct6i6vU781GWc/NXo/NPIybA99gHh66oQP19bqm02kEAgH09vaiqakJTqeT2/O9T1qtFm63G21tbTCZTMjn8xgbG8Phw4d3VJ0vzRhRiRQFpDQAUycPqK6V1hB8//vfx7PPPouzZ8+iUqlgaGgILS0tsrZ1q0467KOBA9Ztog401K09KPPpcDjQ2tpatdJ8s8faKtC4nz6ZiqIgn88jGo3C7/fLxvZarRYul0tmDevpxvh+qYPGQqGAZDKJlZUVhMNhBAIBBINBRCIRJJNJ5HI5GawSvV4Pl8uFlpYWeDwe2O12OBwOuFyue7bWLZfLVUGrevqL2rioBy02mw02mw06nQ6ZTEaWHBgMBuRyOaTTaeTzefmz9LgA7gmEN3uvNmszU+v9BrycTX341uvEUE+BCy0KK5VKsFgssNvtHFB8QGazGU1NTWhvb0cqlcKNGzewb9++unrft/Kzn/0MhUIBn/jEJ9DU1HTPgj8hBMLhMGKxGLxer9zKOhqN4uLFi3j55ZcRjUYxPDwsFxvOzc3h3LlzsNvtcndASijQrJfP55MLiefm5hAKheBwOBCNRh/VS8G2CQes20g9fVdb12MymdDb2yszrh8WCsxoJF+pVGA2m7Fr1y65AxNN6+x0lLlMpVIIhULw+/3w+/1YWlqSQWGhUJAr/qnWSqfTweFwoK2tDZ2dnXC73bBarWhoaIDBYFi3DKA261nb7km9+tdgMMhuACsrK8jn8/Jn8vk8crmc3I5zq0CytlWZ2sMeeKwXnN5P6zD2YKh0BVg9byhjVS8ymQzGx8dhNBrl4kIOWD8YnU4Hj8eDnp4ejI6OYmpqCrlcTtaF7gTf+c53kM1mceDAATQ2NlaVpdH1IRwO49y5c+jr68PAwAAURcHExIQskzp+/Dj6+/thNpsRCATwxhtv4C//8i/R1NSEQqGAoaEhtLe3A1j9bLS3t0Oj0cDtdmN8fByXL19GNBqFzWbDzMzMI3w12HbggHWbbJUV0Wq16O/vR39//0P7fZvVNNLX0+k0kslk1TS1zWbD0aNH4fV6H6sFV9QnknqrqrsAUABJbaaobZXBYIDT6URfXx927doFr9cLi8UiXxdatAbcDUxrg/vaLChwN9tJdaVmsxkmk0kGyVRfTK1d1AHreoHoeu9vrYcZOKqPQ/27Hpdzpd5EIhGUSiU4HI4Hbhe1nRRFwcrKCkZHRzE5OSlr8OspoN6JqFSot7cXN2/exMrKClZWVnZUXXBDQwOGh4dhs9nkdZGusVqtFrlcDo2Njbh8+TLOnDmDU6dOoaurCz/84Q9htVrx6U9/WnbUURQFFy5cwI9+9CMMDQ3hi1/8Iv7+7/8eQ0ND+OQnPwm73Y6JiQlcunQJ3/3ud/Hiiy/i29/+Nrq6uvBrv/ZrOH/+PGKx2KN+SdhDxgHrDlcbGKmnYdRTwpS1yefzKJVK0Gg0SCaTyOfzsFgssFqtsi7zcQlCqMdpMBjEwsICgsEg4vE4crkcjEajzDZToKrRaGC329HX14c9e/agvb0dJpOp6jWhjg7qoJT+nQJXdWa0dkqfBglGo1FmpXQ6XVV/1kQigVQqtWEPzfUC1PVW7m+08OGDqp0teNiP/1FXLpcRj8dRKpXQ0dEhM0qPGtUTZrNZjI6Oolgs4tatWxgYGEBTU9O6gzd2/wwGgwxQtVotYrEYOjo6HvFR3b/f+I3fwHe/+13E43E0NzfL0imdTicXvdpsNnz961/HD37wA/z0pz+VyZM//uM/hs/nA4CqEq2DBw/iG9/4BqLRKFpbW/HLX/4STz75JDweD/bs2YNCoYA/+7M/w89//nN88YtfxBe+8AWYzWb09PRgcnISZ86cebQvCnuoHihg3ag5uHoVNm1xqd6dhWoD6eTVarVoaGioGpVvVY+30bFQEFYoFGT7Jvo9tdO36x37+7XRa7Gd7qd+kDKpFKCqR7n09VKpJBf3UKNmqg2iRVo7PfjIZrOIxWKYnJzE2NgY5ubmEIlE5G5UtMhKp9PJ1fs2mw0tLS04cOAA7Ha7fN3U5yYFghu1WlEvoFIvwFKvjKX3plQqyccqFAqyPRB9j7q0oPb9UG+MsN5n50E/S/fz/fdbS80+GOrcoSiKrHeuh0CQzuH5+XkcPHgQBoMBLS0tcvvhejjGnUyj0chrUbFYxNmzZ9HV1bVjFsCePn0a169fx5/+6Z/iyJEjeOKJJ9DZ2QmdTodAIICFhQW8+uqrcsre6XQin8+jvb0df/M3f4Onn34ag4OD8vlns1mMjY3hT/7kT/DSSy/hK1/5Cr71rW/JQJiSBBqNBoODg/j85z8vB/+P00whu2vTgLVYLFbdNNXUGaZUKoXFxUUsLi5iaWkJS0tL8Pv9cpozk8nIpugul0vujDI4OFg1ElPf5Il6QYv6dwOrK1WvX7+OGzduYHl5GUIIWRtoNptx7NgxtLa2ygyZujaTnhP9vXbK84MsdNqu1jO1rYM22khAffz04dVoNDIwSiaTiEajKJfLsv8qLbZS1xvtZKFQCHNzc5iensbS0hKSyaQctdOgSq/Xw2q1wuPxoKmpCV6vF16vF21tbbJ5v7rHKv1XvdoVQNUiK/XrvlEwqVYul+XCLzqf6DgLhULVMdQuvCLqBVW154H6ex6Grc6Nx+HcqQfZbBbFYlHWWNPg6lEGhXS9CQaDyGQyUBRFXs/v57hoMJdMJmEymeTU8VY2mmlIp9Nyp0CTyQSLxfLQz79kMonx8XFkMhm0trZicHDwoT5+Lb1eD4/Hgxs3biAUCu2oHqR6vR5f/epXkUwmcenSJfzkJz9BLBaTfb5PnjyJL3zhC7Db7dBqtXjzzTfx2muvYc+ePXjppZdkhpnqXmmL1j//8z/HP/7jPyKdTuMrX/kKnE6nTI4BgNPpxGc/+1m5syTNVrHHz6YB60aBIt2QKYs1NTWF0dFRzMzMYGVlBclkUu7iQ9taKooCnU4Hk8kEs9mMGzduYGxsDM888wxaW1ths9lgMpnklGnt71RnnGinptHRUfzyl7/E/Pw8SqUSnE6nXPkuhEAul8NTTz0Fj8dzT2AqhJBBGj0fAFUBinpq90FWV9OHZaPG7w9KvSsI/U7K0GUyGaRSKbmft8Vigdlslos1aleUVyoVFAoFuejIYrHA4/HIaW6qvd3pgQcFrNRjlZ5vsVgEcHeFaUdHB1pbW9HU1ITGxka4XC65eQJwd3ZAPd0P3JthV79m6vIB9Y2czjNqs5XNZmWfzXw+D61WC61WK+vXqE0MBaKbLXpS//1+g8ra5/BBg9ra58/eH9r+V6PRyJrzWuoOFA/rOrMVCjinpqYwNzeHwcFBuYHG/chms7h58ybeeecd9PT04FOf+tR9bzSw3gzD7du3cfv2bZRKJXR1dWFwcBCNjY0P/Lw2UigU8Prrr2N8fBwulwsOh+OhPfZ6aDFuf38/3nnnHTkTs1NmLbRareymYjKZsHfvXlmPL4SQ11eDwQC/3w8A8Hg8yGQyaGxslNuZ0yygw+HA4cOH8Tu/8ztye+K9e/fCaDTKeID6ZHd1dQG4Gydwtv/xtGVJwHo3M9pqcnR0VGaxZmZmEI1GZb9LjUYDp9MpR9/RaBSJREIGtMFgELFYDHq9Hr29vRgcHJRb/G12HOVyGalUCjMzMzh37hzGx8dlqyAKTGOxmMxa0XaBDQ0NyOfziMfj8gawa9cueRGqzVJuNeVfuwq89ue2AwWb1KJpeXkZuVwOyWQSiqJAr9ejubkZXV1d8Hg88kOu7ntHQRJlSCwWC1paWtYdJOxksVgMwWAQ4XBYDqAoWNVqtXA6nbLheXNzs1zcYrVaq0ojSO2IXZ09pYBBHbzSKJ8GCUQ90FtZWUE6nUY2m5WZX61Wi3g8jnA4jHg8DrPZfM/jb7QIq7ZsgTzo+7nZ929VO8s+OEVRkM1moSirW/YmEgk5eKbPbyQSQTAYhMViQVtbG5qbm7etD6o6UVEsFhEKhZDL5eSOb1stCqPa14WFBYyMjGBiYgIWi+V9Z8EURZGfH1qkSOVN9yubzW7awq9cLuOdd97B1atXYTQa0dbWhqampvd1vA9Co9HIEhB6XXfK9VgIIWeEWlpa4PV6Adwd9NMAvlQq4c6dOygUCjh48KAsIaS+0/RYQgg4HA4cO3ZMbrpDU/107vh8PnzmM59BW1tb1ftJg3/2eNkyYF1vKjSbzWJmZgZvvfUW5ubmEA6Hkc/n5f7qiqLA4XCgs7MTbW1t0Gg0cuvLRCKBRCKBeDyOpaUlXLhwAUtLSzAYDLDb7fdc/NRT85VKBdlsFktLS7hy5QquXr2KUqmEnp4etLe3o7W1VZ78kUgE8/PzuHHjBpqammCxWGTD+EAggHK5DLPZLGsVa4MC+t0PeuOv/fmHgY4jl8thaWkJs7OzmJubw9LSksy25vN56PV6dHR0yNpVt9stj6FUKiGZTCIcDiMSicjgzWKxwO12V2WWH4ca1lQqhZWVFSQSiXs2BTAajWhpaUFPTw96enrQ2NgIk8kk657V5zxwb+0mTVlttnUqTZ+WSqWqGzMNmoLBIEKhkMz8KspqtwDaiSscDiMcDsPpdMoymdrM93plIBvVvKoDy63e243OefXNpLYkofbn2PtHgxrKoFKgmM/nMTExgenpaQSDQSwuLsJsNmP37t04dOgQenp6HqgNEj0ula9QNn+z76fZGcqY3c9WzlQ2Njs7i5s3byKdTqO5ufl9ZcHK5TLS6TSCwSCEEHK7Y6PReF8Be6lUQiAQwMrKCnp7e2GxWNbt8rG4uIif//znyOVyOHXqFIaHh9HS0vLAx/ug1LN9O3Ejho3OBfW/JZNJTE9PQ6fT4dChQ1heXkYqlarKYKuvNQaDYcPsdkdHx4YL0zjL+vjZMmCliyZlgKhf2rvvvovr168jmUyiXC7D4XDA5/PJLfp8Ph/cbjfsdjsqlYqsZYlEIhgbG8PExATGx8extLSEQqGA1tZWtLe3rzuKpSnxXC6HcDiMyclJXLt2DblcDj6fD/v378euXbvgdrtRKBRgMplkv81r166hq6sLRqMRd+7cwa1btxAKhaAoCnp6ejAwMCCn4ICtb+ablQls1w2bbhSLi4syUA8EAtDr9bIMIJfLyedBr9f+/fvl9Ekul0MgEMDs7CyWl5dlNk+v19+zEn6rusudoFgsIpPJIJvNolAoyJuyTqeD0+mEz+dDV1eXHMyoL7Tr1TMD1VlW9eulDvLVta1UK0vTenSz9fv98n3I5XJVbbKoFVc4HMbCwoJsNQbgnn6cDzq42izzer/n8laByU4/b+qBuhyJegBHIhEsLi7iu9/9Lq5fvw6dToe2tjaEw2Fcu3YNCwsL+PVf/3W0tbXdd11oOp1GJBJBPB5HQ0MDfD7fulP06vOcpngBVM0ibPU76dodiURkZu1BAzKq9759+zbi8bjMyFUqFTgcji1bQCmKgmQyiZ/+9KeIxWJ48cUXMTAwUPWc6TnS7N2BAwfg8/mqysq2S+2aj1gsJntl7wTqRaY0wFbP8AGrA4a5uTlkMhmZZBJCIB6Po7GxEWazuaokBuCWaeyu+y4J0Gg0yOVymJ+fx5tvvomLFy9ieXlZTkOfPHkSBw8elK2A6CJAJ7DJZEJzczN27dqF4eFhzMzM4C/+4i8QDAaRSqVw7tw5OJ1OdHd3V2UJ6IQvlUpYWVnB2NgY3nvvPTlKP3nylnwbdwAAIABJREFUJPbv3w+LxSK7D3R1dWFgYADT09MyQC4UClhYWJCLs7q6umC1WuXKbPUU8EaZKGrqTj9Do/r1LmQblQy8H7lcDouLizhz5gyuXLmChYUFJBIJOBwO2S+UtkpMp9MIhUIAALfbjZ6eHhko3blzB5OTk4hGo6hUKtDpdHL/Z/X7/GHVxG0n9QIVunhqtVoYDAa43W709vaisbFRdqtQl5wAd4PT2l2r1I9HqEabvoeCDXXQTBmylZUV3Lx5EzMzM7J2Vd0kHlitnYtEIpibm0NbW5v8PKhXv6p3TatFA5b1Zg02Oie3WkBI37PRgI6D1YeHEgOFQgFzc3O4cuUKDAYD3njjDUxMTMBut+PUqVM4efIkfvzjH+Pdd9/F2bNn4fP58LnPfU7uBARsPACPxWK4dOkSrly5glAohO7ubnz5y1/etKaU+gQDq+dqc3PzfdWgKooiz/1KpYIjR47A6/U+UCBSqVSQTCZx69YtnD17Fnq9Hi+88AJGR0flAq6tsssUpE9NTSGZTMLv98Pn81VllovFIhYWFvD222/L/tRUVrbR+b3RAPdB0GsUjUYRDAblsa6srMjrQ73TaDSyfzRde2mGyWQyyfPnn/7pn9Df348TJ06goaEBZrMZCwsL6O/vr9qEhQLXnT7bxx6eLQNWmjpOp9MYGxvD2bNn5UUOAA4cOIBnnnkG/f39aGxshNFolK2lqGdluVyG1WoFAHny2mw2fO1rX8Nf//Vfy/rXcDiMRCJRVThPN99CoYDbt2/j/PnzmJ2dlUXdQ0NDcDgc8uQWQsBms2H37t04e/YshBC4dOmSvCAAgNfrxbFjx9DZ2Skzx+vVr1JWjl4Haj6/tLQEnU6HT3/607Db7ff83MOWyWTw+uuv44033sDCwgJ0Oh1aWlpw4sQJnD59Go2Njcjn83IxRDqdhk6nQywWkx/+UCiEqakpRCIR2bieso30ulEfUHVwtlM1NDTc0z6KzpF0Oo10Oo1cLidfB3UZgHrKu1gsVmW86Huz2ay8kdDXC4WCXARHN5xwOCzrtuPxOKLRKGKxGGKxmCzdIJRhoTrt2dlZGAwGCCHQ1tYmdxRSt4TbqGwBqF6AUDsIU99U1RsU0A1XPetQqzYzq84u8zTcB0fvVz6fx9LSEt58800Eg0EoigKv14uvfe1rOHjwIKxWK2KxGOLxOK5fv44f/OAHePbZZ+HxeABUTy+r3xe/34+f/exnGB8fl83qfT6fPLc3GtCUSiXE43FZmkUlXJudK5VKBalUCoFAQA6Wh4aGHiioq1QqiEQiuHr1Kt544w0UCgX89m//Nubm5jA5OYljx46hpaVly8dMJpOYmJhApVLBpUuXcOzYMeTzeXlvopKrN954AyMjI/jmN7+JQ4cOwel0yuujevZEo9EgHo9jdHQU4+Pj0Gg0OHHiBIaGhu47GE8kEgiFQrLU68aNG7h58yaCwSB27dqF6enpB6rNfZToeqZOAND9n66VtOaipaUFHR0dch2FOrMK3O1IsVOyy+zDcV9dAtLpNCYmJnDu3Dm5g0S5XMYTTzyBL3zhC2hsbITD4ZDBKl3c1LWn6gUqiqLAaDSit7cXnZ2diEQiMku1XqBUqVQQCoWwsLCAcDgsp8r27t1b1T+UfpbqYR0OByYnJ1EqleTiFZfLhYGBARw/fhxut1sWc9c+b/U0balUQjQaxa1bt3Dt2jX4/X4Ui0W43W4cPXq0qg52O27Yi4uLCAQCsFqtsvTh0KFDOH36tNyTXt2yiWpbaeCQyWTg9/sRi8VkQK/X66u2GqULDb0/O/1CQYMn9Y5WuVxOZimvXLmClZUVNDc3w+l0ys4KNCWXz+fla0s1wrSwTafTyalNmvbK5/NIpVKIxWJIpVKyO4a6k0MikahaAEbBAbV1ox6MZrMZer0e2WwWgUBABiotLS1obW1FY2OjLGNYr5SD/qgv+LWL6mprYWsD1vVsNGug/pnHof75UaOBVrlcxvz8PIxGI6xWKw4dOoTPf/7zGBgYkPuwDw8PY25uDrdv30YkEsHs7KwMWGvfE6qPPnfuHBYWFtDW1oZDhw7B5/PJRYcbvff5fB6hUAhvv/02Jicn5fmczWbl52S950HXo+npaUSjUWSzWbmokNY3bKVYLGJmZgZnz57F3NwcvvzlL6NSqeCVV17B8PAw+vv7t1z4lcvlEAwGce3aNbk71+LiIsLhMIxGI8rlMvx+Py5fvoyxsTF8/OMfR29vL6xW67rPTavVIhQK4d1338W1a9cQjUbR2dkpn/dmASu9H4FAAN///vdx9epVaDQaeDweGAwGdHR0wOVyobe3F7FYTJZg1Dt1YkB9LVEngH7605/CZDLJQQIlFLxer7z/03UYuNu7nTHgPgJWChavXr2KW7duyR1Y9uzZg0984hPo7u6W/c9qm9Srb4K1UyY0lV4qleRCl/WCR6pbmp6eht/vRz6fh8lkwuDgoNzGjW7O6pspLaLJZDIy6KRFYYODg3A6nWhoaLjnZk3HSP9OgXQ4HMbU1BTGx8cRDofR0NAggwn181I/74f1QaNAR6/Xo7+/H3v37sWuXbvkyJ8CTvWmDdTmigKmhYUFxGIxGXRRacPKygpisZhc0UlZVupvuFM5HA64XC5YrVYUi0UZrNLuVwsLCwCAeDwOi8UiO0kIIWRQSf1pS6USstks8vm87BecSCRkaQgAGbBmMhmk0+mq7Hwul5P/TiUANIijGmIqo6FBA71vy8vLyGazcgZieXkZXq8Xbrdb1t/SMalLACiQVd801P+/XlBZew7Tv9V+j/rr6+GA9YOhBZLA6mvZ2dmJp59+GsePH0d3d7csfzIYDPB4PHC5XDLoonaChBYIUivAM2fOYGRkBB6PB/39/Whra7undnC940mlUvD7/YjH43L27NKlSxgYGIDdbpd18GqFQgEzMzO4ePEixsbGqgI12ujlfiQSCUxOTsruAj6fDyMjI/B6vRgeHobX65WBLwU8hD7zKysrmJmZQSgUkgH9W2+9hSeffBIulwszMzMYGRnB1NQUhBB4+eWXZQBZi+pcL1y4gMuXLyMcDsNut6OrqwsdHR1b1nnn83ncvHkTV65cwZ07d+B2u7Fr1y709vZCURS8/vrryOVyaG1txYkTJ6pm8eqZugSL7snU6xtYPY8WFhZw8uRJdHd3yxKC5eVldHZ2Vi14VQ/EC4XCuu8D++jZNKKiBSDBYBDBYFAGTZ2dnfjkJz8pR/rr7SilLrZWj5iAu1lLatlCLTxsNts9J2apVEIkEkEgEEAkEoFOp0NfXx92794tW2bVrsJeWlrC1NQUstks9Hq9vGhR7822tjY51UrHSsdbW89J07/T09NyoUw8HofNZkMsFqvKqqqnldWP90FR0GIwGOD1etHd3Q2PxyODD3VvT/WqdJPJhEKhgKmpKQSDQaysrFSVP1BQSrVcVI9W2wt3J7Lb7ejo6JADLDoHKPiMRCLQ6/VIp9Ny8RplOmmXlVgsBoPBIDNTuVxOXoxzuZysA6bpW+rzqv4aAFkqoN6NTVFWuwJYrVa4XC40NDTIuld6LKpjTKfTiMfjiMVisp2Rx+NBR0cHvF6v3CyDjp8en85l9aKH9TKotQHsRplU9ffUllBw/erDo9fr5WDE6/Xi1KlTOH78uFwgSp9N2mhF/Vmt/dzSe5nNZjE/P4933nkHuVwOQ0NDGBoaQlNTkxzcryeXyyEUCmFychKTk5NyoczKygpGR0erAmtC2dxbt25hZGQEMzMzcgERsJoxVV9/t5LP55FOpwGstiKka/nJkyfR0dEhAx0avNf+bCAQwNjYGKanp9HV1QWbzYZXX30VkUgEiUQCc3NzGB0dxdjYGLRaLT72sY9hz549clZOXRIkhJC9aK9evYpIJIJKpYLOzk7s3bt30yx1pVKR7SDPnz+PVCqF06dPw+v1orm5GTabDUtLS8jlcmhoaJAJlp0SrK1XMw/cPTcolvB6vXA6ndBqtSgWiwiHw+jr6wNQPUBW929nDLiPna6oPRRNJzc3N+PEiRP42Mc+BqfTue40uLrJ+nr90CggmJmZQblcls1/HQ7HPYXzdJL7/X7ZYHhoaAgtLS1y6oGmwqnl1c2bN3H16lUkk8mqwm2TyQSn0wmr1SozUkRdjlBb37e4uCiD1XQ6LcsdaLpmuzNKs7OzyGazsFqt8nWqXVhB08wUBBmNRlgsFmQyGdy5cwfBYBC5XA42m01eVEOhEJLJJBYXF+VqVApWd2JLFTW73Y6+vr6qllYUtBaLRdnLMpvNynOBslY6nU4GihqNRmacqZZMXTJC57Z6dxX1KmrasYoyvDTFRd0daKqfzqeVlRXk83lZI0uLGCi4punUUCiElZUVdHR0yIbc9L6rA3B11mK9hXWbZVvpua73dfXuQ9u1/fFHlUajweHDh5HL5dDW1ob9+/ejvb0dZrO5asaKFlPSwNNqtd6zUj6fzyMWi2FxcRHXr1/H4uIi9uzZg6GhIbS2tsqs/noKhQL8fj8mJycRCASg1WoxPDyMqakp3Lp1C8vLy0gkEjIApfOfVoK/9tpruHPnDiwWC5xOpxw8rqysPFAQEg6HsbS0BADo7OyUM029vb333C/U516hUEAgEMD169cxNzcHg8GAffv2VdWcT0xMyI41KysrOHjwIA4fPgyn03nPNZCyo8vLyxgZGZGbknR3d6Ovrw/t7e2bnvvZbBazs7O4cOEClpeXMTQ0hCeeeEKuwcjlcnLASoMRmgXcCej9ry03on+nQbvJZJKvLc0m0Pmjjh02ur6wj65NrxqZTAZTU1OYn59HOp2G1WpFf38/Tp06BZfLJS866kBPPcqi7FPtiUxZUxrRmkwmedOtvQAlEglMT09jfn4eQgh0dHTA5/PJzJdGo5FTp4uLi5iamsKNGzcwMzMjazhpGpwWrKh3taqt1VRP5VI9I7WNoWlgg8EAvV6PUCiEVCpVFbhvtDXmB0HZ4oaGBjl9rc5cK4oiNwKgvcfptQwGg7IcwGg0oqOjA01NTbKjQCQSke2V1Dvn7PQMq9lsRmdnp8x2klgsJsshaLtW9Y2JAn71girKmtKOLfSaq6fc1QMzOu/oe6lOiy7A1Fewra0NPp8PXq8X6XQac3NzSCaTMlClBY+UFc5kMshkMkgmk3KxzfLyMjweDzweDxobG2W21Wq1wm63yyxR7XlJmTl1QFpbZ74R9SIr+jn1Y3PA+sGEw2EMDg6io6MDOp1OfuZrV1+nUincvn0b8/Pz0Ov1cuaFKIoiu03cvn0bly5dgtlsxpEjR9Da2rphz8xSqYREIoFwOIzr168jEonAbrdj9+7daG1txdjYGF555RWUSiX4/X45W0HdDaLRKF577TWcPXsWdrsd+/btg81mQyKRQD6fx8zMzAMN8mdnZzExMSEXkzY1NW3a/5U+s9QG8M6dO3A6nTh48CC6u7sRCAQArGaP33zzTbl5h8/nw/DwMLq7u6sCavp8Uzbw0qVLOHPmDIDV68mTTz6Jnp6eLTsmrKys4OrVq5ibm8O+ffvw7LPPorGxsWpXPXVJB3Ux2SloIKCOC+g6SeUAXq8XJpNJXhuphMNgMFT1HVaXNXGJESObBqyBQAA3b96Uffqamppw4MABeL1eGYjSjZgWo9TWwdFNHrh7Y8tkMhgfH8fc3BxCoRCamprQ09Mjp+rVJicncfv2bSSTSXR1dcm2WQDkh5s2MRgfH0ckEpGZxJ6eHgQCASSTSRlEUGsqdQsi4N5FKXTxWFhYwPnz53Hnzh1Eo1G5wr5QKMjVnR6Pp2rltjpwfxhoOowyc+qsHo36qWSAtr5zOBzI5/Oyxop2HxkeHpa7YFGG2+/3y0bl6m4LOxl1QOjv75eLVkwmk+wBSBfL2h6o9O+19deUpVUH9OqBGa3gByAzotSKh7I5dDF3OBzYvXs39u3bh66uLphMJsTjcVlbTFkzqj2kY6Ssg/rYl5eXYTAY4HQ60djYKBcb0i5ETqezqrMAXfzp86q+QWx13qo/1/R6qYPe+6lvZVv753/+ZxiNRnR3d8PlckGv16NQKMhFflSHPTo6ip///OeYmJiA1+vF6dOnYTab5eOUSiUsLi4iHo9Dq9XK1dl79uyp2jVIXcJEyQS6nhqNRgwPD2Pfvn1oamqCoihyujyRSOC9995Da2urrP+emZnBa6+9hnfeeQc+nw+HDh3CwYMHUalUMDs7CwAPvOqdPg/5fB4LCwuyPr92sAncbb0VDofx+uuvY3p6Gj09PThw4AB6e3vl55Wuc6Ojo9DpdOju7saBAwdw/PhxWK3WqgEefe6i0SjeeecdnD17Fjdu3IDT6cTRo0dx/PhxtLW1bTnIp8ysTqfDs88+Kzd2qS050Gg0aG5uRk9Pz46aDqf7hzpJBdy9n/7t3/4tTp06VbWDl8FgQFdXl/x+ur7S39Uzn4xt+mkYGRlBIpFAoVCQraL2798vszZ0w1OfXOobF32AaUU0LaCamprCxYsXkUwm4XQ6MTw8jEOHDqGjo+OeD/3k5CSCwSD0ej2cTieMRiOSySSi0SgWFxextLSEhYUF2c6poaFB1n0NDAzIwnhqNdTQ0ACXyyWPixYmqfuRFotFxONxTE5O4tVXX8X4+DgymYzMrAKrOylls1ncuHEDPp/vniDmYaLHVDeip5E3BQ16vV6ubHc6nXJXnDt37iAcDsPlcuHIkSOyzspgMODy5cswmUwIBoO4ceMGDAaD7K2407sEUHBIi+s8Hg96enoQDAYRjUYRiUTkqmV167RMJiNvaPR+0+Aln8/LkgHagQqA7O2q7jqRzWaxsrKCcDgMs9ksty2mNkLHjh3D7t275ZQfLfCirgS0hbA6YKW6P/rM0baUBoMB6XQai4uL0Gg0csBCtXF0bLTHt7oGsqGhQQ6C1GUy6syG+kZaG5TS4kl1IM83mA/GYrFgcnISV65cgaIocsvgUqkEt9uNYrGIQCAgB/z9/f14/vnn0dPTIxcAAavv7+DgoNyiOBwOyxptnU5X1e81m80iHA7j5s2bmJ6ehqIoGBgYwN69e+Fb6yIArF4zBwYGcPToUbz99ts4d+4c/H4/+vv7YTabcf36dYTDYTz77LN45pln5PUmFAqhpaUFDQ0Ncvvu+x3YdHR0oKWlBdPT03jttdfktD1l5ejeksvlZEb50qVLqFQqeO6559Df3w+3242GhgaUSiW0trais7NTtv3zer04efIkPvGJT6y7oxLVqC8sLODs2bO4cOECgNV62ueeew4tLS33NW2dSqUwPT0tO+oQ6mAwOTmJqakpdHZ24uWXX5b1uTtlSpwGEupEECUBaNB/6NAhuFwuaDQaOfvncrnk/U193+HsKqu1acB648YNOZW+Z88eDA8PyykMdQ2cenqx9oRTZwNp8UowGEQ+n0dTUxOam5tx9OjRqpWeatQqi1acBoPB1QNfCxaKxSISiQSMRiPcbjeam5uxd+9e7N69GyaTCeFwGLdv30YsFpNBbigUkkXttDiFslbFYhHLy8u4cOEC3nzzTdlD02Qy4eDBg3A4HJiamsLExASKxSKuXr2KEydOyMwG1Tc+zAb8NF1fu60qsHpTMhqN6OnpkTeCRCKBhYUFjI+Py2yyx+OROzvp9Xq0tbXh6NGjcnqZFmMMDw/D5/Pt+AsFvf60wYPVakVjYyM6OztlhjWRSCCTychBAC1aU2/TSiuiqb6MzhmaeqfPQu2NhYIB2oL41q1biEQi6O/vx4EDB9Dd3S1XZtPnhJqpUyb9xo0bWFlZkbVftGMX7WpGA0Y6bkKdDqizhdVqhdVqhcViqZoJMJlMUBRFfhboudBngTK3FCCrA1f6u9vtls+D6meXl5c/9Pf7cfIrv/IrmJ+fx5UrVzA7OyszjKlUCvPz82hubkY8HseePXtw8uRJtLa2oqWlBblcrioQ0mg0aGhogNPphMvlQj6fx3vvvYfvfOc7ePnllxGNRvHuu+/KjUTC4TBSqRQOHTqEj3/84xgaGoLT6aya9dJqtWhsbMTXv/51LC4uYmZmRmZxnU4nBgYG8KlPfQqnT59Ge3u73PrUbDbD4XCgvb0d8Xj8ga4vg4ODOHLkCG7evIlAIIB/+Id/QDQaBQA0NzcDWO2xury8LGeNuru7ceLECdm/mM55vV4Pm82GL33pS5idnYXD4cCXvvQlPPHEE/Kx1J9jui4Eg0FMTU3Jc9vtduOrX/0q+vr65CB1q8CSWoMlk0lcunQJ/f390Gq1uHXrFt59910sLi6iu7sbn/3sZ9HS0rLjyrLUgyGKA2hQQYMDm80mX6tcLod8Pg+fzyc7pqh3awRwX68r++jYNGCl5uu04trj8dyzn3ltH8janYGEEMhms0ilUvKCMjk5CUVRsH//fvT29qK9vR1Wq3XdmqTBwUFcvnxZFrjTXvDA6sIaypy1traitbUVHo9HToNSS5iWlhZ5MZ6fn8e7774Lk8mE1tZWWSJAO0XNzMxgamoKY2NjWFpaQrlcht1ux5NPPomDBw/CaDTC6XTKi3QoFMLFixdlITl94B7mwiWn0wm/3y8XCkUiERksCSHkdDNlASiz6vf7EY1G0dvbiyeeeALd3d2y/53H48Hp06dRLpfxi1/8AhMTEwgEApiYmMDhw4d3fEkAcDczTYMqyi5SDZXT6ZQdBNQ7VNFCJXXtJ30fvea0sKl2i1YAMlur7g9MtVsDAwNobW2VfVTpOOm4KGg1Go1obGyUNYq0wE+dvSyVStBqtbL/oXpmg2YNqPY1kUhUDTRpkEk3GHWmlYJivV4Pt9stSx2oHy0NyIrFIpqammSHAuohSyvH2ftDPVF7enrkRh7A3U1UKAuvzozTdaf2mkM12YODg3jppZfwox/9CL/4xS8Qi8UQCASQSCTgdDrR3t6O4eFhDA0NYXBwULbKos8C1RpSFs3n8+H3f//3ce3aNaTTaTidTnR0dMhaTpfLJY9NURQ4HA7s3btX9o52u933HYg4nU4cO3YMqVQKP/7xjzE6Oorp6WkYjcaqdnxWqxV9fX3Yv3+/7NGt3vFO/ZqcOHECv/mbv4n29nb09PTI81j9+tGMYTqdxtWrV/HLX/4S09PT0Ol0+NVf/VX4fD7YbLb7TkxQ7/CRkRF8+9vflv3CzWYzcrkcPB4PPvaxj6Gzs1MGdjuJ+twEIK99hUIByWRSrr2gRcLUJUg9EFbP0FK5IQesjGwasBqNRtkgv3YFf22t6nptTUgkEsH4+DhmZmYQiUSQz+fR3NyM/fv3w+v1ytWv6pWBpKOjA0899RTGx8erWn5YLBZ0d3ejt7cXTqdT7rqi7mWp1WrR1taGoaEhBAIBpFIpWTRfKpXQ1NQEYLVGqlAoYGlpCX6/X+5ORNNx+/fvx7Fjx9Dd3Q1g9YN0584dXLx4UTbTNplMstUW/X6a0vmgfD6fvLlMTU3B4XCgUCjI1lb04acpp9u3b2N5eVnW/T777LPo6+uTrUQoe9be3o5Tp04hm81iYmICsVgMCwsL0Ov197XlYj2rvYFQUKjeipVuxuqdntRtp9SPs95Ke8qO0tfVCwzoAlwul2Ug6vF40NLSIjOStQuh6JylGmOTyQSHw4HGxkYEg0HEYjGk02n5e1KpVNXCOzou4G5Dbr1eX5X1V0/lq/+dyh/o8aj2PJvNwmw2y2lRyvYbjUbkcjnE43EYjUYZrNrtdi4J+IDo/XgY1w467z0eD1544QW0t7fLRVpHjhyBVquF2WyGy+VCY2MjPB5PVbC03gI8IQTMZrPs1qLeqppaDaq3E1YURc4gvPjii6hUKptudbre69HW1obnn38era2tGB0dxfLyMsxms6zdbmxshNvtRnt7O7xerzyO9eh0OrhcLpw8eRI2mw12u71q5oGeD33GRkdHcf36ddk/du/evTh+/DgAyAHfeu0Na3V0dOBzn/scdDqd7GmeSCQwPDyMo0ePYs+ePejp6anKCO8kVF9Nr4U6LgiHw2hqapLnBW1uQ3XF9DP02quvyTvxtWDbY9OAlTJ3NApUfzDXCwjUH1T6nnK5jOXlZdy+fRszMzPQarXo7+9Hf38/Ojo6YLFYqhZ91HI6nThw4AA8Hg9CoRAymYxsCdTa2oqmpqaqNlXqUgWtVguHw4GhoSEsLCzILOrs7Kys/QMg66lSqZTc312n06GjowN79uzB8ePH0dvbC5vNhnK5jPb2dhw+fBjxeBzj4+OYnp7GuXPnEAgE5MpOg8Hw0HroDQ4OykVfS0tLuHz5MhKJBDwej/yQUz3m4uKi3Iu6paUFR44ckYG0egtSWpnZ29uLp59+Gu3t7QiHw7LOcqfsrnK/1BdF+jtdCNWlLOosqfrv6o4A661iVW+Dqv5+2mWN2rDRFKv6WNQLDoQQMJlMMiA2mUyw2+0IBoOIRCJylzlasQxAlivULsqiurHaoIMCVfUsCNVz03S/uul3Pp+XmXxafEa/t1AoyBZqtPiS1Q86T6nhfnNzM6LRKHK5HNxut8yC0s539xscUN011cuqs7+1nwO6Fuv1ejQ2NqJQKDzQYiKtVgubzQaz2Qyv14v+/n7EYjHZuo1a/ZnN5nU3MFjv2E0mEzo7O6tKa+h5AHdX7N+8eRNnzpzB1NSU/NzQDnTpdBrNzc331HhrNBp0dXXd83tdLhc+/vGPw2q1YmJiQg5sfT4fdu/ejba2tqpe2DsNvdf0OqivazR41mhWt7P1+/3Q6/VobW2V31sb8O/E14Btr02vGrRtndlsltMltSUAaupRlfqiRdOpRqMRTU1N2L9/PwYGBuRjqjcYqH1MaqLtcDjQ398vb7B0M6cV2epjoA8I/XxnZycOHToka8ECgQCi0ahc1EI/B9wdfTc1NeHYsWM4fvy4DKwp4HO73Th48KBcoU8bFdDiJmot9cwzz3yQ90YaHBzE3NwcZmdnZRY4lUrJAnej0YhsNit7ehy3AAAgAElEQVS7MtBrRosT1OUW6vdGo9HAarVieHhY1nZms1nodDr4/f6HcuyPinqDBLLZSnh10Ern2HrBqnpgpf5vbSCsrvWsVCpyoRttAbve49HP0w2UslY2mw0tLS2IxWJyEWQ2m5UDE8q80iIs9Sps+v3q5003CHrO6s8tnR90rlPfWnUgTOg50+DHbDbDYrE8doOdnYzORwriqKb1YbifgGK973nQQbw6qDYajVWtu94vKm2oRZ+BcDiMubk5XLx4EdPT0zCZTBgaGoIQAul0Gu+99x6cTifa2trkZ4hKKIxG47oBKwVoLS0teOaZZ+Q1qvZ6UGunlGfRtaZ2hkqI1e3AqY3gjRs3kEql7tmpkkqc6BqzVcaaffRsGrDGYjG0tLTIDCuNkNR1JrXUoyxg9WLT29sLvV6PTCYDh8OBrq4uOXW+WXYVuDv1qtFoqtphUEa1dpEX/X5qREyLSgYGBmQGYHR0FDabTTbkp++nmqj+/n4MDg7i8OHDcjqURuJUv0i7kNjtdpw7dw6xWEx2IPB4PHIHmYeho6MDL7zwAsbHxzE2Nob5+Xlks1mEQiFEo1E5/WW32+VOWENDQ+jr66va1o+OHbhbHySEkKvo1RkC9cKunWi9TSBqS1fUN1P1OU3Pv7Y1S22WtvZrtRlYALK2WR2I1t6c1rvA0/dRPavb7ZZT8hSwRqNRmWmNRqNyinFlZQWJRAI6nU52x6AbNH3mqBSApv5pWl9dV6uuwwXutvdRBw9UBkDTsg6HA7FY7OG8iYx9iGhGYmlpCRcvXsTIyIjcLGHPnj1ob2/H9PQ05ubmoNVqEQgEEAgE7ilN2CwgV3++H8fZCLq20CCDroctLS1y9u/VV1/F888/j927d8tglbYWpiBePXPFJQGMbBqwfuYzn0F/fz9cLlfV9CHd7NS7SNVmidSoxpS+ps5IUQZHfUNXU/8eNfVCgNrfq55SoMDFYrFgaGgIbW1teO6556DRaOD3++VKbqvVKvdnb2xslCvFKUhXN4KnqU+Xy4WnnnoKBw4cQCKRgBACFotFBvgUYH9QOp0O7e3tcDqd2LVrlwxQaIrYYrGgubm56qJJZRLqx1CPWGllK70H6s0dNhtA7CS19aXqf18vw6muZ6UBj/q1US+kq/13dbZV/Th0Ma79vetN09cO3ihgpfOPspj02K2trXIBA+2SFY1GEQwGEQqF5Ip92lKWzgHaIYl6WVL/XlqsSB096PdQiQKh+lca6LhcLjgcDtjtdlitVoRCoW15PxnbTtQu7Hvf+x5mZmawZ88e7Nu3D52dnXLnK5/PJ7uxUBkNDfToHrFTtlLdDtR6j8qWaEGgwWBALpfDN7/5TXzjG9/Avn375DVWfa+h611tmQVjACA43c4YY4wxxuoZVzUzxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbrGAStjjDHGGKtrHLAyxhhjjLG6xgErY4wxxhiraxywMsYYY4yxusYBK2OPASHEvxFCnPmQf+cbQoivfZi/kzHG2EcTB6yMMcY+dEKI3xJCXBRC5IUQf1XztS8JIW4JIZJCiJtCiM+pvvZfCCHGhRBxIURICPEdIYRd9fU3hBA5IURq7c/4h/i0GGPbhAPWbSCE0D3qY2CMsToXAPC/APh/1P8ohGgH8DcA/nsAdgC/B+DvhBDetW85C+CkoigOAL0AdGuPo/ZbiqJY1/7s3sbnwBj7kHDAugkhxIwQ4veEENeEEGkhxF8IIZqFED9bG/n/UgjhEkL4hBCKEOK/FULMAXjtUR87e3wJITqFED8QQiwLISJCiD9b53ueEEKMrGWhRoQQT6i+9m+EEFNr5/C0EOJfq77236xltlaEEK8IIbpVX3tBCDG29ph/BkBs+5Nljy1FUX6gKMqPAERqvtQBIKYoys+UVf8CIA2gb+3n5hVFCau+vwyg/0M5aMbeByHEHwghJlUzBp9/1Me0E3HAurUvAHgBwACAlwD8DMD/DKAJq6/fN1Tf+xSAIQCf/JCPkX1ECCG0AP4ZwCwAH4B2AP+55nsaAfwLgG8DcAP43wH8ixDCLYSwrP37pxVFsQF4AsCVtZ/7V1g9t38Fq+f32wD+fu1rHgA/APCHADwAJgGc3Manyj66LgK4JYR4WQihXSsHyAO4Rt8ghDglhIgDSGL1Gv1/1DzGfxBChIUQZ4UQT39YB87YBiYBnAbgAPBHAP5GCNH6aA9p5+GAdWv/p6IoS4qi+LF6Az+vKMplRVFyAH4I4JDqe/+doihpRVGyj+RI2UfBMQBtAH5v7VzLKYpSu9jqMwBuK4ry/yqKUlIU5e8BjGF1wAUAFQDDQgiToiiLiqLcWPv3/w7Af1AU5ZaiKCUA/x7AwbUs64sAbiiK8j1FUYpYDRCC2/tU2UeRoihlAH8N4O+wGqj+HYB/qyhKWvU9Z9ZKAjoA/G8AZlQP8ftYLRVoB/DnAH4ihOj7cI6esXspivKPiqIEFEWpKIryDwBuY/Vazh4AB6xbW1L9f3adv1tVf5//UI6IfZR1AphdCyg30obVDKzaLID2tZv+l7EanC4KIf5FCDG49j3dAP5UCBETQsQARLE67d++9pjy/FYURQGf72wbCCGeB/AfATwNwIDVmav/WwhxsPZ71xIJ/x9UswyKopxXFCWpKEpeUZTvYLXm9cUP49gZW48Q4r8SQlxRXVuHsTpTxR4AB6wPl/KoD4A99uYBdG2xsC+A1eBTrQuAHwAURXlFUZQXALRiNfP6n1SP/W8VRXGq/pgURTkHYBGrwTIAQAgh1H9n7CE6COAtRVEurmWkRgCcB/D8Bt+vw1p96wYUcL01e0TWZqj+E4DfAuBWFMUJYBR8Tj4wDlgZ21kuYDV4/GMhhEUIYRRC1NaS/hTAgBDi14UQOiHElwHsAfDPa4sG/9VaLWseQAqrJQIA8H8B+J+EEHsBQAjhEEJ8ce1r/wJgrxDiV9aC5W8AaNnWZ8oea2vnphGAFoB27VzWARgBcJoyqkKIQ1it/7u29vd/LYToWvv/bgD/K4BX1/7uFEJ8kh5rbUHhk1jNwjL2KFiwOmhaBgAhxH+N1Qwre0AcsG4DIUTXWv+/rkd9LOzxslbf9xJWV0XPAVjA6hS/+nsiAD4L4H/A6grs/xHAZ9dWVmuw2i4ogNUp/6cA/Obaz/0QwJ8A+M9CiARWswCfXvtaGMAXAfzx2mPuwupUK2Pv1x9itazqDwD8l2v//4eKorwJ4N8B+J4QIgng+wD+vaIoP1/7uT0Azgkh0lg9B8cB/Mba1/RYbXG1DCAM4LcBfE5RlIkP5RkxVkNRlJsAvgXgHayWFO4DXzvfF7FaisYYY4wxxlh94gwrY4wxxhiraxywMsYYY4yxusYBK2OMMcYYq2scsDLGGGOMsbq2WS9HQNVX9Pz58/jRj36EK1eu4OjRo/iDP/gDmM3mbT68+9PX14epqalHfRhsA4qiPIp+c7ya8AFUKhVUKpWtv1FFURSstmP9YK5evYpf/OIX+P73v4+LFy9+4Md7mPjc/XCUSiXE43HMzc1hdnYWDQ0NsFgs6O7uht1uh06ngxACBoMBACCEkOfeZuehRqOBRlNfeZlkMgm73b7tv+cRnLsbnreKoqBcLiMajcLv98Pv9yOZTEJRFGg0GhSLRTQ0NAAAQqEQisUiSqUSKpUKtFotUqkUnn76aezduxculws6nQ6pVArpdBoGgwEul+uhP5nf/d3fxbe+9a2H/rhsc5udt1sFrACAYrGIK1euYGRkBEtLS/B6vQ/v6BhjO9LDCFanp6fx9ttvI5PJwGg0PoSjYjtRLpdDIBDAxYsXsbS0BK1WC4PBgNnZWZhMJlitVrS0tKCjowMWiwVarfZRHzLbRLlcBrB6jSgUCsjlcrhz5w5mZ2cxNTWFXC4Hi8UCu90OjUaDfD6PeDwOjUaDbDYLRVFQqVSQzWYRj8dRKBRw8eJF2Gw26HQ62O12WCwWmM3mh3IdYjvDfQWsiqIgm80im82iWCwiGo1u93Ex9liqVCpIpVLQ6/UwmUyP+nAeqUqlgnPnzmFychKnT5/GwsICzpw586gPiz0iQggYjUY4nU6EQiEkk0kZvAgh4HA40NHRgQMHDsDtdsNkMlVlWjdCrRsfdAZhI+VyWf6hLGCxWJRZwUwmIzN/xWIRmUwGlUoFDQ0NMuB63BUKBRSLRVQqFYTDYSwsLGB8fByLi4tIJBKw2WxQFAW5XK4qQ26z2dDQ0IBMJoNyuQyNRoNkMolyuYxIJILZ2Vk0NzfDarVCq9VCCIFKpYJSqQS9Xv+InzXbbvf1ySmVSigWi/JDms/nkcvl6qYkgLEP2/u5+dGU2Ntvvw273Y7nn3++7qYrPyy5XA5zc3O4ffs2XC4X+vr60NTU9KgPiz0ier0eTqcTPT09WFpaAgCk0+mqQDCfzyOdTiOdTqO9vR1NTU1wOp0wm83Q6/XQ6XTQarXyM6XuMa4oCt5vz3HK9hWLReRyOcTjcXks+XxeHiMFadlsFplMBlarFZVKBel0WgZUZrP5IzGTUC6Xkc1msbKygvHxcczOziISiSAej0NRlKr3yWw2w+l0AgDcbjdKpRISiQQURZGvKyXLFhYW0N3dDZvNJssqKCbhgPXxd98lAfl8HqVSCQDkh5exjyq6+T3ITTCVSmFsbAxvvfUWvF4vnnvuue06vLpWLpexsrKCkZERhEIhPP3002hubuYbzkeYTqeD0+mEz+eDwWCAw+FAIpFAMplEIpFAKpVCJpNBPB5HLBbDzMwMmpqa4PV64fF44HA4YLVa5X83GgjS53WjrOx6QW4+n0cmk0EymUQ0GsXy8jLy+TxSqZRM5lCWL5vNIp/PAwBMJhMaGhqQy+VQKBQAAAaD4bEepNLrkMvlEIlEMDMzg7GxMSwvL0MIAY1GIzPNTqcTRqMRDocD7e3tKJVKsNlsKJfLcDqdspwgk8kgEAigUqlgYWGhKsuqKAoymQwSiQSA1fOooaHhgcoEFEVBoVCARqPha1Cdu6+ANZfLIZfLyYC1XC7LD+DD8rAWcDBWj8rlMoLBIC5duoRKpfKRmBbcSD6fx9TUFK5evQohBPbu3StvUGx7ULaKgilgdeZMCAGtViunV4HVmz4FVbVT7tv1HtGCKrfbLT8b2WwWiUQCS0tLCAQCCIVCKJVKiEb///beJDauM7sePzXP81zFoUiKpAZKpihSkjVasttpodPtIAkaaAQJssgiSIAsGmgEWWQTZJdNFgGyjNPuOHC640a3f3bSlh13uy1rsKiBEgdRHKtIVhVrejW8mof/Qv97XaRIiprclPgOIFiWxMfiq1ffd757zzk3hVAohJmZGej1eiatbrcbwWAQe/bs2ZC0UqV0KxmBTCZbQ1RLpRJSqRRWV1exurqKeDyOfD7PHRa6fwC4/V8sFqHX65HP59dUfRuNBrfBX1aQeS4Wi2F2dhbT09OIRqMolUqsRbbb7Whvb4fT6YRer4fJZILf70exWATw4H2yWCysYfV6vVAoFKjValhdXcXi4iL6+vrgcDhQLpcRCoWQTCZht9thNpvh9Xqh1Wq3/azW63UIggCNRsOVXgk7E9vaNQVBQDKZ5NZGNpvF4uIi2tvbt/y6er2+bXG8tFlJeJmwvpKTSqUwOzuLeDyO1157DUePHt2VxpFqtYpEIoGrV6/CYDDg9OnTCAaDu6JNul0QsQK+JoxPuz6WSiUsLCxgcnIS1WoVMpkMq6urUCgUsFqtsNvt0Ol0qNfrCAQC0Ov1UKvV0Gg0TLjkcjmTyVaC+yxAP6NSqYTNZoNcLkez2YTX64Xf74ff78fq6iqy2SyWlpawurqKdDrNv2ZnZ6HX6xEIBPB7v/d76Ovrg06ng0qleohwb+d1i6KIpaUlRCIRxGIxpNNpZLNZlMtlKBQKPnTK5XK+T1qtFgaDAel0Gk6nExqNhnXqJBeQy+VsSHrZQEkAuVwO09PTGBsbw/LyMksAlEolDAYDgsEgurq6YLPZOA3CaDSuSU4gyUWlUoFOp4PNZkMkEkEqlUI+n4cgCIjFYlhdXcXnn3+ObDYLp9OJjo4OVKtV+P1+GAyGbT+jdJiQsLOxLcIaiUQgCAJXWMvlMr744gsMDg7CaDRu+nW0IZfLZT5pSpCwG9C6UDYaDdy8eRMXL16EQqHAnj174PP5foev7tngSboiRFZdLhc0Gg3eeOMNiayuw/3793H16lUAQHt7Ozo6OuByuWAymZ74muVyGbFYDKlUCplMBrlcDpFIBAqFAiqVCo1GA5VKhc1BTqeTW+02mw1utxsejwd2ux0KheKxKljbBV2P9glqIVutVphMJnR2dkIURcTjcczMzCAej2NhYQHRaJS1juFwGL/61a+QyWTQ398Pj8ezYRTWRqDKaj6fx9WrV7G4uAhBEACA2/42m40NQyaTCQ6HgzW0arUaer2eW8tarZYrwkqlkh3tLysxajQaSCaTWFlZwdzcHBYWFpDNZuH3+3Hw4EE4nU4YDAYYDAZoNBqYzeZNK5oUcVWr1eB0OuFwOJDJZKDX62E2m6HRaJDP5zE/P4/bt29DqVQil8tBJpPx58Tj8cBkMj1SgqFUKl+K9Xg34JGEtVKp4Nq1a1hZWeE/K5VK+PDDD/GDH/wAcrmc3ZrrUS6XMTY2hv/5n//BiRMnMDIyAovF8mx/AgkSdjhisRhCoRDi8ThcLhfa2tp+1y/pmeBxCUuxWIQoipDJZFhcXMRf/uVfQq1Wr8nTlPBgfW00GshkMgAe6B6NRiOMRuMTk0TSiNrtdqRSKW6Nr9do0vVXV1f568i539HRgcHBQfT393+jWkw6GCmVShiNRmi1WthsNoiiiO7ubkxNTSEUCiGbzaLRaCASieDTTz9FvV6HwWCAzWbbVpJAs9lErVZDLBbD3bt32alOZNThcGDv3r1wuVzQarVQq9VrzF70Pei+KBQKNJtNmM1mfv1yuRz5fP6537PfFbLZLO7evYuJiQk+ECmVSgQCATgcDgCAz+eD0WhkUroV6D1pNBooFAro6upCT08PzGYzRFFEMplEPB6HUqlkqYVCoUClUuHK7lZFNQkvFh5JWLPZLJ+UCCR0/sd//Ef83d/9HdxuN7eNZDIZpwlcvHgR//mf/8ntG41Gg9OnTz/XH0iChJ2GiYkJzM7Owmq14lvf+tauyw5sNpvI5XKYm5vD+Pg4lpeXMTAwAIvFsqbrspvuyVYgglar1ZBOp5FKpZ7aM6DRaBAIBGAymdDe3o5CoQBBEPi/kUgES0tLEEVxTZTUesPR8vIyarUaTp48+Y3qsEkrStVLai+bzWa43W7Mzs5ifHwci4uLrCNdWlrCvn37ePDAo67fenBqNBqs921ra4Pf72d5AkkAKNSerk0yDjLurCew9D1eVtNVNptFJBLBysoKRFEE8ODAQ9VlIqlEXLcLmUzGBiuqytI9NhgM6O3t5bzWSCTCMhaj0Qir1QqNRiOZqV4SPHLFqdfryOfzqFQq3CaKRqMQRRETExN4++23cebMGbS3t0On06FUKmF5eRn37t3Dxx9/jOnpaT7dS4JmCS8TtlMRzGQyuHv3LpaWltDT04ODBw++cItno9F4qk22XC7j5s2bmJ+fRzabhVarxfDw8K42nm0FMkNRnBO16p8GcrkcWq0WxWIRVqsVPp+PHe6FQgGpVAqxWAyZTIYlAxQnlM1mIYoiu+Ln5uYwPDz8XGQBm712AhFpIq4ajYYrl3K5HLVaDQsLC7xvlcvlx7p31DHU6XTI5XJQKpWwWCxwuVyw2+0wGAxr3OT0Wuh1bSQ7eFkJ6nrk83mEQiHmB81mE2q1GmazGUajkQ1WWq32kXIiisXK5XKcW02VdZIVVKtVeL1ejIyMIJlMYmpqilMl0uk0crkcRFHkVAJJkvjiY8sdgyqphUIBtVoNVqsVhw4dQl9fHz799FNks1kWPAcCAWi1WhQKBSwvL2NxcRETExNoNBoYGBjAwMCApBORsKvQaDQwPT2N5eVlWCwWbie+iJXEJ03xqFQquHPnDiYmJiAIAmw2G/bu3Qu/3/9C3odvAq2OfiKuz8KoU6lUEIlEUK1W0dbWBpPJBJVKxeYmqryKooh0Oo18Po9UKoXFxUWsrKxwUkw2m0WtVnvmyS7buR79fas7X61Ww2q1IhAIsBGnUqk8kVlNLpdDr9ezLpUmbul0Ov4zIsd0/c3I6qMitF42FItFzM/PI5FIoFAoAHjQnrfZbLBarbDZbNDpdGtSFfL5PBvXWg+wRFipWGYwGODxeBAIBLjCqtfr4fV6YTabodfrEY/HUa/X+bpEWElXLJfLJXnAC45HEtZYLAZRFFGv12E0GrF371709PRw5YgMWPQQkhtSqVSiVqvBaDTizJkz3AKUIOFlwaMMFPV6HaOjo8jn8xgYGMDIyAgbQF4kUOWqlSRsl6yEQiF88sknEEURdrsdwWAQw8PDu2YTfxJQSH6pVIJSqUS9Xn9qfS8F2M/NzbGBqL29nZ3aNHmtVS9Ik4UEQUA6nWbS/Lg5l9vFk1xzPUmkaKJms8nTsB6nwknxWlqtltv+1NLW6/VrIr+ex8/zIoPycQVB4ClVMpkMVqsVFosFdrt9zb8nUiqXy9dIKygXtVQqoVqtQqFQwO12o16vIxgMspSI8npVKhVyuRwcDgcqlQqy2SxKpRIEQYAgCGy8apUWtB4yJLw42JKw1mo13Lt3D9lsFvV6HWazGd3d3di7dy/+4R/+Af/yL//C0R8UvEsGrGg0CgDo7+/H2bNn0d7evmUrtHUSyW5poUh4eUFu4zt37nCWYCAQ+F2/rCdGsViETCZ7rKiYUqmEDz74ALOzsywDOHXqFPR6ParV6gtJ3r8JCILAcgC1Wv1Q9elJ0BroXqlUsLS0tIZQkImKCg0ymQyCIGBxcZFNWo1GAyaTCW63e41Z7pvERmSj0Wggl8thZWUFqVQKVqsVTqeT9atkfiKjGf13o32GtKtkqKpWqzCbzexM3+hrJNLzAFRdLRaLUCqVLNnQarUbPr90CFiPUqmEdDoNURShUChgNpthMBjgcrlgNpu5IkuGQeDBQcXj8fCf1et1rK6uwmQywel0wufzscmLOhakhZbw4mDLd6tYLGJqagqFQgEKhQImk4knTJjNZvz93/890uk0rl+/jlAoBLlczuMV//mf/xm1Wg2Dg4NwuVxbbk5kyshkMpDJZPB6vdKDJOGFRqPRwGeffYZMJoM33ngDw8PDa1yxL5ojnqJitjvislQq4erVq5ifn4darcapU6cwNDTELbmN1oMX7Z48LxgMBqjVaq4ikSzgaaBUKuFwODA0NIS5uTlkMhmEw2GUSiW0t7fD4/FAqVSy2SsWi2F8fByRSATNZhN2ux1erxd79uzBsWPHnot+ld7/VkLZ+rxRzieBKnSxWIxn1FMVtLu7G52dndwObjaba0a2trby6c8ajQby+Tyi0Si3ky0WCxOu9VpaYOuJWbuNyIbDYVQqFSgUCiajFosFbrf7sa5Dprl6vc4m7nK5zAd+MgJSFBvl41qtVkSjURiNRpbU5PN5Pr2eQS8AACAASURBVKTRZ2n92kPDHGgKl4Sdiy1ZoU6nQyaTQaPRgFarhd1u5zZLsVjkYOYLFy5w2yqXy+HGjRsQRRFarRbB/3/U3mZoNpuIRqP47//+b1y6dAlerxc//OEPHzmUQIKEnYpms4l0Oo33338f2WwW7e3tfJDbLlrbwOs3vmazCUEQcPnyZdy4cQO5XA5qtRpdXV04fPgwBgYGWH/3ND/Do6YBbfXaV1ZW8F//9V8Ih8M4e/YsBgcHH9Kwr/8eu22D3wyU7UnVp0qlwjE9T3qPSJvZ29sLjUaD69evIx6PQxAETgaw2WxcpAiFQohEIsjn83A4HNizZw/27NmDrq4urlo+LxA5X3/AI1JZKpWQSCQQjUbXEBKKT2pvb0cgEGCD1HpsVAwhycTS0hLu3LnDekgyWtEAgu0eqnbjsxyPxyGKIgwGA+x2Ozo7O3HgwAG0tbXxAIXtgKQphUKBu7YOhwMWi4XliVRVX1hYwPz8POx2O1Qq1RrtLP2bRCIBh8OBRqPxkCyRxunuxvfrRcSWhJXG0lUqFRZN08maWv/04Sexc6lUwuzsLGq1GlQqFVwuF+tG1k++ajQaEAQBP//5z/HJJ59gaWkJarUayWQSbW1t0kMk4YVEs9nE5OQkSqUS9u/fD5/P91BFaju5kBv9vlAo4NatW7h48SISiQRXMwRBwOjoKGKxGPL5PI4dO/ZYmwSRIqoybEVWt3r99Xod8Xgc7733HlZWVhAIBPCtb30L7e3tDxEF6fO9MSiGSaFQoF6vQxRFjgl6WhCpq1QqmJyc5EirbDYLh8OBQqGAxcVFFItFqFQqtLW1oa+vDwcOHIDb7X5sTeh2QYS0UqkgFouhWCzC7/czaZHL5VxNo6mLlG1ss9kQCATg8/nYhENk9VGDAsrlMorFIut17927h0KhAJ1OB6/Xi4MHD8Lr9T5UdJGe3YeRTqe5E+t0OhEMBnHgwAH4fL7HWotEUeQBFjTOlUY3Uy4rVV2z2SwEQYBOp4MgCMhmsygUCtBqtTzaNZvNchpGa2IE5evSLwk7H1sS1kqlwtOtvF4vPB7Pmikk60ELDomuSUJAGqxGo7GGtFarVdy+fRufffYZk1x6UCVI2OnYqNpCm+DHH3+MfD6P119/HX6//5l8v1qthmg0iv/3//4fisUizpw5gz179nDHI5lMIpFIYHFxEUajEYODg1s6l+v1OsLhMKamphCNRlm7Z7fb8dprrz1yslLrXHYiHMlkEr/97W8xPj6OYDCIN998E52dnZsOF5HwMCi7klre5M5/WtB7r1arEQgEUC6XMT8/zy311meAHNhEPBwOB7Ra7SNJ4JNCFEWsrKwgn8/zRK6lpSXUajWOmSIzWKFQYFMa5W06nU74/X7Y7fY1Lv7NUKvVeOxqPB5HMplEMplEOp2GWq1GZ2cnenp64Pf7OYaJ3gPSxAIScW0FDQqw2WwPxVg9zn2ijq7JZOLrkH64teBFhDWfz6NarSIejyMWi3ESAXWZqFtlsViQzWbXeGVkMtlD43sl7FxsSVgLhQIPDDCbzTCZTJu+sa2n4FgshmazCZ/PxyLp9R/wRqOBeDyOixcvYm5ubs1J+nm5UCVIeN6gjXBmZgZ2ux3d3d0wGAzP5NqVSgWpVAqpVAqvvvoqRkZG4Pf7mdzk83msrKxgbGwMc3NzOHTo0JrPHoEkBbFYDLdu3UIoFGIXOE1V2rt370OTleg69Xqdf0an08mbQb1ex/T0NK5du4ZsNotz587hlVde4WrXRpv8eh2hBPDhnrR8lMP6tPen9b4TIaV8VcpfFUURwWAQPp8PPp+Px2K2ko7nsTYLgoDJyUnkcjl2d0ejUahUKphMJtaiknu8Xq9DqVSio6MDHR0dCAQCMJvN28o4puf/3r17CIfDEASB73O1WuV74/f7odfrmaC2Pr+bOcx3o3aVUK1W2WRFWalPYs4jc6dOp4PBYGBtNYCHDiLlchmpVAoOh4MPHBqNBvV6nXlEpVLhDjCZB2m4QOuEMgk7H1sSVnoAarUa9Hr9I8v6tMiSUL+jo4On+rQK6RuNBqrVKiYmJvDll1/ySD2KE5Fmi0t4EbCRpo2ea1EUcfToUQ6s3mxzo6xj6jzQxrwRaNFVq9Xo7++H1+vl6oBcLofFYkG5XOZOx0ba12q1ilQqhfHxcYTDYUSjURgMBmi1WuTzedYEVqvVh4hlsViEIAiIx+OYmJjAnTt30N/fj3q9DpfLhWKxiLt372JhYQFerxeHDx/m2fN0Dbpvrfdwo9/vZhBhpdYn/XparH9edTodTCYTEwuSbTWbTXZW2+126HS6NaTheYBa/PT8FQoFpNNpGAwGVCoVFAoFJqO5XA6lUokrcGazGWq1mjt4SqVyS+JYr9cRjUYxMzODaDTK0UmtY2hdLtemn92tqqu7+Rk2Go1sXtLpdNBoNNxxepw9nQ5HWq32oQMIpQ80Gg1OIaARrclkEoVCgQkqtf8pFSCXy/E1iGds9N7u5vdwp2NLwhoKhVgWQAvDZqDIFNrQZDIZurq61pxQga9jQ9LpND755BMkEgn+O6PRyKYu6cGR8CKiWCxidHQUKpUKJ06c2HT+O5GDVCqF2dlZFAoF2Gw2BIPBh/IKCSqVijfwVCr1UCurXC6zjmt91ikR45WVFYyOjuLq1aswGAw4fPgwurq60Gg0cO/ePUxOTnIbmL6ODCmhUAi3bt3CrVu3kM/nYTAYIAgCgAf6tWg0inA4DJVKhXPnzrH5q7U6IuHRaDabUKlUa0LOnwVhbb1+oVBAJpPhHEydTger1cokgRza1IYl4rbdlIjHBX0vcnGTy5v+S+1dhUKBWq2GVCqFfD7PFeJAIAC73Q632w2LxcKkdaOfvVarIZlMQhAE1m0T+TEYDPB6vdwVaa2mtqYL0PQ3aZ/6Gm63GysrK3zAqlaryOVyTF63e5+24hlqtRoGgwGNRgMGg4F9NSSHKpfLyOVyMBqN/Dytl9NQYYxkUesHFrTmTUvYWXikJIBOKXa7HTabbdOHjmI/6CGVyWTYt28ff7hJS1KpVJDP5/HrX/8an332GZf/C4UCn3ykjU3CN4HWTEfg6asjtVoNmUwGy8vL6O3txdGjR1m7uVFVJpPJ4Cc/+QmuX7/OodgnTpzAW2+9teFrpSpQtVrlrkRri6xarUKn0+FP//RP1+QbUufj1q1b+OUvf4mZmRn09PTgT/7kTyCTyXDz5k3OW+7s7MT3v//9Nbq9WCyG3/zmN7hy5QoikQg8Hg/+6I/+CN3d3fi///s/uN1ujkpSq9U4duwYvve973F15FFSAAlr0Ww2ucLXbDY5wP5ZEcVqtYrFxUUeoSmKIoeq0+z1cDgMm832jQ178Xg8OHnyJJLJJIrFIsLhMMvRKI2mlWiXSiXE43HMz89jenoaer0eDocDBw8exJEjRzimayMtKwXR04AB2uPIMS4IApaXlzmjlsgN/dvNrrvb4fV6WQedz+eRTCZhsVjgcDhQKpUey3i1FVoro21tbejq6sLdu3d5dHAikYDX64VWq4Ver2cTIwA+gBGpJnJK16OBBxIH2ZnYkrCurq6y3kOj0XCY8magN58cd6VSiUfZETmoVqsIhUL413/9VwiCgJ6eHnR2dmJsbGzNuDtpMZDwNNjMpEItqkQigYWFBcTjcWg0Gvj9fgSDQTidzif6fs1mE+FwGD/72c+QSCTwh3/4h/w5oI0ul8shHo/D5/OhVCrhnXfewWeffYaRkRGoVCokk0mMj48zYV1PppVKJaxWKzo7OzExMYELFy6sMUZRwHkrGo0GstksPvroI/z6179GoVDAqVOncP78edy6dQtfffUVFAoFfD4fzp8/j6NHj3LLrdls4osvvsCNGzcwMzMDnU6HP/7jP8Z3v/tdKBQKXL58mSfJLC4uolAoYHh4GH/2Z3/GoeutM9db75WEzaFUKrnLRMYSOqA8DVqrizMzM0ilUtBoNNDr9bDb7SwLWV1dZRMUFRAoyup5rctGoxE9PT0cZ9jf389mmtY4KzoU0YEslUrxZCOaPZ/JZDA4OIhAIACHw7HGAU57VFdXF5RKJZsUI5EIcrkcqtUq59NGo1F4PB4OrNdqtWwgbtVdt5Le3ZwfbjQa1wynEEURmUyGyWGhUNhwUMBGIL0pVb/Xo1Ur63a7eU0hvkHPDaVtEKibQKR0PTGVDN87G1t+unK5HGtPKfphs5NHa7WKPrQ0AKDVrJFKpXDz5k3k83kAwNmzZ5FMJlnbStoTelglSHhWyGQyGB0dxeXLlzlg3Ol0IhaLYWpqCsFgEN///vef6NqFQgGzs7O4fv06uru7ceLECV5oy+UyxsfHcePGDQiCAJfLxTnFP/zhD9Hf34/V1VVcu3YNyWRyy++j0+mwf/9+vPvuu/j4449x4cKFLaOGZmdn8e677+LevXtQKBTw+/0ol8t45513IJfL0dfXh7Nnz8Ln8/E9qdfrSCaT+MlPfoKZmRkUCgWcPn0aJ0+eRDAY5M/3wMAAXC4Xfv7zn0MQBBw7dgxvvfUWt2/pNa0nOdJhdGu03jeSAjwrDWmpVMLy8jKTQavVivb2dni9Xuh0OuRyOUxMTKBeryObzSIcDkOr1cJoND7XNmnrHlOr1eD1etccbGhvINMVdTJouAH9PKlUCqOjo1hZWcHRo0cxNDQEh8Ox5vNBexQNTPB6vQiFQmzAapVLrKysoFarwWazoaurC4FAAE6nk6cttcomtkJrl+FlPbBR9JRCoUC5XEY0GkWhUIDdbsehQ4fWHKbpMEZyw/XYSIdMZLhV569UKnkKWSvi8Th7Zex2O1+H8l1JMiDhxcKWhJVOQ3QK3yqeolKpsI6tUCg8lG1G7Za5uTm8//77yOfzcDqdOH36NK5cuQK9Xs/mExoNKLUNJTwLlEol3L9/H1euXMHi4iJrPI8fPw6z2Yzr16/j/v37qFQqT3R9qq5OTExAq9XiD/7gDzgHUCaTYXZ2FqFQCFqtFr29vayf+973vof29nbo9XoUi0UYDAasrq5u+n2obTs0NISf/exn+MUvfoHBwUF0dnau2TDp8JhKpfDee+9hfHycF3rS7Q0PD+PIkSMwm808T54IUjqdxnvvvYfJyUnYbDZ85zvfwcDAANxuN68BjUYDOp0O165dQygUwrFjx3D69Gmeatc6Vaj1v9Ln+dEgfTNV7UgP+CyIjkwmQz6fh0wmg8Vi4XXaaDRy6727uxuRSASCICCVSiGdTsPlcq05hDxrUCueOnmkV6XvR4SV9Idms5mNYZFIBAsLC5ibm+Pw+ng8jnw+z52C9fIfqtzJ5XI4nU7odDr4/X5kMhkkEglEIhE28lACB8kQyMFusVg4wom0v3SY20w/+7RV8p0Mq9UKuVyOdDrN1c1EIgGLxcIGURrtLJPJ+L3eCBvJtBQKBUus8vk8isUitFot/H4/Ojs7MTs7ywavRCKBXC4HhUKBvr6+Ndd5lvIaCd8stiSsqVQKwAPNCC1mW4EWnUajAaPRCJPJxK1ZisIZGxtDJBIBAJw8eRKdnZ3sVKZ4EXqg6GsrlQoWFhYAPKja6vV6XLp0Cb/97W/R19fH1VoJEtYjk8ngxo0bGB0dxfz8PGQyGc6fP4/9+/ejo6MD1WoVbrcber3+saer0aJXq9WwtLSExcVFOJ1O7N27lzfaXC6HqakpLC8vIxAIoK+vD5cuXcLIyAiCwSAfCmmjbL32RuROqVTC7Xbju9/9Lv7t3/4N4+PjcDqdvPBXq1Ukk0lMTk7i5s2buHbtGur1OhwOB/r6+jAwMACz2YxgMIi2tjZu8xJZTSaTuHLlCu7evYve3l68+uqr6Ovr43nzra3QeDyOGzduwGq14sCBA+jo6HiIrD7PKKSXFURQ148hfdpNltbUWq3GvycTS+u8d7fbzfrRVCqF1dVVDs/fqsv2NCgUClheXobZbIbL5Vqz19DPTRpukphR8LvFYoHVaoXZbMbNmzeRSCS4pfyoZAqFQsFk02g0wmKxwGw2w2KxIBwOY2lpCblcjrWRiUQClUoFBoMBFosFTqcTbrcbDoeDpzHRddffp5dd7kZRaJFIBOVymSvPyWQSs7Oz0Ol0qFQqMJlM3DHYKsmBDvxUbaXR7a3FAJVKBavViu7ubty5cwfhcJgPBsViEaurq1haWkImk+FsVzrck6mP1qmNKr0Sdha2JKzRaJTjI1oNFJtFQVSrVeTzeTSbTdhsNphMJo5nqVarmJ+fx9jYGADAYrHgjTfegMlkgsvlgl6v5zYBJRPQifb27duYmJhAe3s7Tp48CQD49NNP8dOf/hQDAwMSYZWwIUqlEr766it8+eWXPGN67969OHXqFGw2G4AHBM/v90Oj0TyxfpV0cKIoYmhoaE328MLCAqanpyGTyeByueDz+dDW1obBwUF2IlMuZCKRYAJbrVY3nV+u1Wpx9uxZvPfee7hx4wb2798PhULB8S5zc3P46quvcOPGDVQqFQwODqKvrw/79u3D/v37YTabebNorWBlMhlMTU3hq6++gsViwenTpzE0NPSQyYRSA65evYpMJoMjR46gvb39saJrpO7J5mg1hKzX4D0NWrNdyWilUqm4GEEEg4L6FQoF8vk8UqkUMpkMbDbbc6tMVSoVzoFtNpsPTZdqJXtkmqG2PDn76/U6QqEQMpkMdwxaK6ybgbSMdK8VCgXniJrNZgiCgHw+z2M+4/E4k3e73Y6VlRU4HA74/X50dHQwmV1/WHvZn3en04mDBw9CLpfzoYEOwbdv34bZbOapV0+i9S2Xy/x19LwqlUrUajW0t7ejo6MDsViMD3dEcqenp9HT0wOLxcKcRBrH+mLikTms5Irc7M2l00yz2USpVEIul+MZzLTgiKKIWCyGO3fuYHp6Gmq1Gr29vThy5AgbDLRaLRQKBZNUhUKB5eVljI6O4v3330ez2cSFCxc4o1AURahUKqyurj7TyBcJLw9CoRA+/PBDZDIZBINBDA8P4/Tp02xUohGMFD31uJUjat3ev38fCwsLMJvNePXVV5nc1et13L17F+FwGAcPHkQwGITBYMDIyAhvaHQNCkOniT4LCwvsfKYpL/TvqY3Z3d2NiYkJLC4uAnjweZ2fn8fCwgK3/gOBAN566y0cOHCAN4qN2paVSgWLi4uso/32t7+NoaEhrqrS96ZD6dLSEn7zm9/A4XDglVdeYZ3gZpUsCdsHralEip4FaaWKKo2yTKfTHDlIB5L1QyZavyaTyTzXQwYZeldXV9k74XK52Oi0UTWOChyUH1ytVllva7FYHqrSPsoX0RpvRQML/H4/HwQjkQinZxQKBeTzeSgUCqRSKczPz8PpdCKVSsHr9WLPnj0wGo27KlHAaDTi6NGjAIBbt26xtlij0SASicDhcECv18PpdD4y5ooODq3Q6/VcPKPnoVqtolKpwGw2IxAIYGxsDJlMhpOJisUiFhYWcPPmTfh8PgDg720wGGA0Gvk5oUPQbnivXlRsSVir1SoAwGazwWAwbOgSrVQqfMrJZrNIp9O8yFQqFWg0Gty4cQP/+7//i9u3b6NYLMLlcuHP//zP2SxC49dkMhlisRg+//xzuN1uvPPOO7h//z66u7vx+7//+zh//jz8fj8ajQZ+8IMfYGFhAcPDw7h37x7K5fLzu0sSXjhUKhW8++67iEaj6O3txblz53D8+PE1m9h2HatbIZVK4fbt20in0zhw4AD6+/u5hVWr1bCwsAClUgmfz8etztZKFemxyITV3t6OarWKt99+G2azGRcuXOA849bFVKFQ4PTp0/jpT3+KxcVFeL1eBAIB2Gw2HD9+HNFoFP/0T/+EgwcPwu/3rwl/b43DotdBk4bu3buHnp4eHD9+nIkt/TtKV5iZmcHU1BREUUR/fz88Hg+vD08DSVf2NegQTqkrTzs+kp7HXC7H1aX1126VDIiiiHQ6DUEQoFQqOa91o8lpzwIkUxFFkQ9cfX19cLvdPBiACGWrgSYSiSAcDiOZTPKYTr1eD4vFApfLtea53Mj8t1HbXq/Xo9FooFKpQK1Ww2q1wuPxoLOzE729vYjFYlhYWMDS0tIakl0oFCAIAo8APXDgAOx2+65xnlssFmg0GlSrVVSrVYiiiPn5ea7gT05Ooq2tjYtZjxNzJZPJuNBAzyIZROkQTRygXC6jXq+z3l4URdy5cwc2mw1Hjx5FW1sbvyetKQ/ZbJaLZxJ2JrYkrBTqbzabN3Ui0xuvUqnWzA62WCxs8vj3f/93jI2NQRRFeL1enDlzBoODg6wf8vl86OzsxMzMDJaXl/H222+jUCigVqtheHgYf/u3f8sjLolwnDhxAh988AEA4Mc//jHS6fSzvjcSXmB8/vnnbHR67bXXcOzYsWceOSOTyXD16lVMTk6yE7a1jZlOp7G0tASXywWPx8Obbeuox3q9jmvXrmFychJmsxkjIyO8OIfDYfzyl7/E4cOH0d7ezp8pAFxBAIDp6WkcOnQIBw4c4HayUqlEZ2cnLl68CJlMhtdffx09PT3QaDTcpaCfodlsYnJyEqFQCB0dHTh+/DicTifrxIAHawG123p7e5FIJCAIAr797W9zdXV9Ba6V2GyHbEmVja9BlXB6Rp4FSWw2m9Dr9awPJAJK4fwUyk9jexOJBPL5PJtpnueBQqVS8Shjipii2DnSlRqNRhgMBvY5iKKImZkZrKysIJvNolwusxbR6/WyRpwSaFrNV1sdrugzqtPpWJpB0Y4WiwUdHR0YGBhgqcTExASmp6chCALq9TqWl5f59QwPD8Nmsz3RiNIXDVSxb2trQ61WQz6fRzQaRS6Xg1arxfLyMhYXF5nUejyeLYcEbATq4lJHN5PJIB6PY2ZmBtPT0ygWi2s6EgqFAiqVCvl8HpcvX0axWMS5c+fg8/n42SeQREbCzsWWO3ixWGR9Hf1+s7YQRdnQYmC1WlEoFPDll19ieXkZ5XIZHo8HZ86c4WBzWhA0Gg1OnjyJcrmMW7duoVQqQalUYnh4GH/xF38Bp9O5q/PtJDw+/uM//gPpdBp/9Vd/hcOHDz91hWojVCoVfPnll8jn8zh16hSGhobWbOqkZSWSSOSjNa7o888/x8WLF2EymXDo0CF4PB6o1Wr8zd/8DT766COMjo7iww8/RDab5Zan0+nk1A25XI7vfOc72LdvH2selUolAoEAfvSjH+HHP/4xZmZmEA6HYbFY4Pf7cerUKbS1tXHFgqoLmUwGDocDR48eZcNjqVRCKBRCo9GA3W6H3W7nwQU9PT1wOp0bZq1u9P/b/bvdDqVSCYPBwDFOlOH7NA5zqk4SKSWPQCKRgNVq5dzcSCSCyclJrKyssIHWYrHAbrevydN+1pDL5Vy8GBkZQSQS4WgpQRCY0Or1eiQSCRSLRQDg+0NSGZVKBafTif37968x2ABrY8Ja0yvo9xsVZGhPWx+3qNPpeLoWyXOIqK6srCAej2N8fBwqlQodHR3w+XywWCwvfZSSWq1GIBDgkb9msxkffPABS5Tm5+fZ4EeDVlQqFSwWy7YqrlT5Js3/0tIS5ubmcP/+faTTaXR1dWH//v1MjqmQpdVqUSqVEA6HceXKFQwPD8Pv97MUkdZphUIBQRBYmiVhZ2FLFkiLQauDdLONplarsVi9Xq9jbm4Ov/rVr/CLX/wC9Xodx44dw5kzZ3DmzBkevwp8HVVx6NAhdHR0sBlALpfDYDBwnIoECY8DURQ5EJ+I2WbRStQKpQrUdkGt/GAwiGAwyN0GqlpSRuD8/Dzu3r0Lt9vNIfuXLl3C0tISFAoFhoaG8Morr6Crq4vJn8FgwJtvvonBwUEkk0kOSC+XyygUCjCbzTh69CjUajVcLtdDHRC5XI5AIIC//uu/RrVa5c8UacbJtAB8PZ+b2q5zc3MIhUKYmpqCxWLBq6++ikAgAIPBwBtNtVpFT0/PmkxECc8G60kSkcunBcUKaTQa5PN51Ot1JBIJGI1GZLNZLC8vIxwOY3V1lR3UpMf0eDzPNUOUrqvT6RAMBmGz2RCJRJBOp1EoFNBsNlEsFlEoFCCKIuRyOQqFAgDwQA2LxQK32w2v18tRb63yF/oM0Hjw9ZIAOky2Rl/Ra6O2MbWgFQoFJxEolUqYTCZYrVYelqNUKlEoFDA1NcVjRE0m00udwwp8vbaqVCr4fD6cOnUKGo0Gly5d4o5TuVzm5Am32w23241yuczaUqvVyve3Wq1y1yqRSLAfZmVlhae1lUolmEwmOJ1O7Nu3D4ODg0gkEhgdHcXY2BiSySQUCgXsdjvC4TDLXbxeL7xeL3w+H+r1OgKBAHd9pTVtZ2JbZcvWzW0r6PV62Gw21Go1zM/PIxwOI51O480338SJEyewb98+uFyuh9qHJICmU02rI1R6cCQ8CajdQ9qm9USUTuqhUAjVahWCIKDZbOK1117b1vUbjQa++OILCIKAkZERdHR0rNnsKHbn/Pnz+Oijj3D58mXMzs5yeyoWi6G3txfHjx9HT08PPB4P67iBB5swZTy2tbWhUqmgWq0yWVSpVHC73VsG9AMPRio/CjKZjLV2ExMTSKVSMJlMOHjwIDo7O+Hz+ViOQ7Eyr7/+OkRR3LLVKWWvPhkUCgUPcWjN7nxaoiOXy2EymdDR0YGlpSU0Gg2kUilei6PRKI+3lMlkcDqdGBwcZAMReRieJ+GiAgaN6XY4HCgWiyiVSmx0MhgM/PkiQ6LBYIDD4YDdbodOp2OS0/p5pCD5arWKUqm0xmVO5JPuEwDODC2Xy/x3lUqFx4tTq7tQKCCdTiOVSnElUS6Xc8u6Uqm81CR1I2g0Gl5TyEA4OjqKWCyG1dVVCIKAcDgMj8eDQCDAv3Q6HbfpKZMdeBAPmM/nuaoaj8chCAJKpRLUajVMJhN8Ph/27t3LlfhKpYJ6vY6pqSnUajUolUpoNBqIoohIJIJSqcSGOlEUkUql0NXVBYfDwQcOCTsL2yKsbdyaawAABbFJREFU23HhKxQKmM1meDweGI1GpFIpqFQqDA8P4/XXX8fAwABPwthIk0W6IamaKuFZoKurC+Pj47hy5QpUKhU6OzuhUqlYo5fJZJBMJhGLxeD3+2EwGB6rulosFjE2Nga/3489e/Y8RAyJvB4+fBi5XA4zMzPIZrMQRREWiwU9PT0YGBjA/v372U283glNbapvwrQRDAZx7NgxOBwOro4MDQ3B5XLxwZE2crVajZ6eHq4mPYqwAhtXtR9HQrDbQMZVYHvr73ZAhqKuri6EQiEkk0luy9Lhjg4kWq0WwWAQ+/btg8fj4Xbp83qPaP2naC0iFwaDgQkljV+l/YM0h0RuqXrcSlKpuloulyEIArLZLAqFAusg9Xo9yuUySqXSmhSBZrPJQzBaB4rQmFwaB6tWq5HL5SCKIo8kpc+Fw+GAVqvlsbe7qfjSupc7nU4cOnQICoUC9+7d43gwGgGcyWQQi8VQKBRgs9kgk8lQq9VYj08SpGKxiFQqxQa7YrEIhUIBm80Gv9+P7u5uNraSFIMkh6lUin9fLBZ59HE6nYYoityRUygUyGQykMvlEAThd3wXJazHIwkrLSCti8BGixYR1u7ubhw5cgRzc3Ps7h8YGFij32kd1ypBwvPAqVOnMD8/j0uXLqFcLmPv3r1sOFleXmYXK0Xg9PX1PZYBQBAELC8v48iRI6w73SjSyeFw4Ny5c9i/fz+SySRKpRJcLhdHXLV+tn6XhM3v98PhcOD48eOQy+Xc6t9sk13v2H4W1VSJsH4NimfSarXcvn4a0GGINIYHDhzAwsICkzGqCmo0Guh0OjidTvT39/NhrrWtvlHE1NOC9NetIMPMs4AoilhaWkIsFkMul4MgCKhWqzCZTFw1BR50E6ky53K5uI2vUqlYQkH55NQppAmNNLmJsm37+vqg0+lYL75VJ+RlBR2A2traYDQa4XA4kEwmMTMzg2g0yvm7yWSS3w+lUslxVXRYqdfrnHBBGuxarQatVguPx4M9e/agra2NpVEymQw2m41TWeLxONLpNGcQa7VaVCoVrp6rVCqIosjPRrlcfuSYbAnfPLYkrHQqpGD/rRaqZrMJnU6HgYEBeDweLC0tob+/nx2mUjVFwjeJ8+fP486dO7hz5w6uXbuG0dFRTq8AHqRMnDlzBl1dXTzub7sVkGazyRE6FGJOLaf1IE2WxWJZQ+p2miOVjCTbjZqRPs/PD2S6amtr4426NYj+SUEEy2Qy4ZVXXoHP54MoimxaooqV0+mEw+HgjMqN1v0X7f0m7WMymUSxWGSZASUOEGGuVCprUghak29qtRpSqRRisRhMJhNXwPV6PfR6PaxWK1dTjUYjh+TrdLpdE221Hkqlktc+jUbDB7DOzk5EIhGkUinuQEWjUczNzTGZpIo1mU0ptooycp1OJzo7OzEwMIDOzs6Hsl1pCpbJZEIgEOAKbblc5kxpqq6LoohqtQqXy4X5+XlOyJCws7AlYR0cHIQgCDh9+jSCweCmc3+BryMhKNuvq6trV7VAJOws6HQ6/OhHP0I8Hue54DKZDIFAAN3d3U+VGiCTPZha1dbWBrPZDJPJtOWGRBt+a3dC6jBI2AykXz527BgOHz7MMWVPS3pafQGU+LBbYDQa0dnZCbfbzUMGiLRS+5mqdtSJoZQEkrFRFZUOveSGt1qtsNlsHL3VakSkiKXduheS1CMej0Ov18Pv9wN4IEGiLhdF5uVyOdy/f5/d/TTtj8zcZrOZjVp9fX1c/d9qLW9NTjEYDLDb7WsSIkqlErLZLEdw+nw+juYaHR39xu6ThO1BJm2cEiRIkCBBggQJEnYyduexT4IECRIkSJAgQcILA4mwSpAgQYIECRIkSNjRkAirBAkSJEiQIEGChB0NibBKkCBBggQJEiRI2NGQCKsECRIkSJAgQYKEHQ2JsEqQIEGCBAkSJEjY0fj/AFvjY1yJMp5NAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAJBCAYAAACDGOdsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXBc133v+b29L0CjsTX2fQexkCLFTaZEi6IpK5IlK2PJlp2xLaVspxJ7XJ6J47EyFSf1/OKXpcrjyUtelVNKbMeKHFuyLGuxKEuiJFLiBi4ACBLEvjeAbvS+L3f+AH+HpxsgtVASW+DvU8UigL7d93T3vb/zPb/tKKqqgmEYhmEYhmFyFc31HgDDMAzDMAzDXA0WrAzDMAzDMExOw4KVYRiGYRiGyWlYsDIMwzAMwzA5DQtWhmEYhmEYJqdhwcowDMMwDMPkNCxYrxFFUY4rirLpeo+DuTFQFGVSUZQ73uGxexRFGb6Gc/0vRVH+n/f6fIZ5tyiKck5RlL3XexwMw+QeCvdhvTYURXkAwIOqqv7h9R4Ls/FRFGUSwB+rqvr7D/O5DPNRQFGU7wFoVlX1C9d7LAzDvL+wh/XaeQbAxxVFKb/eA2EYQlEU3fUeA8MwDPPeYTueCQvWa0RV1SiAPgAHrvdYmBuGmxVFGVIUxaMoyr8pimJSFGWvoiiziqL8haIoTgD/Rn8DAEVRfgagFsBvFUUJKory7Ut//6WiKE5FUXyKorwup7coivLviqL8t0s/0+v/n4qiLCmKsqAoypevw3tnNjCU8iJfe5f+Lq7lS7//haIoc4qiBBRFGVYUZZ+iKHcC+C6ABy9d42evx3tgbhwURelQFOWQoijeS+ksn1IUZcclm6qVjvu0oij9l37WKIryHUVRxhRFcSuK8l+KohRdeqxeURRVUZRHFEWZBvDKdXprOQkL1veH8wB6r/cgmBuGz2N1gdQEoBXAX176ezmAIgB1AL4iP0FV1T8CMA3gHlVV81RV/btLD70AoAWAA8ApAD+/ynnLARQAqALwCID/qShK4fvxhhjmnaIoShuAPwNws6qq+Vi9FyZVVf0dgP8O4BeXrnG2ycwHhqIoegC/BXAQq/bz61i1n14AIQC3S4c/BODxSz9/HcB9AG4DUAnAA+B/Zr38bQA6wI6wDFiwvj8EANiv9yCYG4Z/UlV1RlXVFQDfB/C5S39PA/grVVVjqqpG3skLqar6mKqqAVVVYwC+B6BXUZSCKxyeAPA3qqomVFV9HkAQQNs1vROGefekABgBdCqKoldVdVJV1bHrPSjmhmMngDwAP1BVNa6q6isAnsWqPf7PS/9DUZR8AHdd+hsAfA3Ao6qqzkp293/LCv9/T1XV0Du14zcKLFjfH/KxuqpimA+DGennKayu0gFg+VKKyjtCURStoig/uBSa8gOYvPRQyRWe4lZVNSn9HsaqwWaYDw1VVUcBfBOrE/2SoihPKIpSefVnMcz7TiWAGVVV09LfprAagXocwP2KohgB3A/glKqqU5eOqQPw60tpBF6sRmhTAMqk15FtPHMJFqzvDx0AOF+K+bCokX6uBTB/6ee3a/mR/fhDAO4FcAdWQ/31l/6uXOP4GOZaCQGwSL9nFLWqqvq4qqofw+rkrwL4H/TQhzM8hsE8gBpFUWQdVQtgTlXVIayK108iMx0AWBWjn1RV1S79M6mqOicdw9fxOrBgvUYURTEB2Argpes9FuaG4U8VRam+lKj/KIBfvMPnLQJolH7PBxAD4MaqOPjv7+soGea9cwbAXYqiFF3qwPJNekBRlDZFUW6/5L2KAohgNR0GWL3G67NEBMN8EBzDapTp24qi6C/1D74HwBOXHn8cwP8B4FYAv5Se978AfF9RlDoAUBSlVFGUez+0UX+E4Zv62rkHwCFVVeff9kiGeX94HKuJ/uMAxgD8t6sfLvhbAH95KRT1fwH4KVa9AHMAhgAc/QDGyjDvhZ9hNWo1idVrXV6UGQH8AIALgBOrBS//96XHSBi4FUU59aGMlLkhUVU1jtX5/5NYvRb/GcD/rqrqhUuH/CdWi6deUVXVJT31/8VqO8yDiqIEsGp3d3xoA/8IwxsHXCOKohwD8IiqqoPXeywMwzAfZS618vmCqqqvX++xMAyTW7BgZRiGYa47iqKUYrX1WpuqqtPXezwMw+QWnBLAMAzDXFcURbkZwAiA/4/FKsMw68EeVoZhGIZhGCanYQ8rwzAMwzAMk9OwYGUYhmEYhmFyGt3VHkwmk2vyBebn5/H444/jX/7lXzAwMACDwYD/+q//QktLC3w+H1577bUPbrTMR5K//du//dAb0aurQKPRIJ1OI5VKIZ1OQ6PRQKfTQVEUxGIxAIBer4eqqkin09Dr9Rmvk0gkkE6nodVqodVqkU6noSgKwuFwxnFzc3NYWlpCeXk5qqqqYDQakUgkYDAYkEgkoCgK9Ho9FEWBqqpQlNWPhMaUNXYxPoPBgHg8jlQqBa1WK8aXTCZhMBjWjFGn02W8RiQSgdFoXHOOeDwOvV6PWCyGdHq1hWUsFsO5c+fw2GOPobGxEV//+tdhsVig0+kQj8eRSCTE62i1WhiNRsTjcWi1WqRSKWg0Grz88su48847r/n7yxVUVb0emyi8qzwtOa0rlUpl/J5OpxGPxzE7O4tXX30Vg4OD+M53vgOHwwGNRiOuQ3oO/b7e66/32JXG4/F48KlPfQqf/vSnMTs7C5vNhq9+9av4t3/7t3fz1phr4Hvf+96Heu329/erqqoiGo1iYWEBw8PDGBwcxPT0NCorK1FVVYWKigp0dXWhtLQUJpNJ2BONRiPsiU6ng8Vigc1mg9ls/jDfgkBVVQQCAfh8PoTDYYTDYXg8HgwPD+PUqVNYXFyE2WyGqqqYnp7GxMQEysvL8eCDD+JjH/sYHA5Hhr1Pp9MwGo1IpVJIJpNiPtBqtdBoNEgmk+IzSCQSiEQi0Gq1MBgMwv6mUikAQCQSEcfTvET/rFYrFEVBIpFAMBhEMplEPB7HysrKdfkc3wu33XbbFa/bqwrW9SgoKMC2bdsQDAbx2GOP4ZFHHrm20THMB4CiKFAURQhMnU4nhKuiKIhGo0KgqqoKErfZ6HQ6IQiJZDKJWCyGwcFBeL1eGI1GTE9PY2lpCZs3b0ZVVRVUVYVWq80QqrI4iMVi0Ov10Gg0YkyKoiCVSgnRSc/T6/VinCRI5LHSeyNkEawoihCnWq1WvAY9RsZUq9ViamoKhw4dgtfrxYEDB8T40+k0dDpdhpin82k0GiF8UqkUEonE+/UVMu8B+n7l6z8UCsHtdiMajYrFGt0X2c99u9d+u8dJsJw6dQp///d/j6qqKvzyl79EKBS65vfG5DbxeBzRaBQTExM4ceIEBgYGMDMzA7/fj8nJSeTn56OkpASRSAS9vb0oLy+H2WyGTqcT4ovsCgm564WqqkgkEojFYojH4/D7/Th16hTefPNNXLx4EaFQCHl5eTAYDPD7/QiFQpibm8Orr74KnU6HXbt2weFwZMw7ADLsMAAhYMkGkw0le59IJJBMJsXP6XQayeTq7tj0uWk0GmGb6Z7W6XQwGo0AVr+XjcK7FqxGoxFlZWWIx+N4+umn8dBDD72tIWOYDxvySMreTJpQCRKM9Pd0Or1G4JLRJMMSjUZx4cIFnDp1CuPj45ifn0cqlUIgEEB+fj7q6uoQiUSEGCbxQIaYBAOJQfoni2Z5LGSQgMsikZ6f/R7X89rScbJAkY0jfR7Ly8s4c+YMLl68iO3bt6OlpUV4BGSvNEE/y+MHcF0nGWatqFRVVXjHrVYrqqurYTAY1vWWvlMPajKZFNcvnUOelAOBAIaGhnD//ffj2WefxalTp9DZ2XmN74zJddLpNJaXl3Hu3DkMDg5iYmICPp9PePlCoRACgQAGBgZgNpuhKArKyspgNpuh1+vFYle2yeuhqqoQcfS7bBtlewRACMJIJAKn04l4PI7S0lLY7XYYjUZxvMFggFarFa8ZDofh8/kQi8XgdDpx9uxZnD9/Hi6XCzqdTghWk8kEo9GIZDKJ8fFxHD16FHl5eejp6UFpaWlGJEOv1yOdTiORSCAej4tx032aTqehqqqwt6lUSswh9JkYDIaMY9b7fGgOA7ChnAjvWrBqNBrk5eWhsLAQ/f39CAQCa8JQDHO9ka/H9a5N8l7StUv/FEXJEI1EKpVCKBTC+Pg4Xn75ZXg8HgDAzMwM3G43AKCiogLDw8MoLi7G5s2bYbPZMsZAr0teU1kgy4IvW0CHQqEMTy2JBTqORCU9l85Hx8rvb73PIxgMoq+vD6dPn4bRaMS+fftgtVpFKCo7jUF+vvxZyaKZuT7I16+M2WxGQ0MDUqnUuiki7xT5esteCFL6wfz8PKampvDiiy/ipz/9KYLBIDZt2nTN743JbSKRiEgDmJ+fRygUyojmJBIJhEIhXLx4EXq9HslkEqlUClVVVUJcAZcFKHkSsyEvPj1OES+yjzqdLsOuJxIJRKNRzM3N4ejRo/B4PGhtbUVHRwcqKythNpuRSqVgt9szUhCi0SiCwSAikQgmJycxOjoKl8uFeDyOkpISNDc3o7i4GCsrK9BoNFhcXITP58P58+dht9tRWFgo0hrIaUELu2QyKYQ0gIy0AIq6yXMBvS/Z6aDT6dbYdVkAU5RP/mw/6lz1nayXu6QoCiwWCz72sY/hV7/6FZaWljaUgmc2BrRSlsOfNEnTjRyNRtd4N2n1SsfJeUPj4+M4cuQI5ubm8PnPfx5arVas2o1GI3Q6Hfr7+zEwMIA/+7M/w0033STGI4eC6H4izyflH2V7LckLevHiRRiNRlRUVMBisYj3Rvm56wlSWpXLnwM9Rqt5s9mMdDqNwcFBHDx4ED6fD/v370dHRweA1VAShZVopZ8thmgiknOFmeuPfC1RVKypqQkAYDKZrvm111u8UN7fwMAAfD4ffvzjH2NlZQV2u50XMjcALpcLx48fx/DwMILBIADAYDDAYDBAo9EgEAggHo9jbm5OeC8TiQQsFosIa5MIu5odoZSqaDSKVCqFeDyOcDgsXsdgMAgxSN5Mn8+HCxcu4JVXXsHU1BQaGhqwd+9e7Ny5E+Xl5UgkEjCZTGtyZil6Nj4+DqfTiWg0CgCoq6vDzp07UVlZiaWlJdjtdrz11ltYWFjAysoKzp49i4aGBiHGNRqNCO/LXlM5DUz28FIuL81bJDzJE52d9kNjJREvp79tJK4qWK/0Zq1WK7797W/jiSeeQF9f34bKkWA2BrIoJJFFRgm4vBqlwiUSj5FIBMCqR4oWYslkEmfPnsVLL72EaDSKv/zLv4TVasWjjz6KiYkJVFZWYteuXejq6sLCwgIeffRR/PVf/zX++Z//GXV1dSIfi4wRQXlK691n5NlMJBJ46623kJeXh507d6K+vl4cL4f9yRhqtVokk0lh+OVjaeVO7y8ej8Pj8eAnP/kJUqkUPvWpT+Huu+8GABGyovAxFQrIwjoSiQjvhJy6wOQOWq0WBQUFsNlsGXnNV+JK1+N6nh4SFrRoisVimJubw4kTJ2C1WtHT04OhoaGMSAWzcXG5XJienobH40E6nYbFYoHdbkdVVRU0Go3I+Q+FQsK2Wq1W1NXVwWw2w2QyrVnUXwny5sv1BfQ8OdpD6Uxkx/x+P9xuN4LBIGw2GyorK1FaWrruOeh+iUQiWF5eRiQSEWlYtbW1qKqqQllZGQoKClBQUICZmRnMzc0hFothaWkJIyMjqKmpgcFggNVqFV5VGifl75IAJaeGnCpA0Hugey8ej69Jm6BUCRLHNN9spPvvXfmK6QPS6XSoqKiAVqvFj3/8Y9x1110f1PgY5j1BRiGVSiEWiwnRGA6HoSiKWE3LSeqy95FIp9N45ZVXcOzYMZSWluKRRx6BTqfDT37yE1y4cAHf/OY3UVNTg4KCAuTl5aGmpgY/+tGP8MUvfhHPPvssvvSlL8Fms2WE+HU6HYLBoDDORqNR/JxMJoXXgToRlJSUoLq6GrW1tSLnCgDC4bCoKtXpdGvyUqkLgiyWNRoNTCYTgsEglpaW8A//8A8oLS3F3XffjS1btohjDAYD9Ho9IpHIFT1y5I1QVVV0I6AFAHP9kVNcrvb42z0fWBtlI0isxuNxLC4u4siRI5iYmMBDDz2EoaEhkVbCbHwov5O8fCaTCS0tLbj99tuF3Tp8+LAQmS6XC2NjYxgdHUVTU5NYAJHYupqXlRZOZNdTqZQoKtRoNELQ0cJKp9OhtLQU8Xhc5NROT09jcnISmzZtEilQ2eeQO7MAEF7OiooK2Gw26PV6YfcaGxsxODgoxLTT6RT5rpTjKqcHkAg1Go2IxWKIxWJCaJOYpdSIdDqNaDSaUc8gp31RYa7BYBDzDNUyZDtKPsq8p+QGareg1+uxvLyc0RqHYXIBmkTpWiWokAjIrJIHLq+ojUajKJw6ePAgvF4v7rjjDrS1tSEUCuHMmTN46qmnsHv3bnR1daGkpESExGOxGILBIGpqalBaWiraPwHI6ABA7UdisVhGBSi1NiEWFxdRVVWFqqoqGAwG8Rpymy46XhbEyWQSeXl5wqhRWxSdTodoNIpEIoF/+qd/QiqVwu23346WlhaxwpdzHMkDQJMDnUcWQZRaQOE5JjdYrwvA23muriRMZQ+rDF33kUgEMzMzOHfuHEwmEzo6OjA5ObnhQpLMlTl79iy8Xi+SyST0ej3y8vJQW1uL9vZ2aDQa1NbWwmq1IpFICHHq9XoxMjKCm2++GRUVFYjFYkKoXa3oKhqNIhqNrrFZJHjlxRqJxNraWnR0dIiUBJfLhYmJCczOzsLhcMDhcIhzUM2AyWQS/9PcUVRUBJPJJJweFKnbtWsXhoaGMDU1hVAoJFLP6P4wm81C3JIIpfGSI0UuxiVdRYJUtvnkjCF7T5Eu2elB49pI9+C7juHRpEwu/WAwyHlrTM6RnbAvh6xplS2vUOVQUjweRywWg8vlgsFgQG9vL7q6uqDRaDA0NITnn38eBw4cwEMPPQSr1ZpxnlAohGeeeQYWiwU7d+6EyWQS+bHAqtczEomIXCgyRPQzhXPksTU0NIhqU9l7YLFYAGTmvNJKm4w3nY9yp+h9/fznP8e5c+ewfft2bNq0CXa7fc3nQ+OU22FRThiwmjZA/2gcXHyZu2RPXO90IltPrMrfcywWw+TkJA4dOoRgMIhPf/rTKC8vh06ny1joMBsbslskqgoKCkQXAIvFgvb2dhQXF4viKPIeUt9RvV6P/Pz8jF7S6yHX1pBNJHunqqroOkDijcShqqpoaWmB1WqFyWQS+bTj4+MIhUIiIkVQTi0txKlCn7ydZB+j0SjC4TB0Oh0aGhqEd9jlcmFubg4ulwuRSESkMMjzj1w/QeOi9BpKP6Be3nKbLbL3dH+RfSZPLYlYudftRuCqHlb6wIBMo0UfotFoRCgUEl8mw+QS2RXycmuR9TxF8jFUjFRbW4vy8nIAwNjYGH7/+9/DarXijjvuQGVlpTCuqVQKMzMzOHjwIEZHR/HHf/zHqKmpEaEwuX+qXP0pt4yiv8ur7KKiIhiNxowm1HTceoZIFt7ZlfuqqsLlcuHFF1/Er371K9x2223YsWMH7HZ7Rl6iXFhF4TD6bORCgat9xsx7573aUrkA7+2+h/WOudLfrjQeEhxerxczMzNYXFxEcXExenp6YLVaxcKJu0fcGCwuLgpHgdlsRlFREYqLiwGs2seKigo0NTXB7XbD5/MBgBBdlAcvh7GvtNAhQRcMBkVIXlEU4QTI3iiGUJTVNlpFRUVCPLrdbkxOTqKqqmpN8Tgt8hVFycjlTyaTcLvd8Hg8wvNKHteCggKRXub3++FyuRAMBmG325FOp0UxmsViEeMmTSXb3fXsK70XuaUXfUbRaDRDcMvzUrYQ/yjztikB2UZMnrS6urpw/PjxjCRqhskF5EbU2fk8cm6Q3MSZBFsikcDU1BQ0Go1o/jwyMoLjx4/D5XLhnnvuQWNjo1jdJpNJzM3N4dixYzh58iS6urqwb98+kU8lI1fuy2T3gJUT82WxCly+J6m4ar3XknO3yHh7PB6cOXMGL730ElKpFPbv34/a2to1Rl0WKPLGCXKrFAAZRvbt8iWZDw7yJFHOM+UcX0kkkjfmamJSvtbWe4yuk2g0iunpaYyNjUGr1aK3txdlZWWi4pmvhxsHt9striu9Xg+r1SpC1bT47ujowPT0dIYYpMU1XZdyQ/z1SCaTmJ6exuzsrMhNJaGY3b2C5gByGFCdQSQSwcrKCrxeL6amptb0CaaxyJ5VSjPT6XTw+XyIRCJCSFJqglxDQG2xqIaCwvz0HuXc2OziX7nHttzlhjzDclobjZOiYdQyTC6G3Ci84y4BsucJWP1gDxw4gDNnzsDlcgmXOMPkAvLKVTZY8oqVbnq56XQ6nRZGrLu7GzqdDjMzMzhx4gTGxsawefNm3HrrrcLY0Cp9YGAAZ8+ehcViwec//3nY7fY15yQDQnlJNA655yB5FmSDBWR6ushIUm4p/U1+37JHlLbm6+/vx4svvoipqSncf//94v3R88kokkGlez6VSsHv9wNY9QxQGoRckMMetPePbLF4NeFJCyy6Zs1mM5qamtZsMUxQSofH44HVas3w3q93niv9je4fl8uFCxcuYHZ2FuXl5bjllluQl5fHXSNuQCjvn757Sgkh22K1WtHe3o7x8XFEo1H4fD7RXpAq5WWbdyXC4TDOnDmDkydPwmAwoLW1FV1dXaioqBALJbK99D/NARaLBdXV1VheXobf70cwGMT8/Dy8Xu+aa12eN6hvNnlYQ6GQcHjQsWRnaYFP+amUS0q2lpwTco9rKsqSWwPK4pvOI+/MKHfooJQB+Tm0KNhI0e+rKszsRuTyz7T9mNFoxPj4OLxeL0pKSj74ETPMO0D2YmZvbZpKpTJ63gEQxoUaTHd2dqKsrAxzc3P47W9/i9nZWWzevBmf/exnM0Se2+0WldGVlZXo7OzE5s2bhTd3Pe+oXKBIyf00Btl7KYe0ZPFCq/Hs8QOXt+sjURyNRuH1enHo0CE8++yzGB4exo4dO/DlL39Z5GjR88n4Ud9EOR3g4sWLAID29nbxd7kptewdZq4NWry8E8FKYnVoaAiHDh1CfX09qqqqhHdTnsAoPLi4uIj+/n60tbWhuro64zu7kpOCxiKHJX0+H/r7+zEyMgKz2Yybb75Z9J28WtEMszGRd9Uj25VtZ8vLy9Hc3Izl5WUh+MLhsBB65IUkgbgefr8fZ86cweHDh2EwGOB0OqHRaESjfsr5lL2MZNesVqsoGKdm/cFgUGwEQ5Czg+4jCt/T31ZWVuB2uxGJRMT5VlZWMDs7i2AwmJFSlZ+fD6vVKgrACHlnr3g8LrbQpqIssq/ywk8uzpI9sfS6NNeR84UigBuFt904gPa1zSaRSKC4uBiKomB0dJQFK5Nz0MqeGirLVfXBYFD0IpVvcL/fj8XFRWzatAl+vx9PPPEEJicnsXv3btx7771icg+Hw/B6vXjsscdgs9lQV1eHhoYGdHV1IRKJID8/XxitWCwmjAYZcRLOtLomQyMjC125h598LBlMmhRSqZToJQusio2nnnoKTz75JMLhMO655x587WtfyxDxVNVLnxV5b6k3YCgUQklJCUwmkyj0MhqNGR0BNmKT6utFdh5qdioIcNn74/V6MTg4iMOHD8PpdGLfvn2ikE8+PplMIhAIYHJyEi+88AK8Xi8cDgfKy8vXeO6zc+bkcdEEmUqlMDY2hv7+fgSDQXR0dGDTpk2iWpuuDb4mbhzkqBG1bCIBJu+aV1RUBLvdDq/XK663paUl+P1+FBQUQFGUjP6q2VChFkUF3G43Xn31VdjtduTn52fYQupLSulbVqsVeXl5yMvLEzU4V8rz1Ov1MJvNMJvNsNvtMJlMooB1YmICDodD7HgVjUbhdDoRCAQy7LTNZhMbZ5BglQttSQBTXZActQKQ4TggGysXMpL3lcQpeYGplZZerxe5vRuBt00JoKo4uaqPJn1KqD58+DBaW1tx/PjxD2XQDPNOoJs+O4GfcpmAy/l+yWQSfr8fc3Nz2Lt3L4LBIL7xjW/A7XbjkUceEduV0vOfffZZHD16FNu3b8dNN92E6urqDDFnMplEIjyt5kmcEtFoVKzcyStBhk4ePxml9faONpvNYmGZbczi8Th+9rOf4ec//zlisRg+9alP4Stf+QrsdjsAZBhpSi8g762cU2Wz2cQOW9TYOhqNrhE6Gy3B/3pxtRQLssWpVApOpxNHjx7FqVOnMDs7C7vdjpqamjU7p5E3dGhoCE899RTC4TA+97nPoaGhIWMjDTl8SAsqCuvK/R8TiQRmZmbw/PPPY35+Hlu2bMGtt94Ku90uPEN0XTI3DgaDAeFwWIS7g8Eg/H4/CgsLkUqtbglstVpRVVWFhoYGxGIxLC8vIxgMYmxsDK2trWhsbITFYrlqsZ/JZEJhYaEoFi0oKEAwGMTBgwdRWFiIzs7ODPFHdjUcDiMWi6GkpCQjCkBRtVAolHEe6rCi0+lQXV2NtrY29Pf3w+PxIBwOi62sKe1haGgoY+fP2tpaNDQ0QK/XIxaLicgVeW1JZNLz6R4jkUpOlvVStaidlZy7Sl0a8vPzAVzOb91I9UVXFaxyPoqc40YXAk2+MzMzqKio+OBHyzDvEjl3lEIp1KA5nU7DaDSKPnnpdBoVFRUIBoN49NFH4XK58Cd/8ifYunWraPa/srKCEydOYGJiAp/5zGfQ1tYGm822ZlInz6csPKglHJ2TQj9ySJZ+pkb8FOEgA0dNtcmAkRcUuNxmiqpRf/3rX+NnP/sZ0uk0vvzlL+Puu+8W7avkkJhc/EAeVxobnV9+L9nimT5bEjfMtbHeRC0Xu0YiEUxNTeGNN97AxMQEVlZWUFRUhB07dsBisWSkhySTSSwvL+PMmTN48cUXodFo8KUvfQn19fUoKCjIyK+ORqOif2Q0GsXw8DBqa2tRU1ODvLw8MQF6vV787ne/w9TUFHp7e7F169aM/EG6NvhauLEoKCiAz+dDOp1GOByG2+3G8vIyHA6H8HxaLBYUFRWhsrISCwsLmJ+fh8vlwuLiIqLRKP7wD/8Q9fX1GTuzZZOfn4/W1pKGJFMAACAASURBVFZMTk5iZWUFBoMBdrtdLMocDgcKCwszikDJLpII9Hq9okhRVVcr+j0eT0ZBoRwBq62txf79++F2u+H1epFIJLC8vCw2x1BVFSdPnoTf7xcOkYaGBtTW1gpPrVarRTAYFPMR2XCKRlCUS/a2plIphMPhjLZd8hjl1Bvy3lKhLAnVjdR29F1tzSobIfpZUVa3O+OG4UwuIW9PClzOx6aVLoA1EzWF0n/5y19iZmYGX/ziF9Hb2wuj0YjR0VGcP38e8/PzSCQSuOuuu1BRUYGCggKxciZjQoKUxCWJYyAz75RCVRS1oAIpudWVLFaz96Gm42hhqdPpEIlE4HQ68dJLL+HEiRMwGAx48MEHsXfv3owtCGmrVTKcsjeCQr4U/pUNrNwZQM5Z49Dv+wd9L3IOK/0eCoUwOjqK/v5+aLVa2Gw2RKNR2Gw2dHZ2wmQyiYktGo1iYWEBZ8+eRX9/PwwGA2677Ta0trbCZDKJfMFEIoFAIIC5uTn09fWJljujo6OYmZnBtm3b0NraCp1OB7/fj+HhYYyMjECn08HhcKCgoCDDY0RczUvGbDyKi4sxOzsrbOrS0hIWFhbQ2dkpCvFUVRXtn2j760AggHQ6jfPnz2NqagpVVVVXtSdGoxGdnZ3wer0YGxtDKBQSUd/p6WmcOXMGTU1NwpFAKVh0Pa6srMDn84lNW4DL6Y8ytABPpVIwm82oq6tDb28vpqam4PP5kEgkxFasOp1O5OHqdDo0Njaivb0d1dXVYrFHc4DsPJE7dci7LQJY41QgR4NcmEUCnCJrJpMpo8drPB7PSBH7qPOO2loR67WMoFXAlfJNGOZ6IHezkKMEcjiGWkNR0+hwOIxz585haGgIe/bsQXd3NxYXFzE1NYXJyUkEg0FUV1ejsbERTU1Na3KJAAgDpNPphCGjv62XiyiPhY6TRSOQWY1PApLuO3o9jWZ129mRkRG8+eabOHr0KFRVxV133YWdO3eioqJCiGB6Hnlwgcv3Mo2NzkWfJX2GNE65swK9JnklmPcP2a6Gw2GMj49jeHgYJpMJZWVlooF5eXk5iouLxXcTDocxNzeH8+fPY3JyEkajET09Peju7hbh+kAgAI/Hg/n5eczPz2NxcRFOpxPNzc0YHByE0+lEJBJBWVkZbDYbQqEQRkZGMDg4iMXFRRQVFYnJU/ZmZefasmi9MSgvL8e5c+dEZMbtdmNmZgZ+vx8VFRXi2jQYDCgqKkJ5eTnsdjucTieSySSi0SgmJyfR1dWFaDR6RVui1WpF7qhOp8Ps7CxcLpco4BoaGoLb7UZJSQlKSkrgcDhEE315lym5IEu+Ztc7H+2mVV1djeLiYoTDYdHpgDokUa5ofn4+Nm3ahPr6epF6RsdQfYBs90kYy0VUVFdANptEqJw2QMfKxa8AxNaztKHBRkrTekcxm/W+TJrESPGzUWJyCTIINOHLQhKAMBpkeILBICYmJvD666+L8Orc3BwGBgYwNzeHdDqN+vp6bNu2DR0dHWsmaDoHGRIK6WSHcMjIkDCVF4F0XLYhpdem8C2JRCqMAoBAIICxsTGcPHkSR44cgdPpxIEDB/AHf/AHKCoqWrMjDIAMUUyfD63myWtMn5MckpbfuyyymfcPWfBRKsn8/Dzm5uYAAC0tLRkTZF1dnchHpd6ofX19WFhYgMViEd0rqGk6CVpajC0uLkKr1aKqqgplZWV488034fV6AQDj4+NIpVJYWlrCmTNnMDs7i4qKCjQ2Nor91OWOE8DabhjMxqeioiKj4Mnv92N2dhZOpxO1tbUZrZnsdjsqKytRUVGBiYkJAKsezeXlZSwvL6OiouKq1e0GgwFlZWVCsFG+aTqdxvT0NCYmJmCz2VBfX4/Ozk7U1taKXZ/I0UALbbKB8hbeqqrC6/ViaWlJeC5DoRBMJhNKS0vhdDoRCoVEvq48Lsp3paJ06psqbz5A5yY7S0WRsVhMdDowm82icA1Ahr2X7TDNDbTFaygUQigUgtvtht/vFwJ/I/COUwKyBSlNquTW30itE5iPPpSQDlzekUfeQYqEGOUt0daSXq8Xd955JyYmJnD06FEsLS2hra0NmzZtQnV1NRRFwcrKCkpKSjJEm9xOShaBZJyAzN2iKD1BbnslV8bKhVdyhwFZzAKXi8VOnDiB48ePY3p6GqqqorS0FJ/5zGdQXFws2mvJIX0AIj81O3JC6RSyt5c+L0phkIsxKXVBHjfz/qDRaEQrqoGBAZSXl6O7uxsGgwFHjx6F3++Hw+FAfX29SEVZXFzE4cOH0d/fj8bGRnR3d6O1tRUWiwXRaBSBQEAI2tnZWcTjcTG5d3R0YHZ2VlyLlP86NTWFcDiM+fl5mEwmHDhwAJ2dnaIymyZeWsDIBVycLnJj4HA4YDAYhHCMRqNYXl7G5OQkOjs7YTabReTGaDSKXNbCwkLRkzUUCmF+fh5NTU1XPA85HvLy8sSOmzqdDi6XCyMjI/D7/VheXkYqlcL8/LwoSsqeB+Q0K9oxi0gmkxgbG8Px48dhNpths9mECLdarRmtDeXrXK/Xo6mpCYWFhcL+031BglPupEDFaS6XC5OTk0ilUqirq0NJSQlsNhvy8/NFMS+dj/6XQ//0eXu9Xvh8Png8HoyPjwv7cEMIViJ7QqOciXQ6LfIzGCaXoNATkJl0TkVPdIxGo8H4+Dj6+voQDAbx0EMPYWBgAC+//LLwhjqdTszNzcHj8UCn02H37t14+OGHRbW9fM5oNCombaPRuG7kQf5bIpHIaHZNO6tQDiz11yPBKLcMSqVSuHDhAp588kkMDw9Dp9OhqKgILpcLf/M3f4PCwkLhdTOZTOKepfuV+gdSRaq85Z+irG51KLdgofPT50rHUD4k7XXNXDvy9+T3+zE+Po7Z2Vls374dJSUlcLvdmJ+fRyQSgcVigd1uh6qqWFxcxNNPP42+vj6Ul5ejo6MDDQ0NAID5+XkEAgFMTExgampKpMs0NjZi06ZNyM/Px8jICM6ePYuGhgaMjo5icXERsVgMeXl5KCoqQigUQk9PD7Zu3YrCwkIYjcY1qSNEdqiS2djU1NSgvLwc0WgU0WgUyWQSHo8HFy9exI4dO8S1QnakuLgYnZ2dcLlc6O/vF17BmZkZ+Hy+qzrBaPFvNptRXV2N8vJyXLx4EePj40gmk8LjSgs0l8uF7du3o7S0VDjYyN6ReJXbPyWTSczMzODIkSMIBoPIy8sTi/XZ2VkEAoE1CzISrNRtxmKxQFEU5OXlwWQyiZC+HOlaWlrCyMgITp06hcHBQaiqiltuuQW7du0SY1VVVXhn5RQssreU1hUMBjE9PY2BgQHMzs5iYWFBtO/aKLyjLgHA2h10yEMUDAZhsVgy3OkMc72JxWLC+58tGim3h3qUvvnmm+jt7cV3v/tdFBQUoLW1Ffv27RMNn6nqcnl5GadPn8a//uu/wmq14nOf+xxsNpswfjJkAMljSvdHJBIRE7zZbM5oGg2s3mdUOCPnfMnHAKs5UY899hheffVVRKNRlJeXQ1EUhMNhfO9730Ntba0QCxSSkpP86TG5TyFwWRhTSy7y2pEHmQylyWQSgjoSiYiQ8EYyjtcLWrDInvBwOIxIJAKNRoNIJIIzZ85gbm4Ovb292LZtGywWC5xOJ5566iksLi7CYDCgu7sbRqMRQ0NDWFhYgNvtRjqdRmtrKwwGA3w+H26++WZUVlbC6/Xi97//PSKRCHbu3AkAGB0dBQDhoZmenkZ1dTXuu+8+kWaS3UJL7iTB3Fg0Nzdj165d8Pv9cDqdSKVSCAaDOHfuHE6fPg2DwQCbzSbskF6vR0lJCZqamjAzMyPs19jYGCYmJtDZ2YnKyso15yFnAHkeaUFdUVGBtrY2uFwuoU/C4TACgQCWl5cxMTGBXbt2ifxOSreh4sT5+fmMbkhk+8hLS5A9lTUREQgE8NZbb2Fqago9PT3YvHkzWlpaRC9WnU4nxKvX68Xw8DCOHTuG06dPw+VyCbFttVrR3d0tOrTQeWmbV0oTolzfdDqN/v5+vP7667h48SICgQDy8/NFcdtG4W1TAtZbRZAhpYm8tLR0Q30ozEcfEqtA5u5PqqqKPaAPHTqEU6dO4ZZbbsHHP/5xFBYWQlVVVFZWiobqJpNJhI4KCgpQWlqKaDSK3//+93jggQcy8pCAzBA+bbcnT+gWiyWjiTYZwuwCLlVd7cdKHlciGo1icHAQjz/+OJaWlnDvvfciFovh7NmzKCoqwhe+8IUMsUqhXVlA0BgTiYTYAIDOSYYagBClsgeWHo/H46L6NrsAjLk2KGxKE2JhYSGqq6sxMzODVCoFn8+Hvr4+GI1GURAVi8WwsLAAq9WKsrIyrKysoK+vDyMjI8jPz0dpaSl2794Ni8WC1157DSsrK6J3qsvlwtzcHIqLi9HT04NoNIqzZ88iHA6LIpVIJIKSkhLs3r0bBQUFYoEid5ggsiuYmRsDi8WC2tpa2Gw2uFwusbhdXl7GCy+8gHQ6jZ07d8JqtQobFI1GhaagXFSXyyW2S70SlONJdQFkP7ds2SIEKXUgIOE8OjqKZDKJvLw84SElwbqysoJAICBeX6fToba2Fl1dXYjFYpicnEQ8HofJZEJeXl5GO8FQKCTaWaVSKYRCIUxOTsLn82Fqagrt7e3o7u5GZWWliHI5nU5MTk5ifHwcU1NT8Hg8wiu9tLSEpaUl0buWirD8fr94r7QpQjKZhNfrxblz5/Diiy9icnJS9Peur6/Hzp070dPT84F/9x8W7zolgFYgdLHF43GUlZWJajiGyQUoR4hC68DlAqFoNIpnnnkGJ06cwJ133onNmzejsrJSiDo5rCn3cKXX6+vrE8n0cnspaiNCq18ahyyWKTeUjpUr7ykvab1JPhaLYWxsDK+88gr6+/tRWFiIb3zjG1hZWcHPf/5z1NfX46677kJtba1oV7SysoKhoSH09/fDaDSio6MDvb29KCwsFJ4xErPyGEmkUj5udmGW3CZFLq7hQpv3h+wiVxKmra2t8Hq9mJycxNLSEm677TbR/9RgMKCurg4OhwPRaBQNDQ0iVcBqtcJqtcJkMuHChQtYWFjApk2boNFosLi4iEgkgsrKSlRXVyOZTOLNN9/EzMwMCgoKYLPZYDabEYvF0NjYKF5Xvkfk3Gzgcgu59cQss3FRVRXFxcUoKyuD0+lELBYTtnB8fBwvvPACwuEwqqurUVpaCqPRiEAgIPpbh8NhkRZFBUPrQbZYbrlH11lFRQW2b98unAYjIyNiN6t4PI6FhQWRCkXXKTkk5AiWRqNBdXU1du3aheLiYgwODsLn86G0tFSkQVKEjLY6np2dFXY/kUjA4/EgFovB7XZjenoajY2NMBgMQpC73W7RTpFC++RQoX7I9D7l+YzGGwwGRYrPoUOHcPHiRUQiEZhMJtTU1KCnpwdtbW0oLCzcMG1H33Zr1uxKaOByqxVKrn766adx3333fYDDZJh3R3bBIOUrRSIRPPfcczh+/DhuueUWbN++HeXl5WJLSTndBUBG65BIJILFxUWMjY3hwQcfhNlszihOklv8kCGUjQyNRS5Ioe1Racxy4Ra1J1pcXMTFixcxPDwMn8+HW2+9FTU1NUilUjh69Cg2bdqEnTt3or29HVqtFn6/H8ePH0csFsPQ0BAuXLgAVVUxOjqKqakpPPTQQxktrijUT+ellb7VahWeBBIkNKaRkRGEw2Fs375dPE65Wcz7i0ajQX5+Pqqrq8U+6rQdMPVApZxAKu6wWq3Q6/WwWq3CY+7xeDAxMSGKMiiVpKamBiUlJdDr9XjttdcwMzMDh8OBbdu2IZlMYmVlBSaTCa2traKCWf6e5etdjiawYL2xSKfTKCgoQEdHBzweDxKJBILBoNguenp6GseOHRO7stEOUEtLS6KvKe2WFw6Hr7pDExVLAZevP0VRxE5aW7ZsQSQSQSQSwfj4uOi5GgwG1935kBxwBKVm0dxQUlKCeDwu+skaDAYRfXO5XMjLy8Pg4CAmJiYQCoVEnmwoFBKFVfPz89Dr9QgEAqKVIr0Huc1WIpEQHmL6mVLHKGJHXtzJyUmMjo6KfrTU6WPnzp3o7u5GeXk5TCbTjSFYs5Er1FRVxYULF0TuxO7duznBnskpyLtKxsDn8+H8+fM4cuQIWlpasHfvXpSUlIjtUYHLrZ5oQpa9jIuLizh58iRMJhP27NkjPE20G4nH40EwGERjY2PGQi87vzWRSMDv94vqaprs5TZYiUQC586dw8rKihAZBoMBvb292LlzJ/x+P5599lloNBp8/OMfR1tbG4BVj8L58+dx7Ngx2O12eDwelJWViajI1NQUBgYG0NnZCZvNJoQ0fT5zc3OiddLtt9+eEV1JpVJYWVkRBQLFxcXYunWrEN1yxSzz3sn+zGniMhgMmJiYwOLiIm655RaUlZWJgjeNRiMK7AwGA6qqqkRaCYUUk8kkXC4XQqEQ5ubm0NDQAIfDgcbGRlitViwvL2NmZgZ2ux09PT1obGzE4uIizGYzCgoKUFdXJxZ2wJUFaXY+K3PjUFRUJNJK0um0EFLkLKDdqWiRK2/cQnaSipeuVBdD9jEWi2XkedPPer0e1dXV6OnpQTAYRCgUEjm18oYo2X2us6F7ijbHkHeRovEnk0mxQQF1LaBOBXJLukQiAa/Xm9HDOruXtbzwCwaD4p9cQAxAbMowNDSEoaEhzM3NiRQHu92OrVu3YsuWLaisrNxwqZrvaqcrILP1zdNPPw2dToeKigrk5eVlrFAY5npCYpVW1oFAACMjIzh69CiKiorwyCOPCC8UGS8StyRYyXiQUBsYGMDRo0exY8cO0YifQj+UtB8KhYQXClg1pHILlXg8jkAggIWFBTQ3N6O5uVl4Osm4kYH9zW9+I5Lwt27dih07dqC4uBgejwd9fX1iN67q6mrRVP7kyZPo7+9HQUEBjEYjWlpa0NDQAEVRRCjqN7/5DYqLizNywHw+H4aHh/HWW2/hwoULaGxsxL59+0RLq1gsJnKlnnzySeh0OrS0tIjQFG0fmL0fN/PeyM6vo60kT506hdLSUmzbtg3FxcVrvNtyPh9NiPLPctFcV1eXCBlSNKC0tBT19fXYtGkTTCYTwuEw8vLyUFFRIbxiVBAmzw/Zv7NYvfHQ6/UoKioSHUlooTQxMSEELIkwgkQaXbuqurqtaWlpKQoKCtY9D9ksSqmi9Cp5UwCr1Yrm5maR63nixAksLy+Lx7NbCNrt9jVdX+TUA6PRKPq4EvF4XAjl2tpaFBUVwWq1Ip1OY25uDn6/H7FYTHiDs3tqU6tBQu5aQFvF+v3+NZ0F3G43RkZG0N/fj7GxMYTDYdFJoKmpCXv27EF1dbWoodhIToR3LVhphRCLxfAf//Ef2LJliwhLMUyuQIsnCpEfPnwYhw4dQmdnJ771rW+JZtAUdpIXYnIeJuW8DgwM4M0334TNZsODDz4o7gOv14vnn38ey8vLqKurQ2NjIw4dOiS8AIFAQOzAQj3yZmZmEI1G8bGPfQxf+9rXYLPZEI/HsbKygvHxcZw7dw7Hjh1DMpnEJz/5SezZswclJSVIp9PweDw4fPgwxsfH8fWvfx02mw1erxeHDh3C0aNHkU6n8YlPfAI7d+4UBt/j8eD06dPo6+vD8PCwaIEErHYbCIfDOHLkCPr6+uByuVBaWioKymjv+PHxcRw/fhznz59HeXk5br/9dlRVVWF+fh5LS0u4cOEC8vLysLy8/GF+zRuaeDyO+fl5OJ1O+Hw++P1+hEIh3HfffSLUJ2/nSJ4pajFGRVEAxPaSdrsdDQ0N+MxnPoPGxkbk5+eL4pGamhp89rOfFXuZGwwGka9nNBrFIkzewEKuqs6GvEY8N9wY2Gw2kSZYV1cHi8WCoqIivPDCCxgdHRWiNbuyXo4w0SKbepmuBwlJuc+1qq5uW0xV+FSs2NXVJRbvfX19ohUciWSDwYCSkhLcdNNNYkMY+TwkFEn8UQ9qOdKg0+mg1+tRXFwMu92O6upqDA4OYnBwEJOTk/B6vWtC8jqdTvRaJSG/srKSkY9LhbGUrkC2+vz58zh8+DDGxsbg8/kArBbIFhcX48CBA2hsbMyok9hIuw++4xg+fYiUw/ab3/wGGo0G//iP/4gjR458YANkmPeCxWKBqqpYWFjAL37xC5w5cwbNzc34oz/6IwAQ1aPUYkQuiJIjBRMTE3juuecwMDCAqqoqfPWrX4XD4RA99H784x9jeHgYGo0G/f39WF5eFlvzGY1GnDhxQhQTEEajEd/85jfR09MDvV6PsbExPPfcc3jttdeQTCbhcDjw5S9/GTfffLM4XlEULC8v49ixYzh48CC+8pWvIBaL4Uc/+hGGhoYQDAaxefNmPPTQQ2hubhZe5SeffBJvvfUWPB4P0uk0Ghsb8a1vfQtlZWUIhUKYmprCD3/4Q8zMzAAAOjs78ed//udiK87h4WG88MILGBwcBAD09vbizjvvRF9fH/7zP/8TXq9X5FkBq+KYuTZo95z5+XkMDw8jFotBURScOHECdrtddLCgIg2aWCnUSbvjyJOvXq9HXV0d/vRP/xSpVEr0lQQu23aj0Qir1ZqRU221WjOOeTdQ9IIF642BRqMRhUjkmdTr9aisrMTLL7+Mo0ePQq/Xw+fzicgXXbuKosBms2H79u3Yv38/Ojo6MhrmrwdtaQqsdoWRm//T69vtdjgcDlRWVuKWW27Bc889h+HhYQQCAWg0GhQVFaG9vR0HDhxAZWVlRjoLLdiy2/5RRIyOSafTMJlM0Ov1sNlsKC0tRWtrK3bs2IHz58/j9OnTGBkZydhoJT8/H93d3aivr0c0GsWxY8ewsrIiHl9ZWcHY2BiMRiPsdjsCgQC8Xi9WVlbEbnPUq9ZgMCA/Px+f+MQnsHv3bpjN5ow0gng8nlEo+1HmbQWr3FiXVkJutxvf/e53sXnzZpSWlq6pGmWY643L5YLT6cRvf/tbhEIh3H333di7dy/y8/ORTCZhsViEqCWPEa1oid/97nc4fvw4/H4/9u3bh9tvv12EfEZHR/GDH/wAgUAAyWQS27Ztw/79+1FfXw+bzSY8sF1dXTh48CAuXLiApqYmfPWrXxU7Zrndbvz7v/+72Pu6vb0dDz/8MKqqqoShJMLhMM6dO4e33noL7e3tePrpp3H69GkAQE9PD/bt24fe3l6YzWZMTU3hlVdegdPpxMDAAFKpFCoqKnDbbbfhk5/8JGKxGN544w28/vrrePHFFxEMBvHAAw/gvvvuQ3V1NZaXl3Hy5EkMDw/j1VdfFSGnwsJCLC4u4ic/+QlSqRSam5tx4MAB2O12PPXUUzh+/HhGaxjmvZFIJOB0OnHy5EmYzWakUikMDw/DaDTigQceEAVSsqdTDtNfSVxqtVrYbLarnvtqz2eYq1FQUJDRVSSRSKC8vBzNzc3o6OjAgQMHMD09LXLzgVWhabVakZeXh56eHnR3d6OgoOCq/UNp8fVuaG9vx969e/GlL31pTQRNbqslI29yQO+H7g1KKZAjG7RRjMlkEkKzrq4ON998MzweT4aOoqItvV4Pj8eD6elpDA0NicedTieOHTuGmZkZWK1WuN1uRCIRkRpEqQYajQY2mw1tbW24+eabxesCl9N0qHfzRuBtuwTIK45kMonz58/j+9//PgwGA/7u7/5OrKhYsDK5xOTkJH7xi1+gra0N+/fvR21trVh50oqZxCnlj5KBWl5exnPPPYfx8XHs2bMH9fX1cDgcsFqtWFpawrPPPou+vj7k5eXh/vvvR3Nzs8i5ojynWCyGZ555BocPHwYAfO5zn8Pu3btRWFiIhYUFvPrqq3jppZeQn5+Pe++9F21tbSgqKoLD4RC5TSR6abVMfU+pZVU6ncbnP/95dHV1QafTidYqJpMJzc3N6OnpEQVbJpMJ8/PzeOyxx0SPwKqqKuTn52P//v2oqKjA8ePHcfDgQbjdbiwuLop8yIqKClEwUFFRgT179qC2tlZ8jq+//jpOnjyJqqoq9Pb24uTJk9fzq//I43a70dfXJ8KBLpcLiqJg3759qK+vz3AQyMWB2UKThSfzYVJcXAwAa8L9qqqipaVFdJ2Qq+Ozw+4Uape9muvxbq9tuaj2nUIpA/JWrvF4XETiZPtMOapknyORiOjRXVFRgdLSUvGeSNjG43GxIQil5tCGNnTf+3w+0fmDxCzlxOp0OpSVlWHLli2444474HA4AFzeiXQjdm55x4I1nU7j1KlTeOKJJzA/P48f/OAHaG5uFit9hsklDh48iB07dqC9vR0Oh0M07M9uOwVc7gSwsrKCixcvCpF5xx13oKOjA4WFhdDr9aLo6MiRI6ivr8cdd9yBxsZG2O32jJymSCSCX//61xgaGsL27dtRVVUFm82G+fl5vPHGG/B4PCIXsa6uDm1tbSgpKVlTFUvGkPK1Wltb8cADD8Dn82FychLt7e2IRqM4efIkvF4vIpEIrFYrNm/ejK6uLhiNRtx6660YHBwUPQhtNht6enrQ0NAAu90ueh6mUikUFRWJz8jtdkNRFNTV1cFms2HTpk1obGxEU1MTysrKYLfbEQwGcfz4cbzxxhuorq7Gnj17NsxK/npy8eJFTE9Po7CwUPRqrKqqQktLi9iPHcgUq8Da/q0M82Hydjrgo1axTsIxnU6LrgXUzJ92I6RWXOTFpHZUhLyzIHXtIBEsbwxDfZJ9Pp+Ym2KxmEhtkHsd0+tUVVXhpptuwq5du9Da2oq8vDzRahGAmOs2Em8rWFVVFTufPP/885icnMSnP/1pHDhwQBjPjfahMB996uvrsX37dhQVFQG4vK+53HiZDNDMzAxmZmbgdrvh8Xhgs9nQ3NyMzZs3Z+T6abVaFBcXY9euXejp6cGWLVvEPUBGhnq4HjlyBIlEAtu2bUMoFML09LQI6zQ1NaG0tBTd3d2i8ppCUuvlJJKILC4uhslkwvnz5xEKe+vhvAAAIABJREFUhaDX6zE3NyfCT7W1tSgrK0NLSwscDgc0Gg327t2LhoYGeL1eUYhQU1ODmpoaKIqCQCCA+fl5UXwArApuOm7r1q2ityEJb2C1qO3IkSM4deoUampqsGXLFnR1daG/v//6fOEbiIWFBfh8PhH6KykpQWtrKwoLCzPCfJRLx0KVYT4YqMtAdhifOiBk97AmqDZCvj9lb6fsRTaZTCgtLUVlZaXojywvQrP7dBsMBpSXl2PLli3Yvn276PRhNBrFHEdjotfYKLxtDitN5m+88Qbm5+exdetWPPzwwyIVgGFykXvuuUfcwLTSlG9m4HK7n9HRUQwODkKj0aCqqgqf+MQn4HA4MkJSqqrCYrGgt7cXnZ2doiCAVs600o7H42ILv3A4jLNnz8Lv90Or1cLhcKCzsxO33347CgoK1oSpyLBRakK2EKHHtFqt2DigqKgI9fX16OzsRHV1Ncxms3g9RVHQ3t6O9vZ2YTjlDQMA4OMf/3jG50GJ/cXFxejq6sKWLVtEEY/cW3ZlZQXnz5+HVqvFXXfdhcbGRpjNZpw7d+6D/FpvCJxOp2gVVlNTg7a2NrS0tIiCErous1vWcKN+hnn/yHbGkViUN4Ihe0xdOSiflXLPKZQv23pKLyCHhN1uR01NDbq7u+HxeOB0OhGNRjNaYdH58/Pz4XA40NXVhR07dqCjowNFRUWi6Ay4LFApze2GEaw+nw/PPPMMTp8+jZaWFjz88MPo6upak9fBMLlGXl6eaF2yXhN/o9Eodg7R6/Xo6OhAR0eHaBckQwaHGuSTKKScJnrdSCQiKmDvu+8+/PSnP8Xhw4exefNmHDhwQHgrjUajyKWlkD+dB1g1lPF4XBgbqganArHu7m78xV/8BaLRKIqLi2GxWDJavZBophQDOSRFoje7JyCJ3OLiYtx///0ZDbKzF6Y0zrvvvhtVVVWwWq2iKpg3D7l2hoeHEQqFUFZWJgpR7Hb7ml0HZQ88wzDvL1qtVghBeYtUatJPdpU6clBqAPVtlYusAIjdu+h3KuLKz89HXV2d2EGur68PCwsL8Pv9Ir1Ap9MhPz8f7e3t2Lp1KzZt2oTa2lqRjkb9kXU6Hcxmc0YB8Q0jWL/zne+go6MDf/VXf4WKigoAyPhS5MRjhskl1ktVoTYkBCX533nnne/69SnHiBZvJFiXl5cxNzeHgYEBxGIx/PCHP0Rzc7PwjlH/11AolBHazc7/0ul0oqehyWQSmxvQeyouLs4QmiSa6d6kFT7tm00tYMgLTIaWtv2TjRoJX7vdLvocyv8AoKmpCcFgEHl5eeL8tCMTc20EAgHo9Xrs3LkTnZ2dos+17Dkn74m8FepGmpgY5npDIXsqOCcbn0gkYDabM3oTU+qAbCMpT5V2+QIg+rHKu3Lp9Xrk5+ejsLAQ5eXl6O7uxoULF3Dx4kUsLS1BURTx95tuugnl5eXIz8/PeB3aTctmswkhTU4H2mZ8I6CwkWMYhmEYhmFyGU5CZRiGYRiGYXIaFqwMwzAMwzBMTsOClWEYhmEYhslpWLAyDMMwDMMwOQ0LVoZhGIZhGCanYcHKMAzDMAzD5DQsWBmGYRiGYZichgUrwzAMwzAMk9OwYGUYhmEYhmFyGhasDMMwDMMwTE7DgpVhGIZhGIbJaViwMgzDMAzDMDkNC1aGYRiGYRgmp2HByjAMwzAMw+Q0LFgZhmEYhmGYnIYFK8MwDMMwDJPTsGBlGIZhGIZhchoWrAzDMAzDMExOw4KVYRiGYRiGyWlYsDIMwzAMwzA5DQtWhmEYhmEYJqdhwcowDMMwDMPkNCxYGYZhGIZhmJyGBSvDMAzDMAyT07BgZRiGYRiGYXIaFqwMwzAMwzBMTsOClWEYhmEYhslpWLAyDMMwDMMwOQ0LVoZhGIZhGCanYcHKMAzDMAzD5DQsWBmGYRiGYZichgUrwzAMwzAMk9OwYGUYhmEYhmFyGhasDMMwDMMwTE7DgpVhGIZhGIbJaViwMgzDMAzDMDkNC1aGYRiGYRgmp2HByjAMwzAMw+Q0LFgZhmEYhmGYnIYFK8MwDMMwDJPTsGBlGIZhGIZhchoWrAzDMAzDMExOw4KVYRiGYRiGyWlYsDIMwzAMwzA5DQtWhmEYhmEYJqdhwcowDMMwDMPkNCxYGYZhGIZhmJyGBSvDMAzDMAyT07BgZRiGYRiGYXIaFqwMwzAMwzBMTsOClWEYhmEYhslpWLAyDMMwDMMwOQ0LVoZhGIZhGCanYcHKMAzDMAzD5DQsWBmGYRiGYZichgUrwzAMwzAMk9OwYGUYhmEYhmFyGhasDMMwDMMwTE7DgpVhGIZhGIbJaViwMgzDMAzDMDkNC1aGYRiGYRgmp2HByjAMwzAMw+Q0LFgZhmEYhmGYnIYFK8MwDMMwDJPTsGBlGIZhGIZhchoWrAzDMAzDMExOw4KVYRiGYRiGyWlYsDIMwzAMwzA5DQtWhmEYhmEYJqdhwcowDMMwDMPkNCxYGYZhGIZhmJyGBSvDMAzDMAyT07BgZRiGYRiGYXIaFqwMwzAMwzBMTsOClWEYhmEYhslpWLAyDMMwDMMwOQ0LVoZhGIZhGCanYcHKMAzDMAzD5DQsWBmGYRiGYZichgUrwzAMwzAMk9OwYGUYhmEYhmFyGhasDMP8/+y9eZCc1Xnv/3l7pme6e3p6mX3VjKQZLSMstCEJgVjtCJBxDNgGO4ntmzg3vkXsG9e9sYtcl/Or69ixHVKxncXLLTsODrbBFoRNgFgESEgCCdCOpNHsa0/P0t3T+/b+/ph5jt4eJJBtbcD5VE1p1NP9vqff97znfM+zHY1Go9FoLmm0YNVoNBqNRqPRXNJowarRaDQajUajuaTRglWj0Wg0Go1Gc0mjBatGo9FoNBqN5pJGC1aNRqPRaDQazSWNFqwajUaj0Wg0mksaLVg1Go1Go9FoNJc0WrBqNBqNRqPRaC5ptGDVaDQajUaj0VzSaMGq0Wg0Go1Go7mk0YJVo9FoNBqNRnNJowWrRqPRaDQajeaSRgtWjUaj0Wg0Gs0ljRasGo1Go9FoNJpLGi1YNRqNRqPRaDSXNFqwajQajUaj0WguabRg1Wg0Go1Go9Fc0mjBqtFoNBqNRqO5pNGCVaPRaDQajUZzSaMFq0aj0Wg0Go3mkkYLVo1Go9FoNBrNJY0WrBqNRqPRaDSaSxotWDUajUaj0Wg0lzRasGo0Go1Go9FoLmm0YNVoNBqNRqPRXNJowarRaDQajUajuaTRglWj0Wg0Go1Gc0mjBatGo9FoNBqN5pJGC1aNRqPRaDQazSWNFqwajUaj0Wg0mksaLVg1Go1Go9FoNJc0WrBqNBqNRqPRaC5ptGDVaDQajUaj0VzSaMGq0Wg0Go1Go7mk0YJVo9FoNBqNRnNJowXr22AYxs8Mw/i7c/U+jUaj0Wg0718Mw4gahrFg9nelHQzDuM4wjMGL27pLm+KL3QCNRvPexzCMnwGDpml+9WK3RaPRaC4Wpmm6L3Yb3q1oC6tGo9Fo3lMYhqGNMRrNewwtWC0YhrHSMIzXDcOYNgzjAcAx+/pnDcPYOee9pmEYbac5RrlhGNsNw/i+McMSwzCeMQxj0jCM44ZhfOICfR3NJY5hGL2GYfy1YRgHDcOIGYbxE8Mwag3DeHK2Dz5rGIZ/9r0fMQzjiGEYIcMwXjAMY+ns618xDOM3c477PcMwvj/7u3f2uCOGYQwZhvF3hmEUzf7ts4ZhvGwYxj/NHrfbMIwNs68PGIYxZhjGZyzHLTUM417DMPoNwwgYhvFDwzCcs3+7zjCMQcMw/tfs50YMw/hvs3/778AfAV+edYc9diGur+bdiWEYS2f7eGi2z39k9vUXDMP4nOV9BePy7Jh8t2EYnUDnRWi65n2MYRj/zTq2GYbRaRjGry3/HzAMY8WZtIPmndGCdRbDMEqA/wJ+DlQAvwbu+C2PUQk8B7xsmuYXARfwDPALoAa4C/g3wzA6zmHTNe9u7gA+BCwCbgWeBP4GqGbm+fyiYRiLgF8CfzX7+lbgsdk++yvgFsMwygFmxegnmOlzAD8DskAbsBL4A0BN+sA64CBQOfuZXwFXzL7/j4F/MQxDXFjfmm3nitm/NwJfsxyrDvDOvv5nwL8ahuE3TfPHwP3Ad0zTdJumeevvfrk072UMw7ADjwHbmBkzvwDcbxjG4rM8xEeZ6dN6jNVcaF4ENhqGYTMMowEoAa4EmI1ZdTMz1mp+R7RgPcV6wA581zTNjGmavwH2/hafb2Cmw/7aEqf3YaDXNM1/N00za5rmG8AW4OPnsuGadzX/bJpmwDTNIWAH8Ippmm+YppkEHmZGZN4JPGGa5jOmaWaAewEnsME0zT7gdeC22ePdAMRN09xjGEYtcAvwV6ZpxkzTHAP+iZmFk9Az2z9zwANAM/B/TdNMmaa5DUgDbYZhGMB/B75kmuakaZrTwDfnHCsz+9mMaZpbgShwtkJDo4GZcdgNfMs0zbRpms8DjwOfPMvP//1s/0yctxZqNKfBNM1uYJqZBf01wNPAsGEYS4BrgR2maeYvYhPf9eg4n1M0AEOmaZqW1/p+i89vZmaC/qHltRZgnWEYIctrxcxYcTUagIDl98Rp/u9mpm+qvmiaZt4wjAFmLJkwYxn9JHAf8ClOWVdbmFmEjczoTWBmkTrwNufHNM3TtaGaGY/Ba5ZjGUCR5b0TpmlmLf+Pz35WozlbGoCBORN7H6f6+jsx8M5v0WjOGy8C1zHjgXoRCDEjVq+c/b/m90AL1lOMAI2GYRgW0ToP6AJizEzWABiGUXeaz/8/wA9sNQzjJtM0Y8wMni+apvmh89t0zXucYeAD8p9Za2czMDT70q+BfzQMo4kZS+uVs68PACmgao6Q/F0YZ0a8Lpu1Bv+2mO/8Fo2GYaDZMAybRbTOA04wI2ZdlveebhzW/UxzMXmRmdCu+cx4oELMxO9fCfzLRWzXewIdEnCK3czE+n3RMAy7YRi3A2tn/3YAWDYbMO0A/r8zHOMvgePMxBc6mXFlLTIM409mj2k3DOMKSZjRaM6SB4HNhmHcOBvj97+YEaK7AEzTDAIvAP/OjIv/zdnXR5iJBfxHwzA8s7FVCw3DuPa3bcCsePh/wD8ZhlEDYBhGo2EYm87yEAFgwW97Xs37jleYscx/eXa8vI4ZAfArYD9wu2EYrtmklT+7eM3UaE7Li8D1gNM0zUFmwrxuYiZH4I2L2bD3AlqwzmKaZhq4HfgsMMlM3OBDs387Afxf4Flmsk93nuEYJjNxfoPAI8zE9P0BM3F+w8Ao8G2g9Px9E817DdM0jzOTAPXPzFg6bwVune2zwi+AD3IqHED4NDPB/0eBKeA3QP3v2JSvACeBPYZhRJh5Hs42RvUnQMds5vd//Y7n17zHme3TtwI3M9PX/w34tGmax5iJv04zs/j5D2YS+TSaS4ZZrRBlRqhimmYE6GYmETt3Mdv2XsAoDNnUaDQajUaj0WguLbSFVaPRaDQajUZzSaMFq0aj0Wg0Go3mkkYLVo1Go9FoNBrNJY0WrBqNRqPRaDSaSxotWDUajUaj0Wg0lzRvu3GA0+k0s9kspmlis9koKSnB6XRSUVHBX/3VX/HRj34Uu92OzWbDbrdj2QHnzCcsLsbhcJyzL3Cu2b9/P4888sjFbsZ7ir/92799545x7tHlL+Zgmia5XI5IJIJpmtjtds5UJSSXy1FcPDM85PN5DMPANE3y+bx63WazkclkKCoqUp8xTZPi4mLC4TB+v59kMonNZsMwDPVvNptV587lcuRyM9VeioqKyOfzJBIJnE4npaWl5PN58vmZ+vHZ7MzeByUlJdhsNtU2QB03n88XjEXJZBKHw6HansvlkDHN4XCwc+dO/vZv/5a2tjbuvPNO1q5di8PhoLi4mGw2S1VV1QXvu9Fo9C03JZfLEY/HGR4e5tlnn+Whhx6iq6uLeDyOYRjY7XZKSkooKyujvb2dJUuWcPnll7Nw4ULq6+vxer0UFRVRVFT0jmO1aZqk0zMV02R8l35yNmP82TI8PMzOnTt5/fXXGR4eBqChoYFVq1axZs0aWlpa1H3+bc9dUlJCSUnJOWvr+eTmm28GYP369ef0uBdh3L0kxtxUKsUf//Ef88wzz9De3s6nP/1pvvCFL5z385qmydq1a9U4pfndeOONN87Yb99WsLrdbr785S/jdrsxTZOBgQF2797N7t27uffee/nVr35FLpfjW9/6FpdddpmayC4GuVxOTYoajebM2Gw2JRINw1A/VvGazWaV2Mvn8xQVFSnhkslksNvtwMwCVIQqoN5XVlamjlNUVERxcXGB8JHz22w2bDabGuRl8SvvyWazJBIJXC5XwfgiQlheE0Eq/8pYkM/nSaVS6jwiwGKxGNFolOnpabLZLP39/YyNjZFKpSgtLS049sUkn8+TyWSIx+OMjY1x6NAhXnvtNXp6epieniaXy6nrmsvlSKfTHDt2jLGxMQYHB1m3bh3Lly+nqamJ8vJyXC4XRUVFBffdimmamKZZ8De5rr/v2CrHlv43PDzMoUOHOHLkCMFgUL02NjZGNBrl9ttvx+12F7TlTKI1l8uRz+fVtTjdvZO+AKhFlrTJ2vdFsA8PDzM0NMT4+DixWIx8Pk9paSler5eWlhbq6upwOBzY7faCxZ0sogDV7+W40k55TgzD4Fvf+havvfYaAwN6V9lzgd1u56tf/SrLly9n27ZtPPLIIxdEsGrOP+8oWDdu3IjP58M0TYLBIK2traxYsYI33niDXbt2kcvl+OlPf8pnP/tZli9fTnFxsRrwLhT/+Z//yYkTJ7jqqqu47rrrfq9z69WR5kISjUYpKipSQkvI5XL8+te/Zs2aNdTX11NSUkJxcTElJSVqYo5EIkoYzhUgpmkSj8dxOBzq+CLaDMNQotMwDLXYEzGay+VwOp3qORaBI5imqaykImbglPgElHWrpKREHV+ErYgFwSpS4ZRVT84tx7J+R2mTtFEsgiIEANLpdMGx5Mdmsymra3NzM/l8nqmpKSVMPB5PgYX5YiAiKpvNEo/HGR8fp7Ozk9dee42uri6i0agaq8RyLJ8Lh8MkEgkymQwul4t8Pk84HKa1tZWGhgZ1/a3XUq6ZdSFjbUs2m1XiWBYgv+8YH41GCQaDjI+PE4lElHU9FotRUlLC8uXLWbBgAU6nU513bl+U9sni5u2sqplMhkgkou6/WPTl2ZPnL5PJEI1GOXjwIAcPHmRoaIhYLAaAw+HA5/PR1tbGsmXLqKiowO1243K5KC0tVddQLNnSP2XxJPdK3mOz2ejo6GB0dFQL1nOEzWbjsssuw+l0snTpUnXvNO9+3nZELi4uxu124/P5sNlslJeX09jYyFVXXcXOnTs5ePAg4XCYRx55hJaWFioqKmhqanrLhHS+eeCBB9i5cyc2m41169apQfh3QQZsjeZsEbGUz+eZnp7m+PHjRCIR5aKtr6+noqICp9OpJlvpnyIE5lpmQqEQ//Ef/4HdbsfhcODxeNQEmE6ncTgcxONxJWCtLnfDMJQ1yTAMtYi02+1v+1xYJ36rFc5qhRLRIm2ViRcoEMsiqm02G+l0ukBoyOetgtP6WXHHW4WRnF8sjul0GqfTqb6bHNd6nmw2W3DN8/k86XSaXC5HaWkp6XQaj8ejrMnDw8OMjIxQUVFBKpXC5bJuW3/hsF7rVCpFOBxmaGiIw4cPs3//fgKBgAprgFPCs7i4WIVRZDIZpqen6evrU/3SZrPh8XhUSIUsYqyeKbmvViEnxwqFQhiGgd/vx+fzqQXPXHH7TuEGuVxOCdPp6WmSyaTqD7lcjlAoxMmTJ9m3bx/FxcXKkimC0NqH557L+hzMPW8qlWJiYoLi4mIqKiooLS1Vz4r1OUwkEgSDQY4ePcr+/fuV5V1EaFlZGePj4yQSCaqrqykvL8fn8+H1epV13u1243a7AQqel7leAOtrmnNHUVERixYtYtGiRRe7KZpzyNsKVlmFSkyXy+VSD/7NN9/M9773Paanp5mamuLZZ5+lsrKSzZs3U11dfaHaD8DIyIga9DKZzO8lWDWa35ZEIkEulyMajbJ3715+8pOfcOLECSorK2lpaeGaa65hzZo1tLa2UlZWhmEYyjJaXFxMJpN5i2u8s7NT9WuxCIkrNZlMUlpaSnl5+VssTlZ3Y3l5OZlMBjhl/RQxJBZU+ZsID4fDoQSivF9c6iKqXS7XW8SmVXDKZ4qLi0kmkyQSCbLZLC6XS1llJRY2m82e1jUtAsEaRmCaJolEglAoRCQSoa6uDp/PRzabVcJWhIFYZkXYifU4mUwq6+nk5CRjY2Mq9rWrq4tjx47R0tKivl9FRcV57Dmnx7pwEOvqyZMnOXToED09PSoG2SpUHQ4HXq9XxQ2Hw2EMwyAUCilBJgYFj8ejxN9c5D5kMhlSqRS5XI5wOEx/fz8nT54EoKOjg8WLF6tF1Omsnqf7TiLU0uk0gUCA3t5ewuGwioN2uVyUlJQQiUQIhULs2rULh8PBZZddRl1dXYGos4pS63hv7ctzz59MJhkdHVXCvri4uCA0QK55LBZjZGSEkydPMjw8TDgcBlCCNZlMEovFME1TWVZ9Ph+VlZV4vV48Hg+NjY3U1tYWiFZr26z9WgvW88+Zrm8sFmNqagqn00llZaV6/UJ6iDVnz9sK1o0bN+J2u98SJwYUiEO3283evXspLi6mpqaGTZs2XVDBKIIaZgSA1b2oeX/yu04AVmvi6Sw1p6OoqIhcLsfRo0e599576e/vVzGXiUSCZ555hsHBQa655hpWr15dkHQo4k7cnRKH+N3vfpdMJsPKlStxu91qMk2n0wVxo6ezaImAEyFmFXxwygoFM8+xNXFHnh0RETabTbmVxZIs741Go5SUlCgLqghRsV6mUinS6TTBYJB8Pq8m9HQ6jd/vJ5FIFIQtlJSUKPEjoliOaRU8cs2Li4tJp9PEYjG1sLYKF7vdTigUIh6PF7hhJSa/pKSE5uZmvF4vg4ODdHV10d3drYTqxVr0iqUvHo8TDAbp7Oxk//79HDt2jKmpqYIktdLSUtxuN1VVVSxcuJDW1lYmJyc5cuQIkUhELXhCoRCBQICJiQkaGxuVyLOGA8CpmOR0Ok04HGZycpLu7m4OHjzIoUOHgBnrv9PpZN68ebjdbkpKSlS/OZ1QlH/lXsZiMQ4dOsSuXbsYGhoimUwq711NTQ19fX1MTEzQ2dmpXPw2m426ujrVd+c+m/JdzoRcz56eHjKZjBKrsnC0hmAkEgn6+vpUKIB4C+QcRUVFxONx+vr6ChIRy8rK1L1ob2+nsbGx4FqXlpaq++V0OlWfF7GsOT/kcjm1cLeOl/l8nh07dvD973+f9evX8+Uvf1n9zZrY+U7HzuVyWnNcIN5WsN5zzz2Ul5er/1tjccTa4/V6+eY3v8lTTz3FM888wze/+U1cLhcrVqzA5/Od9y8AqFV6NpstSAiZy/nIdNVcmiSTSSUA4ZTb1BqvKZnlkhghLkOJEWxubqalpUUJIesAJoLWbreTyWTo7Oxk165d9PX1UVFRwd/93d/R1tamBjSJI3z++ee5+uqr8Xg8AAQCAcrLy5W7v7i4mEgkQjgcpqamRgm4qakp9u/fz/bt28lms3zgAx/glltuwev1Kuui1YpqjcUWoSbhBMlkUgnap556CofDQXt7O1VVVRiGgdPpBGaEb2lpqbpW8ns6naakpEQJv3Q6rZKUZOK32+189rOfpbOzU1luS0tLaWpq4uabb+aOO+6gtLRUiWRxkYpgKCkpKXABm6bJ2NgYO3bs4Fe/+hUDAwO4XC7+x//4H1x99dX4fD51vyVOMJPJ4HA4lJXLKnhFlFkrFmSzWVKpFNPT06TTaTKZTIHV5UIh5w4Ggxw5coRXX321IBQAZuJ8/X4/CxYsoKOjg6VLl9La2orP52NsbAy3282uXbvUd0kkEoTDYcbGxlSCU3FxMU6nUy0UAPWMiLA8ceIEr7zyCgcOHGBkZASXy4XP56O1tVUZM04nfAVZdFhjOTOZDL29vZw4cYJQKKQWDzU1NaxcuRKfz8fu3buJx+McOXIEv99PVVUVHo9HLfZOd663C0fI5/NEIhEOHz7M0NAQiUQCu91OU1OT6mfSB+12O4FAgEgkouJi3W43fr+fsrIycrkcU1NTZLNZFU6STCbVvXG5XBw/fhyXy0Vra2tBKEFlZSU1NTVUV1dTWVmJz+dTC1LN+cfaPzKZDIFAgMHBQW688UbVf0QnyP2FtwpdgHg8zpNPPsljjz3GV77yFTo6Oi7wt3n/8baCVawgYj2BmcnD6XSSSCRUoHxLSwv33HMPra2t/Od//idf/epX+dGPfnTBBGs2m6WpqYnm5ua3jTvTQvX9w+OPP87KlSuVAJK4z9bWVmXVFGE2PT3NyMgIL730Ej/96U/fUiro4x//ODfddBMtLS1qMJP4PbHs7969m4cffpjKykq+8pWvsGbNGiWaXS4XU1NT7NixgwcffJCOjg6ampoA+MY3vsGNN97I+vXrcbvdxONx4vE4AwMD3HTTTZSVlXHgwAEefPBBdu/erc6/e/dufv7zn/PTn/6UpqamAoupWIDECikCzjRNhoaGuO+++/jLv/xLdu/ezXe/+13i8Tgul4ubb76Zz33uc5SXlyvhmUwm6e3tZfv27XR3d9PY2Mgdd9xBfX29igG0upez2Sx9fX18+9vfpru7m+rqaj71qU+RyWR44403OHbsGI8//jgbNmygtrZWCV1ZCEtSlojfZDLJ+Pg4yWSShx9+mIcfflhZGWOxGF//+tdpamrii1/8ImvXrlUxmoAS5+Xl5cTjcSWuYrEYx48f59vf/jaZTIZQKEQ6nSadTvPEE0+wc+dOnE4nyWRSWRUvJBJz2tXVxWuvvVYgVkX0LVy4kOuvv55Vq1bR2tqqYqQBvF4vMLNoe+ONN5icnGR8fJzR0VF6enr58JtTAAAgAElEQVQoKSlh3rx5eDwePB4PZWVlKqkPTmW2h0Ihjh8/zqFDh+jt7cUwDBoaGigrKyMejxfEdVoz4U8XVwqo2NVMJkNTUxNut5tIJKLEswi89vZ2XC4Xr7zyCqOjo4yMjDA6OkpTUxNer7dAAMs5rec5HdaQgEOHDpFIJPD5fHg8Hrxe71uSymRxU1RURGVlJR0dHaxYsYLW1lai0Si9vb288sorKiROFj8SXy1jyNDQkFowlpaWKsFfXV1NW1sb7e3t1NfXE4lEzmEP0pwNqVSKeDyOzWZj3rx5KiTrdMmW1r4lfX3Pnj088cQTBAIBmpqadFjHBeAd02BlEJwb6G6NF4tEIsyfP58777wTn8/Hvffeyz333MP9999PeXl5QWLG+UDcPdFoVFl/NO9vHnnkEZ555hkCgQDT09PAjJvH7/fzqU99irVr1yor6djYGI8++igPPPAA0WgUr9fL5z//eQYGBti6dStbtmxRZXZaW1sLLIkyEU5NTREKhWhsbGTZsmUq6UKs/3a7ndLSUmWNEbLZrErgqKmpUZNcPp9n0aJFDA4O8stf/pLXX38dn8/HunXruPbaa5mamuLv//7veeihh7jzzjtpbGwEUPGKp8usFytyb28vY2NjfO9732NqaoqOjg6CwSDbtm0jHo9z99134/F4cDqd9PT08L3vfY8jR46Qz+dxu9289tpr3H777dx2220FoRMi/vr6+ti/fz82m43//b//N+3t7dhsNq644gr27NnDtm3b6Ovro6mp6S1JUzIxTE1NEQwGyWaz+Hw+duzYwauvvkooFMLn83HXXXfR0NDAj370I0ZGRtiyZQv5fJ7169dTVlZWUF1AYg3z+TzJZJITJ07w9a9/nb6+PjKZjLKsSdhDNpulurqaP/uzP7tg/dVKOp1mYGCAF154gX379jE8PEwikVCLKI/Hw0033cSaNWtoa2ujqqqK0tJSFTLicrloaWnhhhtuwOfzceTIEYaHh+nr6yMcDnP8+HHq6+tpamqio6ODBQsWUFFRQTqdVt4zEV+JRIJkMqms6NFoVMU0l5aWFlhn4e1Fo7S/vLyc+vp6ysvLladO7k0qlaK5uZn29naOHj2q2n3w4EEqKiqoqqp6iyHkbA0R8myk02lGRkbo7++no6NDJUpZY1hjsZiat/x+Py0tLSxYsICGhgbS6TQ+n4958+aRTCYZGhqis7OTnp4elaAl55JwFUDFnw8ODjIwMEBnZyeHDx9+R0OL5vfHaj2VhM5QKMTExIQKe5KxzPqZuQswGavi8Tgvv/wy+/btY9myZQXJnZrzxzsKVuuKQx5ouaniVnQ4HDidTpxOJ1deeSUf/OAHef7553n88cfZvHkzJSUlBXFz5xqZbKwWL837m2AwyPDwsBKHUnpmZGSE++67j507d/K5z30Oh8PB66+/zt69e5mammLBggV88pOf5KqrriIUClFfX8+2bdt45ZVXsNvt3HHHHTQ3N6u+LIkt4XAYh8NBR0eHSjq02WwquSmXy502Xs3lcjE2NsbIyAh+v19lhpumSWtrK7/4xS84ePAgCxcuZN26dVx22WUsW7aMyclJHA4Hu3bt4qabbqK+vl6d05plbk1AkQF7amqKffv2MTo6yuWXX87mzZvJZrPs3buXffv28ZOf/ITPf/7zxGIxfvSjH3HgwAFSqRRLly6lvr6eXbt28eCDD7J+/XoldCTBaWBggKeffppIJMLmzZtZtGgRfr8fu92O1+tVMYs9PT1s3LhRjS9i3bIKx0cffZRcLsett97K/v37OXnyJHV1ddx2221s3LiR8vJyPvOZz/CDH/yAAwcO0N7ezoIFC5TlVpK8AFUdIJfL4ff7uf3225mYmFAuv4ceeojR0VHa2tq4+eabmTdvHosXL74wnXUO4XCYrq4ujh8/zsjIiErwKSkpwefzsXLlSlavXk1zc7MKJxFRJLF6Ho+HtrY2dd2PHz9OT08PgUCAsbExBgYG6OnpYWJigkQiwaJFi1SxfZvNpjxosVisYMw3TZPGxkaam5spKysrEABWi+fcyg5zk+HEPT40NKQqBYRCIYLBIAsXLqSyspKFCxcSDAaJRqMMDQ3R29vL/Pnz8fv9BXkVZyMUpGqGWEPD4TDj4+NEo1GqqqpU7oMITcnPKCkpwePxqMoIYomWmGybzUZraystLS0MDAwwMjJCKBQiFAoRi8VIp9MqblXuVTgcZnh4mOnpacbHxykqKqK2trYg/E5zbpmboJfNZjlx4gRvvvmmqqVrfZ/8fiZvgYQSVFVVsXnzZh3DeoH4rdSdrC6sCR+A2pXGMAxaW1u57bbbOHHiBL/85S+56qqrqK2tPa+rD2tntLZVr3jevySTScbGxnA4HHzgAx+go6OD8vJylf27detW/H4/V155Jfv376e7u5uqqipuueUWbrzxRrWjm9frJZVK8dJLL7Fr1y78fj+f+MQncDgcKqygq6uLoaEhvF4vl112marxKTGgIkBFRIZCIdVOu91OMBhkcnJSWWB6enpUPOfevXspKSlh5cqVbNy4kdraWlVpwOv1qixmqTkqiKVMBIzVLTs+Ps6zzz5LLpdjzZo1LFmyhPLycgzDYGBggO3bt7Nq1SpcLhc7duwgnU6zatUqNmzYQGVlJZlMhh07dvD0009z6623KiEu1qZXX32VoqIibrzxRjweT0FtVrHcHj58mGQyWdBmETepVIpoNMqOHTvw+/0sXLiQ3t5eUqkULS0tXHXVVSq+9+qrr2bv3r3s2rWLw4cP09bWpoSEHFP6g4wJFRUV3HjjjSqDPpPJsH37dkZHR6moqGDVqlU0Nzcr79KFJh6PMzQ0RDAYVJY+sUy2tLSwYcMG5dK3lpayJgVZs+AdDoeyOu/fv5/JyUmi0SihUEgt6FKpFDU1NWpxITVSJVzCupDwer1UV1er6zPXFSoue2vSn7jaJQSkpKREHSMajarSWSIofT4fixcvZnR0lO7ublWpYGhoSFkkrXPQO431YjCR/iahJlNTU9TW1hZ45SR0QdrqcDhwOBwqrlrOKULH5/NRUVHBvHnzmJqaYmJiQtWWTSQS6vqXlZVhs9kIh8NUVFQwPT1NRUUFfr//kt798b2GjA29vb309/dTXV2tLOxnY/DK5/Ps3LmTnp4empubufrqqwtiXzXnj3e8O9YdPGTQkd1CJKZKBKzdbqeqqop169bxsY99jG984xu89tprXH/99QWB7ecaWd1LkLQUK9fW1vcv8XicTCZDa2srf/AHf8DGjRspKysjFArx/PPP88ADD/CTn/wE0zQ5duwYkUiEVatWceuttyqRWlpaSllZGRs3biQWi/H444+zdetWrrvuOmpra4nH4/j9fo4fP87AwADl5eW0trYW1FoEVDKPuAonJycL2joxMaFch+l0mr179wIz2wRHo1Guvvpqli9fTktLi3I9SQmgdDqtssHnWlLtdrt6VuX1bDZLMBgkEAhgt9tVgW273c7ChQtZuXIljz32GA8++KCK15s/fz6bNm1i5cqVwExs+969e/nNb37DtddeS2Njo0p4ikQiTExMUF5ezooVKwqqB0hd56qqKg4fPkwkEqGiokJZguFUeM/Jkyfp7u5m8eLFvPjiiwSDQWpra1m0aJESpJKZvWnTJpXE8/rrr7Nu3ToVVyljlCCubEkukwSayspKSkpKSCaTqr7txaoSkMlkGB0dVZsDyL30+/0sWbKEZcuWKeEvuyzJPZcxT8SVxJjKd56YmCAajarKCVKsPhwO09TURF1dHeXl5eTzeQYHBwkGg+q94uKWsmjWTRms7lMZh2UTChHQ1tq+drudyspKZdXMZDLEYjHC4TCpVEotVCT5aXx8nEAgoMIjfluDhJR5a2lp4dixY8TjcQKBAENDQ9TV1an7LfHe4XD4LdUBpByWxG3Ldy8tLVUL3GQyyfT0NOFwWJVQkyoKIvpTqRTz589XgrWsrIyRkRECgcB56U+aGax9xvosXHHFFW/xDpzp8zDjrdm2bRvBYJANGzaocCwtWM8/Z63orBYLmYjFDSiJIrKC9Xg83H333fzwhz/kK1/5Cvfffz+XX365Osa5jtcpKysjHA4X7Haixer7GxFwmzdvZt26dSoD3uVycdttt9HT08MTTzzBgw8+SDQapbq6mkWLFinLlISXiCVo/vz51NXVMTo6yuHDh/H7/fj9fpXEI0kc1dXV5PN5otEopaWlJBIJNUlJjKDVmmIVSalUilAoxJtvvgnAww8/DMANN9zA8uXLC8q3xWIxFeMpxc4BJWQlccRakkrEQiaTIZPJ4PP5WLJkiZpoW1paWLt2LY8++ii7d+/mwIEDxGIxrr/+etrb25WVzjRN2traOHLkiHLniiCR0j3V1dV4vV6CwSDV1dVKxBjGTA3ayclJ4vG4ylK3TujJZJJnnnmGSCTCyZMnOX78ONlslk2bNnHddddRWVmprI4Sg9va2srw8DADAwMMDw8rASrVCVwulyrLJQsRGcdSqRTt7e2cPHmS6elpxsbGzlin9EIQCoVU6ISIeYmlXLp0qSp6Lz9iHRLBKiLVmjgo/ToWi6mSTDJeyjUrLi7G4/FQXV1NY2MjQ0NDTE1NqUQpWYiJSJZzmaap/i51ha0udXG3W2uPFhcX4/f71aLCNE2mp6cJBoNEIhHq6+upqalRcdyyKJN/xSBhtWy9nYCVTRPa29t54YUXiEQiBAIBurq6VGiFWEDleZLwBQm5kCoc0s+lTq31OjidTpVYBRSEa4gYFlEvJeDkGmjBen6x9hWpv+pwOFi9enWBYe50pdms4QHSd1atWsWHPvShgnwBzfnld1J1IjzFQuH1elXpmHQ6rcrd3HvvvXz+859naGiIhQsXKnfTuca6TaGIAmmP5v2J3P+GhgYqKytVkX2Jt/vzP/9znn/+eYaGhjBNkzVr1rBp0yYlJqVv+3w+kskkCxYs4AMf+ACdnZ1s27aNTZs2qQlzamqKeDxORUUFS5YsUXVIy8vLVbybFHZPJpPs2bOHO+64AzhViSMcDiuX6MjICKWlpYTDYZYuXaoKkEs4gbhsp6enKS8vx+l0qmLwVlEgiFtZxKzH42F4eJhrrrlGTaZS+sjpdHL55Zfz/PPPE41GcTqdrFixgpaWFiVKy8rK+NznPsfdd9/NiRMn8Pl8lJeXEw6HVQb/hg0biMfj1NbWFlxPOOW1kVhJqVcrgigUCnHixAnsdrvalMHtdlNdXY3b7SYajVJRUUEwGFTf6a677iKTyXDs2DG2bt3Kxz/+cVUiTIr/i0A1TZNoNKoWFZlMhvLychwOB8PDw+zatYsrrriCmpqa89lFz4jEx8XjcZWpXlxcTHl5OQ0NDQVZ+daYZ1lgCVJxQWoCizVzamqKVCrF5OSkWlxNT0+rZCqn06kS4sRdL5bSsrIyvF6vKgWWyWQKrKtidRSrrrXclTVR0el0Ul9fj8fjoaioSO18FQwGGRsbY8mSJbhcLhoaGmhsbCQYDKpjp1IptUiSZ3BuxYC5z4CIZ6mva5ozW9h2d3fT1tZGTU0Nbre7QFxajytWYAkDEmFuDcWw5mnM/e5z68bOFdoXc4H0fkIWxQMDA0xOTtLU1MSHPvSht3gIrDplrrv/xRdfJBQKsXnzZlavXn3GPqc595x1FpQ1XkiQ1bPE3okFC2YmwHXr1tHe3s4999zDyy+/fG5bfpr22e32gi3x3u69YtHq7Ozkz//8z/niF7/Ili1bGB4ePq/t1FwYxsfHleUmk8koL4DdbldFuzdu3KiSorxeL/X19QV7pEciEYaHhwmFQlRUVKgknP7+fsbGxjhx4gSpVEr1uVwup5JDUqkU4+PjqqamTEpipRTEzV9SUqKShETE2Ww2lixZQllZGdPT06raQSQS4TOf+QyxWIxbbrlF1ZIUS49MjvF4nGQyicPhUMJWrGhiQQ6Hw0QiEbxeLzU1NVRVVbFhwwaVoCRWXatYCIVCtLW1YbPZ2LJlC+FwWMWxSjZ5f3+/ssJJvVW5rtbXJMNd6lQ6HA4SiQTDw8MFNZ9XrlzJkiVL8Hg8uN1ustksNTU1qt7qggULaGpqIhwOc/DgQZxOJ+FwWGXPw4z1uaioiEgkokITYMYaf/ToUQKBAFNTU/T19b3jNrbnE9nJS6yWEsbg8/kKSoDJIkOs99YNBSSGVL679C+3201TUxONjY24XC5V9k0qAUjyU3d3N4ODg6pwPpwKp4BTO0NJVQU4VQ5LkozmlrsSJCFu/vz5LF68mOrqarUJhGRum6ZJaWmp2p2rsbFRldMaGxtTlmJrvWE5j1gv52ItLWWz2Qp23BobG1OVZmQuk13apHqBWI4lxlVEsDXUwWazqWstca8yT1p3upIwGWu8seb8Yd18JJ1Oq5JpssUwoMY3a18Vj7Lct2w2y/e//30SiQR+v18llJ8uQUtz7jlrwWq9KbJ6vOqqq1TQvjzgkh1ZWlqKw+HgG9/4BqWlpfT09DAyMlIQU3euqKiowG63qwFHsP4+97tks1n+7d/+jT/8wz/k8ccf5ze/+Q1f/vKX+ed//udz3j7NhWd6eloJDrEuGYahsp99Ph933nmnql8pLkFZgEltUofDgcvlUrGjqVSKsbExcrmcstbIpCyiQTJ+y8rKlBAwDAOPx0NNTU3BgLhkyRLcbreyrFoz1202G9PT0xiGgc/nw+fzEY/HeeaZZ5icnMTtdnPrrbcqkWctswWobVZFuObzeXw+H9deey3FxcX4fD5qampUdrLNZlOhEWKp++xnP0tFRUXBZCzPm9vtJhAIqIl8eHhYbd/Z3t5eENsoYiqZTCp3tMTYinUwFovR2dmpYnjdbrcSCAsXLqSlpQW3263CGlKplMo2lxhCqVoQiUTURGSaJpFIRI0HZWVlpFIpJdT9fj/xeFx5Z6LRKN3d3QXlxy4kIlbFzS9jrniyJG/AGp8qQtIqWiUcQPro3J2xxCUvm64IsqAXz4G1qoVs+yo7rlkXI1Zha2WuWJVEpurqalauXEl7e7vyyom3QRZtZWVl1NXVUVlZSSqVoqenh66uLvVcSf1Uq7XydFuditXX7/fT3Nys5oBoNKpCSQKBAJOTk8RisYJYXLFUS4gJoEooWi2s8t2sizP5/tbnwNpeaZvm/GIVlJlMhr1795JIJFi4cKEaJ4GC8CT5nLXyyvDwMOPj43z84x9n7dq1Z70boubc8DvVmZKBaf78+SqRRHaUcbvdlJaWqoe+o6MDv9/Pk08+yfPPP/+WFfG5QMqriPtLOF2Wby6Xo7e3l3vvvZef/exnBAIBlchQVFSk9o3WvLsRa6I1ts9q8ZD6wFKXUeqjyqRineDF2ib7TYdCoYJJXqyQ1q1J7Xa7KgYulqaysjLmzZtHf3+/aqe48oPBoLLMFhUVUVVVhWmaquxQJBLh2LFjPPLII/zqV79ienqaG2+8UVmLEokEoVCIaDSqEqDExSvbnEo9WCnjU1lZqaxRMtmWlpZSVVVFc3MzcEpsWLfDFAtTS0sL0WiUQCCgSlvJdZC43kgkwvT0tLKETk1NMTAwoCZ+Eazi+g8Gg7z44os4HA48Ho+K+5M92q3eEblnksm+YMEClixZQjQa5eDBg+oeydaxYoG2uvgkRMRms+F2u5U1++DBgxetVM3g4GCBq11+JGkNTm0QIRnoMvZKn5cx2jpRS6JTS0sL1dXVBS51wVqKSgSbNZRCxKu8bhXGVouqFau73rqbVGlpKc3NzTQ1NVFRUaFyIiYnJ5mamlLbyopVPZ1Oq/q8gNrwYK57/UzWccnoF5EiixNJvhodHVXJmvI9pd9bN+aQsJqztcDPTfqzVkzQXFgMwyAajTI2NkZ1dTUdHR2qL1tDOqDQqyzj3lNPPUUqlWLZsmWqlKDmwvE7PTHyADY1Nam6fdY6exKILpPlhg0b1J7U5wOPx6PEhxWrW0gmzL6+Ph599FEeffRRgsEgd955J3fccQcejweXy6W2zNS8uxGB0t/fX2C1BFQBfxFqkhRlfc1qvRH3az6fx+PxkMlk6O7uVv1Lyt6I8JIfa1KIfL60tJS+vj7VFpm4ZUtYqSAglrRIJMLAwAAvv/wyDz/8ME8//TS9vb00Njaybt26gqLkMsmmUim1YBSs2c4ieiTjWyZRidMzDIP6+npM0+TQoUPKLSwuaFmgrl69Wu1sFYlE1EJAdkmScxqGoWpfTkxMEI/H1YJBJgSJY5RdjZqbm1m2bJn6DrIAkWsmQglQbZ43bx4LFiwglUqxb98+FfZgt9sLai1aqzgkk0kmJyfJZDI0NDTQ3NxMPB5n//7952VxfTYMDw+TTqcLJkupwSrbBEvsrjUMRPq81eIvIQPWCio1NTXU1NQo0SZ1UecKMKtYFiTJVhZnc2usnsniZHWZy+9Op5OqqipaW1vVzlfZbJaRkRHefPNNuru71QLMZrMRj8eJRCKqHJf1fCKmpT/PbYOc2+l0UldXp8b5eDxOMBikr6+P4eFhtftRJpNRMe/WhEmrpdXhcBRY394OaZ+MKWcKW9CcH6yLpoGBAaanp2lsbFSbmsjfznRfZOH85JNPUl1dTW1trd4s4CLwjoL1dA+i3OB58+apvdStcT4yMUssley4IiVLhPHxcZ566im1spXtEaUEkGSDSsFnSa6S80jbampqsNlsyuIiE9KxY8fUJC7xUW+88QZbtmwhEAhw00038ad/+qcsX76cUChEdXU1S5YsOScXVnNxkYm7u7tb7T4j+8SLMJPJR8rZWGMGJXNXXs9kMpSUlFBXV0c+n+fgwYNqsJKQgUQiQV9fn9q/XSz8MkHJvuPWslZi2YvH46qwO0BlZaXajWXPnj088sgjPP300/T09NDU1MQNN9zA4sWLVeyoHMva7pKSEmUps4oZibft7+9Xsd8iquV5KSsrA+DQoUNqsrZaYz0eD6tWrcJut9Pd3c34+Lhy89psNsbHxwsEYzqdpqenh6NHj2Kz2VixYoUKMRDrYTAY5OTJk+TzeZYvX86qVasKLFFyDa2Wb/mRskV+v59sNktnZ6cSKbJwsIorqzVlYGCAeDzOwoULaWtrI5VK0dXVddG8LbINqyACVayQEoctrksR33Nj7axjqfwfoLy8nMbGRpqamqitraWuro6GhgZVssnKXNd1NpslEokoy7jV/f5OsXzWv+fzebWpQXNzMy0tLXg8HlW1YN++fRw5coSJiQklRK3P8MTEhJoD5pbWOpN4FJFcW1tLRUWFWphOTU0xODjI4OCgCkmIxWKqHrBsDCKWelmEWa3TZyNa5X0ifuaGBrzbyWazDA4OsnPnTvr6+tSiX76v/Gs1BFivhXUBZP3/ubxGuVyOffv2EYvFqK6uVtrB6kWwjhFwSqyGQiH279/P6tWrqa6uPu0CT3N+eUfBKoOcYLWIyNZ0k5OTKrlEdr4C1ITZ0dFBZWUlwWBQWVnz+TzPPfccd9xxB7t372Z0dJSpqSkikQiTk5OEQiEmJydJJBIEAgF27tzJwYMHmZqaUu+TQX3+/Pm4XC41wMRiMUKhEA888ACxWEwJka6uLnbs2MGxY8e47LLL+M53vsO8efN4/fXXCYVCrF+/nmuuueacXmDNxcHtdpPP51UZHIlXm5ycZHp6GpfLRTweV8LHKsiy2ayyOEmMX3FxMU1NTaxatYpsNsubb76pBjZrCacXX3yRdDqtBJ8gngep72h9vb6+npKSEsbGxhgdHaW4uJj29na8Xi8jIyM8/vjj7Nmzh1gsRmNjIx/5yEe47bbbVCwpnLIOiFAuLy9Xr80t2SJu4+7ubrWAtJbcKisrIxKJqBAZiWcV66wco6GhgfLycvr7+wkGg7jdbpqbmykqKmJ4eJipqSmVfZ5IJHj11Vd56qmn8Hg8fOITn6C8vFxZWhOJBJ2dnRw9ehS3282qVatoa2tTwlLEfiKRUPdNXMYyzshzXlRUpMYBsTJKGIE1+UKSsI4fP046naa5uZl58+YVuA0vBtFo9C0ufQlpEcvy6cSiWMFlL/tMJlNQLB9O7b7W2trKVVddxXXXXcdVV12lYqnPhIhC2Uo4FAqpMmWSXGed4K0/cydyMULAjLejpqaGhoYGfD4fmUyGkZERDh06RFdXl0pclMWlxDoPDAyoGFJpnzWxaS4SKlBWVkZLS4uqtiDhK1LnVXbbmpycZGJigsnJSUZGRhgbGyMSiRR4Mqzi653EinXDhLnhE+8VoROLxXjiiSf4whe+wBNPPEE4HFbPnVj65XdrMptYsOf+iGHqXHo6crkc27Zto7i4mIqKirdYVa3hJNbwmGQyyeuvv048HufWW2+lrq7uLX1NW8zPP+8oWK3lNmRSkGLIkugBp1avUhtR4uekhInL5WLfvn384he/AGZWY3/zN3+jatlZrQTSacT60t3dzTe/+U1+9KMfcfLkSeWWkgd+xYoVqvxQPB4nFArx2GOPcfToUZU0YBgGW7du5cEHH2T+/Pn867/+KyMjIwwODvIv//IvVFRUsHLlSurq6s7HddZcYGSnGp/PR1FREZlMBofDQWtrK8XFxcq9KAOO1L6UnaGCwaDa514G29LSUhoaGiguLqazs1PtlNTe3k5LSwvT09McOHCA6elpZZGVxKmJiQn6+/s5cOCAyk4Xli5dSnV1NZOTkwwPDyv34dq1a9Xir6Ojgz/90z/la1/7Grfccotyu4fDYVXQXc4rYk22tbSWfctms0xPT2OaJoFAQJUTkrhdmHnOx8bGlFCVLW7FrS9JaXa7nerqarVjkIRBNDQ0MDU1xd69ewmHwxQXF3P8+HG6urrUeCCiS3YDi8VidHd3MzU1xfLly2lqalKCUgqze71eqqqqqKysBGaswCLKJP62srKSpqYmbDYbgUAAwzCUCBdhm0gkmJycxGazMTQ0xMMPP4xhGGo3oqqqKmXJuxjIvbJOmCK84VSZHTwE9o0AACAASURBVBGD0ocla98aTiA1U61hHzabDb/fz+LFi7n66qtZvXo1dXV1p43JlGtrrbd68uRJjh49Sn9/P6FQqGAhIMy1pM0VZVI7VurLNjc3qzYkk0kCgQDd3d309PQwPj5OLpdTFmDx6MkC5WyRviCJhR6PR8VcS2hAf3+/Kv4vXr7p6WmVZCUePpmrJPxGYrDPxFzrvng8rPf53Y7NZuPll18mEAgoD4/dblf3Wbyfct1krBXhZ72XVkv9mWKFxfJ5tsjipLe3lyuvvJLW1lamp6cL4vPn3gtpQzQa5Tvf+Q5ut5ulS5eqOs5z3/9euI+XMr9VDKsMXtPT0yQSCaqqqigqKqK3t5epqSklNqWwdTabVQHzH/vYx1ixYgWDg4PqeCMjI6rYus/nU/u9SzF1sd7+n//zfzhw4IDaAxtOWaxgptamw+Ggr6+PXbt28dxzz/EP//AP/PCHP8Tj8ZBMJnnuuefYv38/DQ0N3HbbbWQyGZqbm7nzzjsZHx/nS1/6Eps3bz7nmxpoLg6LFy/GNGdqekr9yFwup2LiRFiJWzUajTIxMaGsWLLtpWmaVFVV4fV6VRa9z+ejr69PCTzZgai9vZ3x8XH+6Z/+ifHxcZU8IqV+RDBIMhbA1NSUsryEQiFOnjypyjh97GMfw+v1ks/nmZiYIBQKqSQrSRAqLS1VCzKJFRW3uWy3Kp6HZDJJWVkZHR0dynpqLQ0k4RGhUIh58+YpsSHPpNPpxO/34/F48Hg8NDQ0cMMNNwBw4sQJ+vr68Hq9XHfddcTjcX784x8TCoUYHR3lwQcf5IUXXqC2tpa77roLv9+vtuVMJpM8//zzHDp0CKfTqcSLVGEQS6osZEU4SSUSWfSWlJTQ1tbGtddeSzwep7Ozs8B9K3GsMk5FIhFGRkaIx+MsWrSIJUuWcNlll7FixQrS6TTbt2+/8B139j5YkXCNUCikhJHVZSq7Sol1WUo3ud1udU+tAkn6i8vlorq6WhXp9/l8BRYjuW7WZDrpi6+++iqHDh1ifHxclYyTtlnDtayiWwSGWDulLZIM1tTUpISAxDN3dXUxNjaGYRgqJELOYQ1DE3H8dog1XmoLd3R0qFjWWCzGyMgIJ06cAFAJaVINw+v1Kq+JNdZb2iILhdNZW8X7KO+V363hBO8FxGthrbQiiyxZGD/77LNs2rSJH/zgBwwNDalrAxTEA1t/rEJWLLTj4+N8+9vf5jOf+UzBVtdnQs5x5MgRMpkM69evZ8OGDcpAJWOzjKFz818CgQCHDx/mIx/5iFooS5+zCmsd03p+eUfBOncFK1Yr2clj/fr1HD16lHA4rALjhVAohGmaBfs2zzXvS4eNx+NqApUyLjATXya7vljb4HQ6lWCorKykoaGBzs5O/vEf/5HvfOc7fPjDHyYSiSjrwv3338+ePXtoaWlh06ZNAHzxi19kcnKS//qv/2LDhg0XLStYc+6RzP1kMqlcw9bdaqSPSbLK9PQ0w8PDql9JQoq4wAHVP5YuXapErrxn5cqVXH/99TgcDnbt2sVXv/pVtXqfmJjgxIkTdHV1qWx6we12U19fj8vlUm0VF1VdXR2f//znaW5uZmhoiG3btvGzn/1MZUnn83ll/ZIBVCwavb29DA4OvsU6IZOtuNnlObNusykF80VkWIVSMplUITnpdJrrrrsOn8/Hq6++yuHDh6msrOSaa65h3bp1TE5Ocs899/C1r32NgwcPks/n8Xq9dHR0kMvlGB0dJRwO09nZqRaUDoeD9evXq/h1a1KZWMXl37GxMTKZDH6/X02UbrebhoYGTNNk9+7dxGIxFasosZeyiM7n8/ziF78gHo+zatUqGhsblbBNp9O8+OKL57eTnoHm5mZlnRerjxT6l4oLcn+slS7E8idCXhLV5ma5iyVWJnGXy0V9fT0LFy5Uuz1ZRb6UdxNBkUgk6Orq4vDhwyqBRdpg3ZlLJnCrsLYKS6sg9vl8NDc309jYqJ698fFxDh8+zIkTJ4jFYvh8voLd1qDQOjlX3MxFPBey9euiRYvw+XwFsaxi0bXWBq6pqaG6ulpdG1nkWuvPzo2TlvtyuooDc3m7uN93E5KsmMlkcLvdlJeXq7EulUrx7//+79x9993s37+fxx57jJdffln1ERnzpA/JtTtTEtQjjzzCM888QzKZPCsjk8TR33///eTzecrKygrmezmPWIat7v5QKMSjjz5KcXExd999tzIaWD0P1hJomvPHO1YrfrvSG06nk1WrVvHSSy+pSVQSTRKJhJoUnE6n2nFobkysrEzlfeKulcFi69atyoU5OTnJ6OiomnQF0zS54447mJ6e5rnnnqOhoYHbb78dn8+n3EkiqMvKyohGo2zbto0XXniBv/iLv6CjowO3263LjLyHWLduHXv37lXWNCnOL0LTNGcKk0u9VOl74+Pjai91axKLWE4qKirYuHEjr7zyCmNjY2qQqq2t5UMf+hBOp5Mf//jHdHZ28vWvfx2/308ul2N8fFxVB1i6dKlqp+xA1djYSF1dHd3d3ZimqWoDrl+/nnQ6zVNPPcXx48fZtWsXAwMDzJ8/n4985CM0NTUVZEiHw2HlNi0rK1OhC/v27aO1tZW77rqLeDyuBIVYxyR+tahoZqvZmpoaNXCLuBF3sggS2SSgqqqKsbExDh8+TGNjI4sXL+bDH/6w2vJzeHiYbDbL+vXrufXWW4FT1pRAIMB9993Hm2++SV1dHStWrKCiooJwOKzKew0MDKhFqsPhIJfLqbJCYimVeyu1NsvLyzl48CCBQECFC8g9TSQSpNNpuru7OXbsmHKRS2mojRs3smXLlosWw7pmzRqOHTumJm9xZUqcv7XYuSCTvVi55F4J1koV1iQ9KY0lCaf9/f0qYaa4uBin06nqE4sXIJ1OMzExQXd3Ny0tLVRVVeFyuZS1XxaC1rYJ1hABSZiScnGtra0sX76cQCDAwMAAsViMwcFB9TzOLTMn38v6nL6de10s83JdvV6vCjuR0naTk5OqTrA1HEX6F5xK2BPjjHWb2rkVC0zTLKjTKu2wHktee7fjcDgIBAJq5zCYmd+np6d5+umn+elPf4rf71deFVmcy6JKKj8AHD58mK1btzI6OsqnP/1pNm7cCKBCnl5++WX6+vpUiNc7IQuHHTt2sG7dOurr6wssotInpX9KOGImk2FgYIAnnniCtWvX4vf71SJf7qeMh9b7qjk//F7ba5SUlLBmzRq2b99OIpEoWHGKxcZms5FKpVQ2r1WwlpSUqPg5a9ak1a3y5JNP4nK5VPamTCLW1YyID5vNRk1NDTfddJPaPSWfzxMIBNTDkEwmOXLkCE8++SQLFy7kox/9qJoEtWB977B48WK1CJH+JIOKTHh+v1/trlRVVUVjY6NyOUrMqkyqYrEtLS1VyUBPP/00GzduVANYZWUlGzZsIJVKsX37dk6ePKlc0OFwmGg0SmVlpbLwA6rKxqJFi1i9erWyikooQHl5OevXr8fr9XLkyBFOnjxJZ2cn4+PjahIXS5i0r6Kigp6eHrXIkyob1g0CxGJ2OuuF3W5XW7GK4JcBXZJGZLD3er3ccMMNhMNhent7efnll/H5fFRVVXHdddfx85//XE3sAwMDPPfccxw8eJBVq1YB8Oyzz6oi3itXrmTt2rUFdWPlOZfdn0RUy7axVisszLhyq6uraW9vZ8eOHTzxxBPcfvvtKhtYnvFEIsGJEyeYmppi6dKl1NfX43Q6SSaTqjyXuDMvNIsXL6auro5oNKrG1Xg8zuDgIMeOHVObN1h32rG6w2UslUWBWDfF+ilCVZ6DfH6mXNv8+fO57LLL1G5mgKqHK67zI0eOqNJPgUCArq4u6urqcLvd+Hw+NdHL5G2NnRVhaQ0RyGazqsLDvHnzWLdunUrqEo/b2NiY2kQgm82qckISFiBVJuYmf81Fziv5ER6PR+16J/NOIpFQC9HTiVBZGIh1WPqnNZdj7r9za65aRao1O/3djlT6+cAHPoDX61Wx/8ePH+e+++7D6/XyJ3/yJ/zgBz9QNbGt1ud0Ok00GmXLli0q/v109U77+/sZHBykoaGBDRs2vKNIlOssuxbecMMN1NbWqntnFZ7j4+Pcd999/NEf/RHz5s1TYVpjY2N86UtfUm2WBaGMPRIGoTm//M6CVUTAvHnzlDvK+uDKwyyux9PF9shqKxwOqyQVa1Zwf38/J06cYPPmzbz22msqHm7uQ55KpTh06JCyxFjrM0o8rLhp+vv7eemll7DZbHzyk59k0aJFBROy5r2BWH1kgrGWV5GSax6PhzVr1lBcXExLSwtLly5VuytZBzE4Vde1pKSEpqYmNm3apEpPWV2bTU1NbN68WVn4pGKF7EHe1tbG6tWrVTvFMtTQ0MDatWsZHx9XW4dK0kJtbS1+v5+2tjaOHDlCXV2dShLr7e0t+E4lJSX4/X4GBgZIJBIq0aylpYXW1taCrGqxrs0t+O5yuViwYIFqm7TF6jIT17PNZmPNmjWMjo6yfft2jhw5gtvtprKyUoURSLLM8PAwgUCgIAZ4z549pNNpli1bxurVq1mwYEGBRdTn8xEMBtUWsnLNrcW+ZccsyTz3+/1cccUV7N69m5deeommpiYuv/xyJaiy2SxHjx5lz5495HI5rrzySmprayktLVUL6oqKCoaGhi5IX52LuOcDgYCKz43H4wwPD7Nv3z6y2SzNzc20t7er7ySIe1IElriprWJVrpss6MUCKOJUKmjATGKb3++nrq6O0tJSent7lYiWRUpNTQ1er1fVc5WqGlaxJ31JBLJVTEtsaWVlJYsWLaK3t5cDBw6oeWFqagpAWTpFqEs8qLUe6zuJF8Mw1NapEhoi84UkVFnFp/XY8oxYFwTWsnJWoS5Cxvo5eY/8K+0vKyt7T1jmgsEguVxOVThJpVIMDw/z6KOPcvz4cf7n//yf3HDDDfz85z+nsrISn8+n5nLJxH/ooYf42c9+puq3b9q0SW1iIu/bvXs3Y2NjaoF7Npimya5duygtLWXp0qVqAWZNXoxEImzZsoUtW7bwwQ9+kMbGRgYHB9mzZw92u52rr766IARA4l0l5HFoaEhriPPMOwrWM5m5JZZpZGSE8fFxtf+yTE7ithdzvZS3EKQW49DQEMePH2fx4sV4vV41oGWzWbZu3YrD4eBjH/sYRUVFbN++XcWzWuNWUqkUe/bs4eTJkySTSZ588kluueUWFixYAJyKT0kmk/T392MYBrfddhuf+MQnlKXBGsOiefcjCUnWLTcl6cGaePPRj35UlUVra2tTlQHsdjvJZFJN6rISLyoqoqamhr/+679Wk7kUZJfPOhwObr/9dq6//nqCwaCqrVpfX09bW1uBK0pcokVFRaxatYrW1la6u7uVcICZCVIsWHV1dVx99dWMjY1x4MABXn/9daLR6Fti5VpbWwGoq6vj+v+fvTsPjuss80f/Pb2rpZbU6tZu7ZttWd4dO46z2EkgG2ASwgQYYGBIwcAMy0DNMMzUjztU/X6hSC5UiiUXqFshZLhhgCxkMYljO44dx7tsy7YWa7Fkydql1tL7onP/UJ7Xp2V5SYjtjuf7qUrFllvS6e63z3nO8z7v827ciMrKSpSWlgJA0gVZpkTl9ZHPQ3l5ObKzsxEKheByuVTWUz7nsVhMHXd2djZuv/126LqOLVu24JVXXlH1w3a7HRUVFSqolPPAoUOHAMwGx3l5efjYxz6Gm266Se1mJeeSDRs2qJtUCbIkA23MLsp7K2U/a9euRVVVFXp6evDnP/8ZPp8PRUVFarZm+/bt2L9/P6qqqnDjjTeqaW+Xy4X8/HxUVlZicHDwqo1Xo8zMTDQ0NKCzsxN+v1+N4dHRURw4cADj4+OoqamBruuoqKhAdnZ20nlXZrSkbtuYRDCbzaqNkARogUBA9SI9e/Ys/H4/EokE0tLSkJubi7KyMixYsCCpA4SmzW5z3NfXpxYleTweNX0vU/dzZ63k73OnyOXzlZGRgbKyMhQXF6tzvdQe2+12uN1ulJaWIi0tLWkcXyq7Ko+T8Z2WlobMzEx1zFKTbQxY5bWT75HXT45dasCNJUOyiOxCs3XG7Kq8/sY6+Q8yKaWQFmU+nw+7du3CM888g7Vr1+Lv/u7v1LqWoqIi5Ofnq9chGAyiqakJjz/+OBwOBz772c/ivvvuQ3l5edIMSiQSwWuvvYZwOIyqqip1TruUWCyG5557Dnl5eWpBrcy+ScvDvXv34rHHHkNtbS2cTqdq/bd79251UybjQTa4GBoawuDgIBobG1XygK6cSwascqIwfqDkoh+Px/Hv//7vGBgYUCc+mW70+/3qLiaRSKCzsxMDAwMoLi4GMHvi+uIXv4itW7fiT3/6E5YsWYLCwkJVY9TS0oIf/vCHuOWWW1BQUIDPfe5zqjFxR0cHli5dqgayy+VSK0Z1fXa/3x/96Ef4+c9/jt7eXhw/flydhCsqKvDlL38Zd999d9K0lFzwLmfFIaU+u92OgoIC9Pf3qyyrtJiSDJTUba5cuTJpVau0ZAsEAsjKykrKtEgPQQCqFkumyIFz7d0kW1VWVjbv8cnNm9R6AbPdLgBg/fr1F3xe8vj6+nps3LjxXb0mkkWQQEcW8cgiF5nyl9fv4x//ON566y0VEBrbfFksFgwNDanFYunp6di0aRNyc3Pxu9/9TmUnFy5ciG9+85vweDzw+/3o6+vDsWPHsHfvXoRCIaxevRp33XUXamtrVTN36bNqsVhw//33Y//+/cjNzYXL5UoKHIxBgpQqALPnG7fbjb//+7/HL37xC4yNjeGZZ55R3xMOh1VJxPe+9z243W61oYTNZkNhYSE2b96M48ePv6vX9/3idDqxZMkSdHR0YHp6Wq2mjkQiqkdoV1cXAoEA1qxZo24upAZXsncyjqVEy7h6e2JiAsFgUHXHaG9vx759+zAwMKDe34KCAqxZswYNDQ3q/QsEAiqQTCQSGBsbw8mTJ2Gz2eD1elXNp2wTK8GeMaNqLDUBoBZsyWevsLAQq1evRk9PD86cOaM+l8aOHtJmTRYeXipYFZLxlExtdXU1+vv7Ves5yZzJcUkmVRIv0Wg0aUGn8bNv7NYhiY+52VW58ZIbK2nxdj1oamoCANUDetu2bfjZz34Gt9uNH/3oR6rePB6Pq4BVuqa8/fbb+MY3voHs7Gz827/9G26//XZ4PJ7zsuaTk5Po7e3Fhg0bsGHDBlXrfzGyhmDPnj349Kc/rRbaGa/7x44dw8MPP4y8vDw89thjWLx4sdo0IhgM4o477gAA1Q96bGwMv/nNb/Dcc89hdHQUGRkZ+OIXv4ienh4mva6gSwasxmJzIR+w5uZmtLe3o6CgAGfPnkVXVxdWrlyJWCymglVp2n7w4EFEIhF1MdY0DR6PBzabDV1dXRgaGlJ9JE+ePIm//du/hcViwS9/+UvE43GUlpaipqYG+/btwxNPPIEnnnhCHU8wGEReXh7cbjcmJydht9sxNDSEr3/969izZ48KZDVNQ1tbG5544gnVnkja4hw9ehRbtmxBLBZTg5M+uL7zne9gaGgI3//+93Hs2DF873vfUwX7DocDbrcbmqYhEAioTKZMz01OTiIUCsHtdifVqxlrBSW4cbvdF+wTmIqkIf6rr76KZ555Bo899phq3i+totLS0hCLxRAIBOBwOPDMM8+oBVjA7OdNsg3T09PqAi3niZycHBXk2+12/Pd//3dSb1DJKuXl5aGrqwt//OMfk2qMA4EAcnJy1A1kLBbDrl27cPToUdVaaHx8HAUFBWqDAwmCpB2eZL8yMjLwu9/9DocOHUJvb68K4hwOB77//e/jkUceUbXMslpZWhYtWLDgmrxHkkm/6aab1Mr/gYGBpLKWgYEBbN26Fc3NzSgpKUFJSQmqqqpQUVGRNMUswZExsyfb/UpAKAGg9PSVDSKKiopQWFioguH09HTU19djyZIlOHHihGqkPz4+jpMnT8LhcCA7Oxv5+flJgapM2xvLA6RkzLgqXLoXmEwmVFdXo76+HpOTkxgfH1dZ2GAwiI6ODuzZs0f115VaZgCqNOZCPWWliwYwWzZUW1uL/v5+jIyMYHp6Oml75rmrv6UeV47VuLjMWAYgU/3y78ZpYmNJgLw3F1so9kEiXVFisRh27NiBV199FS6XC4888giys7NhsVjQ3NysNjexWq0YHR3Fzp078Z3vfAc1NTV46qmn1Jbv8pob44+mpib4/X4sXboU1dXVl3VcsnDKbDbj29/+NrKystQN19TUFA4cOICHH34YOTk5eOWVV5CZmQmTyYT29nY0NTXB6XRi8+bNKlD953/+ZzQ2NmJqagpFRUX4zGc+g29961soKyvDtm3bGLBeQe+5S4BknywWCyYmJlBYWIjy8nK1iER2mLJarWhubsbIyAgaGhpwzz33AICq23v66afxta99Dd/73vfw4x//GFarFX19fbBarfjFL36h+uYBwIMPPgi73Y7HHnsMn/rUp/Db3/4W5eXlyMzMxFe/+lU4HA4899xzqt7t1KlTMJlMeOCBB9TisG3btqGlpQWf/exnk2q6LBYLvvGNb+CGG27AkSNH3seXmK6FP//5z9B1HR/5yEfmLfUwXsDn/tk41Th3MYU8bu7XPkh0XUdWVpbKnBqfJzD/yuW5z/9Cr9l8LvXv7+Z75nvf5pr7fbW1tfPWqMfjcezateu8n3utSbZyxYoVqofw4cOH0dfXp2pLje3Gent71cYKOTk5qvWTZKSBc6vzJfMqi1hlKtz4vPPy8lBfX692G5M6WZPJhMLCQixfvhzBYBCnTp1SDfaHh4dx+PBh6LqO9evXqyyr2+1GVlaWymhLoOd0OtXNh7GXqfxZWsa5XC4V2MpMycjICJqamhCPx9HV1YWSkhLk5OTA5XKp0oQLZS2lhlUyqbm5uaiqqsLZs2cxMjKiAlYZD9FoFIFAQAX1UnZibH00NwtorNeVvwPzf26Mj/+ge/LJJ+F2uzE6OoqXX34ZTU1NuPXWW9UWy9PT09i9ezcCgQDS0tLQ29uLl156CU8++SQWLFiAJ598Enl5eWo2y1hfKn72s58hHo+rVnbGm6D56LquEhderxfp6emq5Gt0dBTPPvssfvKTn6C8vBy/+93vVI28yWTCwYMH8fbbb8PpdCIQCOCTn/wkWlpaEAgEUFRUhG9+85vYvHmzKjVioHrlXTJgDQaDalUmANUWxuFwqKnEf/qnf1I9KCORCGw2G6LRqNo+8ZFHHkF3dzc2bNiA/Pz8c7/cYsHixYuxdOlS7NmzB/39/dA0DdnZ2fjXf/1X3HrrrepuKB6Pw+Px4KMf/Sjy8/Px1FNPqSyZxWJBeXk5vvKVr2Dz5s2IxWJqv/YFCxaguLgYTqcTt956K+69915s2bIFp06dgtVqRWZmJh588EGsXLlS9bukDz45ecxto0azjH2Nr3fG2vm5UvUiIwvdFi1apHpfnzhxAp2dnUkbPkg9qizuGxoaUllG6U0LQGUKZSGszBYYNxxwOp3IycnBkiVLsGbNGtTW1qrNYSRw8Hg8WLp0qcoi9vX1IRAIYGZmBuPj4zhy5IjKBMtCqsLCQhUsSP1xVlYW7Ha7avwvO4uNjo5ibGwMQ0NDCAaDavcxqb2VhViTk5M4duwY2tvb1WxZZmYmvF4vKioqcNNNN6G2tjYp4SLlIDIjIM+5uLgYlZWVGBgYUD8fOFdba/xPFjbK6zpfHa5xoZbR3HKB643f78eKFSvwxBNPoK+vD5s2bcK//Mu/wGq1qoyp3CA9+eSTMJlMGBgYQGFhIX7605+itLRU3djI6zr3dWxra8OaNWtQVFR0WTNbxqz8F77wBbVg9NSpU/jNb36D559/Hrm5uXj00UdRUlKiOmdIptjv9+P06dP42te+huHhYXi9XvzgBz/A8uXLsWDBArjdblWWcL2+r6nkkgHr3PpVmU4zm83weDxwOp3qDl2mS2QqZXp6Gj/96U/R0tKCD3/4w7jtttuStnqVLRb/4z/+AyMjIyq4cDgcaGhoUK2ppMBe12f7YBYUFCTtfS07ZGVnZ6O2tha6rquLlDQIloxuSUkJ1qxZg6mpKTVFVFFRoVaesoaViK4lyQKaTCZ4PB5UV1erBvYFBQVoa2vDwMAApqamknZQkoBUdgaT7YnnZqqsVquqEXY4HLDb7UhPT1e9UJcvX46amhp4vV41uyXfb7VaUVVVpTJbbW1t6O/vT2qfduLECZX1koWJ0ufWYrEgKytLJRtCoZAqc5CgWxaZhUIhpKWlobi4GPn5+YjFYhgYGMDg4KBqe+Xz+TA+Pq7qd7OysjA2NoYFCxagurr6vIDS2L5Qri2SZR0eHsbo6CgGBwfV8zO+RtKaUXo2y+tqXJQ5l7FzgDG7apzuvh6yq8Ds82pubsb09DQ+/OEP42/+5m/U9D4A1bFk79696OzshMPhQF1dHb7yla9g2bJlqjRr7oYTxgyr3+9HZWVlUoeWi71+8XhcjbH77rsPuq6jpaUFTz31FHbt2qXWtDQ0NKiyL/l5GzduRDQaxcGDB5GdnY0VK1YgNzcXK1euhNfrVY+X95MB65V3yYB1vrsY42riBx98EM3NzWrv79zcXDXQnnzySbzwwguoq6vD7bffjqqqqqTBJyfDtWvXXvwg5zQGlt2BhEz/GIPhC3E6nWpxy3yulwJ4IvpgkiyddHGQwFECv5ycHHR1daGvrw8+n09NV0ttprFO0thO0LjVqHShMP7MgoICFBcXo6ysTGWOZA2D/AwJ+CTTmJubi46ODvT09GBoaEgFkRJojI+PY2hoSPU7lpZlxjUOAFT9cCQSUYGuxWJBZmYmampqUFVVBbPZjOHhYZw+fRqnTp3CmTNnVPN5qU3WNE21hrtQSYnMyhk7K5SVlaljlzIHaX0nLZicTqcKWuVGQEotjD9fSOJG3tO5C7AuNpX9QaTrOgYHB3Hn2AIQhAAAIABJREFUnXfigQcewKpVq85bA7Nx40Zomobp6Wm4XC4sXrwYd955pyoPuZSZmRm1uO9yyJbG0uHirbfewmuvvYadO3eipKQEDz74IO644w44HA4A5zY0AaDaHK5YsQIZGRlYuHChGsPzbQKRCuVE17t33YdVVtXLQPzSl76Eb37zm9i5cyei0Siqq6uh67Pbsf785z9HTk4O7r//fqxcuVKtHiQiovkZp0Olt6nsypaVlYXc3FwsWLAAp0+fxsDAAEZGRjAxMaG2IJZuD8bpTek9KtlNj8eDzMxM5ObmwuPxwOPxqPpXmZUybq8q9f6yKEu2wc3JyUF+fj4KCgrQ3d2NM2fOoL+/X/VqjUQialcj48+SaVQJsiUIsFqtavc5WcBVV1eH8vJy2O12lJaWorCwEC6XC5mZmZicnFQdLCQbmpOTo5Ihwvgc5PiNmydIhkzKyfr6+mCz2VBZWYmamhoUFxcjIyPjvIVWxv/mZlglc3wh19u18Oabb4au6/jKV76CtWvXwu12q44V0qHi5ptvxvLly6HrOtLS0tRNgDFDObf1mTHglR7BUmt8KbFYTN287Nu3D3/4wx+wd+9e1NXV4aGHHsJ9992nduSce/OQlpaG2tpa1NbWXtbzv97ez1T0rgNWk8mkUvdyF7x582Y8/fTT+OEPf6j6l01PTyMtLQ1f/OIXcc8996CgoECdKIiIaH6S9TNmMq1WK5xOJ9LS0tRWprW1tfD5fKrX7/DwMHw+n2rbJcFuenq62szB7XbD6/XC6/WqOlm73Z7U01YCVeOOhZIRlAVLEgRLp4zy8nIMDQ2htbUVzc3N6OnpSVqsJLNukvGVNQ7GfqzSvaOkpAR1dXWoqqpCYWEhcnJykvoFezweFBQUYOnSpaqWV9pcWa1WeL1e1e947usqz8sYuMrzlG1oAWD79u3IycnB+vXrsWbNGpSVlcHlcp2X2btQR4K5wSyApN2+jK6XQOeVV15Rr7HxectrJllMt9v9nn/H8uXL0dXVpToSXIoEwsFgEF//+tcRj8dRV1eH7373u1i3bp3qLjK3bpZS018dPcbjcdx3330wm8147rnncOjQIZjNZpSVleFnP/sZyt/pEXg9TX0QEV0p0pgcgGr5BEAFrZqmqQ4ssshIFi/JNLQEhFlZWSrQkou31WpVO5zJIhdg9uI+OTmpsqI2m03VnQLngjCp7TRmNd1uN4qKilBRUYE1a9agu7sbfX19aGlpwcDAAPx+v+pOIGUFHo8HDodDlSaUl5dj6dKlaGhogNfrVR0s5DWRmkG73Q6Hw4GioiLV0kp2BJPHeL3eeRc9zU2YSMApC4Okv3h7ezsaGhqwbNky5Ofnn/c6XWp1uvy+ueUDxuMwBrLXQ9Bq3HHtSnnttdfe1eMl4y4zDw8//DC+/OUvo7CwUL2f8p7L36+X9+N6pPGNISIiIqJUxtw3EREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsBIRERFRSmPASkREREQpjQErEREREaU0BqxERERElNIYsF6EpmndmqbdcRmP+7imab2apvk1TVtxNY6N6P2iaVqapmkvaZo2qWnaH6/18RARfZBpmlauaZquaZrlWh/L9YQB6/vjMQD/qOt6BgAfByp9wHwCQD4Aj67rD17rgyEi+qC53AQXvXcMWN8fZQBOXuuDIHqPygCc0nU9fq0PhIiIaD4MWC+DpmkmTdO+q2lap6ZpY5qm/UHTtBxN0+yapvkBmAEc0zStE8Cud75t4p0SgRuv3ZETnaNp2iJN03ZqmjahadpJTdM+qmnafwL4XwD+5p3x+vfX+jiJ5mM4B09rmtasadrHr/UxEQGApmlPAygF8NI7McEn3/mnz2iadkbTtFFN0/7d8Ph5Y4prcewfJAxYL88/AdgM4FYARQB8AH6u63rknTIAAFim63oVgFve+Xu2rusZuq7vvfqHS5RM0zQrgJcAbAWQh9kx/TsA/x+A/wPgv98Zr//vtTtKoovqBHAzgCwA/wngvzRNK7y2h0QE6Lr+WQBnAHzknZjgD+/80wYAdQBuB/C/NE1b9M7X540prupBfwAxYL08XwHw77qu9+m6HgHwfwH4BOtU6QNkHYAMAD/UdT2q6/oOAC8D+NS1PSyiy6Pr+h91Xe/XdX1G1/X/BtAO4IZrfVxEF/Gfuq6HdF0/BuAYgGXvfJ0xxXvAF+fylAF4XtO0GcPXEphdqHL22hwS0btSBKBX13XjGO4BUAyOYfoA0DTtcwD+GUD5O1/KAOC9ZgdEdGmDhj8HMTtmAcYU7wkD1svTC+CLuq7vuYzH6lf6YIjeg34AJZqmmQxBaymAU9fwmIgui6ZpZQB+jdmp1b26ric0TTsKQLu2R0akvJtr/7uJKegdLAm4PP8PgP/9zkkTmqblapr2sQs8dgTADIDKq3VwRJdhP2bv8P9F0zSrpmm3AfgIgN9f06MiujzpmA0IRgBA07QvAFhyTY+IKNkQLv+6/25iCnoHA9bL8ziAFwFs1TRtGsA+AGvne6Cu60EA/xvAnndWY6+7eodJND9d16OYDVDvBjAK4BcAPqfreus1PTCiy6DrejOA/xvAXswGBg0AmJ2iVPIIgP/QNG0Cs72tL+ayYwo6R9N1zmATERERUepihpWIiIiIUhoDViIiIiJKaQxYiYiIiCilMWAlIiIiopR2qT6suq7riMfjMJlMMJvNAIBEIoGZmRlo2mwLPLPZrP6s6zoSiQQ0TVNfk//PpWkaZmZmYDKZ1PfOzMyof9M0DYlEAolEAgAQCARw7Ngx/PGPf8SxY8eQSCRQUlKCe+65B5s2bUJeXp76PjlW+dny84XJZEp6DnOPU9M0RCIRRKNRaJoGk8kEi8UCk8mERCIBk8l03u96L3Rdx+HDh9VzvB6tXbv2qvdKjEQiOgDEYjEAs++3yWRS41PGrPE913V93rEai8WSxv+FyPg1m83qZ83MzEDXdTUO4/E4zGbzvOPS+BmSz108HsfY2BgOHDiAl19+GcePH8fDDz+MG2+8EYODg1ixYgVOnz6N6enpv+blogu45557rvrYDYVCl1wJq+s6pqamMDo6iqamJhw6dAgTExMYHx+HruuIxWKoqanB4sWLUV9fj+rqamRkZCSNO+N4M/5dWK1WWCznLhGhUAhHjhx5X54jXXnr16+/qmN3bGxMBwCbzYaZmRl17kskEkhPT0ckEoHT6VTnyXA4jGg0qv7NZrOpsWu329XYM5vNiEajSCQScDgc6pqcSCQQjUah6zocDgd+/vOfY/fu3fj2t7+NmpoaZGVlwW63Q9d1RKNRzMzMoKOjAxUVFdB1HRaLBVarFcDs9SEtLU1dLyQu0TQN8XgciURCxUHxeBw2mw02mw1msxmBQADNzc1X86W+rq1bt+6C4/aSGwdIQGY8mcmFWwI5CTIBqEEqwcB8AYAxKJWLszAOEvk5ZrMZMzMzmJqawqlTp7B//34EAgFEIhH4fD5MTk4iIyMDN9xwA9xuNywWiwoSLBZL0jEZf78EF/IcZmZmkj4E8Xgce/bsUR+Q+vp6lJSUqNcjHo+rY5bncynyfN/N99B7JyckOUnOzMyor81lvIAb/2yxWC74Ps13sTd+vwTHQsam8eZMAmnjuJTPwejoKJ544gm88cYb6O3thcPhQG9vL+x2O/bs2YOenh4UFxfDbre/59eIUp9xTEUiEfT29uLEiRM4fvw4WltbMTQ0BLvdjtLSUvh8Pvh8Ppw8eRK9vb1obm5GTU0Nli1bhvLycrjd7qTAlej9IIGqpmmIxWKYmZmBw+GAzWZT51C5+dc0DQ6HA1arFbFYDBaLBfF4HA6HA2lpaQDOxRK6riM9PR2JRALhcBgWi0UlxcxmM8LhMHp6evD666/D5/NhZGQE1dXVMJvNiMViiEajsNls2LNnD37yk5/g1ltvxYMPPoiioiJ1PTCZTOqxiURCfd7kWCVZNTMzA4vFomKSufELXVkXDViNF1QJICXAM16E52ZFjRfl+S708jW5Y5HBJ4MDgBoQcvHWdR3T09MYGxuD3+9HNBpFNBpFLBZDb28vtm3bhrS0NKxbtw42m00Fw/IBmXucwLngAUjO7tpsNkSjUTQ2NuLpp59GKBRCRkYGJicnccstt6CoqEi9BpJtlmOUn2/MHM997nJs13NWNRXMHX/GsXmxGwW5kTF+31xykjUGpnIyE/I148lPxoWMS+PNEgB1YoxGo5iamsLLL7+MXbt2oa+vD263G8uWLUNlZSU0TYPf78eBAwdw++23Izc3969+vSh1GcdZZ2cnXnvtNTQ2NmJkZATRaBRpaWkoKyvD2rVrEQwGsX//fvh8Pvj9fpw5cwbhcBgTExM4ffo0li9fjvLycjV+edNM7weLxaICPjmPSWLHZDIhEomoZEEsFlMxgtzUy7lQru1msxlpaWnqfKnrOsLhMDIyZnc3lWv22NgYfv3rXyMYDMJms6G4uFgFvTK2x8fH8V//9V8YHh5GeXk5nE6nimkkaA4EArBarSr2kIDYZrOpmV55jgBUnGFM2NGVddGAVS60cscBJAexQPKU63xZVeNdiFygjW+y8fFz71SM0+2apmFkZATd3d1qgMsdWTweR1tbGyorK1FeXo7q6uqkKWBhzGpK0Gj8XcZjmZmZQXt7O06ePKmmMuRn3HnnnSqTa/x+eZ6XCojk8cxyXDlzbxiM5Snz3RFfaFp0vszpfN9vvOEy/iw5BuMshXxd/pvv+GKxGE6ePIlXX30VfX19KC4uxtq1a7F27VpUV1djYGAAiUQCo6Oj6gRK1yfjuXdiYgI7d+7EwYMH0d3dDbPZDI/Hg/LycixevBhLlixRM0SDg4PqexOJBEZGRjA0NIRgMAgAKCsrg81mu2bPi64vJpMJVqtVBahyLjMGdHK+M96sy2OM51qJOeLxOKxWq/pZUjYgSbSJiQm0traitbUVkUgEXq8XmZmZSTOrcgPX3t4Ot9uNkpISpKWlJc2qAkBaWtp5mWDJDssxmc3mpFIZ+R10dVw0YJULazQanTcANNbsGbOj8r1AcsA69401Xqzn/tvcekCp2ZIaLbm7kTqSsbExHDt2DCUlJSgoKEBWVpb6HXODY2N9oTGokT8bs6aRSATBYBCBQAAHDx6E1WpFYWEhVq9ejbS0tHmDX+PzvxgGrFfOhYJKo/nujI3BgbFWeb5seCwWSyqZMX4+5tZ4G0/UAM4rMzD+OR6Pw+fz4bXXXsOJEydgsViwdOlSbNy4EUuWLEF6ejr8fj8ikQhPltc547iLxWI4c+YMDh06hJGREaSnp6O4uBg1NTWora1VN+zxeBzp6enw+Xzq+0ZHR9He3o6mpiaEw2FYrVZkZ2cjJyfnr6rBJxLGpJWQ67gEkHIuNcYMxplQyczGYjHE43FEIhH1/SaTSdWwArOfjbGxMRw5cgTT09OIx+NYs2YN0tPTVdwQj8cxOTmJ7du3w+/3Y/Xq1cjJyVEBp5y3JRCVz5sxwSbPTZ6DlATMDcbpyrtkDavRfFlBqf8QczNVMoCNC6uMf5dUv/HCb5wqkO+PxWKw2WxwuVwAZgeQ1O1JHUtLSwtycnKwePFiuFwuJBIJNQUhd2wSVMytn52vXGDp0qXIyMjA9PQ0gsEgJicnsX//fuTk5KCwsBCFhYVIT09PyqrODYrmy7ZeKJtH75+L1ZzG43FVGmAsRwHO3WDFYjE1e2Acj3LXbbVa1YVfMgDGLKqc+OaWixjrU+czMzODSCSC1tZWvPjii4jH46ipqcHSpUtRV1cHj8ejbqgCgQCys7N543Odk0xQIBDA8ePHVbBaVVWFVatWob6+HqWlpWpRldlsRn5+vprylOwqABw5cgQjIyPYv38/amtr4XA4kJGRwXMR/dXmZkGNX5eA0FgKEIvFkpIC8hiZpp+ZmUE8Hlf/l6yofC0SiWBkZAQnTpzA1NQUvF4vHnrooaQYIRaL4ezZs9i/fz+i0ShuuukmpKenA4Ca7jeWEBqzw3Nnfk0mE8LhcNKsGW/2rq5LBqzGLKf8WS7Gxqyr8c01fo/8DCNj9lVqVowpduOdjfy8WCwGr9eL8vJyvPXWW5iZmVHTWZJpjcfjGBwcREdHB2pra5NWZBtraoSxVuW8F8ZiwaJFi+B2u3H69GmEw2Houo7e3l5s3boVGRkZ+NSnPoX8/HxkZmaqnyfHLHeS8kGYW+NqfK70/jNmvecuuJNxYKwpBc5l1qPRKMbGxuDz+TAxMZGUSTWZTHC73SgsLDxvSl/qruRxwWAwKbNgvIkzmvv5CYVCqgaxoqICpaWlKCgoQGZmJnR9dsVrV1cXJiYm0NDQwAVX1zE5p0SjUQwODqKxsRGBQABLlizBpk2bsHDhQhQUFMDpdJ43ruScarVakZ+fj5tuugkjIyM4cuQI/H4/Dh06hMzMTJSXl6ubLqL3Sq7V8Xhc3ezLuTAUCqmV+unp6efVuMo4D4VCsNlsMJlMcDqdKnCNRqMIBoOqRACYrUvt7OzE6dOnEYlEcMstt6igOBaLwWw2o7OzEy+88AImJibgdruxYcMGFU8Yk2dyjo9EInA4HEn13fK8dF1HWlraedcTfm6unsvKsBrvMIDZQRiJRJIWiEiaXN7gaDSqToKJREItUjFmPOWC73A4kupY5GfIxV6mZ81mM5xOJzIyMjAxMYFoNAqn04n6+nrVJsPlcmFqakr9WQZ8IBCA2WyG3W4/rxh8voBSBvHy5ctx/PjxpMxZT08Pnn76adTU1OBjH/tYUqAaiUQQi8WQmZmZ1N5Ifq4Rg9UrJxgMwuFwqEBSbmqMJSLG/ycSCUxMTKCzsxM9PT1obGxEb28v/H4/0tPT1WpXl8uFrKwsuFwu2Gw2ZGVloba2FsXFxeo9NwbC8312jFneuXXTshK2tbUVOTk5cDgcWL16NRYtWoTs7GxYLBZMT09j165dCIfDWL16NbKzs6/BK0xXiyxMHRkZgc/ng81mw4oVK1BVVXXBYHUum82GoqIiPPTQQygsLMTevXsxPT2NQCCggoC5HS2I3g1N0xAIBJLaUUkAKYuc5Poo401W8EvtqyyyAmZLo6QcUa7dfr9ftbk6fvw4tm/fjvHxceTl5eG+++6D2+1WWdrp6Wm0tbVh69atCIVCePzxx2E2m+FyuWC325NuBiXQlmyrdDmQ322siY1EIipJYFxnQ1feJbsEDA4OIh6Pw+12w+VyqROjMY0uQagEAMYsk3G637giWhZNzW0fId8PnJuKlUDW4/GgqqoKxcXF8Pv9avBYrVZs3rwZBQUFakrCWLSt67oKVIFzwbKQC4Lx75qmIRQK4eTJk+rxxsB2bGwMjz76KG6++WY4HA713MxmMxwOh/pZc0sCWA5wdUhtMwDY7XZ1spRWJxI4JhIJBAIBdHd34/Dhwzh06BDGx8cxMDCAcDgMr9erxkc4HEYgEMDIyAisViuysrLwxhtvQNM0bNy4Ebfffjs8Hg+qq6uTFunNHc9ys2T87EhWwu/348SJE+jq6oLNZsOiRYuwePFieL1eJBIJTE1Noa2tDW1tbaiursbChQsRDocRDoevzQtNV1wikYDP50NzczMikQjuvvtuVFdXIzc3V92UXQ6z2YycnBysW7dOZVmHhoZQWFio+lUSvVeapqk+q3Lek+BvcHAQbrdbXSuBc/GCrMCXG3Yp1zLOfslslZwjBwcHcfz4cZw+fRqlpaV44IEHUF5ern7u9PQ0XnrpJTzzzDPw+Xyoq6vD0qVLYbfb1cxsJBJJKgGwWCyw2+1JGVpJuMm13Zick4Vfkk2mK++iAeurr76K7du3IxKJoLa2FuvWrcOyZcuSArL5UuJzs1hzV+cbFz7Nt2BJ7vTljkbqBp1OJ7Kzs5Gbm5uU9Wxra8OpU6dQVFSE0tJSxGIxnD59GrW1taquS36OkTF4nvt1TdPgdrtx++23o7OzEyMjI6p2Rv69v78fv/71r/H1r39dZb/m/o65f58bvDJwvTKM7auM40ju/mOxGKamptDa2oojR46gra0N/f39CAaDSE9PR0VFBYqLi7FkyRJkZmaqE28oFILf78eOHTvQ2NiIM2fOIJFIIBgM4tSpU6ivr8edd96Jm266CcD5vYZlzEsQDUA1po5EIjh79iy2b9+OiYkJ5OTk4K677kJdXR0yMjIQj8cxPj6O3bt3AwA++tGPori4WLUtouuTjOHJyUnY7XY4nU7k5eXB6XS+61kak8kEl8sFr9eLvr4+9PX1oaSkBF6vN+k8aAwceI6iyzE9Pa2ugRLISRwgC50kODWuKZFkgLGWWr5X4gdJQsn58+TJk2hqaoLf70ddXR0+9KEPqe+Nx+M4ffo0WlpaMDg4CI/Hg4cffhhOpxMWi0VtUmAMqqWeNRAIwG63qwSXca2NlCXIzR3bwl19Fw1YX3/9dRw9ehTRaBR9fX2Ix+Mqy3mhoNR4YTYGCsY3VQbpfKuq51vAJf9mtVrV79+1axdCoRAsFgtCoRBaW1tRW1uL0tJSNaA6OjqwePFi1dDYGCTL75rvDslYN7t69Wo0NTVh7969GB0dVbUv8iF75ZVXcNttt2HFihXIyso6r5OCMTif+zt4MbhyZPwByTdVchfv8/nw5ptv4ujRozh9+jTGxsYwMzODkpISrFmzBmlpaaivr4fH41HTV3LSikajyMzMRFNTE44cOYL29naMjo4iHA5jenoamqahtLQUxcXFSW3g5nYLMPYBloCko6MDTU1NcDgcWLVqFSoqKmC32xGJRDA6OqqaxdfV1WH16tVcMPM/gHGWKRgMYmZmBhkZGUlt9S6Xps02bM/NzUVXV5fqaz33XHSxhYFE85GAVG7E517PJRg01oUC5zZOMa5/kZ9lDGplVioYDOLYsWPo6enBggULcO+99yIrK0vFIWNjY9i7d6/aDXP58uW44YYbkmq6jV0CgHPXhbkJBuDcgm3ZaWvuc+Pn5Oq56BlPLsQAVFC4fPlylJWVQdf1pKlOAEkD0RgUymOMg8O43evcBVvG0oF4PK7ugHRdR3Z2NhYtWoSysjK0tLQAmE3tnz59Gt3d3aivr4fX60VOTg46OzsxPT2NrKyspDpS+U+yuMZjNz4fk8mEiooKLFy4EMeOHUu645IPT1dXF7Zv346ioiJ1EZEBf6Hsx9xAnK4ceR+M9Uejo6PYv38/du3aha6uLhWA5ubmorS0FDfeeCPMZjPKysqSxq+ctHRdh9frxYIFC1BZWYmTJ0+io6MDAwMDGBsbQ1NTEw4cOIC77roLdrs9qdzEeCKU8gRg9qQ4NDSExsZGjI6Oqp3bXC6XunkaGRlBS0sLRkZGcMstt6CwsPA9BS30wSJj2Gq1wufzIRQK/VV1cxaLRXWXiEQiCIVCqq5QXKjunuhCJMiU66SxbZXUrs63Zbo8VvoHG+tL5edJVjYajeLkyZNoaWmB3W7HunXrsGrVKpWgCAaDaGxsxLFjx1R2ddOmTcjNzVXxyHzlipKQMMYewLlYRR4ri7vlOjB3F1C6si65cYAEluFwGMPDw+jr61ODT3acmG+qHUBSnYecdI13SwCSarDmTp3KYJHH6PrsFm01NTVYu3YtOjs71QrC4eFhtQVhdnY2PB4P+vv7MT4+DqvVivT09KTV4cJYW2sMWmVqw9hKwxiky+NjsRi2bt2KVatWwePxqA+G0dznZ7yLY93YlTP3fYjFYhgeHsahQ4fw4osvore3FzMzM/B4PFggXDQgAAAgAElEQVS8eDFqa2uRmZmJsrIyAEg68UrdkpyorFYr7HY7ysvLsXbtWhw/fhxvvPEG9u3bh+HhYezYsQOrV69GQUFBUi9h+WwYV9SaTCZMT0+jo6MDhw8fRjweR3FxMWpra5NqbX0+H7q7u2G1WrFy5Uo1rcXFe/9zjI+Pw+fz/dUNy3NycpCeno6ZmRmEQqGkzVGI3gvJjspuUXLeAqAWNMn507jVqcQGUnIn/yZBqvzsmZkZDA0NYevWrejp6cGKFSuwadMmdfM1MzODzs5ObN++HR0dHbBYLFi8eDE2bdqkbuwlUDUGoXJuD4VCSW0OjQmKuQuzJZH2134O6d25aMCam5uL/v5+RCIRJBIJTE9PY3BwUPVPE8asqrEFhAxgeWON7a3m7qkuqwGNu0pIwDi3hUROTg5uueUWvPTSSxgbG1Pbpe3duxeJRAJutxsLFy5EbW0tenp61ApvY7ApwYIs/jJmO2VAA4DP58PBgwcxPj6u2hZZLJakHWLa29vxwgsvwOVyYe3atapu1jilYZyiBmYHPBc6XDnGGwMxNTWF/fv346mnnsLU1BQSiQQWLVqEhQsXYvHixairq4PX61WtS+Q9NNYmS4AobdXi8TgyMjKQSCTQ2tqK/v5+ZGRkIBQKoaOjAxkZGfB6vapjhrGLhrGfYGtrK44dO4axsTEAwKZNm1TPVavVimg0Cp/Ph6mpKSxcuFBtz8q7++uPcTZKMj+hUAhjY2MIBoPo6elBKBQ6r13g5TKbzSgvL4fL5cL4+DiCweBFS5c4xuhyyDgJh8NqFb1kVaUuVDY7kV6tMr4BqAVP8n3xeFx1CpBymH379mHbtm0wmUxYsmQJlixZoq7Fsragq6sLIyMjKljNzc1VsYV0JZAknGR0pa5V4g7j7lpiampKxRFOp1MtwpINOujKu2jA6vV61Z2IrusYHx/HqVOnMDIyguLiYhW0zt21Qi7EMh1qnAKXOyhpvG5Myxu7BRh7pBqDPU3TkJGRgVWrVuGee+7B73//e1VXOjMzg+bmZrz00ksoKyuDx+NBRkZGUmssY4AsRdNS4yqrAeU5ydSbBKDA7IcqKysLkUgE4+Pj6o5s27ZtAGYH9Zo1a1TbI2D2w+dwOJKCFvmddGVIXz25MRkdHcWRI0fwyiuvYGhoCNnZ2ZiZmcHKlSuxYcMGFBUVJbVhM7Zmke4CxoymTJ/KXbfL5VIthvx+PxKJBLq6ulBbW3vealhpmSY3S+FwGJ2dnWhvb4fVaoXL5VLlAJKtmJ6ehsfjwT333IPbbrsNubm5sFqtaicYun4Yb5wDgQDGx8fR39+PyclJzMzMoKOjAwcOHMANN9yAoqKid9UpQM7ZUgYgX5u7va/xM0B0OWQMyo28cRpdygKkzZXMLEm3IQlOHQ6HSixZLBaVOAoEAgiFQnjkkUcQCATwrW99C3fddRc0TVNjt7OzE21tbRgcHITD4cDNN9+MO+64Q2V0o9GoCqQtFouaYZBYxZjdlZjHOEssCSZjz1hJXNDVcckzUjgcVhfsqakpnDlzBs3NzcjOzkZmZmbSThVSaycZ1kAgoLKzsiuQrGyVgSkDQLJaczOOcnclGS/p02axWPClL31JrfCWrNfo6CiOHj2KI0eO4EMf+hCys7PR1taGWCyGgoICOByOpIFp7CBgXIQlvdby8/Nx9913o6WlBaFQCLm5uVi2bBmKiorw+9//HiMjI9B1HX6/H1u3bsXAwAAOHz4MTdNUaUJ5eTkqKyvh8XhUM2TjB5jef9LXLx6Po7m5GTt27MDOnTtx9uxZWCwW3HjjjWhubkZtbS0KCwvhcrlgsVjUTYyMeWNmFTi3WlTGUSAQUGM4JycHdXV16OvrUzWo6enpST2JjdOvcqMVDofh8/kwPj4OAKozgXHDjoyMDDQ0NGDlypXIyspCeno6bDYbMjIyOIauU8PDw3jhhRewf/9+xONxuFwumM1m+P1+HD9+HGvWrDlvi9/LNTIygkgkAuBcG0JmUumvEQwGk9oGygyVz+dT5zG5/km9qvGca7PZ1PU+FAqpTCwwmz197LHH4Pf7cfvtt2PFihVIT09X/eBbWlrwq1/9Su1I+YlPfAIbN25UyaVoNIq0tDSVqJLFsxKsyu+WjKuc0+V8L/2v3W63Sm4ZSx3p6rhowLpo0SJs2bJFDR5N0zA9PY2+vj61al/a8RjrUqanp9Hf368Cyfb2dnR3d8Pv98NisSAjIwN333036urq4HK54HA4VAAr2VXgXDbAuAgKODfNkJ2dja9+9at4/PHH0d3drU7Ap0+fxvPPP4/q6mpkZmYiFArB5/MlrayVOyP52ZJdlUVfcic2MzODsrIyFBYWYmhoSAUm69evx8TEBJ599lkVpAcCATQ2NqKlpUUVd9tsNmRmZsLj8aC0tBQ33HAD1q1bB6/XC4/Hw8F+hcTjcYRCIRw8eBBvvvkmDh8+jIGBAdXs3+Px4Ac/+AHy8/NVRkAYy0dkDBp3d5PWKFLDLRl02VSgv78fGzZsUBkEWdlq7AwgmXkA6OjoQE9PDyKRCDIzM7Fu3Tqkp6erf5cbPLvdrmYnWEpyfYvH4zhx4gQaGxvR2tqKrKws5OTkqHE5OjqKQCCQtP305Uzfy+IWudFyu93Iyso6b5MTBrD0bskMlMxSyX9msxnBYBDPPvssHnjgAXXNl8fJmATOXeslExsIBBAIBHD06FH85S9/gcViwT333KN6XU9MTODkyZN4/vnnMTY2plq/SVJJYgVJGMj0v5T1SWBqLGGUki15LhKTZGRkYGpqSl3b5657oSvvogFraWmp2ilKTE1NoaOjQw0oYHaQSVZyZGQEBw8exOuvv44zZ84AACYnJxEOh1VQYLPZ0N3djaKiItx///1oaGhQJ0hjqx8guX2E8f9y17Nw4UIsW7ZMncClafCBAwfw3HPP4ctf/jLKy8vR29uLRCKB0tJSuN1uNdCM/V6Nv1/u8mQlrTzX9PR0FBQUoLi4GBs3bsSePXvQ29sLYDaoCYVCCIVC6rhNJhPGx8fR29uL9vZ2NDU14eWXX4bb7cbatWuxefNmTuleAbFYDMeOHcOrr76K48ePY3p6Gl6vF263G9XV1Vi5ciWKioqQlpYGAOq9B2bv5mV8GFesAsnT+nKjJjdvXq8X9fX1qrl7Xl6e+mzIjZDc5MmuWolEAocOHUJXVxf8fj+cTifGxsZw5MgReL1eZGZmqp22rFarmgXg7irXt1gshtHRUYyOjiIUCiE7O1tNn4ZCIZw9exb9/f0oKipK2mXwcszMzGBqakq19zFmueZi0EqXS7KOErgC57rvZGVl4bbbblNlTnO7CAHnNgyScgG5zvf19eGXv/wlAoEAVq1ahbKyMlitVvj9fpw6dQrPP/88hoeHoWkaxsfHcdttt6GyslLtoJlIJFQGVWYT5m6jPncBlnF9gFzX5THG3rAAziunoSvnogFrfn4+8vPzMTo6qt6kUCiEnp4eTE5Oqjt7eXMnJiZw7NgxbNmyBUeOHMHExISqhZL+a7LSuqWlBe3t7aqedPny5eoCL2RwzLcQQAZ6Tk4OVqxYgdbWVrWAQNdnd6LauXMn7r33XuTn56tFU1NTU8jOzk760Bj7wRl/h2SPW1tbVRAjtYoulwtVVVWoqanB2bNnk4JOYxcAqeeVLJvP50NXVxfS0tJw5swZFfwy0/r+CgQCOHLkCDo6OjA+Pg6Px4OGhgaUl5ejvLwc1dXV6qR1odZq0gVCFtrJvxu3DJYx7XQ6UVRUhFtuuQWVlZWoqamBxWLB1NQUJiYmVL2z7Fj11ltv4eDBgzCZTBgZGcHZs2cxNTWFWCyGnTt34sSJEypgzcvLQ2lpKRYsWACPx4O0tDTWTV3HjF1UAKjSkdzcXBQWFqrWZr29vaipqVEbW1zOTYxMZ8pYk91+iN4vcv40LlAFgKqqqqRF2fJY+XMkEjlvYerAwAC2b9+OxsZGWCwW3HnnncjOzkYkEkFbWxt27tyJ7u5uOBwODA8Pw2QyYcOGDcjPz0/KhBrP18bORQCSglPjDlfAuf7Z0WgUY2NjOHHiBKLRKJYsWYLCwkKeh6+yiwasWVlZqKioQFtbG8LhsLrjGRgYwKlTp5CdnZ10ohwaGsLBgwfR2NiIQCAATZttUl1RUQGPxwOHw6Hu5I8fP47e3l7s2LFDrSK02Wxwu91JdzgypSB/ntuRwG63o7a2FvX19RgcHER3d7daaNPZ2Yk333wT9957L9xuN8bGxhAIBBCLxZK2ljV2NwCS20+FQiE0NzcjHA6rQm1ZzGU2m9HQ0IA9e/YkNUuWaQVgNhiS7T2lJsbv92NqagpNTU149dVX8fnPf54D/302MDCAI0eOYGxsDE6nE5WVlVi5ciUWLVqE7OxsuN3u80pN5i4S0DRN1V4b+wrabDZVfiLfbzKZkJOTg4aGBtTV1SESiaCjowPDw8MYGhqCz+eD3W5HYWEhuru78eabb+LQoUNq7Mtq2Fgshs7OTvT09KgxIXXQtbW1qK6uRmFhIYqKilT7Lbq+yMVaauzkfFdQUID6+nqcPHkSk5OTaG9vR319PXJzc5GRkXHJkgA5r0n2dnJyUtXSc5aH/lpze6way0vi8bhaRCUzRMaSAGB2EZOUPcViMQwNDeHo0aPYsWMHgsEgqqqqcOONN8JkMqGzsxP79+9Ha2srXC6X2mZ406ZNaGhoQGZmprrmGltIRqNRTExMAACcTqfa0Uoyq1IuYPwcJRIJjIyMYPfu3XjjjTdULCA7b7Ik4Oq5aMBqt9tRV1eHt956K2lxydjYGHbt2oWGhgZ1MZftUJuamhAOh6FpGrKyslBdXY2Pf/zjKC8vR3p6OsxmMwKBAF566SVs2bIFw8PD2LZtGzIyMuBwOLB8+XK1MGu+1lnGr8mCKWlzJcFBIBBQg+8Pf/gDKisr1ZatUhcjwSdwLpNrLA2QwT49PY2hoSFVK+Z0OpGVlaW2eVu2bBnS0tLU1phy4pc6w7y8PNxxxx2qDcb4+Dg6Oztx+vRpTE1N4a233sJnPvMZBqzvs8bGRhw/fhzxeBxr167FqlWrUFJSgpycHLhcLgBQdcoAkgJSOcHKiVUu8sbHSEmMjMlIJIJwOAy/34+RkREMDg5i+/btGB4ehs1mU9sGj42N4fnnn4fT6YTD4UA4HFb1rFlZWSgtLcXixYsRi8UwPj6OcDiMwcFBnD59Gvv370d5eTlqamqwadMmlJaWcsr2OiQLVru7uzE5OQmLxQKHw4HMzEysWrUK27dvx/T0NE6cOIG6ujrk5+er0pa5U51GkgTw+/3o7+9XbXqMvSY5nui9Mk6ny/kTmL0WOhwOxGIx2O12dc6TqXljqZ98/+TkJBobG9U51OFw4M4774TL5UJ/fz9ee+019Pb2qpu1rVu3wmw24x/+4R9QXFw8b7cB2Zxl9+7d8Hg8qK+vx4IFC5LKumTRtRyb9O7evXs3fvGLXyAUCgEAjh8/jtLSUmRkZLAk4Cq6aMDqdDqxZs0avPbaaxgbG1Mr+KamprBz50489NBDyM/PRzwex+TkJMbGxuDz+dRqwYqKCnzpS1/CokWLkJWVBQCqFvSzn/0sysrK8OijjyIYDGLbtm3Iy8tDTU2NCijMZjPC4bAqgDYWT8vqvlgsBq/Xi4aGBoyNjWFsbAxvvfUWotEoIpEITp06hbfffhtms1ktZJmcnERubm7SlIBx2tfY7Hjfvn3o6+uD3++HyTS7D7fH44Guz25isGjRIuTn56vtDY2BjtVqxUc+8hF84hOfQF5eHoDZC8nU1BR2796NJ598MikAp/fP/v37EY1GsXDhQtx1111YuXKlep+lhYlxkR1w7mZDFlHJTY+xDYucjOXiHw6HMTU1hbGxMXR3d+PQoUNobGxEMBiE3+9HWVkZHnjgAdxwww0Ih8PYsmULJiYmkJGRgSVLlqC/v19twrFu3Tp8+tOfVnftshDw6NGjOHnyJHw+H5xOJ8LhsPo80fXHZDLh7Nmz6pwLQDX4b2howH333Yc//elP6O7uxq5du+B2u+H1epMu0sbFIMZWfbqu49SpUzh79iwikQhqamrg8XhUyRbRe2XMNMpYM7bFtNvtCIVCqsOKsaOQdASIx+MIBAI4dOgQduzYgQMHDmBiYgJpaWn4+Mc/jomJCbz44os4e/YsysvLsWDBApw4cQLj4+Ooq6tDXl6eamVpXFCdSCQwMDCAZ599FgcOHEBRUZGa8QJmu2bIedfhcKiynImJCRw9ehTPP/+86maUn5+P1tZWLF26lLNcV9lFA9b09HRV89fR0YFwOKxOfp2dnXjxxRfxqU99Ci6XS9WHSro9Ho/jzJkzKsg19rBMJBJwuVxYv3497r33XuzZswc+nw+7d+9GQUEB7r///qQmvsaG/8b+aBJwyIrDDRs2IJFIYHx8HK2trSr79dRTT2FyclL12wwEAgCgsmbBYFCVCADJbV4cDocquHY6nXC73SozGwgEkJmZie9+97v48Y9/jNbW1qRuAzMzM9i+fTvuuOMO5ObmIi0tDQ6HA/n5+SguLsaGDRtUI2N6f7W0tCAcDqOkpESt5nc4HHA6nWpRnNRCzz25yRaD0o7K2MYkGAyq1ilTU1M4duyYKm/x+XyYmJhQ00p33XUXvvCFL6CyshJOpxMjIyPIz89Xq1dramowOTmJQCCAyspK3HDDDVi0aJEKqOX/dXV1arMOGZtOp5MBxnVKMvbSEjASiaC/vx+NjY1YtWoV7rzzThw4cAD9/f1oamqC2+1GcXEx6uvrz1uAZSxRkjE9NDSE6elphEIhZGZmwu12s+cq/dVkIaoxCSB9UqXuX+qmjUkCybLKdfbZZ5/F/v371aJUu92OTZs2Yd++ffjLX/4Cr9eLT37ykygrK8Phw4exc+dOWK1W/OM//iOysrLUdV1KDkKhENrb2/H4449jaGgIfr8f1dXVqpWm0+mEzWaDw+FAIBBAMBhUi7ebmpqwY8cOOBwOfO5zn8OWLVtQUFCAT3ziE6ivr4fZbIbD4biWL/v/KBc9S8ViMWRmZuJjH/sYBgcHVebSbrcjGo3iz3/+s9opSC7k0pDaYrFgfHwcPT09KCsrg81mQ3p6ulqFLz1O77vvPvT396tpqlOnTiX1SZU/y92aZCSlT6ocJwDVEggAHn30UfT19cFkMiEQCGDnzp3weDyorq5GaWkp4vE4IpFIUtNtydxKD87p6WnE43E1vb9+/Xrccccd8Hq9KgAPBoNYuXIlNm/ejOeeew7Nzc1J9axnz57Fb3/7W3zta19DTU2NWnWelZUFm80Gp9OJlpYW1pC9zxYsWIDh4WG8+uqrGBwcRENDA6qqqrBs2TI1Fo07q0jdMzB7oya7C/l8PvT19alp/ubmZnVjJo3cZbGf3W5HcXEx1q5di40bN6K8vDwpm5CZmYnbbrsNOTk5OHDgANra2lQGIjc3F0VFRUnbERpvzownfGNHA7r+JBIJdHd3q/Im6bBy4sQJnDlzBlVVVdi8eTNefvll9PX1oa2tDfv27UNZWVnSxdN4QyMZ2s7OThw8eBBmsxmLFi1CRUWFWrQ1H5YJ0Lth3MJaZqWkRl+uoxIfGDcSklLBxx9/HAcPHkRlZSW8Xi86OzvhdruRkZGB119/HR6PB5/73OdQUlKC48ePY9++fYjH46ioqMCKFSvUgirZmMfv96OtrQ2/+tWvMDw8DJ/PB5vNhoaGBhQUFKjWcBJrxGIx1Se2paUFb7/9NoaGhrB+/XqcOXMGCxYsQDAYRHZ2tsoYsyTg6rnoVU/efI/Hg5ycHDXw5L+Ojg4899xz+PznP4/8/HwVkBp383nhhReQm5uLzMxMZGRkqFoR+dkTExMYGBhAIBBAdna2KgeQbJLciUmxtOx4cfDgQaxZs+b/Z+/Og+M+zwPPf39AH0AfQOO+DwIECJAESYmkSJPUaVsaybKc1MbOJJZHUy5n4p3KTG1NZXZmx9nUzGZmNrNJbWW2KpvN5vI4GjuxN7Z8yhJF6qBIkRQv8ACI+27c6Ab6Pn/7B/C+/KEFUpJFSm3p+VSxSAKNRh9vv7/nfd7nfV+ampo27ZnpdDppampi+/bt+P1+fT9LS0tcunSJpqYmHRiovS0VFRRHIhFCoRCvvPIK3/ve91hbW6OkpITt27fT2tpKcXGxzlYYhkFlZSWf/exniUQipNNpbt68CawH0sXFxVy8eJHe3l5db6Oev7XEQdxdDz30ENeuXSMYDNLf38/s7Cwul4va2lra29v5/Oc/ry/UqVSKeDxOPB7XC/J6e3sJBAIMDg7i9/v1yHtpaUlPZWWzWUpKSmhubtY7A3R0dNDU1ERlZSU+n0933KojLCsrY9++fdTX1/OjH/2I8fFxMpkM5eXlVFZWbtpRw5r1VbMTapGAbGv18aUusouLi3ozc1XLfPbsWdra2tizZw+9vb3Mz8+ztLTEtWvXaG1t5dixY5SVlQFsymJFo1EGBwf5h3/4BwYHB6mtreXIkSN0dnbqs9iF+CBU7afqr9S1Vc1kRSKRTaUnqg9T19tvf/vbnDt3js7OTsLhMLOzs7jdbjo6OhgeHqazs5Onn36a5uZmYrEYAwMD9Pb2UlxczLPPPqvXBagFi9FolBs3bvDjH/+YVCrFwYMHeeuttwgGg3i9XkpKSrDb7e+Y4Uyn06ytrXH27FmOHz+u68MvXbqE0+nky1/+MuXl5Tq2kINbPjx3DFjVaj2Px0Nrayt1dXUMDg4C6E70/Pnz7N+/X091d3R0EAgE9KrAkZERfvKTn2Cz2Th8+DDV1dV6W5WhoSF+9rOfsbi4qDNc0WiUVCqFy+XSv0dtmXXp0iX6+vr0SS83btzgyJEj7Ny5UzcqWN/d4L777uP69essLS3pIFotCtu3bx8FBQV6qlgxTZPV1VVGRka4ePEir7zyCmNjY2SzWQ4ePMiuXbt07aAaIcL64p2WlhaOHDnC3Nwcs7OzBINBna1dW1vj0qVLdHd3U1dXt+mABAlW7w21hVVfXx+rq6s6Wz44OMj4+Dhra2u65k+VqahZAsMwGBoaIhKJMDc3p/f3hfU2Yrfb6ejoYNu2bdTW1tLU1ERLSwuNjY2UlpbqRQZqk39VUqD+FBcXU11drRd3qfvw+XwAOhth3bhaBayABBcfcwsLCywsLOh9oD0ejz4tsK+vj4WFBdxuNz09PUxMTDA5OakPK8lkMjz44IO43W6d0QqHw4yPj3P69GmGhoZoaGigqqqKbdu2UVVVJfWr4q6wLpRW/Re8c3tKdT1Wx1Kvrq7y1ltvcfbsWZqbm+nu7ua1115jZWVFbynV2dnJpz/9aRoaGnA6nYyPjzMxMcHa2hrV1dX09PToMkKAYDDI+fPneeONN5iZmWHfvn2UlZXpbS3Vwm61N7Zap6C21nrllVc4ffo0oVCI8vJyLly4AMBjjz1GV1eXvnaoPlx8ON51XlGdDLR7924GBweZmprSe50ahsHs7Cznz5+ntraWyspKDh06xMLCgg70otEo586d09tA7du3D7vdzsTEBD/72c84c+aM3gLL4XDoC7xq3CqTFQwGuXnzJq+//jrBYJDFxUX6+vrw+/3cf//9lJSUUFtbS0VFBYlEgra2Nrq7u3nrrbf0bgIrKytcu3aNU6dO8cQTT+jfU1RUpD88qmN/9dVX9T6x1dXVfOpTn6Kjo0NnV+HWynJVjK223VArESORiM7CXrt2jenpaXbt2qWzyOLeaW5u5rHHHqOgoIDJyUm9GFDtFLG0tKRr+1R5RzKZ1KtAQ6GQng3wer24XC7Ky8t1UX93d7eetiovL9+0c4QKONV0F6D341X1sul0mvn5edLpNI2NjdTX1+udJNQUk/UkltwgVbZS+fiamJggHA6TzWapra2lrKyMeDzO8PAwY2NjnDlzht27d9PW1sbu3bsJh8MsLS1x4cIFvdvEnj179N7P09PTXL9+nWvXrpFIJNi9ezc1NTXU1dXpC/dWpI2J90PNmqrrrbpOqkG3OjRF9YOJRIL5+Xl6e3t54403KCkp4dixY8RiMb3gsKGhgR07dnD06FF27typ61L7+/sZHR3F4XDohYOqvafTaS5fvsxrr73GxMQEXV1d3H///Vy6dIlgMMiuXbv0NnBq9kvtlAHrx9GfO3eO4eFhXY44OjrK4cOHeeihh/D5fJu2vpLPyYfnjgGrOr/a6XTS09OD3+9neHiY69ev65XwmUxG15wcOXKE/fv362PYlpeXgfXTsV5//XVCoRAzMzNUV1czMTHBiy++yMrKCna7HafTSX19Pa2trZv2HlT7U6rzgOPxuD7VKhwOc/LkSd5++2191vqOHTv0MWrbt2/nypUruhA8m80yODjID3/4w027EZSUlLC6usr8/Dx9fX2cOnWKwcFBMpkMZWVlHDhwgO7ubiorKzdtfaEyaKrD9/l8HDp0CMMwmJubo7+/Xz/2mZkZfX63KkqX+rB7x+fz8fTTT+vR8eDgIAsLC8TjcV1HFY1G9QIAdeoPrGcH6urq8Hg8NDQ0UFZWRnV1Ndu2bWPHjh26rEPdVgWqqlNW2XeVIQX01JEKXFUgYbPZqKuro6KiQg/YVGevOnfVVuDW6m/Jsn58+f1+4vE4hYWFdHR0sHv3btbW1vD7/SwsLPCjH/2IVCrFrl27uP/++0kkEpw5c4ZAIMD58+fxer2UlZXpcquBgQEGBweJx+O43W62b9/Orl27NtXiwzvrVaVvEr8IaymKClqLioooKCjQu/5kMhmWl5e5cuUKP/7xj8lkMnzhC19g9+7d/OVf/iUzMzN4vV4OHjzIr/3ar1FTU6PXf6iTAMfGxqitreXBBx/E4XDoHVvm5uY4efKkrvd+6qmnaGxs5K//+q9JpVK0trbqfVrVEd7Wvn9lZUXPrKnjXysrK3n00UcpLy/X13xr4kp8OO4YsFpT+A0NDea06VAAACAASURBVDz00EMsLy8zPDxMKBTSQeXCwgInTpwA4OjRo3z2s59lYmKCEydO6IzW4uIiJ06c4PTp03g8HmKxmJ5+NU1Tn0TU1dWldyNQtbLZbJaysjL2799PIpHgtddeo6+vD8MwSCQSxGIxlpaWmJ2d5fXXX8dms+kjLd1ut160oLbJmpqa4oUXXiCbzVJTU4Pf72dkZITl5WVisZheKe7xeDh06BBf+cpXaG1tBdClDrnnz6sNj9VUcDwe58/+7M8YGxvT9YvW/elUfY8stro31HZnn/vc53jkkUeYmZlheHiY2dlZnfVWK/ttNpverqykpASHw0FTUxPV1dX4fD7cbjcOh2PTsX5q8ZM6MtU6I6DqYgG9+4QKOp1Opz6JLRAI6PPcS0pKKCoq0ven2pZqV9aLgPVkFvHx4/V6dT9TX1+vt2RbWlrSWaMf/ehHRCIROjo62L59OwsLC/T29rKyssKLL76I3W5namqKqakp1tbWAKitrWXv3r1UV1dTVlamSwGsq7pzSTsT75VhGHpnE+vBP2oxE6z3y8lkkvHxcU6ePMkbb7xBcXEx/+yf/TNaW1sJBAJcvHiRtbU1nnzySb74xS9SU1OjB/NqL9Xl5WUKCgr0rGY8Hqe4uJirV69y4sQJgsEg+/bt46GHHmLnzp36SPlMJkNnZ6deT6N2jlExQjwex+/3EwwGiUajuFwumpqaOHbsGF1dXfoxqJJF6xGt4t571xpWtTLfMAxaW1t5/PHHGRgY4IUXXtBfj8ViXL16VWd+9u7dy6OPPkpJSQk/+MEP9IktamP1+fl5HA6H3g7L6XRy7NgxDhw4QEVFBdXV1XpVqzpswGaz0dPTg8vlIplMMjc3RywW09PuqsZL7dm6srKy6WhU6wprdaCAul81WiooKKC4uJjS0lKqq6t57rnnOHDgANu3b98UoKrMmVolqO5D/WlubuZXf/VXSaVSPP/88wSDQerr62lvb9cjRXU/UrB9b6iV/qr4v7m5mW3btmGz2fRxlGo1qGo/6v1QnZF1A2k1sFIZ/+Li4k2r9a1bXxUVFeFwOPTnRwXIdrud4uJigsEgQ0NDwK1sbklJid7CKBaL6TITddKWqnlW/5ZR/ceXy+XC4/FQUVFBW1sbVVVVlJWV8du//dt4PB6+853vMDMzww9+8APcbjelpaV6e53FxUVWVlb4i7/4C739WVVVFZ2dnRw5coTDhw/rhaPvtnBPDhMQ74e6tqq4QPWd6oSpTCZDKpWiv7+f733veywtLfHkk0/yhS98QZdKffOb32RxcZHu7m4OHDjAtm3b8Hq9emYylUrx0ksvMTk5SUtLC/v27dP94ssvv8zp06cJh8P4fD6dAFP1qcFgUJfMADqZpmIGtQXXxYsX9eJap9NJW1sbjzzyCF6vV2+JqLYuVH22+HDcMWBVAaj1DWlsbOS5555jfn6e8+fP6xOeDMOgv7+fiYkJXC6XDhTV94FNNXzJZFJvxp/JZPTqvV27dtHZ2cnevXuB9XIC1bnabDba29t59tln6enp4fjx47z88subNsi2nsNtXV2tTsrK3UrDmtb3+XwcO3aML33pS/T09OD1enVAkkgk9CjPuv2VNWBRgYQauT377LN84QtfIBwOU1lZSWlpqc6w5Z7aJe4utbm/dZpdBXnW915tO2U9oUzVLVlPPlM/o943tfgqd+9e2HzwhOrAVT2q2uVicXERm82md9Cw1m6XlJRgs9n0lJTK6KpZh61qWsXHx/z8PDabTW85BehZgN/4jd8gGAzqi2ogEGB+fh6Xy6XbszrsQpVGdXZ2cuDAAWpqanTbglv7Wqu2r46ohFv7EQvxfln7VLU9oDqS/K/+6q+4ePEi1dXVPPnkkzz66KM6aaP2Gk6lUjz11FMcPXpUX2fVXq6rq6tcvXqVQCDAfffdR09PD6urq/z93/+9zqx+7nOf44knnmDbtm368Be124ba8kq1bVV+FQ6HGR4e5s033+TUqVMsLS0B0NTUxGc+8xlKSkp0HGS323V/rxIM4sPxrttaGYahA1B14e7s7OQb3/gGzz//PMePH2d5eVmfSZ1Op3UgqlLlKpBTF/1UKqWDTPX/yclJFhYWePvtt/F6vXR3dxONRvWiltbWVqqrqykvL8fn89HQ0MD+/fs5ffq0Hn2pjIAKllWtid1u35RNUxkz9Zg6Ojro6uqip6eHnp4eOjo6KC8v3xSoqNdDfRDVUa1qOk2N1qz1t3a7nerqan2SDNzarksFTFIScG+oHS6ATZmkbDarg0e4dRygdVCj2qfao1e9T9ZAVU19qWyCtV7V+m/rtKsaSBUXF+tRfVtbm24fqg5W/R61hZXK7lrbtBT6f3ypwVVjYyOtra26faiSka9//evcuHGDS5cuMTU1pQcx6nQ1dTyw2jT9xo0bzMzM4PP56O/v132c0+nUm6ar7L+qz5epTvF+qUNwrAurkskkoVCI48eP8/Of/5yVlRW++tWv6hpqr9eLYRi6FCASiehZTbUwSiUNUqkUN27cYHFxkaKiIjweD36/n7Nnz3LixAkKCwv5l//yX3Lw4MFN11x1jVWzpOFwWJeCRaNRxsfHdcbX7/fruMButxMOh/X+q6p0QF3fk8mkzt6KD8cdA1Z14cydui4rK6OwsJDf/M3fpL6+nuPHjzM1NaXrP7PZLC6Xi+LiYj3NXlNTQ1NTExUVFYRCIQYGBvSpE6pxWxuTOonF5XLhdDrxer34fD4qKiooKytjcXGR1dVV3bmqANLhcOiFTiqTap1GVUGB+p319fX803/6T2lvb6eqqory8nJdx2jNsFnrEIFNQax1ysx6DJ3K7qqSAXU/KgCRqbZ7R2XarYupVHmLqiG2bhNlzf6r98x6zrq1Jgs2lwtYSwast1fU71Udp9o6JRqN0traitvt3tSuVOe8VQbXGhSLj6dIJILH49H7Sjqdzk210C0tLfh8Ptrb21leXiYUCukpV7VKemJigvn5eWZmZlhdXSUYDLK0tEQwGOTy5cs0NzfrjKvqJ2tra3E4HNTW1lJdXU1tbe2mmQMh7sQ66E8mk6yurjI+Ps7Zs2d56623qKmp4Ytf/CIPPPAA5eXlevGrOu3qypUrmKbJ3r17aW5u1rMGqk8OhUK8+OKLLC0tUVNTw/T0NOPj4wwMDJDJZPjn//yf632Irddqh8NBcXExTU1N3Lx5k7/927/Vu/2kUilCoRDj4+NUVlbymc98hs7OTt58800uXbrE2NgY3/rWt3jrrbc4ePAgcGsxOqwHw2oho7j33jVghc1BmQpci4qK2LlzJw6Hg/LycqamplhaWmJlZYV4PE59fT319fWsra3pmlC1GjoejzM2Nsb169c5f/683m9NFT2rnQBUql49BnUylNvtZnV1ddM2Gna7XR9wkEwmGR0d1eUIKjtsnRZWtTVut5vu7m7a29v1SkZrgGkNVhTrnpjWEaDK1Knsam5Aan0d1QdbAo97wzrdqWqXFWugaj3lzNo2rEHsVjWjqjNU73/u96zbpKh2pzpR9cdms+mjY9VjUb9XLbqxPmZrNl4yrB9fi4uLuh+yDrhV4KgGUx6Ph6amJh2sqlIrgKWlJZaXlxkfH2dqaoqZmRlmZ2eJRqMMDQ0xNTWFz+fTF+6CggIqKytxuVzU1NSwfft2jh49qtcdOJ1OXfsnxFYMwyAcDuvrb39/PwMDA0xNTdHQ0MCnP/1pDh06pI+Vtm4npXYNsNlsdHV16T2prddeddpbNBolEokwNjam2+bjjz/OQw89pHfyyU0euFwunnjiCUZHR7lw4YJOIhQWFlJSUkJLSwtHjx7l8OHDtLS0UFZWhsvl4u233+bq1auMjY0xOzury/1aW1vxer16xld8ON61SMmaGVRUbaAqSG5qaiIWi7GwsMDMzAzRaJTGxka2b99OKBTC4/FQXFy86ZzrAwcOsHfvXnw+H+Pj49hsNsLhMFNTU8zPz1NWVqZrV1UQrE4BUh223W6nvLwcWA+g29raaGlpIZ1Oc/78eebm5pient50trD1uEvVqFUjVPWl6uvWrLL6WfVv69dyA1ZVA5krN7iRgPXeUW3WekyuqoNWgaw1ILQGBHCrHjp34VXu+2UNaq1/1PeATWUlaoBlGAY+n4/a2tpNG1mr21iDXXVfql1KScDH2/T0tA4+VZu1Uu3E4XDoejzr3peGYejjp1dWVvD7/UxOTjI+Ps7s7CzT09MEAgESiQSRSEQHDqoWdmhoiEAgQHt7O9evX8fv91NSUkJbWxuNjY0fxUsifgnE43H6+/t1aV9/fz+pVIqdO3fy+OOP6wN+rGVWqt9NJBK0t7fjdDrZtm2bnt3KTSqoetFAIIDH46G+vp49e/bw67/+65tObFODPeuM2tNPP61rv1USS2Ve77vvPh5++GE9M/ypT30Kl8tFWVmZ3sZTbYFYWlpKRUUFtbW11NfX09jYKMezfkjuGLCqGiZrllH9u7S0VGeJEomE3lS9s7NT14wWFxfrC7/aFkjdXyQS4f7772fHjh0sLy/rwPStt97ipZde4siRI9TW1lJQUMC5c+eYnJykoqKCjo4O3G43g4OD2Gw29uzZo6ez1MEBBQUFPProo/T29vLnf/7ner9N1TGrmi/1QVAfIrUnoRp9qeevLgLWQEQFwWohjjXraj0VCW5lc1UgYr0vCTzuHWuQae30VEmI9QIPmzOhcOt9Vh2eqolS01gqs6+OdFU1z2o2QAWz6j7V/SWTSbxeL1VVVVRWVuLxeHA6nZvKBtT2VtbgVH1Ppmk/3mZnZwH0aVfWvXjV+15YWLhpD1W4VZ+tpljtdjv19fVUV1eze/du4vG43pt1amqK2dlZwuEwc3NzLCws6AG31+ulsbFRr85WAzdVyyfEVgYHB/nv//2/09vbSzAYpLW1lSeffJJnnnkGj8dDNpvVe6mq66eaTfL5fHzta18D2LSFoKKSRy0tLcD61m9dXV0cOnSI/fv3U15erstmksmkrs22BprV1dX8wR/8AQsLCzoYVrtxqOBVPa6CggLuu+8+Dhw4QCaT0SWKqq8uLS3dVGo2Nzf3Ib/an0x3DFhVFkotQrFOa6p0uuo0VWdZWlqqa0rVqlW1Wbt1hwB1P6WlpVRWVpJMJqmoqKCuro6nnnqKsrIyvTLw2LFj+v7dbjcej4d0Oo3f76ewsBC3261rStR2U16vl6amJmpqarh8+TKDg4MsLi6ysLDA8vIyHo+HZDKpj4u1TrupwEMFEGp7IusCHWvwbf23NTOWu2o8N1C13kbcXSpwtGZAraeTqCDW+vqr9yeZTOqCexXw5i6qUotT1M+oem1At2+1SEpd8K3TUA0NDayuruJyufRuGqo95AYi6ndaSxxkO7SPr+7ububm5vTU5lYDFuvfihoYq9uqvkst2PJ4PJSVldHY2MihQ4eIRqOEQiHW1tb0QQWpVEpPc/p8PhobG/X9JBIJJicnP8RXQvwy+d3f/V2WlpZ4/PHH+fSnP83OnTspLy/XfZxaBJtIJCguLtbrTZxOJ5FIBLfbrY9YVxlQtaA5kUhgt9v54z/+Y71gSm3/pvY+V2tovF6vPpxFxQ1q15Wqqiq8Xq++X1hPDoRCIVKplA5aVd249TRE1c+rWEF2+fnwGZLhE0IIIYQQ+UwKKIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BVCCGEEELkNQlYhRBCCCFEXpOAVQghhBBC5DUJWIUQQgghRF6TgFUIIYQQQuQ1CViFEEIIIURek4BViI8hwzD+nWEYf/lRPw4hhBDibpCAVYiPIdM0/7Npml/7qB+HEEJ83BiG8TuGYVwwDCNhGMY3c773JcMw+g3DCBmG0WcYxq9YvvePDcMYMAxj1TCMBcMw/pthGCWW779mGEbcMIzwxp+BD/Fp5T0JWIUQQvxSMwzD9lE/BvGJ4gf+I/DX1i8ahtEAPA/8K6AE+NfAtw3DqN64yWngqGmapUAbYNu4H6vfMU3Ts/Fnxz18Dr90JGAFDMP4N4ZhzGyMiAYMw/i0YRhOwzD+xDAM/8afPzEMw7lx+0cMw5g2DON/3hglzRqG8SuGYTxlGMagYRgrhmH8O8v9FxiG8W8NwxgxDGPZMIzvGoZR/tE9Y/Fxcpv2++8Nw3h+4/uthmGYhmE8ZxjGpGEYS4ZhfMPy84UbJQQjG/dx0TCMpo3vdRmGcXyjTQ8YhvGlj+p5io+v27ThbxqG8R8tt3nEMIxpy//HN37uKhAxDMNmGMZhwzDOGIYRNAyj1zCMRz6K5yM+3kzT/L5pmi8AyznfagSCpmm+aK77KRAB2jd+bso0zSXL7TPA9g/lQX8MfOIDVsMwdgC/Axw0TdMLPAGMA98ADgP7gL3AA8DvWX60FigCGoDfB/4CeBbYDzwI/K+GYWzbuO2/AH4FeBioBwLAn97L5yU+Ge7QfrdyDNgBfBr4fcMwuje+/q+A3wCeYj0r8FUgahiGGzgOfBuoBv4x8H8bhrHz3jwb8Un0Pttwrt8APgf4gBrgp6xnrMqB3wX+wTCMqrv9mIW4jQtAv2EYz2wkAn4FSABX1Q0MwzhmGMYqEAL+B+BPcu7jf99IKpyWAddmn/iAlfURjhPYaRiG3TTNcdM0R4AvA/+baZoLpmkuAv8B+Irl51LAfzJNMwX8HVAJ/FfTNEOmad4A+lgPdAG+DnzDNM1p0zQTwL8Hfk2mscRdcLv2u5X/YJpmzDTNXqCXW+3za8DvmaY5sJEV6DVNcxl4Ghg3TfNvTNNMm6Z5GfgH4Iv3+DmJT5b304Zz/V8bWasY6wmDn5mm+TPTNLOmaR5nPYB46h49biE2MU0zA3yL9UF+YuPv3zZNM2K5zZsbJQGNwB+xeXD2b1gvFWgA/l/gx4ZhtH84jz7/feIDVtM0h4H/ifUgcsEwjL8zDKOe9UzohOWmExtfU5Y3GidAbOPvecv3Y4Bn498twA82pqmCQD/rnXTN3Xwu4pPnDu13K3OWf0e51T6bgK0ChBbgkGq3G233y6zPLghxV7zPNpxryvLvFuCLOe31GFB3Vx+wELdhGMZngP8DeARwsD6r+peGYezLva1pmjPAz1lPeKmvndtIeiVM0/xvrNe8yoBrwyc+YAUwTfPbpmkeY73DM4H/wnpRdYvlZs0bX/tFTAFPmqbps/wp2miwQnwgt2m/78cUGzVWW3z99Zx26zFN83/8gA9ZiE1u04YjgMtys60GSqbl31PA3+a0V7dpmn94zx64EJvtA94wTfPCRpb/beAc8Jnb3N7G1n2vYgLGXX6Mv7Q+8QGrYRg7DMN4bGNBVZz1zGgW+A7we4ZhVBmGUcl6nerzv+Cv+X+A/2QYRsvG76wyDOMLd+Hhi0+4O7Tf9+MvgT8wDKPDWLfHMIwK4CdAp2EYXzEMw77x56Cl9lWID+wObfgK8JRhGOWGYdSynoW9k+eBzxuG8cRG/WDRxkKtxnv7DMQnzcYCvyKgEFBtzQa8DTyoMqqGYdzH+pqWqxv//7JhGM0b/24B/hNwYuP/vo22W7Rx/18GHmI9CyuQgBXWa6f+EFhifcq0GvhfWC/cv8B6Q7sGXOKd20+8V/8V+BHwsmEYIeAscOiDPWwhgNu33/fj/wS+C7wMrAF/BRSbphkCHmd9sZV/4/7/y8bvFOJuuV0b/lvWa63HWW+bf3+nOzFNcwr4AvDvgEXWM67/GrnOibvv91gfWP1b1munY6yvA3id9dKW/2/jWv8PwH82TfPljZ/bCZwxDCPC+nT/APBbG9+zsx5jLLL+WfgXwK+Ypjn4oTyjXwKGaZrvfishhBBCCCE+IjLyFEIIIYQQeU0CViGEEEIIkdckYBVCCCGEEHlNAlYhhBBCCJHX7njSUjweNwsKCshkMqTTaZaXl5meniYYDAKQyWSw2+0UFhbidDopLi7G6XRis9koLy/H4/HgdDopKLgVFxvG1luKFRYW3vZ7H7ZwOMyZM2f47ne/SyKR4Nd//dfZvXs3Pp8Pm23zS5bJZCgsLLztfZmm+Y7nlc1m9WuXzWYxDON9P/dsNrvpdQUoLi6+42O5144dO8bp06ff8XXTND+KN/YjW01omibDw8P82Z/9GTt37uThhx+mtrZ2y/fY2j4KCwtxOBz39D08e/Ysn/rUp+7Z/X/cfBRtNxwO37Htqr4ynU6/42uw3qYUa5szTZN0Oo1hGMRiMb73ve/x0ksvsbKywrZt23jkkUd45pln8Hg85DJNE9M0yWaz2Gw2/Tty71+JRCLYbDYcDofup7Z6XOo5FBQUbLpdJpPRfWNhYeE7+rrbPcetqMeubmsYhv7cOZ3Oe3rd+f73v08oFLpn938nzz333Ifddj9xK7hTqRSBQICRkREGBgYoLi7G6/XS2dmJz+fT8ZHdbgd4z3279fOQL5LJJH/4h/d+S+Pf//3fv227vWPAGo1GMQyDTCbDG2+8wcsvv8z169eJRCI4nU4SiQQej4fCwkLdOTkcDgBKS0t55JFHOHr0KKWlpRQVFemOJ5u9tU2k+v9HHWxZra2tcfLkSS5cuEAkEiGVSvE7v/M7eL1eHbCmUqktO9L3wtoYrT+/1UXAyhrc5FtjFrdks1lOnDhBMBjkxo0bdHV1UVFRoT8bVrFYbNNFXQjrYDS3T8wd4ORSwV5BQcFtA9iCggICgQDnzp1jcHCQUCiE3+/H7/fT1NTEwYMHcTqd+ndZB9Tqcb1bkOdyuW47QLO2dfUcVBCpvl9QUEAqldIDe7vd/p4SH7mv0Va3z2azWw74hXi/4vE4k5OTnDhxgtHRURwOB06nk4GBAdxuN6WlpbS2trJt2zb9mVAxzy+SqPqku2PAWlBQQDqdZmhoiDfffJPe3l6CwSAFBQV4PB5cLhder5dYLKY7AMMwiMfjLC4ucvLkSSYnJ+nu7mb79u3U1dXp0bt6o1TnoTrVTCZDMpncNAJXWQF1/5lMhmg0ysjICOPj4ywvLwOQSCRIJpM6c+n1eikqKqKxsZHGxkaqqqpwu92bsqSmaVJUVLSp4aTTaZaWllhdXSUSiXDz5k1GR0epr6+nsrJSP5ZMJqMDV9Xxqs5S/Q7rxcN6AdiKuthYf95KGvd7l0gkdJtKpVIYhqFHuVYq67S8vMz8/DyFhYXs3r37Xe/felHMzd4UFBQQDAYJBoMEAgGmp6dpamqivLx8088YhrGp7eXLgE18tGw2G9lsdlMwdzu5bVBlQa0ZV9X3KNaZsWQySSAQANb74h/+8Ie0t7dTVVWls5u5v08lHKx9mTUDq/q72z223MeX+1zUv62B6nvp+1T/WVhYuOn55t5mq+clxC/KMAzcbjf19fWMjo6SSqUIhUL62l9VVcWOHTs4duwY1dXVuFyuTTFB7iBOBbPqe3dj61H12VB/UqkU2WyWZDJJMpkklUoRiURYXV2lqKiIRCLB2toapmlSXFyMz+fD5/N94MfxQb1rwGoYBouLi/j9fpaWlrDZbDQ2NvLoo4/idrtxu91Eo1EdFKRSKaanp1lcXCSRSHDjxg2CwSCzs7N0dXWxfft2fD7fO4I8a6eWyWT0Y0in02QyGf31tbU1pqamhGNadAAAIABJREFUGBgYYGRkBL/fTzgc1qOWdDqtU/BOp5N0Ok1jYyM9PT3cd999tLa2bnqOmUyGoqKidzzvkpISSktLCYfDBINBZmZmWFxcpKioCIfDoTvkRCKB3W7HMAz9xluD7Ww2i9vt1heI3IBlK7I37geXSqV0W1DtK5VKbXnbaDTKtWvXuHDhAi0tLXR0dPxC2Rf1vrndbrq7u7l06RJra2vMzc0RCAQoKSnRWfn3kilXHYsapKnp2HQ6TSKRIBQKUVZWtumirjo/9Zxv3LjByMgILpeL1tbWj2x6Urx3atCj/p37PStrv2kdMOV+X/1bBZtOp5PKykpgPUtUWFhIPB7nxo0bRCIRSkpKdJbV+rut96E+W9bHpPrhrfp29fU7XYSt/aNq779oJjT3d6jEiLUUS4gPwuFwUFVVxa5du5iamiKTyRAMBkmlUsTjcZLJJLFYjNXVVVZXV2lra6O5uVmXTFpLBraaTfkgAasaHKbTaaLRKCsrK0SjUUKhELFYTAeryWSSeDxOOBxmbW2N8vJyMpkMgUCAdDqNw+HA6/VSXV19N16yD+RdA1ZVn6pqUU3TxO12s3//fmpra3U0rgLLWCzG5OQkMzMzzM7OMjY2xszMDKurq0SjUUzTpLOzk7Kysk0ZxTtJp9MsLi6yvLzMxMQEV65c4fr164RCIeLxuH5RbTab7rRLS0uJxWKsra3pTGlRURFer5eqqqpNHWquoqIiOjo6mJqaYmVlhWQyid/vZ2VlhaqqKv3a2O123aGapsnq6irz8/MEg0EikQjRaJSCggJqamqoq6vTGV7VaVs7fNUwczOwdwpsxZ2p99ZaG7fVa7uwsMC1a9c4c+aMHnw5ne/tMCd1H/Pz88zMzOBwODh06BA7duzA4/HoAU84HAa2rj2+nWw2Szwe19l80zSJRCKMjIwwMjJCIBCgtbWVuro6amtr8Xq9OnuUzWZZWVnhpz/9KZcvX6ayspIHH3yQ4uLi9/MSio+AGrDfKVN4p3poVWO6VXmAYrPZaGtro6SkRPc/qVSKhYUFxsbGqKio0ANx9VhuJ3eGYavHqgZS6jbWLO27yS2V2upznPu36pNvd39SEiDuBrVeZ8eOHTidTsrKylhZWSEQCLCyssLKygqrq6ssLi4yPz/P9evXqa+vp6WlhYaGBioqKigtLaWiooKSkpLbtsmtMrFb3cZ621gspq8/i4uLzMzM6IA1kUjokptkMkk4HCYSiZDNZikpKcHlchGJRPRMZVFREfPz8+9I7n3Y7hiwwvrFXmWdRkdHmZ2dJRAIMDc3p+syrPVOpmlSU1NDV1cX165dI5vNkkgkCIfDjI+PU1hYSFFREZWVlRQUFJBIJO7YuaiM7fnz5+nr62NkZIShoSESiQQVFRV66lzV0hYUFFBUVKSzWXa7ndXVVa5evUphYSHFxcUcPHhQNw5rPa3icrnYu3cvy8vL9Pf3s7y8zOzsLJFIRP+MGqF7PB6y2Sxra2uMj4/z9ttvc/XqVRYWFojFYthsNurr6zlw4AA9PT1s27aN8vJy7Hb7piyCCkis9a1qcZZ6jtaAVgLZd2ctAbBOlcKtbEtBQQHj4+MMDg4yMzOj38/3SmXWL1y4wPHjx6mrq+PQoUM4nU58Pp+eaXgvi/PuNJIuLCwkGo0yOjrKd7/7XV599VWSySQtLS0cOnSIhx9+mJ07d+JyuXSgcvHiRU6ePEk4HCYcDlNfX09DQ8N7fm7io7HVtLY1u5lbKrBVAKfKqKw/r6bZVda+s7OTuro6hoaG9IWsqKiIN998k71795JOpzFNc1P/k8s62M79mvXfuY/13YLFgoICHA7HpoH8VrYqN7D2o9bHtVV5g8hvpmnqDGBuiZfNZtMJo2w2q9cC5NZdw717r9VnqqKigsLCQtrb24lGowSDQaanpxkeHmZ8fJxkMsnMzAyXLl3i1KlTVFRU0NbWpgPX3bt3s2vXLrxe7zvKZVTbfreAVd0mkUgQi8V0kDo1NcXMzAzBYJBkMqlfI3V9jMfjOrHn8/lYXl7elPFVnyuV9PsovdsuATrb1NbWRkNDA1NTUywtLfHqq6+yc+dOSkpKcLvdwOaLbklJCZWVlezZs4fh4WGuXbvG9PQ0Q0NDGIahSwNUxie3g1a1FhMTE/zkJz/hxIkTTE9Pk06nKSgooLS0lB07duiLcHt7O263m4KCAmw2G/F4nEgkwsDAAKdOnWJlZYUrV67g9XppaGjQdSSpVOodHaLdbqehoUFnyO7UYabTacLhMG+++SavvfYavb29zM/Pk8lkcLvdpNNp/H4/Q0NDvP766xw5coTHHnuMuro6veuACkxz68FUdiSdTuvssbXxblXnKrZmzTxag371AY9Go7qkQ5Vy3K5zsH4vmUwyODjIjRs3mJ+f17V/TqeT8vLyd1zM7zSC3ipQtv6eq1ev8q1vfYtz587pwVB/f78e5ZeXl9PW1gZAIBDgT//0T8lkMlRWVmKaJn6/n1gs9oFeR/HhUO+7CjzV53+rz7x14AvrfWc8Hsdms+ksqWqDascXNchWF38V5MbjcQYHB4lGo5t2rMgtUcid8lclK+r35ZYlqLb9XutRrd4t+FAZaXVBt75G6nu5dbXSd9591nK+3Nf7FxWJRBgeHubixYu6rY6Pj2O326murqa2tha3200mk6GlpYWSkhLsdjtFRUW6LapF4apd3s3MurpPa9CayWSor6+nubmZ1tZWpqamCAQCDA4OUlpayszMDJOTk0xMTOB0OqmoqGDXrl189atfpaenR8cx1uu9daC6FfX5jkQijI2NMTExwdTUFHNzcywtLREKhXA4HKTTaT1b7nK5cLvdeDweSktLsdlsNDc36/VJgC5rUDPta2trd+21+0Xc8VOr6kwLCwvZs2cP09PTDAwMEA6HuXbtGm+++Sa/+qu/Sjqd1rWdinojGxoaqKqqoq2tjfPnz3P16lUCgQB+v3/LFLiq24vH44yMjPBHf/RH3Lhxg0wmg8fjoby8nKamJp544gk6Oztpbm7Wvw82B81ra2u0t7eTyWT46U9/SiAQ4MKFCzidTp577jk8Hs87FlxZH4ff7ycQCFBcXKxHHAUFBTqjHI1GCYfDvPjii5w4cYKhoSHW1tYoLCykrKwMr9fL5OSkvt3y8jLRaJRMJsNTTz2FaZo6Q61eZ+s2YupDBuiRkcoaWDOv1lpNsU4FlbkL9nJXKKtyEvXhVUGmNUOVuxuEddAQDof57ne/y5kzZzAMA7/fD6xfEIuKikin09y8eZN9+/axf//+TY/N6nZtENbf+7Nnz/LjH/+Y3t5eKisrKSoqor29nbfeeov+/n4dLKjv/fCHPySRSPDkk0/icrk4d+4cwWDwPZc6iI+OGljB5gHO7epXcy/CambJGsCqC2kymQTW+8af//zn+P1+fXs1y3Pz5k1efPFF/tE/+keUl5fr+7D2Seq26jOlyhC22n5KBQ3qc2MdMFrlPj/rlle3C3y2CuKt96s+a1sFKdJf3l39/f289NJLOiHV0dGhF1r/okGiKsebn59nfn6elZUV+vr69Gp8NchKp9O43W7a2tpoamqiurqa6upqGhoa9IJXm82mA7G7SbVv6+BOxQClpaW0tbURDofZvXs3N27cYGpqikuXLjEwMKBLB69evco3v/lNnnnmGfbs2UN9fb3ecm2ra5eSey06efIk/f39zM/PY5om8XicTCZDXV0dlZWVZLNZysvLqaurw+v16nJPl8ulB7hut5tUKsX8/Dx2u12/fw6Hg7/5m7+566/f+3HHgFUVp5umSX19PY8//jjZbJbnn3+eubk5vve977Ft2zZ27typOzxYb2RqG6vV1VXcbjc1NTW0tbWxurqKaZqUlJRsGj2ojiWbzRIKhejr6+OP//iPmZmZAaClpYUHH3yQQ4cOUVdXR1lZmZ4CUJ2ltSNMJpN4PB5KSko4ePAgfX19hMNh/H4/p0+fprGxkSeeeELXbFg7RPUYlpaWdGOsra2ltLRUd9aqnOHKlSu88cYbjI+Pk0gkaG5upquri5KSEqqqqpiYmODtt99mZmaGcDhMX1+fXpH+W7/1Wzotrzpndd8ul4u1tTWSySRra2tcu3ZNB1c+n0/vumB93mp6Wl2UAEKhEG+//TYDAwMUFhayb98+du/erffMVcGvukjmXohgczblTjW21sVyHzX1mG43yrfuTKE6QrfbTUNDg76Aqx0qVL2xqr2z/r26ukowGCSdTuuFeqZpEgqFdO2Pqi1NJBJ6wd5WcjskNQPg9/s5efIk58+fp76+ns9//vPs27cPWP+sDQ0NEYvFmJ6eZnp6GsMwePHFF4lEInR1dbG2tobT6WRpaYnp6em7+TKLe0AtgNpqIYbVVoN0dXFTFzv1+VZrDFKplO63rl+/rjMmdrtdt9N0Os3Pf/5zioqKOHr0KPX19TqLpHZhUUFiIpHYVJdaVFSk+9/cRVlqdgzQZVC5z9sa9Kog+3ZbAOXWtm712qjbqeuLeq2khvXui0QiZDIZFhcXAXRp3lb7+r5Xdrud8vJyampqNs2wqilqVZ6ovjY4OEgmk6G4uJiSkhIaGhrYs2cPjz32GHv37n3HvvD3kmprNpsNn8+Hy+WiqqqKtbU1du/ezblz5+jt7WVxcZF0Ok1/fz9LS0s8++yzPProo5sWd79bplrN5J46dYpgMKgXkxcXF1NfX88DDzxAfX29Tr45nc5NC8FzkzPZbFbHO+pr1n2fPyrvqYZVPeDGxkaOHTvG8PAwL730EsFgkBdffJHKyko8Hs+maVaV9fN6vbqzU1NVar9Wa2dsLfxfXFzklVde0cGqanB79uzRC5eKi4v1C6tG0NZVcWrrlng8TkNDA0eOHCEWi3Hz5k1WVlY4e/as3iN2q5G+Wv1nt9txuVw0NjZSVlYGrK8qz2azjIyM8J3vfIeRkRFSqRT79+/nyJEjdHZ24nA4KCoq0iOr48ePc/XqVYLBIPPz87zxxhv4fD6+8pWv4PF4SCQS2Gw2vdXM9PQ0V65cobe3l8nJSdbW1vQ2L+rxdHV1cfDgQbZv365fSzXihPVan8nJSV1Xu7KywsLCAkVFRezcuVMv6FH3reqBci8wufvmWm2VCcoHuVOXVipTpArKVZCvVlKqjkK9H9bOQl2oVcA7NjZGKBTadHv1exOJBKurqxiGoadWTNMkEAiwvLzMrl273lHvl/sckskkL7zwAn19fTQ0NHD48GEeeeQRKisriUQiPP7446yurrK8vMzw8DAvv/wyLS0tBAIBdu7cSXt7O+Pj4zrbq9qGyF8q4LT+31qrmRuMWVlrPq0DTxW0rq2tcfnyZb75zW8yMzOjZ8dKS0vxer2Mjo7q/vPMmTM6O1VUVKSvBdbfZc1u5mZ5VcCpqNtaa0ut/fd7Hcjlvla3e/7W35n7Wv0ipQniztRgI5FI4Pf7qayspLOz8wPdp9PppLW1lbKyMrZv304oFGJxcZFwOMz8/Lwux1paWmJ5eVknXyKRCCsrK8zPzzMxMUFfXx9f//rXefzxxzfNXN4LuddL1d5dLpdece/z+airq6O9vZ0zZ85w8eJFVlZWWF5eZmhoiPvvv19P099pcGVNLKkySrXWZseOHbS3t9Pc3My2bdt0NlXFRirRpx6vda9jVUahfkfu8/qo3DFgVaNn9QY7HA6ampp48sknGR0dZWpqiitXrtDa2ko2m6WpqUlnDNVI29rRquyd2+3G4XBs2rNPUTUrfX19RKNRenp66OzsJBQKMTAwQDKZpKOjg8LCQl1/ql5k1TjUi63qNQB6enqYmZlhYWFBb7M1MzOz5QlEhmHozJjD4cDj8ehDA9S02traGufOnWN2dhbTNGltbeXAgQPs3buX6upqXdebSCT0wQkul4tLly6xsLDA8vIyFy9e5LOf/SyNjY3EYjFM02RtbY3R0VF6e3u5ceOG3rZLLU5Tz29iYoLR0VEWFhb40pe+RG1trR49qmxeMBjk5MmTjIyMMDk5SSwW06Ng6/uhShJy3wsV/Fu3lrldo82HxmyVu0DFSmWRCgsLGRsbY3R0lEAgoKfx4dY06u2K39XFeHp6mmQyicPhoKysjJ07d+rfUV9frxeOJJNJQqEQ0WiU48ePE4/HaWxs1FMxW02RZrNZlpeXGR0dZXl5mX379vHQQw/h8/l0B7hjxw4aGhr0StTr168zNTVFPB5n//79uN1uKisr8fl8eDyevBglizu73ZZL1q9b+1W4dVFRF62tDjXJZrP4/X5effVVhoaGdJ1rS0sL3d3duFwuEokE8/PzxGIxxsbGuHDhAl6vVy/os5YXWFmDZOv3trrQWhMb1q9Z959UcrfByq1ltX4993pjvb21zta6m4y4e1TfohIAsVjsA/c3hYWFuFwuotEoFRUVNDc3b9rWb//+/YyPj7O4uKh3EkomkzoxFAgEWFpaIplM0tvby0MPPXTbMsC7Rd23te47t3xG7WqkBnbxeJy3336bTCbDysqK3tv+vbbTgoICPaO8uLiI0+mkqqqKxsZGampqNh3wlDtzYy05yO1f8u1zcseA1doJqSfgdrvZsWMHhw8fZmFhgaWlJU6dOqUDQ7VYyZrxVPunxmIxXC6Xrs+wlgGo37G6uqoXsKgjzjKZDGNjYzp4s9vtdHd36xfT2hFZAy/1p6CggNraWjo6OpiYmCAajertgQ4dOnTbi0M4HN50spUK8BKJBOPj4/T29pJOpykrK+OBBx7gvvvuo76+XjdI1UBM02Tv3r16r7NAIEAymWRycpLh4WHKy8sJBoNMTk4yNjbG8PAwAwMDOhhW0/UqA622OwoGg4RCIRobG3nsscf0CvdsNksqldLlCMvLywQCAcrKyqioqNg09acGIrkXiq0CqNzsjvW1yrcMK2y+CMKtDIDKOBmGwdzcnF6MVFFRQXV1tZ7OtNYFWwMCNWJWmYRoNIrT6dTTT+r2LpdLzwTA+kKoy5cv8+qrr5LJZDh27Bi7du16x4IWxTRNxsfHicViuN1u6urqaGlp0Y/J4XBQXV1NU1OT3oJN7ZnsdDppb2/XI+k7ZZxFfrNmI2+3e8BWcvdDjUQiXLp0iStXrhCJRDAMg9raWvbv38/hw4dxu90kEgleeeUVwuEwS0tLXLlyhcbGRpqamvTgy/qZyh3gqlk0dT3IDSitF/PcC3vuc1X/tz6/dws2cxd/bdWviXtDbUSvTshUu6N8ENbrbTqdprW1FZ/Pp9tiS0sLXV1dhEIhQqEQ8/PzrK2t4ff76e3tpa+vj9XVVRKJBCsrK7fdi/tu2uqzYf2aau9FRUVUVVWxfft2pqamGB0d1Xsib/Wzd2INWNWCs6KiIjwej94H3vrZscZdWy2Qs35mbnfd/yjcMWBV20aoqUx1sS8qKuJTn/oU/f39XL9+nYGBAb2yrKSkBJ/Ppzu1goIC4vE409PTrK2tUVlZSWtr65ZTNeqEqZs3b5LNZjlw4AANDQ1cuXKFVCqF1+tlcXGRkZEROjs79Q4Damo7t+NWjRqguLiY1tZWurq6mJ2dJRaLMTQ0RDgc3rKGNRqNMjk5qQuXE4mEfk6RSIQrV64wNTVFQUEBHR0dHD58mPb2dpxOp7699cAAn8/Hvn37WFpaYnx8nOnpaQKBANevX2f79u0MDw9z+vRphoeH9b6dBQUFlJWVUVZWpjMbavS4srLC2toaQ0NDvPDCC7S2tlJZWalHa6urq1y+fHnTdhbbtm2jra2NsrIy/b54vd5NAxPY/OFSdcwquN0q4EmlUlueIvVRsg5mYHMdm/UDq17rbDaLz+ejubl50+EP1qyPGgyorYFUhjscDlNWVqYv7Epudnpubo7XXnuNqakpUqkUly9fZseOHZsWrFjbcDqd5tq1a3r7qm3btuFwOPSCu8LCQr3QYGRkZFPNc2VlpT6VLRaL6V0Q8qXjEbe31cVjq8Bvq4ziVotYTdPU/dkbb7zB3Nwc2ez6gSY9PT0cOnSInp4ene2fn5/n/PnzhMNhRkdHGR4eZvfu3Xg8Hj1zpT7v1jKsSCTC4uIiS0tLOqOvdoJRF2HVxnMHhNbnlE6nicViBAIBvVuBx+PRiZCtFiyqDKoqfbDuIatuY73mqBkWcfekUim996fNZtMzoB+E2s2ir69PB8Dt7e1UVlbicDh0iVxVVRXZbJbW1lZ9wM/s7CzT09N6pvh2xwXfC3cq3bEm09T/VZlfKpWivr5eZ0Rzf1bdPvf/quxSBajqOuV2u/F6vVvWw+c+vq3uN9+8a8AKty68sN6AXC4X3d3d/OZv/iZ/8id/wtLSEgMDA9jtdhwOhz4BS3VUa2trDA8PE4vF6OrqorKyknQ6TXFxse68VJ3f4uIis7OzdHZ28rWvfY3Tp0/jdDrxer10dXXR1NSEYRh6elNlCK0dlLVMQD1mh8NBRUUFNTU1FBcXE41GmZqawu/3U1NT845RfjweZ2VlhUQioY8mKy4uJpFIMDMzw4ULF4jH49TX13PkyBEaGxsB9FGt6jHYbDZdo1pTU8Phw4cJBoN8+9vfJpvNMjQ0xI0bN3j55ZcZGxsjHA6TyWRwOp00NTVx+PBhurq6dBnF6uoqfX19nDp1isHBQRKJBBcuXODkyZO0tbVRVVXF6uoq169f59SpUywvL+uMx759++jq6tKvXTgc1kXYsHWmQ1EL6W7XTtTipHxjzV5aF10oy8vLhMNhvaCtpaVFDzTg1sIPtd2Vam+Li4v83d/9HUtLS3qFqqpxVtxutw7yV1dXCYfDTExM6EBzenqaaDSqPwfWldiAzogtLi6yd+9eenp6dDbcWtaxa9cuJiYm9JRYNpvVnxk1M2D9nIhfLrnZ8dxpbvU966BT9UPZbJZYLMbU1BSnT5/We1gDVFdX6z5BHbuo+pwrV67o4xn7+vpoaWmhpqYGr9cLoPeRVnXac3NzjIyM8OqrrzIyMkJFRQWtra0888wzdHZ26v0l4VYmVg0erdvIqbKovr4+XnnlFRYXF6murubw4cMcPXp0U0mO9fmqz7XKKud+L/d1g1vBfD5emH8Zqal3dc1U1/8PQs0WRiIRYrEYw8PDOlNYUVGhp9bh1v6sS0tLXL9+nZmZGd1eKioqaGlpueflAEruAHOrdSAqYTI6Oorf76euro6GhgYeeOABysvL31EOo/7e6kQstT5B7Z6QSqV0skstgM91p5mKfJwxhfew6ArWN9K3ZkzV6HzPnj38k3/yT/jhD3/I/Py83uDf4XDwyCOPEAqFcLvdRCIRvbq9paWFsrIyXUxsGIbe6zWVSpFMJvF6vTz44IN6lJ1Opzl06BAHDx6ktrZWd5SpVGrTdlrpdFqn/NXXVKekRh/l5eVUVlYSCASYnZ1ldHSUnp6eTRdydXEPh8MYxnotYmlpKaFQiNHRUV5//XVmZ2dxuVw0NTXxwAMP6CkwtTghHo/r56aybAUF6+cKNzc36+m32dlZfvrTn+L3+wmFQmSzWerq6jh69Kg+e7igoEAH2pFIhIaGBqqrq/nzP/9z5ufnSaVSvP766zz99NN4PB5GR0c5efIkly9f1o+ptbWV3bt369evsLCQiooKHRznUoGW+sDf6YSkd1s08VHInVK0jmqtHYDKdqqa5e3bt+vSC3VRti4gURfob3zjG9jtdhYWFrDZbDQ1NdHa2qp/v2GsH2msarlGR0cB9AbYy8vLTE1NEQqFdH20dWsUQG/BYpom1dXVNDY26s+N2nHA5XJRUVFBd3c3CwsLhEIh7HY7e/bsIRQKUVpaqj9nFRUV7wiqRf7Z6nP0bp8t6wVRDbDU9LhaPfz973+flZUVPYB5+OGH6e7u1otD1YCsoaEBn8/HwsICiUSCmzdv4vF4aGhoYP/+/RQVFenfMTs7y+n/v70veW7zyq4/4ACAIAACIAYCIEhwFEmREknNlEXJcuw4PbjsJN1epbqSZf6DLLNPVVZZZZGqVCpD9ZBOD7+y290eumVTE0lJpGgO4jxgJjEQAwES/C3U5+oBomUnkrtpG6dKJcsEgQ/ve99795177rkff4wPPvgAU1NTSCQSEkRPTExgf38f3/ve9zA0NATgCRlQznZRSlAoFHDv3j38wz/8A1ZXVyVTlUql4Pf70dbWBr1eLwE5f1d9zpkRBJ4Uf3EDVoP8Zx2wy1Oi6u+WH3oJtcbgm4iGhgaph+DfqmPN/wW1tbVoamrCK6+8gunpaSHH0uk0Ojo64PF4pFiIjio8mFEycOLECZw7dw6vvPKKuGe8KKiZO/XwCJTuQaqWlw4HW1tbWF1dlbbdOp0O/f396OzsRF1dXYlkhnPvKNs4ZjcCgYB02aI/bXmBWblPbjk+r8HNHxtfKGDlYHPD5yA0NDTgypUryOfzUtU/NTWFeDwOs9mMwcFB5HI5uN1u6UrFUxdvAFMHDIz4/pubm/jJT36CfD4Pp9MphSPq5wOlFaekxVWbLG7w+XweNTU1sFqtcDqdYn+xurr6lM6mUChge3u7ZJKlUinEYjHMz8/j7t27ODx8XCE7OjoqmlBWYvOEyRMfF3hWpTMYZGC0srIigUxHRweuXbuGl19+WWxBaEVDEbtOp4Pb7Ybb7cbW1hYODw9FnxMKhTAxMYFbt27h4OAAWq0W+Xwe3d3dcDqdwtCpjAbw5CTLa+PCz+I43n8VnNy5XO7YtfxUx5n/VsFFY3t7W4pP2DaXTKdazFcsFoXd/p//+R/YbDaxrqI1msPhKNHuMT1fLBYxOzuLmpoadHd3w2Kx4MGDByX6ZPXziHA4jHw+D6vVCoPBIDZbtN3i96iurkZzczOcTqe4EjQ2NuLEiRMoFAqYmppCJBJBU1OT9I+v4HhDDcCAJxuNmtZWD5X8Hb6e0hE2efnv//5vhMNhec6vXr2Ka9euobOzs8SbMpfLYXBwEG+//Tb+8z//E5FIBMViEcFgEDdv3oTb7YbL5RKHmLEay6e3AAAgAElEQVSxMczOziIcDkuWRb0GNmjJ5/NSt0A7vWw2K99rb28P6+vr+OCDD/Duu+9KO282YDEajUJ0pNPpkoJadcyo73/vvfcwOzuLfD6P/v5+DA8PlxwovwjS6TTS6TTC4TDm5+cxPj6OyclJ7O7uyppB0NKro6MD3//+93H+/HnZi74pcLlcIglkxjSfzz9XjUNVVRXq6uqk9SklVZFIRNq9NzY2IpvN4u7du5idncXc3Byi0ShaWlpw7tw5nD59GidOnIDFYvlSMkyMZRicq370wBPZTDabRSgUwtraGlKplBRT19bWoru7W3zlDQbDU1kCyvPK3/fg4AC7u7tYXl7GJ598grW1Nezv76OpqUm0vtzvgc+vYTjOwSrwOQGryqoCT4JDLjqFQgFerxcvv/wy9vf3cfPmTQSDQYTDYbz//vuor69Hf3+/VMgfpenIZrOir6iurpZiJS5gDM5Ysc+BZ/V9uTWWWlDD6yVjSlaKHaY0msc+muWLCk8fXFAjkYhYFwWDQezu7kKr1aKtrQ1nzpxBQ0OD/B7TWwwuVWkEWTy2jWVLNK1Wi0KhgMbGRgwODuLixYuSEqBnGgMVvj89aHnt9H6NRCJYXl5GLpeD0WgUXZfP5xMNGjWTZH8pX+D4qkzC3t5eSSFbeQoOwLE0o+ecLRQKJbZnPGgwkAMgjg6UNgCQAJz3NBgMYnx8HL/+9a9lXKxWqzgz8L5y0eICQ3aoUCjAYDDA6/XCarVienpaCrKYpjpKm6fX68UhQvXDY9aDhzKHwyGG2ZlMBnq9XiysstmsPGecqxUcXxylJS8/eJXrqjlvyT6GQiE8evQIN2/exJ07d7C1tSXP+4ULF/C3f/u3aG5uFm9VelcymLx27RpmZ2dx69YtpNNpYbbm5+cRCoXwy1/+EuPj44hGo7JOptNpABC3AbPZjP7+fni93pLgjodoHtKCwSCmpqbwu9/9Drdu3ZJOgbTxa2pqgtPplPHQ6XQlaxg393Q6jY2NDYyNjeHf//3fkUqloNPppJjFbDZLIwQAT7FP5feAleh3797FxMQEFhcXEY1Gxaher9eL8wqfta2tLQmoz58/fyxlUl8W6I3O/SyRSLywzkharRYtLS24ePEi7ty5g0gkIu4pHo8HqVQKU1NTInPr7+/H2bNncfHiRXg8Hjk4fVnI5/PSvt3r9SKTyZQQP8zo7u7u4tNPP8Xq6iqamprQ3d2N9vZ2NDc3i+77KIcPFcywpdNphEIhzM3NYXx8HPF4XBoVXLp0CV6vt8TL9euAZwasqqG8SmurgVKxWITdbsfly5eh1+tlcWQaqba2Fn6/X/SPZJW44PB9GYTRZHhiYgK5XA56vR4DAwNobGws0Vqqov2j7LHIcKnefwwYWWiUzWaxsrLyFMPKgLNcHB0KhRCNRkUfODIyIgVbqgGvOmY83WSzWRQKhZJUnbrg0jft5MmTcDqdJadz1cyXEzmZTEoQfXh4CJvNBp1OJ/ZGwOOFPRaLwWg0wuVySQEdHRVUA3CgdGNUWRt1YVf//qzq9uMAjru6wavaoZqaGtH4khHnoYaHK41GI8bUS0tLWFhYQD6fh9/vRy6XQ319PVZXV2GxWMQzj4EuNzwWc1VXV8PpdKKvrw/BYFC6rnDz1mg0EiwQLJQym80lLJg618mwMi3Gf7tcLhwcHCCRSCAajcrnO53OP9QtqOD/CDX1pxZXqUGqyqwCkIP63t4eIpEIpqamJE0fDAbF8L+7uxvf+c530N7eLoEf8IS5ZQGIwWDAlStXEIvFMDs7K5r/d955BwcHB5ienkYikShpVKLOUZPJhNOnT8Pr9ZakN7nmcc1dW1vDxx9/jLGxMSwsLAhTy2uh2wULWin54vdlQVk8HsfKygpu376NGzduIBgMyiG/WHxsuXjq1CkYjUaRiH0RNmlyclKKV3nN9K21WCzY3NwUq0AGzQ8fPsRPf/pTOByOb5SNHDOcDFZ3d3dfaFU+PVmz2SxmZmbEZefRo0cSKzBg83q96OnpgdPpfOEyABWpVApra2tIJBJYX19HIBBAc3OzSBs53zgemUxGXGVsNhu8Xi9aWlqkpfezgksyquvr69jY2MDm5ia2trawubmJYDCIuro6DAwMYGBgAK2trTAYDPK8AU+zp1/FQPaZAatqd8DFUY38GQSwmwJPzblcDktLS5icnITNZhOKmgGs+h7sKARA2E+n04np6WkUi4+7LbS2tqKurk4WBQa8/Dx1AVKvlws8WUZWLVJbk8/nJRWv4uDgAKlUqqSPN9MQW1tbqK2tRXt7O3p6ekq8T1VpAoNMtVOLOq7UtZLdNBqN6OnpQUtLi0wsBvUUUxPUvsZiMdloeLrV6XRibcEGB83NzcLY8nAA4DPT+NwUyXKo+q+v0gRXDxLlmjT6TFISwPvI1+/v7yOTyeDhw4eYmpoSSzWdTge73Q6v14tAICBpz6OE7Rx/sqsOhwMul6vEY0+d0+UV0NRkq5ZqDFY4NznX9/b2xI6Lzw3wmPFJJpNobm5GR0dHpYf6VwTl6225w0V5AREPK2yb/atf/Qr37t1DNBpFsViE0WiEx+PBlStXcPr06RLG6ajDvtFolEAxGAyKp+W9e/ektoDBSV1dnQSriUQC2WwWHo8Hly5dEg2+SgocHBzI83fnzh3cvHkTc3NzSCQSJbIkSm3oJcn3ob6czHIsFsPU1BRu3ryJmZkZrK+vA3iyfrI1NrWtX3SjDofDuH37NlZXV+XZstls0tpSq9VKcRH9vVmoRheZb1LAyuZA29vb4jn9Irofqs9AfX09WlpakEwmhUwIBoPY2dnB0NAQ2tvb4ff74fF44HQ6JYvFff9FIxqN4u7du9KUJxQKYXl5GXq9Ho2NjdJ+nmw9HSx6e3vR3d2N1tbWLyxVYO3D5OQk5ubmEAwGpRgtl8tJrOT3+8VRQy34Uuf9V2kfV/HM3Ys3mEymqr0s1wjqdDp4PB7s7+8jlUohHA4jGAziwYMHJbY8FEmrG7XK3BqNRjQ1NUlrQupf+TouQgBkASpnJBh0qNdK/Z9qfcKFufzmceGnHQYAOf1HIhHY7Xb09vbC4XDIRsHgQ61S5XdSr5usJl/DB9r/+4ICs9ks+iymrtPptIwzq/uDwSDi8bhIDZqamqDX62G32+Hz+bCwsIDt7W3U1NSUeOMS6ripk5jjwzFiekdtf/tVgToH1ACADBHTmTxAMGjMZDKIRCIIBoPi5ZdMJqHX6+F0OtHS0oL+/n5h4amx02g0JYwC59vu7q6wVg0NDbBarRKAkAU6yl+ScyudTotuTnUJUGUve3t7Uv1dVVUlAcTCwgLS6TROnz6NtrY2rK2t/QHvQAUvEswMAE/7lQJP2vR++OGHGBsbQzweB/D4MNvR0YGhoSFcvHgRLperRGKgziMAkj2w2WxiuRcOh5HL5bCzsyNa/Lq6OphMJqnW5nqj1Wpx8uRJ9Pf3y8GJzwIJjUePHuG3v/0txsfHpW01GVUeIAuFAurr62GxWMRxA3jCQFMTODMzg08++QR37txBIpGQYIGFueVr8xcpED08PMTi4qJ0RiR7SBaPulzKgdLptPh9arVakQV8k0DyiYdnOqs8L9R7VSwWxbXHYrFIgyJKMrxeL/x+PxwOBwwGw1ME2YtGIpGQObK7u4tEIoFAIACLxSK+6wxGY7EYMpkMrFaryFNIxKlWcUeB+/Xm5ibu378vrDKfN2ZRPR6PBMkcO9ZlqNnGryK7CnzBoisATzEzaoqVg0GdCTtTfPzxx9ja2kI4HIbFYsHw8DAuXboEj8cjlYSqJKD8BFRXVycVq1VVVRLEMYVKjZNqtqteFxdjTloykGrKid6lKkij83X7+/vSb54947u6uqDT6Ur0Xyr1zkCZC6XKbKqMHxmDkydPorGxsWQy8fpVdi2bzcppjqnspqYmNDc3o66uDg0NDbDZbBLMM02ttl6lHCCbzZZYHanfW9VL5vN5EYJ/Fo6rrZUKBol7e3v40Y9+hFQqJcEdF794PI6NjQ18/PHHiEajIopnwO/xeDA0NIS6ujopsnO73bDb7U8x6ZS3kCVlT+lwOCypVzXIVYMGAJI1KBQK2NnZQTKZlGCXLLBq1VUoFJBKpURqUCgU8ODBA+zv78Nms4l2uoLjDVVyBTztl6hWuXP9pHXVz372M+mkVlVVhYaGBgwMDODatWu4cOGCsILl0h9qYZl9qK6uRl1dHVpbW+F2uzE3Nyfm7DU1NdJkY2hoCNXV1ZidncX6+joMBgOsViuuXLkCh8Mh+wZdAHZ2drCxsYFf/OIXGBsbE89Og8EgVc33798XjbZOp5PsBdf2mpoaZLNZzM3N4ZNPPsGtW7ewuLiITCaDmpoauN1utLe3Y3Z2Fjs7O7KGUkKlVl1/1iH84OAAjx49ws7OjvRm5x7H7kkGgwHpdBp7e3sSqJH99fl8aGtrw9LS0nNXyn9VcHh4KBkoHgpelCRArXlhJ6iqqiqYzWY0NTVJjYt6kFczncCXUwGvfgbrDTKZDPb29kSmQPlioVDA+vq6ZCuSyaRYUXq9XthsNnGmOQrUpofDYZnrbA7Q0NCAtrY22XNU0ozjwTikvCjsq4QvHLAyRaz+u7xDEgPC2tpavPnmmzCZTHj//feRTqeRyWSQy+UQDoclcM1ms6Iv4eDG43E8ePAAGo1GipIoO+BJge4CAGQRAUpvEhcklTVU/dzIGB7lLXpwcIBMJlNiiJ/JZHB4eAiz2Qy/34/29nZ5DzYoKB8Pyg54vVzUDg4OYDKZxMOztrYWzc3NMJvNkmJS03+s7CarEIvF8Omnn0oA1tvbC7/fj7q6OnmgGYwVi0VYrVY0NDSIThN4YpzNAFXVBdPTlnKFZxUnMOX9ZeqEngcM7vh9crkcAoGANLsgk7+/v4+VlRX86Ec/wo0bN1BTU4Pm5makUinYbDaxrRoZGYFOp5M0DJnMYrEoPsRkiljcVywWpa2gWthCnR3ZXZUJBh53xiLjVF5xqy7EXITI+jQ1NSEejyMajWJ7exuDg4PS0OAP0emlgucD1y2Cz2H5GkzJCNs8//jHP8bs7Kwwqy6XC6+88gpGR0fFf5kbOQ/yKrgWsNJ+b29Pioyqq6tL1sSTJ0/i6tWr6OzsxKeffirPEwC43W50dnaWbIz5fB6RSARzc3P41a9+hZmZGQkEq6qqYLFYMDAwIIwuD9M+n0/SpmSiEokEJiYm8F//9V94+PChFCXSfP3P//zP0dvbi3/8x39ELBYTeQGfITXr9VmyqL29PWF/VZaQcob9/X1pyELZmF6vh8fjQWdnJ9566y14PB6srq4+/4T4ioBaYTYsoX7zRTglUPb06NEjrKysIJVKSWzgcDjgdrthMBiwsLAAh8MhBUwqvoz9yefz4Y033kAoFEIqlcLMzAxisZhki/V6vWTJgsEgkskkAoGAaK2tVitaWlpw/fp1jI6OinVhueyHhB6lDioBtre3J53p1tbWRLpCi021+5taD0Nwffkq4AsFrGphEzdWFpQwncnonaeYpqYmvPXWW+jq6sJPfvIT2TwnJiYQjUbR09MD4LGAPZ/PS8qHNDrwxKw+lUohHo9LUFRd/dh4nYHoUfQ2mTGyTqyG3dnZQSwWg8FgwO7uLvr6+p5auNkKju8fjUah1+tRU1ODzs5OvPzyy9IGja9nGo2fSXZA7calshhq4N3W1iYV3jU1NTK2VqtVgiJqo2KxGMLhMLa2tmShHB0dlUp3MgY1NTXSLYum4KodjDpmlCqUp17o0aoeFI6yiTqurJ2aNi0WH3cvm5+fxw9/+ENhQ3Q6HdLpNGKxGJaXl2WhYaOGvr4+dHR0oLu7G263WyQYqVQKKysrcp/JJpC9YXe3YrEo+lWHwyHX09XVhe3t7ZIgpPweMKWVy+Wwvr6OtbU1NDc3y6LDeUt9HVvvRqNRPHz4EPPz8zg8PERnZ6dYbh1HR4cKSsH5UCgUxDVF/RkPWalUCsFgELdv38a7776L8fHxEvLg+vXruH79Otrb21FdXS3tmdV1U5UFqR7W7JT385//HEtLS0in08JQOp1OjIyM4MqVK9jd3RWWUT2cNTY2IpPJIJvNAoB4wf7mN7+RAibKCgYGBnD16lX09/djdXUVVqtVNLL0pyToOf0v//IvCAQC8sw1NDRgcHAQ3/ve9+D1erG9vQ2HwyGOKZQGUFbBde1ZQczOzg4ODw9lrzEYDOjr60M6ncbOzo5k3Orq6tDS0iKa3z/90z+V7kLH8RD/ZYGSCfqCbm9vSyOT5wH3y0gkgvv37yMUCokchX6jOzs7Yhe1vLyMuro6yWgBTzxyXzTMZjN6enrQ1tYGABgeHhZpCICSsaC85fDwEMvLywgEAojH44jH44hEIgiHw7h27Rra2tpgt9tlfVell93d3Xj77bcRCoUwOzuLR48eIRKJCLPL5jQtLS1wu93S8Ih7lDoG3Bc5Pp819scpoP1CASsDIPXf5cwkFwOeXCmKP3/+POrq6vDhhx/i4cOHUk33z//8zzhx4gSuX7+OxsZGKXphBT5PBtQzqX3ZGRSobS/JZPLn/EMrn0KhIG1RFxYWREvCIEQFA2I2PeAm4Pf7MTQ0hI6ODmHSGKQzBctFn2Og3myOI9lW6p9YmLC9vQ2dTleiiVQD4Hw+j0QigZ2dHSmI4kPLE9f29jaCwaD8rhp0ql2tOFlpm6Uyw+ok5UFFTSnwb1awH+dCHroz5PN5zMzM4J/+6Z+wu7srVlNkgWi9xkNSoVCA3W7Hq6++CpfLJXIUMrY6nQ7JZBLJZBIrKyvo7u5GR0eHHBiYeiVr5XK50NXVhdraWlitViSTSRQKBWxsbMBsNqOhoeGp4jDq/+rr66XtoU6nk3nO9D83dMps9vf3sbGxgdXVVfj9frS0tEgDAS6kFRxffPDBB9Dr9ejs7JT0qkoY6HQ6xONx3L59Gx9//DHu37+P1dVVub8dHR24evUq/uRP/gRdXV2iaSPxkEgkJHAlVBeCaDSKX//61/h//+//IRgMypxkAKDX6xEMBmVu88DOlPDZs2clkxQKhTA/Py8sbCAQkD2ira0NFy9exKVLl6SQZnNzU9xdamtr0dXVBZPJhJ2dHYTDYYyPj+Pjjz/G5uYmAMBms6GrqwuDg4MYHBxEZ2enPKe06dNoNLBYLHC5XCU6WBZDHgWOFaVTZrMZQ0NDeOutt1BdXS3sqlarRUNDg0gaaHWXTqefcv34uoPzk/sb78HzBjuqo08ymUQul4PD4UBXVxd8Ph8MBgMSiYQQKzs7O1hYWEBdXd2Xvj8xZiHx1tTUBLfbXXLtfEYymQy2t7exuLiIGzduYH5+HpFIBLlcDqurq/jZz36G+fl5fPvb35amQWpswuwna4E8Hg9aWlqwsLCAUCiERCIhzWPYBdPj8eDkyZPo6OiAw+GQ9yDp8XmHtuOGL2Rr9VlgWlnViqp2VXq9HjqdDn19fRI8jo+PY29vT7qi2Gw2nDp1SjQowJNoX7VaIROl6rbUQIvXATyhuHd3d0VDksvlsLKygrm5OenqYrfbjyy6YrpHfc+amhp0dXXh1KlTcDgcEqDqdDp5KPlajpnajYUBeSAQwOrqqrDI9fX16OvrE8aWreZUNpvamHIGV62e5GfH43ExCGeATG1Y+QbF70WmV9X+qvdBPYWV62/V1x9HMEBfW1vD5OQkdnZ2kEgkJD1ImzODwSCbn91uh9lsxoULF0pOugzymYI/efIkAoEAEokE4vG4LEwEPXZra2uFaaceuKmpCeFwGI8ePYLP5xOrNXUuWq1WtLW1IZvNIpPJIBQKIRQKoampSQ4gKltvNBrhdrsxNTWFubk5HBwc4KWXXpJTffkJu4LjiYcPH0qjiO7ubik65VqSSCRw7949/Pa3v8X09DRCoRAASMvst99+G93d3dIdT12XmbFRJVX8wwPvu+++i1/84hcIhUIShOr1ethsNpk/yWQSu7u7UqPAAhCbzYbGxkapZl5aWkI4HEY0GkUkEsHBwYFIBr773e9KirO2tlZcWHggoxRpdnYWm5ubWFlZwcbGBjY2NlBVVQWfzyd+m319fWhqapLDG59xrqdkkKm1Pzw8lAY3R+1xVVVVqK+vl4M58Ph57O/vF+kVSRPuNwzWeO1ftvfncYNaj8L/ZmbxeaHRaETq4nA4JLagjE6n0+HkyZNYW1uT4uhoNAqv11vy7LxoZDIZRKNRuQbGAurBiFIxFou5XC60trZidXUV09PTmJiYwMLCAqLRKJaWlqTZDFCa3ebf/Ay32w2j0YjW1lZsb28jEAiUPCN7e3vY2dnB7u4uNjc3Za9rbGyUPY4ywWeNj6qb/2Pjc22tPg+qfRQfWm7q3CSNRiM6OzslHcMGA1VVVbhz506JTQi1SAxSo9GosFEcVFXfST2SykCoVdTA40kTDoexvLyMra0t7O3tQa/Xo7+/v6T6lDg8PBTLLDKUjY2N8Pl8aGxsLGEaVRaU18VrSSQSwphyrJhOIsNqtVrR29srDQYY2NJMnibV/H9kflX/RB4GNBqNGArzGuggQLaai6oaFPO7qtXq5akDlaFR7cDKnQaOG1iMtL6+jsnJSaTTaWEAzGaziN2Bxxt+T08Puru7UVdXB7vdXnIYoZUUx9XlcqGhoQGhUAjxeBzpdBoNDQ3yWjK7NptNPPGAx6zQhQsX8OMf/xjz8/PSIpdsAaHVatHR0YHFxUUkk0msr69jcXFRLMzIKKiFdPR1jUQiuHLlCnp6euSgw9dUcLzBFGE6nS7JLNHCKRAIYGxsDCsrK1IV73a70dTUhLNnz2JoaEiCN95vrlfUe6raQgZwlELdu3cPW1tbqK6uFtcWvV6Pzc1NaTcci8WkiGpnZ0cCOB7K2WSA7aYpO7LZbDhz5gzOnDkj6y+bXKTTaWmVzL3j7t27KBaL8jmpVAparRYOhwMXL17EyMgI2tvbxYdaJS0YaDI4XV1dhdlsFk14OBwuCXJVkMnmWKl2d+WbvLr/MLBgBu6bBAb3LPh9UYEO6yQ4L9RW2kz9azQauN1uCWo3Nzdhs9nQ0tJSkoF60WAK3mKxoKmpqSSNr2ZXubeqAazVaoXD4RDrTza4+KwxU2sxuH9rtVoJQhsbG+FwOGA2m8W5gHsf5RKNjY1wuVzwer3w+XzweDxwOBzSslutjSiXDR4HPDNg5QNaXszEnzE4U6vz+WW5wFKwzqCVwePm5iZ2dnYwOzuLlpYW9PT0CMvKAGJ/fx/r6+tYXl4WKxZ+Fgtl1FasvAZeF3+2s7OD+fl5LC8vS6GT3+/HmTNnnurAxWunbonv4/f74fV6pXqVgUK51RbwhHnkdfD1rCZlwEgrMJfLJRpZNehWi7f4vUwmEzweD7xeL2KxGGw2G+rr62Xcqe2hJRZ1YABEZ6bKJaqqqqSCXQ30VeaOwW4mk0EqlUIikUAqlQIAtLS0iPSBerXjAC6YwBMdEdNJ1KmOjo6itbUVGo0GW1tbokP2+Xxy8FIridXFqKamBi6XCzabTTRLqVRK0vg7OztSJNXU1ASbzSZzl4eld955B8lkEvfv3xcpCW1zgMfz8MSJE5icnEQymUQ4HMbc3By8Xq9IWVTrOb1eL0zu/v6+dE9Ri+mOs3yjgsdggxJW3ata65WVFYTDYUxNTSGZTIq/am9vL9ra2nDy5ElZE9RueOomyLnNQJKBLDWC9Be2Wq3weDxi2s+1tDx4UD2A9/b2MDs7i0AggEwmA61WK01fCoWCrLv9/f2w2+2yHvE9IpGIHAwPDw/x8OFDCQgZYHd0dMDpdOL8+fPo6+t7quNhsVgscRYoFAoIBAKYmJjA9va2vI5r+VFggYvBYJDDOVOtAIQ84CFQtQ1igPtNA2UWDKRexOGYh39a+9H1ob29XcafY03Sp6qqCvF4HIFAANFoVJyAvox7wsNbMpnE4eEhfD6fPHfcs9XATyWSuDYXCgXpIMdCMTVrWh4scj9icKkSUOy4aLPZRCawvb2NtbU1LCwsiNywublZ5Av0lDcajeIJq8ZER9UI/bHwubuXWtTEIIYLgnpSL08pM3ik2B14HEz5/X6Mjo5icXERq6urCAaDmJiYwNWrVyUg9Hg8qKmpQSaTkZ+TfWLVHW9UecCsWjloNBqkUinMzs5icnJSqgtrampw9uxZ9PT0HCmM1+l0Uq2n0WikxWBLS4uwVQAkIOa1cHPgImi1WktSbhTuezweNDU1oVgsyoLLkyKZDqbp1YC8WHxsnNzZ2YnLly9jZmYGAwMD0m0LAOx2O1pbW7G2tiZFVlxwea3qGDGQ5udw0WHlIQ2gA4GA6GPD4TASiQQODw9x+vRpYRUTicSLmJMvBBxvjUYjpuF1dXXiY9vZ2YlXX30V7e3t2NjYkII2dgmjHIPstqr15WbtcrnESSCXy2FzcxONjY2iA9ze3oZGoympnKUtm91ux+DgINbX1yXbYDKZ4HA4JGDlwtzd3Y3t7W0kk0nMzMzAarVCo9HAarWKTpbMt1oEGYvFxDZIXQArON4IBAJYX1+XtY4651QqhUgkgng8jq2tLdTV1aGnpwdnzpzB6dOnhSlRSQNu1KrVHpl5AFI9z0K98fFx0fe3t7djYGAAfr8f6XQai4uLsq6S0eR6yLl9cHCAhYUF2RMcDgfa29tFfjUwMACXyyWWV6xV4JrE7kharVacOLgW1tfXC7Pa09OD5uZm2Ye49pJkYRehxcVFKap88OABVlZW4Ha70dLSgqGhoc+0+KmqqsKZM2fw4MED6Ti3ubmJ27dvI51Ow+l0SiElLf/Y4IPjrwax3wRwj2Ewz9qJ50WxWJSsAz1O6T/KPbp8nDOZDGKxmBS2flkBF9nSjY0N2f/KpTjq9+B15PN5qYGgTMxut8Pj8Uh2FSglXtRYguDzyAY2Op0ODQ0N8Pl84ofPIjTWwESjUdTW1mJjYwM1NTVoaWlBJEG7lrwAABSRSURBVBKB3+9Hb29vCckBfLFM+x8KzwxY6XWWz+dFR0ehucfjkUANeHIiUCP/2tpaCb644Wu1WvT39+Ov/uqv8Pd///dSbZ1Op6HRPDZhb21thdPpRCKRQCaTwdjYGPr7++FyuR5f9O8nK6l+Mq0MwLgIkw5///33MTs7i0gkIkHAyMhIyXWr0Ov1JV2n+vr6MDw8DLfbLZ/DoFR9aNTqW7KXasCj1WpLrCZqa2tx+fJlWK1W6PV6YSGoB6uvry+RJ5Bp8fv9+Mu//Eskk0lJW5NRoPBflWZMT0+LrIFFO2T/crkc4vE4stmsmM+zd/jKyooUqSWTSUknciPU6/WYmJhAZ2cnbDbbsVqc1SLA2dlZ3L59G2tra6ipqYHRaBT7NKvVinw+j729PYTDYdy/fx/f/va3pZBOPTgAkNat7JHNgJfaI4PBgLa2NilMoYWamr7n5vrmm2/ivffeQygUgsPhkPtD8IBx8uRJbG1tST9zell+5zvfQVXVY6uzzc1NTE5OYnx8XE744+Pj6OnpwdDQkBxIMpnMH+V+VPDF0dXVJfZ7TMNzfSESiQS6u7tx5coVDAwMSADJtREolWsxjage0IvFJw1SotEoxsbGsLm5iWw2KwHr4OAgLBYL5ufnZe7Q69RisYhP69ramriisH211+sVFtTpdMJoNIo8hmuluv6SdNjb2xPruNraWhgMBjQ2NqKtrQ1DQ0MYGRmB1+uVAIGBkiptsFqteO2116QNMl1XTp06hZ6eHpw7d06CzaNQVVWFS5cuSeMNtsDkc+12u2G1WnH69Gm0t7eXtOimLy6LY79JUIuO9Xr9kbaR/xuQNIjH48hkMqiurpa9X60x4f64u7uLUCiEYDAIrVYrTjlfVmbJYrGgu7sbqVRK9OTDw8PweDxSgFf++fv7+8J4bm1tIRaLiYOHw+FAc3MzjEZjyfcDSmUG5awnYy4emqg593q96OjowODgIDY2NjAzM4Pp6WkYDAYsLS0hFAqJzKipqQmvv/46zp49K8WewJN96DjgmXdxampKKj23trYQCARQU1OD119/HW63u8SnlHohbpbUnFLLylQsNa2sjE8kEuKhxuprl8uF0dFRLC8vy4P/zjvvIBqNYmhoCCdOnIBGo0E2m4XFYkEqlSoxwz48PMTW1hby+Tw++eQTzM7OYnl5GTqdDkNDQ/jWt75V4o/m8XhKvrfJZMKf/dmfYXR0VCy3VJ/R8uKYZ53eyl9rMpngcrlw/vx5+d2jfv8oXe1R/62+nqlup9MJq9Uqfbl/+MMfIhQKYWRkBA6HoyTdX1NTg6mpKTx69AixWEwmPE3C2V6Up8Dz58+jo6MDtbW1GBwcFCG5zWbDz3/+82PjO5hIJCSd+uDBA9y+fRuxWEyYkb29PXz00UcYHh6Gw+FAa2srIpGIsLA8ZABP/H1VLS+LpE6fPg0AWF9fFw0e8FiHSI2y3+9HdXU1otGoZA8YmH7/+98XrXRtba3YsACQQHdgYEA27Q8++ADLy8vY3d3FzZs3YbfbEYvFxHe3oaEBJ06cwNzcHA4PD3H79m3s7e3B/3uf3o2NjT/wnajgf4sf/OAHODw8xKeffloiY2GwWV9fjzNnzuAv/uIvMDg4KCl3sv9ce1XJlsr6qUUc9fX12N7exvT0tLCJ1Pjz2Uin04hEIgiFQmKGzkrj1tZWvPLKK3A4HIhEIshms/B6vejs7ERXVxcGBgbQ0NAgDBDwtO8jSQ2Hw4ELFy7IWpPL5WCz2XD58mWcPXsWzc3NaGxsFA2pw+E4sumG3W7HwcEB2tvb8YMf/EAcBTweD1pbW2Gz2Z7pLU1YLBZ897vfRX19PT788EMsLi5ibW0NyWRSsiJjY2MYHByE3++XltjZbBarq6tIpVIlXcW+CdBqteJLznXtecDDiNFoFCtCNWPArBKbq6yurmJlZQWRSOSpsVfZ7xcFrVYLp9OJvr4+LC0tIRqNYmZmBpubm7Db7dLVymQySavaVCqFe/fuYWlpCZFIBJlMBlVVj/3W29vb0dnZKfGQWuCs6qSPAuVmqmSxurpayJDOzk6cO3dOai7GxsZw69YtsYebnp6WZ3h0dFQIlOM0f58ZsP7bv/2b6EYKhQKam5vx0ksvwefzlaSW2HUBgHRJOTw8xO7urpj7MhjNZDK4ffs2/uM//kOq4djzl8yk3W7H5cuXMTc3h7GxMWQyGTx48ADr6+u4efMmenp68Nprr8Fms0kKiQxhLBbDysqK2KnQK89gMGB4eBjXr1/HyZMnpYnAUUVXwONgganZ50H5e/9fUxNf9PcoGbhy5QpWVlbEe/bdd9/F3bt3peUhK+T39/clhacGadQiWSwWnDhxAmazGb29vTh16hR8Pp/4xdJl4bg1DtBqtRgfH8fY2Bju3Lkj3sB6vR4DAwNYX19HKpXCv/7rv4qvrsvlQiKRQCwWk3tPfRoZHLW6movCqVOn0NXVhXw+L2bZq6urWFxchNFoRKFQkDQWNcyUAKii/HLNF106Dg4O0NbWBpPJhJaWFnz00UfY2NiQNpk0THe73Th16hRGRkYwMTGBu3fvIpFIYHl5GWazGSdOnCixXKngeKK3txd/93d/h6mpKUxMTGBjY0NqCc6fPw//79s4s6OZyt5wvqjuLQT1+AxkDw4OEI/HMT09jcnJSeRyOSkU/da3vgW32y0G+r/5zW+wtbUlRbF+vx8mkwk2mw0WiwX9/f2Svqcsxel0HmlrpAbRh4ePvVjr6+tFzvTGG28gm83i4OAALpcLZrNZrN/KN0+yxvxezGoxqOW6xbWNh1F2Cfws8L2am5vx+uuvo62tDffu3RNrRlW68Lvf/Q5jY2PSaXB/fx/BYBA9PT1HdlL8uoIWkszc0XXieVwCqPdktnZ/f1/M92n7lM/nsb6+jjt37mBhYQGBQADFYhF2u12szF6EU8Gzrq+5uRmvvfYaVldXEY1Gsbu7i0gkAq1WK3M4EAhIPESvdeBJgR8zEkzJA6W1QoSqP1cPo+pzpso11dcyg+1wOOByuTAwMIClpSVsb29jdnZWLLdqamrQ3d0Nn88Hm812bObwMwNWvV6PmZkZZLNZFItF0RQlk0mcOnVK2qbyhEMmLpPJoK6uDvF4HOvr64jFYtJreXNzE3Nzc0gmk9BoNOjt7cXly5elmxO1UI2Njfibv/kbNDc3491335VWZnt7e9jY2MCtW7fQ1taGrq4uaDQapNNp5PN5pFIpxGIxCV7ZQaWvrw/+3xdOqR0w2Bf66wLqb2traxGLxfDRRx8hmUwiHo9jd3dXCiW4eQGQPt58cEwmE1pbWzE8PCw2XuznTWE7g1RuFsdJDgAAP/3pT/H++++LtojV+q+++iqGh4fxy1/+Euvr68hkMnjvvffgdrtRX1+PZDKJhYUFXL16VQpN9vb25DDFUz3T67QIqqqqki5lrEq22+3o6uqCy+WSqmGm5lkAx/nOA2C57x5TPYeHh7BYLDh//rx0F5qYmJB7xUXIZDKhvr4eFy5cENstnvQNBoNYIFVwfFFdXQ2z2YyzZ8+iv78fu7u7osM2m80wGAwwmUzCXpUXu3IOcbNS/x+LYMlysgh2cXFRJCxsd6nVauVnS0tLElza7XZ0dnbKIZU61mw2K8bxu7u7JZX0qm5eDaRViUJV1eNWm8PDw7KXABApGZ+XaDQKh8Mh0ibV2YTPE//N31XBKvZcLveZQSvHR6fTwel0Qq/Xw+/34/r163j06BHC4bDIJNLptGj/+b1ffvlljIyMYG1t7RvTXY7rFBlzysueB9yX6HPLoryNjQ1YLBbEYjE8evRIsqjsqnnixAkMDw/D5/OVsO8vGnxfvV4vloirq6uIRCJIpVI4PDwUQ39mwZh9q62thcvlgt1uh8/ng8/nQ3d395H7KTMiuVwOwNOOB+oaoGaC1foXZlT5XNG1Y3d3F5lMRgo16fHMTKLFYjlSJ/zHwDMD1jNnziAWi2FxcVEKS2g/sri4iIGBATQ3N5csCul0Gpubm8hkMuIJxt/L5XLIZrPIZrOw2WwYGBjAm2++KQGWWhTQ0NCAg4MDjIyMQK/X4969e5IKJaPKgFi1duJNY3HTmTNnpF8vF1a2WaVY/usECrCdTieuXr2K+vp6vPPOOwiHw8hms0dKEOhF2NHRgc7OTvh8PvGKowicdkkUkqs6XKBUHH4ccPPmTfHcJZvi8/kwOjoKi8WC0dFRRCIRaZfHjby2tlYqifn9qIEDSr1pOY5qa1tqmE0mE7xeL1pbW0VEr1qu8ZCnOkKoVkMASnTMDISBxz6EHo8Hw8PD4vdoNBpFL6XRaITp8Hq9UrGr0Wg+U7NXwfEB16Ta2lrxZ6Y0h/OMmnh1/nCOUe6jbmKqTpRsLVlMvoZOIPX19aiurhY3AnaL4oGrtbUVDQ0NMBqNJc4Z1G42NDTIWqwWefJ1xWJRviOfBf5bbW9Nmyq+B78DzeBV9wv1Narmjs+Vei3qc/pZYLAKQIrLKKdqb28XVxBKMPideMC02Wyw2+3SYOGbAK5XrJN4UUVn1dXVYv84MzODQqGAra0t+fnS0pK4slRVVaGtrQ3Xr1/H6dOnYTKZ5J58WSwrANknqN11OBzS6Y1kHceCnqyqbRz11Hq9/in5H2sxWEvE96Bul+PMTIvJZALwpLsmDxG5XE66hhoMBqRSKYRCIQQCAUQiEezu7qK2tlbayNKq7jjt7c8MWM+ePYuamhrcuXNHupSQ5YxEIohEImJNwqIfftl4PC79ddW2nlqtFkajESdOnEBvby+Gh4dL9KcUKPPE3tzcLPq9W7duCeMLPD4pU1dLmwin04mmpib5m0UDamBFXzemxL9OIEPKwjGTySRWM5yAtbW1YglC25m6ujq0t7ejpaVFmDoWUfAwonp9qg8fH5bjxFQ3NDSUdBVraWnBSy+9BL/fj2KxiIGBAQSDQdy4cUO6h+3v78PhcMgJmAGruuCxwA+AjEv5A11VVYULFy7IPGxubpaFE0BJwYB6UONmSpAtOgpsEvB5KGeQKj6sxx9qmo9BourlzOBIPXx+lsa9PChTi/4AiAadmSa+fmJiAhaLBffv38fGxob4UVN/rzZ6UdlIBsA8pJUHrOUuJWqgqf5R/z+vmUwZP7fcykr9t1qIVT6uapD8rKBVtYxTnxsGBF8Ex2lN/LJBuQiDrhcVIPKg3dvbi76+PpHIhMNh7O3tYXt7W9j5+vp69Pf349y5c/D5fCX2Zl/GvVC15QCkuNxkMon0LpPJIJPJlPgLMztJG8pyZwBmCWj+zwYA8XgcBwcH4idMXSxJFZIUbG7B99ze3pZWuZlMBnq9Htvb29jZ2ZECTzZa8vl8qK+vh9PpFMvM8uf4j4VnBqys1nc6nfB4PJiensby8rJYTNAeAXhSbMV0kKpnol7ParXCYrHA4XDgpZdeEm2kehrn4kwmIZfLidEtN3/aBTE9S7GxxWKB1+tFW1sbnE4nzGaz2KdwolAMXigUZBP4OoHdVZg+tNlsMJlMmJ+fRzablS5N1KXU1dVJOlzVxKlaOG5ETH+TJVStzY5bwPrSSy8hk8kgmUwim81icHAQo6Oj4q+r1+vx0ksvYXd3F5OTk4hEImLLE4lE5PuTSeXmpaby6SLA4kIuHBqNBufOncO5c+f+yKNQwVcRKkvIdavc6xMotRxUN5Oj0onlPy8UCmK943Q64XK5Sp77GzduwGazYXl5GbFYTCyqhoeHMTw8DJPJVJJlIMPEdCPwdPqf/4+HSDUI5XdTmUq10ITri5rVULV9auaCY8NxUJlmbuo8iB6HTfjrAlpaWSwWGI1GYeWfF1xr/X4/RkZGMDU1JbIOBmWUyTQ3N+Ps2bPw+XwwGo0le9KXca+PIhVIzD0vDg8PxXt5fX0d29vb0srVZrNJ1hp4LElgUNza2gqLxYKqqirZozY3N7G8vCye68Xi4xbN+/v70pacncPOnj0Ls9mMzs5Oyb4el+fkmQErCzpOnjyJ1tZWXLp0CQ8fPsQnn3yCyclJJBIJHBwclKREAUhQpNFoRPPU39+Pzs5OuFwuMavlaVxdPKgDPApnzpzBX//1X7/4UfgagbZNKnw+H65cufKlf/ZxmdQAcOnSJbS2tsrpsaGhQaqpKdT3eDwYGRlBdXU1lpeXJV0SDAaRy+VgNBpLggIAJQ0Z1A2R8/d5bVwqqIBQZSjUawJPrH74M85NNUtVXqTB1/G9VN9ol8uFrq4u3Lx5syQNyLarGo0GHo8H586dw+uvvy7Zl6PYW+rbGTCWB9gA5HdV5wIGleXMMfBERqCmPfm3+h7lAfJR8gBVOnZc0pxfF3Dv6e7uxv7+PnZ2duBwOJ5rX+A8IYN68eJFtLa2Sor94OBAmEGSayoJdtSh6auEVCqFjY0NBAIBpFIpJJNJaYLDAyNljtRSx+Nx2e/q6+slEz0/Pw+73S5SyIaGBphMJiEk6+vrYTabJdgnW36cxu5zA1adTicMm8/ng9frxfDwMBYWFvDRRx+JppW+nFqtFrlcDp2dnfB4PLDZbCXG+NTcqczr5+mJKqjgfwuj0Yienh6pxlTTj0z1UzbR29srdiTsrJNMJqVVLgMEMvPA40MZU4PcCDmnK6jgeaCyiAzgmA0BINIUMo8qOFfVokr+DqHVakvS5V6vF2+88QY8Hg9u3LiBw8NDaVLQ3d2N3t5eXLt2DWfPnkWxWBS7G6Y4AZSwoAysmYEhmMFQK5d5zQRfz++lBuGU0TDw5bOo6nPJIJVnfMplCOr7VPBioNVqYbfbce3aNYyMjJT4rz8PeB/5/izQ/ibAbDajq6tLfIdZyKZKLSk9MJvNUkTJgxpfYzAY0NTUhKqqKmlW5HQ60djYCIvFAovFItlZ/lG7iB0XaCqnzAoqqKCCCiqooIIKjjMqdFAFFVRQQQUVVFBBBccalYC1ggoqqKCCCiqooIJjjUrAWkEFFVRQQQUVVFDBsUYlYK2gggoqqKCCCiqo4FijErBWUEEFFVRQQQUVVHCsUQlYK6igggoqqKCCCio41vj//pNX2fnOPfgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1697,67 +1834,6 @@ } ] }, - { - "cell_type": "code", - "metadata": { - "id": "k0vK7Tr0W3PM", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 34 - }, - "outputId": "139b785b-95db-43e3-8209-d4822a118c6a" - }, - "source": [ - "batch[\"image\"].shape, batch[\"label\"].shape" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "(TensorShape([64, 128, 32, 1]), TensorShape([64, 21]))" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 22 - } - ] - }, - { - "cell_type": "code", - "metadata": { - "id": "R83VTnFL2vJb", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 35 - }, - "outputId": "b1d40297-cce0-4cc7-c55b-2b6dedd8b4da" - }, - "source": [ - "tokenizer.index_word[52]" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "application/vnd.google.colaboratory.intrinsic+json": { - "type": "string" - }, - "text/plain": [ - "'*'" - ] - }, - "metadata": { - "tags": [] - }, - "execution_count": 23 - } - ] - }, { "cell_type": "markdown", "metadata": { @@ -1772,10 +1848,9 @@ "metadata": { "id": "QZRjUkjyWUXl", "colab": { - "base_uri": "https://localhost:8080/", - "height": 612 + "base_uri": "https://localhost:8080/" }, - "outputId": "3bea66d4-a535-47f8-abc5-248adad96ccb" + "outputId": "38ae65d6-9ddf-4493-fe28-dc163090ea02" }, "source": [ "class CTCLayer( tf.keras.layers.Layer):\n", @@ -1784,11 +1859,6 @@ " self.loss_fn = tf.keras.backend.ctc_batch_cost\n", "\n", " def call(self, y_true, y_pred):\n", - " # Compute the training-time loss value and add it\n", - " # to the layer using `self.add_loss()`.\n", - " # y_true = tf.cast(y_true, tf.float32)\n", - " # y_pred = tf.cast(y_pred, tf.float32)\n", - " \n", " batch_len = tf.cast(tf.shape(y_true)[0], dtype=\"int64\")\n", " input_length = tf.cast(tf.shape(y_pred)[1], dtype=\"int64\")\n", " label_length = tf.cast(tf.shape(y_true)[1], dtype=\"int64\")\n", @@ -1805,8 +1875,8 @@ "def build_model():\n", " # Inputs to the model\n", " input_img = tf.keras.layers.Input(\n", - " shape=(IMG_WIDTH, IMG_HEIGHT, 1), name=\"image\")\n", - " labels = tf.keras.layers.Input(name=\"label\", shape=(None,))\n", + " shape=(IMG_WIDTH, IMG_HEIGHT, 1), name=\"images\")\n", + " labels = tf.keras.layers.Input(name=\"labels\", shape=(None,))\n", "\n", " # First conv block\n", " x = tf.keras.layers.Conv2D(\n", @@ -1852,7 +1922,7 @@ "\n", " # Define the model\n", " model = tf.keras.models.Model(\n", - " inputs=[input_img, labels], outputs=output, name=\"ocr_model_v1\"\n", + " inputs=[input_img, labels], outputs=output, name=\"handwriting_recognizer\"\n", " )\n", " # Optimizer\n", " opt = tf.keras.optimizers.Adam()\n", @@ -1865,18 +1935,18 @@ "model = build_model()\n", "model.summary()" ], - "execution_count": null, + "execution_count": 26, "outputs": [ { "output_type": "stream", "text": [ - "Model: \"ocr_model_v1\"\n", + "Model: \"handwriting_recognizer\"\n", "__________________________________________________________________________________________________\n", "Layer (type) Output Shape Param # Connected to \n", "==================================================================================================\n", - "image (InputLayer) [(None, 128, 32, 1)] 0 \n", + "images (InputLayer) [(None, 128, 32, 1)] 0 \n", "__________________________________________________________________________________________________\n", - "Conv1 (Conv2D) (None, 128, 32, 32) 320 image[0][0] \n", + "Conv1 (Conv2D) (None, 128, 32, 32) 320 images[0][0] \n", "__________________________________________________________________________________________________\n", "pool1 (MaxPooling2D) (None, 64, 16, 32) 0 Conv1[0][0] \n", "__________________________________________________________________________________________________\n", @@ -1894,11 +1964,11 @@ "__________________________________________________________________________________________________\n", "bidirectional_1 (Bidirectional) (None, 32, 128) 164352 bidirectional[0][0] \n", "__________________________________________________________________________________________________\n", - "label (InputLayer) [(None, None)] 0 \n", + "labels (InputLayer) [(None, None)] 0 \n", "__________________________________________________________________________________________________\n", "dense2 (Dense) (None, 32, 54) 6966 bidirectional_1[0][0] \n", "__________________________________________________________________________________________________\n", - "ctc_loss (CTCLayer) (None, 32, 54) 0 label[0][0] \n", + "ctc_loss (CTCLayer) (None, 32, 54) 0 labels[0][0] \n", " dense2[0][0] \n", "==================================================================================================\n", "Total params: 420,598\n", @@ -1910,42 +1980,6 @@ } ] }, - { - "cell_type": "code", - "metadata": { - "id": "otS6cwkDax5h", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 51 - }, - "outputId": "f61d6963-f63f-4b6a-c74e-97a2232674f7" - }, - "source": [ - "# Run a dummy set of samples through the CTC loss\n", - "outputs = model([batch[\"image\"], batch[\"label\"]])\n", - "print(outputs.shape)\n", - "\n", - "batch_len = tf.cast(tf.shape(batch[\"label\"])[0], dtype=\"int64\")\n", - "input_length = tf.cast(tf.shape(outputs)[1], dtype=\"int64\")\n", - "label_length = tf.cast(tf.shape(batch[\"label\"])[1], dtype=\"int64\")\n", - "\n", - "input_length = input_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")\n", - "label_length = label_length * tf.ones(shape=(batch_len, 1), dtype=\"int64\")\n", - "\n", - "print(tf.keras.backend.ctc_batch_cost(batch[\"label\"], outputs, input_length, label_length).shape)" - ], - "execution_count": null, - "outputs": [ - { - "output_type": "stream", - "text": [ - "(64, 32, 54)\n", - "(64, 1)\n" - ], - "name": "stdout" - } - ] - }, { "cell_type": "markdown", "metadata": { @@ -1960,10 +1994,9 @@ "metadata": { "id": "zUwk56nCWxxQ", "colab": { - "base_uri": "https://localhost:8080/", - "height": 1000 + "base_uri": "https://localhost:8080/" }, - "outputId": "aee862f1-a7e8-4620-8238-7302b486c827" + "outputId": "e4ac1ead-2c12-4dda-b908-3a4591a6af15" }, "source": [ "epochs = 100\n", @@ -1979,173 +2012,213 @@ " validation_data=validation_dataset,\n", " epochs=epochs,\n", " callbacks=[early_stopping],\n", - ")\n" + ")" ], - "execution_count": null, + "execution_count": 27, "outputs": [ { "output_type": "stream", "text": [ "Epoch 1/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 12.8547 - val_loss: 10.7324\n", + "1357/1357 [==============================] - 66s 42ms/step - loss: 13.7039 - val_loss: 12.8109\n", "Epoch 2/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 9.9816 - val_loss: 9.1448\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 12.3833 - val_loss: 12.3740\n", "Epoch 3/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 8.8444 - val_loss: 7.9497\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 12.0636 - val_loss: 12.0246\n", "Epoch 4/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 7.9073 - val_loss: 7.0442\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 11.3540 - val_loss: 10.9796\n", "Epoch 5/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 7.1840 - val_loss: 6.3452\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 10.4784 - val_loss: 9.9197\n", "Epoch 6/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 6.5705 - val_loss: 5.8407\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 9.8998 - val_loss: 9.4077\n", "Epoch 7/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 6.1708 - val_loss: 5.4441\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 9.4814 - val_loss: 8.9178\n", "Epoch 8/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 5.8599 - val_loss: 5.2326\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 9.0652 - val_loss: 8.5845\n", "Epoch 9/100\n", - "1357/1357 [==============================] - 73s 53ms/step - loss: 5.6290 - val_loss: 5.0546\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 8.6633 - val_loss: 8.0102\n", "Epoch 10/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 5.4338 - val_loss: 4.9431\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 8.4094 - val_loss: 7.8673\n", "Epoch 11/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 5.2860 - val_loss: 4.8794\n", + "1357/1357 [==============================] - 56s 42ms/step - loss: 8.1767 - val_loss: 7.5236\n", "Epoch 12/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 5.1566 - val_loss: 4.7415\n", + "1357/1357 [==============================] - 58s 42ms/step - loss: 7.8461 - val_loss: 7.1450\n", "Epoch 13/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 5.0525 - val_loss: 4.7382\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 7.5472 - val_loss: 6.7844\n", "Epoch 14/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 4.9698 - val_loss: 4.6117\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 7.3233 - val_loss: 6.5515\n", "Epoch 15/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.8779 - val_loss: 4.7641\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 7.0660 - val_loss: 6.3180\n", "Epoch 16/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.8094 - val_loss: 4.5407\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 6.8688 - val_loss: 6.2760\n", "Epoch 17/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 4.7534 - val_loss: 4.6097\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 6.7193 - val_loss: 5.9512\n", "Epoch 18/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.6878 - val_loss: 4.4509\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 6.5804 - val_loss: 5.8578\n", "Epoch 19/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.6468 - val_loss: 4.4070\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 6.4279 - val_loss: 5.7647\n", "Epoch 20/100\n", - "1357/1357 [==============================] - 76s 56ms/step - loss: 4.5896 - val_loss: 4.4341\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 6.3582 - val_loss: 5.6309\n", "Epoch 21/100\n", - "1357/1357 [==============================] - 77s 56ms/step - loss: 4.5505 - val_loss: 4.4284\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 6.2170 - val_loss: 5.5342\n", "Epoch 22/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.5070 - val_loss: 4.4576\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 6.0912 - val_loss: 5.4642\n", "Epoch 23/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 4.4747 - val_loss: 4.3482\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 6.0353 - val_loss: 5.3556\n", "Epoch 24/100\n", - "1357/1357 [==============================] - 76s 56ms/step - loss: 4.4358 - val_loss: 4.3871\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.9217 - val_loss: 5.3582\n", "Epoch 25/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 4.4134 - val_loss: 4.3034\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.8324 - val_loss: 5.2444\n", "Epoch 26/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 4.3865 - val_loss: 4.2801\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.8023 - val_loss: 5.2309\n", "Epoch 27/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 4.3466 - val_loss: 4.2941\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.7345 - val_loss: 5.1590\n", "Epoch 28/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 4.3239 - val_loss: 4.2503\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.6841 - val_loss: 5.0648\n", "Epoch 29/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 4.3069 - val_loss: 4.2580\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.6088 - val_loss: 5.1474\n", "Epoch 30/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.2786 - val_loss: 4.1765\n", + "1357/1357 [==============================] - 55s 41ms/step - loss: 5.6234 - val_loss: 5.0841\n", "Epoch 31/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 4.2604 - val_loss: 4.2284\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.5251 - val_loss: 5.0094\n", "Epoch 32/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.2596 - val_loss: 4.2113\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.5101 - val_loss: 4.9668\n", "Epoch 33/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 4.2460 - val_loss: 4.1998\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.4147 - val_loss: 4.9486\n", "Epoch 34/100\n", - "1357/1357 [==============================] - 73s 53ms/step - loss: 4.2332 - val_loss: 4.2346\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.3793 - val_loss: 4.8842\n", "Epoch 35/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 4.1886 - val_loss: 4.1570\n", + "1357/1357 [==============================] - 55s 41ms/step - loss: 5.3687 - val_loss: 4.8651\n", "Epoch 36/100\n", - "1357/1357 [==============================] - 73s 53ms/step - loss: 4.1790 - val_loss: 4.2310\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.2890 - val_loss: 5.0575\n", "Epoch 37/100\n", - "1357/1357 [==============================] - 73s 53ms/step - loss: 4.1717 - val_loss: 4.1180\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.2567 - val_loss: 4.7835\n", "Epoch 38/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 4.1426 - val_loss: 4.1797\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 5.2343 - val_loss: 4.8270\n", "Epoch 39/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 4.1258 - val_loss: 4.1767\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.2059 - val_loss: 4.7774\n", "Epoch 40/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 4.1226 - val_loss: 4.1312\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.1838 - val_loss: 4.7607\n", "Epoch 41/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 4.1091 - val_loss: 4.1106\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.1533 - val_loss: 4.7303\n", "Epoch 42/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 4.0876 - val_loss: 4.1312\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 5.1413 - val_loss: 4.8708\n", "Epoch 43/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 4.0835 - val_loss: 4.2589\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 5.0948 - val_loss: 4.7127\n", "Epoch 44/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 4.0745 - val_loss: 4.1300\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 5.1394 - val_loss: 4.6977\n", "Epoch 45/100\n", - "1357/1357 [==============================] - 73s 53ms/step - loss: 4.0589 - val_loss: 4.1566\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 5.0313 - val_loss: 4.6310\n", "Epoch 46/100\n", - "1357/1357 [==============================] - 74s 54ms/step - loss: 4.0424 - val_loss: 4.0674\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.9796 - val_loss: 4.6168\n", "Epoch 47/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 4.0396 - val_loss: 4.1253\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.9697 - val_loss: 4.5964\n", "Epoch 48/100\n", - "1357/1357 [==============================] - 75s 55ms/step - loss: 4.0139 - val_loss: 4.0835\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.9318 - val_loss: 4.6240\n", "Epoch 49/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 4.0080 - val_loss: 4.0562\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.9080 - val_loss: 4.5938\n", "Epoch 50/100\n", - "1357/1357 [==============================] - 74s 55ms/step - loss: 4.0152 - val_loss: 4.0826\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.8800 - val_loss: 4.5267\n", "Epoch 51/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 3.9932 - val_loss: 4.1248\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.8973 - val_loss: 4.5433\n", "Epoch 52/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 3.9929 - val_loss: 4.1302\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.8488 - val_loss: 4.5200\n", "Epoch 53/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 3.9707 - val_loss: 4.1213\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.8546 - val_loss: 4.6398\n", "Epoch 54/100\n", - "1357/1357 [==============================] - 73s 54ms/step - loss: 3.9713 - val_loss: 4.1698\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.8663 - val_loss: 4.5372\n", "Epoch 55/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 3.9649 - val_loss: 4.0884\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7947 - val_loss: 4.5131\n", "Epoch 56/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 3.9489 - val_loss: 4.0528\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7804 - val_loss: 4.5624\n", "Epoch 57/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 3.9386 - val_loss: 4.1103\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7609 - val_loss: 4.4406\n", "Epoch 58/100\n", - "1357/1357 [==============================] - 70s 51ms/step - loss: 3.9321 - val_loss: 4.0751\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7453 - val_loss: 4.4943\n", "Epoch 59/100\n", - "1357/1357 [==============================] - 70s 51ms/step - loss: 3.9412 - val_loss: 4.0193\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7298 - val_loss: 4.4358\n", "Epoch 60/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 3.9240 - val_loss: 4.1487\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.7277 - val_loss: 4.4348\n", "Epoch 61/100\n", - "1357/1357 [==============================] - 71s 52ms/step - loss: 3.9298 - val_loss: 4.0990\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7062 - val_loss: 4.5103\n", "Epoch 62/100\n", - "1357/1357 [==============================] - 69s 51ms/step - loss: 3.9174 - val_loss: 4.0348\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.7812 - val_loss: 4.6003\n", "Epoch 63/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 3.9081 - val_loss: 4.1639\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7257 - val_loss: 4.4368\n", "Epoch 64/100\n", - "1357/1357 [==============================] - 70s 51ms/step - loss: 3.8834 - val_loss: 4.0169\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.7109 - val_loss: 4.4251\n", "Epoch 65/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 3.8850 - val_loss: 4.0016\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.6816 - val_loss: 4.3785\n", "Epoch 66/100\n", - "1357/1357 [==============================] - 70s 52ms/step - loss: 3.8791 - val_loss: 4.0699\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.6478 - val_loss: 4.4075\n", "Epoch 67/100\n", - "1357/1357 [==============================] - 70s 51ms/step - loss: 3.8765 - val_loss: 4.0234\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.6296 - val_loss: 4.4149\n", "Epoch 68/100\n", - "1357/1357 [==============================] - 69s 51ms/step - loss: 3.8802 - val_loss: 4.1107\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.6126 - val_loss: 4.3693\n", "Epoch 69/100\n", - "1357/1357 [==============================] - 69s 51ms/step - loss: 3.8612 - val_loss: 4.0255\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.6054 - val_loss: 4.3311\n", "Epoch 70/100\n", - "1357/1357 [==============================] - 68s 50ms/step - loss: 3.8797 - val_loss: 3.9634\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5899 - val_loss: 4.3718\n", "Epoch 71/100\n", - "1357/1357 [==============================] - 70s 52ms/step - loss: 3.8537 - val_loss: 4.0298\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5992 - val_loss: 4.3356\n", "Epoch 72/100\n", - "1357/1357 [==============================] - 69s 51ms/step - loss: 3.8543 - val_loss: 4.0598\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5682 - val_loss: 4.3345\n", "Epoch 73/100\n", - "1357/1357 [==============================] - 68s 50ms/step - loss: 3.8574 - val_loss: 4.0406\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5591 - val_loss: 4.3392\n", "Epoch 74/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 3.8410 - val_loss: 4.0091\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.6918 - val_loss: 4.4846\n", "Epoch 75/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 3.8364 - val_loss: 4.0175\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5943 - val_loss: 4.3333\n", "Epoch 76/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 3.8284 - val_loss: 3.9793\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5429 - val_loss: 4.3719\n", "Epoch 77/100\n", - "1357/1357 [==============================] - 72s 53ms/step - loss: 3.8065 - val_loss: 4.0374\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.5101 - val_loss: 4.3205\n", "Epoch 78/100\n", - "1357/1357 [==============================] - 71s 53ms/step - loss: 3.8164 - val_loss: 3.9793\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.5086 - val_loss: 4.2883\n", "Epoch 79/100\n", - "1357/1357 [==============================] - 71s 52ms/step - loss: 3.7957 - val_loss: 4.0684\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5113 - val_loss: 4.3032\n", "Epoch 80/100\n", - "1357/1357 [==============================] - 71s 52ms/step - loss: 3.7909 - val_loss: 3.9699\n" + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5394 - val_loss: 4.3564\n", + "Epoch 81/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.5076 - val_loss: 4.3425\n", + "Epoch 82/100\n", + "1357/1357 [==============================] - 58s 43ms/step - loss: 4.4651 - val_loss: 4.3243\n", + "Epoch 83/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.4624 - val_loss: 4.3878\n", + "Epoch 84/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.5095 - val_loss: 4.2975\n", + "Epoch 85/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.4493 - val_loss: 4.2531\n", + "Epoch 86/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.4423 - val_loss: 4.2563\n", + "Epoch 87/100\n", + "1357/1357 [==============================] - 58s 42ms/step - loss: 4.4308 - val_loss: 4.2949\n", + "Epoch 88/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.4231 - val_loss: 4.2685\n", + "Epoch 89/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.4293 - val_loss: 4.3003\n", + "Epoch 90/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.4332 - val_loss: 4.3408\n", + "Epoch 91/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.4365 - val_loss: 4.2450\n", + "Epoch 92/100\n", + "1357/1357 [==============================] - 58s 42ms/step - loss: 4.4231 - val_loss: 4.2451\n", + "Epoch 93/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.3929 - val_loss: 4.2030\n", + "Epoch 94/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.3967 - val_loss: 4.2767\n", + "Epoch 95/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.3831 - val_loss: 4.2333\n", + "Epoch 96/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.3584 - val_loss: 4.2771\n", + "Epoch 97/100\n", + "1357/1357 [==============================] - 58s 43ms/step - loss: 4.3949 - val_loss: 4.2621\n", + "Epoch 98/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.3742 - val_loss: 4.2439\n", + "Epoch 99/100\n", + "1357/1357 [==============================] - 57s 42ms/step - loss: 4.3431 - val_loss: 4.1714\n", + "Epoch 100/100\n", + "1357/1357 [==============================] - 56s 41ms/step - loss: 4.3499 - val_loss: 4.2090\n" ], "name": "stdout" } @@ -2159,7 +2232,7 @@ "base_uri": "https://localhost:8080/", "height": 295 }, - "outputId": "a99bbccc-6696-4f5b-d99d-624bc1d18623" + "outputId": "ed5fe7dd-ccc7-41bd-bd4f-f75d0a79296c" }, "source": [ "plt.plot(history.history[\"loss\"], label=\"train_loss\")\n", @@ -2170,12 +2243,12 @@ "plt.legend()\n", "plt.show()" ], - "execution_count": null, + "execution_count": 28, "outputs": [ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xc1Znw8d8zRRr1jixXyR1j44LBEENCDx2W0EuAsOGFsJSQBtmwAV6yyeZl2SS7BEIKJIRQQllIIDSD6QZsY3DF3Zbc1Gw1q8xonvePcyXLsiTLtqQZa57v5zOfmbl35t5nZqTnnnvOueeIqmKMMSZx+GIdgDHGmIFlid8YYxKMJX5jjEkwlviNMSbBWOI3xpgEY4nfGGMSjCV+MyBEpFhEVEQCvXjt1SLy3kDEZQ6MiMwVkX+OdRxm31jiN3sQkfUi0iIi+Z2Wf+ol7+IBjmefLzYRkbtE5M/9EU+8EpFHvd+tvsPts1jHZeKPJX7TnXXApW1PRGQKkBq7cExHPZw5/VxV0zvcpg5oYOagYInfdOcx4Osdnl8F/KnjC0QkS0T+JCIVIrJBRH4kIj5vnV9E7hORShFZC5zZxXt/LyJbRGSTiNwrIv69BeVVA60VkToRWScil+/rBxORc0RkqYjs8KoqDu2w7gdePHUi8oWInOQtP0pE5otIrYhsE5H7e9j+N0VktYhUi8iLIjLUW/6giNzX6bUviMht3uOhIvKs932uE5GbO7zuLhF5RkT+LCK1wNX7+JnbqtquE5HN3vf+3Q7rk0XkF966zd7j5A7rzxWRRd7nXyMip3XY/CgRed/7zl5rO1MUkZAXb5X3XX8iIoX7ErfpJ6pqN7vtdgPWAycDXwCHAn6gDBgFKFDsve5PwAtABlAMrASu9dZdD6wARgC5wFveewPe+ueB3wBpwCHAx8D/8dZdDbzXRVxpQC0wwXteBBzWzWe4C/hzF8vHAw3AKUAQ+D6wGkgCJgClwFDvtcXAGO/xh8CV3uN04Ohu9nsiUAnMAJKB/wbe8dZ92du+eM9zgEZgKK4QtgD4Ny+W0cBa4KsdPk8YOM97bUoX+34UuLebuIq97/8J73ucAlQAJ3vr7wHmeb9FAfAB8H+9dUcBNd535gOGARO9dXOBNd73muI9/5m37v8Af8OdKfqBI4DMWP99202txG961FbqPwVYDmxqW+GVzi8B7lDVOlVdD/wncKX3kouAX6hqqapWAz/t8N5C4AzgVlVtUNVy4L+87e1NFJgsIimqukVVl+7jZ7oYeElVX1fVMHAfLmF9CWjFJetJIhJU1fWqusZ7XxgYKyL5qlqvqvO62f7lwB9UdaGqNgN3AMd47SLv4pLvcd5rLwA+VNXNwJFAgareo6otqroW+C27fycfqur/qmpUVRu72f93vdJ12+2Pndbf7X3ni4FH2FWddzlwj6qWq2oFcDe7fstrvc/0urfvTaq6osM2H1HVlV5MTwPTOnxnecBYVW1V1QWqWttN3GYAWeI3PXkMuAxXAv9Tp3X5uBLzhg7LNuBKg+BKsaWd1rUZ5b13S1uCwpX+D+kpGFVtwCXu6733viQiE/flA3lxtceiqlEvzmGquhq4FVe6LheRJ9uqaXDJbzywwquyOKuX268HqrztK/Aku5LtZcDj3uNRwNCOSRv4IdCxaqTj99md+1Q1u8Ptqk7rO/8mbZ9vt7g7rRuBK9V3Z2uHxztxZ0Tg/n5eBZ70qo9+LiLBXnwG088s8ZtuqeoGXCPvGcBznVZX4kp0ozosG8mus4ItuITRcV2bUqAZyO+QoDJV9bBexPSqqp6Cq+ZZgSsV74vNHWMWEfHi3ORt/y+qeiy7qrX+w1u+SlUvxR2c/gN4RkTSerH9NFypt+17eQK4QERGAbOAZ73lpcC6Tkk7Q1XP6Pjx9/GzdqXzb7K5q7g7rSsFxuzrjlQ1rKp3q+ok3BnVWezebmRixBK/2ZtrgRO90nY7VW3Fndb/REQyvER2G9DWhfJp4GYRGS4iOcDtHd67BXgN+E8RyRQRn4iMEZGv9BSIiBR6jYxpuANHPa7qpzs+r4Gx7ZbsxXWmiJzklT6/423rAxGZICIneq9rwtW/R719XyEiBd4Zwg5v+13t+wngGhGZ5m3n34GPvKowVPVT3EHzd8Crqtq2rY+BOq9xOUVc4/hkETmyp+9kP9wpIqkichhwDfBUh7h/JCIFXuPsv7Hrt/y995lO8n6rYb050xKRE0RkilctWIsrKPT0e5kBYonf9EhV16jq/G5W34RrKF0LvAf8BfiDt+63uNP8z4CF7HnG8HVcI+YyYDvwDK4U3xMf7uCyGagGvgLc0MPrL8Ul77bbGlX9ArgC1+haCZwNnK2qLbj6/Z95y7fiSvd3eNs6DVgqIvXAL4FLuqpnV9U3gDtxJfktuJJy57aLv+Aaz//S4X2tuBLxNNxZVtvBIWsv30ln35fd+/FXdlr/Nq4xew6uWug1b/m9wHzgc2Ax7je714vtY9xB4r9wjbxvs/vZQXeG4H7XWlwb0du46h8TY229C4wxg5jXuLwOCKpqJLbRmFizEr8xxiQYS/zGGJNgrKrHGGMSjJX4jTEmwex1iNx4kJ+fr8XFxbEOwxhjDioLFiyoVNWCzssPisRfXFzM/Pnd9Sg0xhjTFRHZ0NVyq+oxxpgEY4nfGGMSjCV+Y4xJMAdFHb8xZvAJh8OUlZXR1NQU61AOeqFQiOHDhxMM9m7wU0v8xpiYKCsrIyMjg+LiYtwgqWZ/qCpVVVWUlZVRUlLSq/dYVY8xJiaamprIy8uzpH+ARIS8vLx9OnOyxG+MiRlL+n1jX7/HQZ3431yxjV/PXR3rMIwxJq4M6sT/zspKHprb04xxxhiTeAZ14s8MBahrjhCN2kB0xpjd7dixg1//+tf7/L4zzjiDHTt27P2FnVx99dU888wz+/y+/jC4E39KEFWob7F5J4wxu+su8UciPeeLl19+mezs7P4Ka0AM6u6cmSHXp7WuKdL+2BgTf+7+21KWba7t021OGprJj88+rNv1t99+O2vWrGHatGkEg0FCoRA5OTmsWLGClStXct5551FaWkpTUxO33HIL1113HbBr7LD6+npOP/10jj32WD744AOGDRvGCy+8QEpKyl5jmzNnDt/97neJRCIceeSRPPjggyQnJ3P77bfz4osvEggEOPXUU7nvvvv461//yt13343f7ycrK4t33nnngL+bQZ34M0Lu49U2hhmWvfcfwxiTOH72s5+xZMkSFi1axNy5cznzzDNZsmRJe1/4P/zhD+Tm5tLY2MiRRx7J1772NfLy8nbbxqpVq3jiiSf47W9/y0UXXcSzzz7LFVdc0eN+m5qauPrqq5kzZw7jx4/n61//Og8++CBXXnklzz//PCtWrEBE2quT7rnnHl599VWGDRu2X1VMXRnUiT8zxZXyaxvDMY7EGNOTnkrmA+Woo47a7QKoX/3qVzz//PMAlJaWsmrVqj0Sf0lJCdOmTQPgiCOOYP369XvdzxdffEFJSQnjx48H4KqrruKBBx7gX/7lXwiFQlx77bWcddZZnHXWWQDMnj2bq6++mosuuojzzz+/Lz7qIK/j96p3apusjt8Y07O0tLT2x3PnzuWNN97gww8/5LPPPmP69OldXiCVnJzc/tjv9++1faAngUCAjz/+mAsuuIC///3vnHbaaQA89NBD3HvvvZSWlnLEEUdQVVW13/to39cBbyGOZaa4j1fXZCV+Y8zuMjIyqKur63JdTU0NOTk5pKamsmLFCubNm9dn+50wYQLr169n9erVjB07lscee4yvfOUr1NfXs3PnTs444wxmz57N6NGjAVizZg2zZs1i1qxZ/OMf/6C0tHSPM499NagTf0bIqnqMMV3Ly8tj9uzZTJ48mZSUFAoLC9vXnXbaaTz00EMceuihTJgwgaOPPrrP9hsKhXjkkUe48MIL2xt3r7/+eqqrqzn33HNpampCVbn//vsB+N73vseqVatQVU466SSmTp16wDEcFJOtz5w5U/dnBq5wa5Rx//oPbjtlPDefNK4fIjPG7K/ly5dz6KGHxjqMQaOr71NEFqjqzM6vHdR1/EG/j9Qkv1X1GGNMB4O6qgdcA29tozXuGmMGxo033sj777+/27JbbrmFa665JkYR7WnQJ/6MUIBaK/EbYwbIAw88EOsQ9mpQV/WA68tvid8YY3YZ/Ik/FKDO+vEbY0y7wZ/4U4LWndMYYzrot8QvIn8QkXIRWdJh2f8TkRUi8rmIPC8i/T7EnavjtxK/Mca06c8S/6PAaZ2WvQ5MVtXDgZXAHf24f6CtV0+Yg+F6BWNM/EpPT+923fr165k8efIARnNg+i3xq+o7QHWnZa+palvxex4wvL/23yYzJUgkqjSFo/29K2OMOSjEsjvnN4CnulspItcB1wGMHDlyv3fSPjRzU5iUJP9+b8cY04/+cTtsXdy32xwyBU7/Wberb7/9dkaMGMGNN94IwF133UUgEOCtt95i+/bthMNh7r33Xs4999x92m1TUxM33HAD8+fPJxAIcP/993PCCSewdOlSrrnmGlpaWohGozz77LMMHTqUiy66iLKyMlpbW7nzzju5+OKLD+hj90ZMEr+I/CsQAR7v7jWq+jDwMLghG/Z3X5kdxuspzAzt72aMMYPMxRdfzK233tqe+J9++mleffVVbr75ZjIzM6msrOToo4/mnHPOQUR6vd0HHngAEWHx4sWsWLGCU089lZUrV/LQQw9xyy23cPnll9PS0kJraysvv/wyQ4cO5aWXXgLc4HADYcATv4hcDZwFnKQDUPHePia/9eU3Jn71UDLvL9OnT6e8vJzNmzdTUVFBTk4OQ4YM4dvf/jbvvPMOPp+PTZs2sW3bNoYMGdLr7b733nvcdNNNAEycOJFRo0axcuVKjjnmGH7yk59QVlbG+eefz7hx45gyZQrf+c53+MEPfsBZZ53Fcccd118fdzcD2p1TRE4Dvg+co6o7B2Kfme1VPdazxxizuwsvvJBnnnmGp556iosvvpjHH3+ciooKFixYwKJFiygsLOxyHP79cdlll/Hiiy+SkpLCGWecwZtvvsn48eNZuHAhU6ZM4Uc/+hH33HNPn+xrb/qtxC8iTwDHA/kiUgb8GNeLJxl43Tt1mqeq1/dXDGBDMxtjunfxxRfzzW9+k8rKSt5++22efvppDjnkEILBIG+99RYbNmzY520ed9xxPP7445x44omsXLmSjRs3MmHCBNauXcvo0aO5+eab2bhxI59//jkTJ04kNzeXK664guzsbH73u9/1w6fcU78lflW9tIvFv++v/XWnbTIWK/EbYzo77LDDqKurY9iwYRQVFXH55Zdz9tlnM2XKFGbOnMnEiRP3eZvf+ta3uOGGG5gyZQqBQIBHH32U5ORknn76aR577DGCwSBDhgzhhz/8IZ988gnf+9738Pl8BINBHnzwwX74lHsa1OPxAzSFW5l45yt8/7QJfOv4sX0cmTFmf9l4/H3LxuPvIBT0kxTw2dDMxhjjGfTDMoNr4LVePcaYA7V48WKuvPLK3ZYlJyfz0UcfxSii/ZMgid8GajMmHqnqPvWRj7UpU6awaNGiWIexh32tsh/0VT0AGSlBG5rZmDgTCoWoqqqycbQOkKpSVVVFKNT7C1QTpMRvVT3GxJvhw4dTVlZGRUVFrEM56IVCIYYP7/3QZwmS+INs3tEY6zCMMR0Eg0FKSkpiHUZCSoiqnswUG5PfGGPaJEbiDwWps6oeY4wBEiXxpwRpCkdpjrTGOhRjjIm5hEj8bWPyW88eY4xJkMSfaQO1GWNMu8RI/ClW4jfGmDaJkfhDNhmLMca0SYjEv2tMfivxG2NMQiT+XVU9VuI3xpjESPxW1WOMMe0SIvGnJvnx+8SqeowxhgRJ/CJChg3UZowxQIIkfmgbtsFK/MYYM7gTf00ZlH4CeAO12QVcxhgzyBP/O/fBXy4CICM5aFU9xhjDYE/8WcOgsRrCjV6J36p6jDFmcCf+zGHuvnazDc1sjDGeBEn8m8hMCdpkLMYYQ8Ik/s1khALUN0dojdrEzsaYxDbIE/9Qd19T1n71br2V+o0xCW5wJ/6kVEjJcXX8KTZsgzHGwGBP/ACZw10dvzcLV4315TfGJLgESPxDoXbTrqGZrcRvjElwgz/xZw2Dmk02C5cxxngGf+LPHAqN1WQFXMK3YRuMMYkuARL/cACywhUA1pffGJPwEiDxuy6dqU3bACvxG2NMvyV+EfmDiJSLyJIOy3JF5HURWeXd5/TX/ttluRK/v24zGckBq+M3xiS8/izxPwqc1mnZ7cAcVR0HzPGe96+MInffPmyDlfiNMYmt3xK/qr4DVHdafC7wR+/xH4Hz+mv/7ZJSISXX69JpY/IbY8xA1/EXquoW7/FWoHBA9po5rH2ETruAyxiT6GLWuKuqCnQ7YpqIXCci80VkfkVFxYHtzOvLPyQrxOaaxgPbljHGHOQGOvFvE5EiAO++vLsXqurDqjpTVWcWFBQc2F69q3fHFKRTtr2RpnDrgW3PGGMOYgOd+F8ErvIeXwW8MCB7zXQzcY3L9aEK6yobBmS3xhgTj/qzO+cTwIfABBEpE5FrgZ8Bp4jIKuBk73n/88blH59aD8CaivoB2a0xxsSjQH9tWFUv7WbVSf21z25lucQ/0l+NCKwptxK/MSZxDf4rd6G9xJ/UsJVh2SmsrbQSvzEmcSVI4vdm4qotY0xBulX1GGMSWmIk/mCKdxHXZpf4yxuI2ty7xpgElRiJH1x1T80mRhek0RhuZWttU6wjMsaYmEicxJ81rL3ED9azxxiTuBIn8bddxHVIGgBrK6xnjzEmMSVQ4ncXcRUkt5IRCliJ3xiTsBIr8QNSt5XR1rPHGJPAEifxexdxUVPGmII0u4jLGJOwEifxeyX+tgberbVN1DfbbFzGmMSTQIl/94u4ANZZA68xJgHtNfGLyGwRSfMeXyEi94vIqP4PrY/tdhGX69lj9fzGmETUmxL/g8BOEZkKfAdYA/ypX6PqL96ELCPzUvH7xBK/MSYh9SbxR7zZss4F/kdVHwAy+jesfpI1EnZsIDngZ2RuqiV+Y0xC6k3irxORO4ArgJdExAcE+zesfpI3BqrXQbSV0fnWs8cYk5h6k/gvBpqBa1V1KzAc+H/9GlV/yRsLrc2uS+ch6ayraqDVBmszxiSYXpX4gV+q6rsiMh6YBjzRv2H1k7wx7r5qNWMK0miJRNm03SZfN8Yklt4k/neAZBEZBrwGXAk82p9B9Zu8se6+ao0N1maMSVi9SfyiqjuB84Ffq+qFwOT+DaufpBdCUjpUr2G0JX5jTILqVeIXkWOAy4GX9uF98UfEVfdUrSY3LYmc1CCryy3xG2MSS28S+K3AHcDzqrpUREYDb/VvWP0obyxUrQZg4pBMlm+ti3FAxhgzsPaa+FX1bVU9B3hARNJVda2q3jwAsfWP3DGwYyNEmpk0NJMVW2qJtEZjHZUxxgyY3gzZMEVEPgWWAstEZIGIHNb/ofWTvLGgUdi+nklFmTRHoqyrtP78xpjE0Zuqnt8At6nqKFUdiRu24bf9G1Y/au/Zs5pJQzMBWLalNoYBGWPMwOpN4k9T1fY6fVWdC6T1W0T9LW+0u69azdhD0kny+1i22RK/MSZxBHrxmrUicifwmPf8CmBt/4XUz1JyIDUfqtYQ9PsYPyTdSvzGmITSmxL/N4AC4DngWSAfuKY/g+p3eWOhag0Ak4oyWbq5FjcOnTHGDH696dWzXVVvVtUZqnqEqt6Kq/c/eHl9+cEl/uqGFrbVNsc4KGOMGRj7eyHWMX0axUDLGwP1W6G5jsOGZQGwbEtNjIMyxpiBcXBegXugOozZM3GIm1pg6Sar5zfGJIZuG3dFZEZ3qzhYx+Nv06FLZ8bQaYzKS7UGXmNMwuipV89/9rBuRV8HMqByvS6d1a5z0mFDXQOvMcYkgm4Tv6qeMJCBDKhgCmSN2K2B9+XFW6lrCpMROrhPZowxZm8Ss44fXKm/LfF7V/Au32IDthljBr/ETfxto3SqMqnI69mz2Xr2GGMGv5gkfhH5togsFZElIvKEiIQGPIi8sdBUAzurKMxMJi8tyRp4jTEJodvELyJfFZELulh+gYicsr879KZwvBmYqaqTAT9wyf5ub7916NkjIkwammmJ3xiTEHoq8f8b8HYXy+cC9xzgfgNAiogEgFRg8wFub9+1T7y+a+iGlVvrCdvY/MaYQa6nxJ+sqhWdF6pqJQcwOqeqbgLuAzYCW4AaVX2t8+tE5DoRmS8i8ysq9gjjwGWPAl9gtwbeltaoTcVojBn0ekr8mV6JfDciEgRS9neHIpIDnAuUAEOBNBG5ovPrVPVhVZ2pqjMLCgr2d3fd8wfcbFzlywHXlx+w/vzGmEGvp8T/HPBbEWkv3YtIOvCQt25/nQysU9UKVQ172/rSAWxv/xUdDls/B6AkP520JD+LSrfHJBRjjBkoPSX+HwHbgA3edIsLgHVAhbduf20EjhaRVBER4CRg+QFsb/8VTYXaTVBfgd8nHFGcy8frqmMSijHGDJSeEv/Lqno7MAK42ruNVNXbvZL6flHVj4BngIXAYi+Gh/d3ewekaKq73/oZALNKclm5rZ7qhpaYhGOMMQOhp8RfAKCqjaq62Ls19sVOVfXHqjpRVSer6pWqGpvB8Icc7u637Er8AB+vq4pJOMYYMxB6GqQtS0TO726lqh5IPX98SMmGnOL2xH/48GySAz4+WlfNaZOLYhubMcb0kx4TP3AWbhjmzpQDa+CNH0VT2xN/UsDHjJE5fLTW6vmNMYNXT4l/g6p+Y8AiiZWiqbDsBWjcASnZzBqdyy/nrKKmMUxWio3UaYwZfHqq4++qpD/4tDfwLgZgVkkeqjB/vZX6jTGDU0+J/yoRmd15oYjMFpEx/RjTwBriJX6vumf6yGyS/D7r1mmMGbR6Svz/DnR1GWst8Iv+CScG0gsgc1h74g8F/UwdkcU8S/zGmEGqp8RfqKqLOy/0lhX3W0Sx0KGBF+CoklyWbKqhoTkSw6CMMaZ/9JT4s3tYt99j9cSloqlQuRJaGgBXz98aVRZssOEbjDGDT0+Jf76IfLPzQhH5Z2BB/4UUA0MOBxS2LgFgxqgc/D6xen5jzKDUU3fOW4HnReRydiX6mUAS8E/9HdiAKurQwDtyFunJASYPy+Iju4LXGDMIdZv4VXUb8CUROQGY7C1+SVXfHJDIBlLmUEjN362e/+iSXB55fz1N4VZCQX8MgzPGmL611zl3VfUtVf1v7zb4kj6ASJcNvC2tURZutHp+Y8zgEpPJ1uNS0VSoWA7hJsAl/oBPeHdVZYwDM8aYvmWJv03RVIhGoHwZABmhIDOLc5j7RT9M+2iMMTFkib9NewPvovZFJ0w4hOVbatla0xSjoIwxpu9Z4m+TU+waeDd+1L7o+AmHADD3i/IYBWWMMX3PEn8bESg+Fta/C6oAjC9MZ2hWyKp7jDGDiiX+jkqOc3PwVq8FQEQ4fuIhvLe6kpZINMbBGWNM37DE31Hxce5+/Xvti44fX0B9c4T5G+wqXmPM4GCJv6P88ZBe6Kp7PLPH5hP0C29bdY8xZpCwxN9RWz3/ul31/GnJAWaV5PGWNfAaYwYJS/ydFR8L9Vuhak37ouMnFLByWz1l23fGMDBjjOkblvg7K/6yu1//TvuiXd06rbrHGHPws8TfWd4YyChy1T2eMQVpjMhNscRvjBkULPF3JuJ696x/r72eX0Q4fvwhvL+6kuZIa4wDNMaYA2OJvyvFx0JDuZuVy3PypEIaw628tnRbDAMzxpgDZ4m/KyVef/51u+r5jxubT0l+Gr97bx3qnQkYY8zByBJ/V3JKIHP4bv35fT7hmtnFfFa6w8boN8Yc1Czxd0XElfo71PMDfG3GcDJDAX7/3roYBmeMMQfGEn93io+FnVVQvrx9UVpygEtnjeSVJVsprbY+/caYg5Ml/u6MPt7dr/zHbouvOqYYEeGPH6wf6IiMMaZPWOLvTtZwGHE0LH5mt8VDs1M4Y0oRT35SSl1TOEbBGWPM/rPE35MpF7ipGLct3W3xtceWUN8c4en5ZTEKzBhj9p8l/p5MOg/Ev0epf9qIbGaOyuGR99cRbrVx+o0xBxdL/D1JL4AxJ8CSZ3br3QNww/FjKNveyOPzNsQoOGOM2T8xSfwiki0iz4jIChFZLiLHxCKOXpl8AezYCGWf7Lb4xImH8KUxefxizip27GyJUXDGGLPvYlXi/yXwiqpOBKYCy/fy+tiZeCYEQrD4r7stFhHuPGsStY1hfjlnVYyCM8aYfTfgiV9EsoAvA78HUNUWVd0x0HH0WigTxp8GS5+H1shuqw4tyuTiI0fw2IcbWFNRH6MAjTFm38SixF8CVACPiMinIvI7EUnr/CIRuU5E5ovI/IqKGA+HPOUCaKiAdW/vseq2UyYQCvr56cvxe9JijDEdxSLxB4AZwIOqOh1oAG7v/CJVfVhVZ6rqzIKCgoGOcXdjT4HkrD169wAUZCRz4wljeWN5Oe+tqoxBcMYYs29ikfjLgDJV/ch7/gzuQBC/giGYdDYs/xuEG/dYfc3sYkbkpnDX35bS2GLj9Rtj4tuAJ35V3QqUisgEb9FJwLKBjmOfHX4JtNTBkmf3WBUK+vnJeVNYU1HPj/53iQ3bbIyJa7Hq1XMT8LiIfA5MA/49RnH0XvGxUDgZPnxgjz79AF8eX8BNJ47j2YVlPD2/NAYBGmNM78Qk8avqIq/+/nBVPU9V43+AexE45kY3hMPat7p8yS0njePYsfnc+cJSlm6uGeAAjTGmd+zK3X0x+WuQXuhK/V3w+4RfXjKN3NQkvvX4QmptEDdjTByyxL8vAslw1Ddh9Ru7jdPfUV56Mv9z2XQ2bW/k208uImJj+Rhj4owl/n11xDcgkALzft3tS2YW5/Ljcw5jzopya+w1xsQdS/z7Ki0Ppl4Cnz0F9d1fWHbl0aO46cSxPPlJKfe/vnIAAzTGmJ5Z4t8fR38LWpth/u97fNltp4znkiNH8N9vruZPH64fkNCMMWZvLPHvj4LxMO6r8PHDPZb6RYR7z5vMyYcW8uMXl/LcQpu4xRgTe5b499eJP6Gng/4AABg6SURBVIKWBnjqcog0d/uygN/H/1w2nVkludz29Gfc//pKolGr8zfGxI4l/v1VdDic9yCUfgR/u6XLi7rahIJ+/viNo7jwiOH8as4qbnryUxvawRgTM4FYB3BQm3w+VK6Cuf8OBRPh2Fu7fWlywM/PLziccYXp/PQfKyit3slvrjyCoqyUAQzYGGOsxH/gvvJ9d2HXG3fBipd6fKmIcN2Xx/DbK2eyprye03/5Lq8v2zYwcRpjjMcS/4ESgXMfgGEz4JlrYe2eY/Z3dvKkQv5207EMy07hm3+az10vLqU5YlU/xpiBYYm/LwRT4LKnIbcE/nIxrHt3r28ZXZDOc9/6EtfMLubRD9bzTw98wJJNNr6PMab/WeLvK2n58PUXIWcU/OUiWP/eXt+SHPDz47MP43dfn8m22ibO/p/3+NfnF7O9wSZvN8b0H0v8fSm9AK76G2SNgMcv7FW1D7iqnze/ezxXHVPMk5+Ucvx9c/nTh+tpidg4P8aYvicHwzgyM2fO1Pnz58c6jN6r2wZ/PBsqV8KR/wwn/ZubtL0Xvthax49fXMK8tdUMyQzxz8eVcOlRI0lLtg5Yxph9IyILVHXmHsst8feT5jp481746DeQUQRn/BwOPbtXb1VV3l5ZwUNvr2He2mqyUoJc9aVirj22hKyUYD8HbowZLCzxx0rZAneB17bFMPxIOPxi1/0zNbdXb/9043YenLuG15ZtIyslyHVfHs01s4tJTbIzAGNMzyzxx1JrGD75PSz8o5vByxeAcafCCT+EIVN6tYmlm2u4/7WVzFlRTn56Etd9eTQXHDGC3LSkfg7eGHOwssQfD1Rh2xL4/ClY9AS01MNZv4Bpl/Z6Ews2bOc/X/uCD9ZUEfQLp0wq5KKZIzhuXAF+n/Rj8MaYg40l/nhTXw7PfAPWvwszr4XTfupm+OqllVtreGr+Jp5bWMb2nWHy05M5ZVIhXz2skC+NyScpYB22jEl0lvjjUWsE5twNH/wKiqbBqNngD4Av6K4LmHEVJKXu/p6d1fDXq9xw0N94heZgBm8sK+flxVt464tydra0kpEc4KuTh/C1GcOZVZKLz84EjElIlvjj2bIX4JU7oHEHRMOuTQCF/PHwtd9B0VT3uuq17vqAHRtBozD2FLjkL+BzpfumcCvvr67kH0u28sqSrdQ3Rxiek8L504fxlQmHMGVYlp0JGJNALPEfbNbOheevh4ZKOPnHrkfQk5e5hH/JE7D1c/jH9+H4H8LxP9jj7Y0trby6dCvPLizjvdWVqEJywMfU4dnMLM7hpEMLmT4i284GjBnELPEfjHZWw4s3wYq/u+e5o+HyZyBvjGsofv5611B82VMw/qtu2cZ5btnYk9qvG6isb2b++mrmr9/OJxu2s3RTDZGoMiQzxFcPK+TUw4YwY2QOKUn+GH5YY0xfs8R/sFKFhX+CDe/DV3/qJntv07IT/nAqbN8IX/oX+PxpqFoFeKX4034GR1+/xyZrGsO8uWIb/1i8lbdXVtAcieL3CYcWZTBjZA4zRuYwa3SuzRVgzEHOEv9gtX09PHw8NG6HkcfA9Cthwum7zhRm3won3+WGj+7CzpYI89ZWsXDDDhZu3M5npTto8GYHG5mbyqySXGYW53BoUSbjCzMIBe2swJiDhSX+wax6HUQjkD9u17JoK7z8XZj/Bzj8EjdkRChrr5tqjSrLt9Ty0dpKVq1cTl3pEjY2p7FYR+MTKMlPY8qwLGaMymH6iBwmFmUQ9FuDsTHxyBJ/IlKFd+6Dt+4F8cGQw6H4WDdpTH25mzayahXUbnZdSIMhCIQgvNOtC+9s31TZqPP4W+G3WFjp57PSHZTXuQnmQ0EfxXlpjMhNZXhOCiNyUinJT2N0QRrDc1LtojJjYsgSfyIr/QRWv+HmCCj7BFpd0iaUBXnjIHuEO2OINEO4EfxByJ8ABRPcXMKrXnPXGiRnwCn3oKOOZfuqD6lZ+T6BbZ+z0jeaRzmHBTXp7OwwiXyS30dJfhpTR2RxxKgcjhiVw+j8dOtJZMwAscRvnHATVH4BGUPdRWLd1P3voXw5/P022PjBrmXBNCicBJsXAYpOuYCa6TeymuGsrWhgTUU9K7fV8WnpDnbsDAOQnhxgRG4qI3JSGJGbytDsFA7JSOaQjGQKMpIZmp1i7QjG9BFL/ObAqcKy/3XdTEccBQWHuiuNa8rgwwdgwaOueijtEMgpdrfMIrSpjoYd29i5o5zGpmaW+Sfwfngir9SXUBkOtW9eiIIIw3NSGVuQzrjCDEbkplKYkUxhZohDMpMJBfyIuInrfQJpSYH4P4No+x/r7UHWmD5iid/0v4Yq+OwvUPGF6220fQPUbXGT0KTmuZsqbF4IrS2o+IhmDEVbGpHwTvytjdQkD+W1zPP5c8tXWF7V2j4LWSYNHO1bhiKUazYVmk0F2bRKgJzUJLJTg+SmJZGb4mecbzPjdS0FgUYyZ17CxLFjdm9riEZh3duQlA4jjuzf72TrEnjum25E1q/9HgrG9+/+jOnAEr+JH+FGKJvvrk2oXucmq09Kg2CqS8ilH0FKDtEjv0kDKciq10jd+gk+jeyxqRZfKjv96dRLOs3qZ1h4AyF2zVncrAFe5lgWDbuMISPHMKPqZSZtepqMnaUAVIy5gIpj7iQpM58hWSHSkwNuyIyN89zoqb6AuwWSoXByr2dSQxU+fhheuxNSsl0bSrgRTv85TL8iPkv/qhBpcr+HGRQs8ZuDx8Z58P4v4YuX3fPCyW7+gnGnuF5H9eVQv9XdN26Hpho3zlGkyTVGF02FoqlUNTRT+86DDFv/PEnaRLMGSJYIn0TH81jkVMb5yrje/zdqSOPu8NfZqrlcmvIRJzOPzGjNHmGp+AkPmUZk5HFo8WxSCsbiyx62a1RVVRfPjo0w96ew8hUY91U479fuYPL8dbDuHTcRz8QzoXI1VK2GmlIYcyLMun7PA0vbNlNy9u9g0bgDdla5hvtIk4sjkOwa6pPSAXUH4NVvwpo3oX4bHPZPMPvmXWNE9YXKVTD/EdcmNOYkyCzq/rU1m+CFG93B8mu/h4zCvosjwcRd4hcRPzAf2KSqZ/X0Wkv8CWr7elfazhp+YNvZWQ0L/0S0dgsNky6hJmsCdU0Rdra0ItuWMmbe7WRVLwagRZL5MHgUTzceyYZILgGiBIiQLk0c4VvJl3xLmSprCEi0ffNVkkOzL5W8aDXJ2ghA1Bdk7fTbqTj0aoIBH6Ggn/SgUPD5g6S+/x+Ier2fska4RvbNn0Io212BfdR1ULHStacsexFqNkLmMHeB3sijXftK3rg9R25tjcCODW5bG96HDR9CxfLefUehbBh9PKQVwGdPQksdjD4BjvomjJjlYuz4fX7xMqx4yV0vMnQaDJ3uRpjtnNBV4bMn4KXvet2DvXxTONkdyCdfAEMm73r9ipfhhW9BpMW9NiUXLn0Cig7v3eforHE7zHsItiyCGV+H8ae3D2qYCOIx8d8GzAQyLfGbmIq2wuK/umsdJpwByelEo0pNY5iK+mbKa5uprG+mpTVKpFWhpY6s6iX4assI1m8ipXELvuZaNkZyWNWcRVk0nyVaQpkWdLm7EbKNbH+Y+rSRZGZkkJ+ezOH+9ZxZ/UfGbn8XxYcQJeoLsn3IsewcMpP8+pWEtnyM1G3ZtaGskZA/FgIp7syheq0b3RUgKcMdIEYd4w4ugWTwJ4M/yZX8W+rdrTXsBgAcOh18Xm+qxh2w4BGY96A7AwC3jaKp7j3r3gVtdcuS0qBypRs8ENyIshPPhIlnuwsKX/oOLH4aio+D8x92B43Vb7jbxg9dqb5wspuStKYMPv6Nu97kgkcg3ABPXOqS9z/9Biads+eXWb4cPv2zOxDljYWSr7gDWEYRzPu1m/O6pc51OGgoh0MmwXHfcWc1vm56j7WGoWqNmy2vYoX7fME0d1DLHAqZw11X5+yR+34WVrfN7bfjgbRtn5896YZnGXUMHHubqyI8QHGV+EVkOPBH4CfAbZb4zWARbo2ytaaJ6oYWItEoLRGlpTVKU7iVhuYIDc0R6poj7NgZprKumcqGFirq3IGlqr6Zw1jLef73WRwtYU50BnXsKtWnBH0clV3H0aENDI9uYli4lMLwRgIaZltwOFsCwyjzDaMidTwMOYyhuRkMz0lpn59ZcL2hDslIpig7RHJgL91mI82uvWXzIldi3vypOwObeCYceo47WIhASwNsXQybFsDKV931ItrqLgrUVjj+DpdsOyfahkpY8hx8/qR7L8CsG+CUu3dVn9VthScvh03z3RlIxhCXNJMz3b42zXf7Gf0V15mgatXu+5h0Lnz5+64KcOnz8O59LplnjYTDL4QpF8Ihh7ozk00LYdHjsOQZV30IrjCQPcp9F/Vbdx3gwB1cCye5A05ri/semuvc5xw6HYbNhOEz3cFt2Ytu+PXSeW6bo2a72CacDmvfhnd+7s5wc0e7dq+UHPe9zbzGXVezn+It8T8D/BTIAL7bVeIXkeuA6wBGjhx5xIYNGwY2SGMGWGtUqW5ooaqhmUirEokqrdEoDc2tbKjeybqKBtZXNbClponmcCvNEXdAUSAl6CclyU9K0E9Dc4SyHY3tPaK6IgKFGSGKskMEvB5Pqm55csBPKOgjOegnPSlAfkYS+enuOovc1CQyQkHSQwEyQgHSkgIkB3y7daltbaimZdnLsHEevumXkjx69t4/fOVqiDR2PQd1uAneuMslzYZK17bT2uyS+fQrYeolu0rQNWUukVatgikXucTcUTQKX7zkuh6vecsdmAonu+RcscK1IR16Dow92R0Q8se7K9rBVaXVb3NtMuXLYdtSd9u+3h2oktIhOd1VaW1b6rbZUeEUd9YSjbiDQMWKXeuKprpEP/402PIZvPYjNztf3lg476H97n0WN4lfRM4CzlDVb4nI8XST+DuyEr8x+yYaVSrrmynd3khzpLW9aj0SVcrrmimt3knZ9ka21jYSje6qsVCF5kgrjeEozeFW6pojVDe00BrtOU8ke+0YLZEojeHW3dZlhgIUZCSTl5ZMJBqlKRylOdKKKmSmBMlKCZKd6u7TkgOke7e89CSK89IYlZdKRqhDqVfVJddg6oH1jqqvcO0oS551z6de4qqAejGm1V6Fm9ycGWWfuKrEiWe64dQ7Kl8Bq1517TUTTt/9s6i6zgFz/i9c/Nie7+2leEr8PwWuBCJACMgEnlPVK7p7jyV+Y2InGlW272yhsr6F7TtbqGuKUNcUpq4pQkNLhKawO/NoCreS5Pe1J+9Qkp/axjDltU2U1zVT3dBCUsBHcsDnqpkEahvD1DaG2dEYpqYxTH1ThEgXB5m8tCTSQwGiqkSjoKoEO2wrOeAj4BcCPh9+n7u4LxJVwl67jE+EgsxkijJDDMkKkRzwsa22ma21TWyrbSLgE0ry0ynJT6UkP52MUADF7Ue97yDcqrRGlagq2anB9oNZv85q13Yatp/iJvHvtnMr8RtjOlBVmiNR6psjlNc2s6GqgQ3VO9lQ1UBjSys+EUQEEYi0Rturu5ojUa9qzFWRRaNKwC8E/T6CfiHS6s50ttQ00hR2VWB+n1CQnkxhVohwJMq6yoY9zlZ6IzMUIDnoJ8nvDkRJAR+pSX7SkgOkBP1kpwYZnuMGMRyek0pywEd9c4S6pgj1zRHSkwMMy05haHaI3LQkpA+v8egu8Qf6bA/GGHOARIRQ0E8o6Cc/PZlJQ3t5wVwvqSq1jRGaI63kpSfvdkW3qjs4rK1ooDHs6ucFAYGAT/D7pH0I8u0N7gyooq6Z6gbX46s5EqUl4u4bW1qpb45QUdfMp6Xudb2RHHBnTEl+dwBJCvj493+awlEluX36PcQ08avqXGBuLGMwxiQOESErNQjs2VNGRCjMDFGYGdrzjQeoKdzK5h2NlG1vJNwadQ3kXpVYbVOYTTsa2byjkS01TexsidDiHURaWqOkJff9oIVW4jfGmH4WCvoZXZDO6IL0LtdPHtYHDcr7IHEuYTPGGANY4jfGmIRjid8YYxKMJX5jjEkwlviNMSbBWOI3xpgEY4nfGGMSjCV+Y4xJMAfF1IsiUgHs77jM+UBlH4bTl+I1tniNC+I3tniNC+I3tniNC+I3tn2Na5TqnjMCHRSJ/0CIyPyuBimKB/EaW7zGBfEbW7zGBfEbW7zGBfEbW1/FZVU9xhiTYCzxG2NMgkmExP9wrAPoQbzGFq9xQfzGFq9xQfzGFq9xQfzG1idxDfo6fmOMMbtLhBK/McaYDizxG2NMghnUiV9EThORL0RktYjcHuNY/iAi5SKypMOyXBF5XURWefc5MYhrhIi8JSLLRGSpiNwSD7GJSEhEPhaRz7y47vaWl4jIR95v+pSIJA1kXB3i84vIpyLy9ziLa72ILBaRRSIy31sW878zL45sEXlGRFaIyHIROSbWsYnIBO+7arvVisitsY6rQ3zf9v7+l4jIE97/xQH/rQ3axC8ifuAB4HRgEnCpiEyKYUiPAqd1WnY7MEdVxwFzvOcDLQJ8R1UnAUcDN3rfU6xjawZOVNWpwDTgNBE5GvgP4L9UdSywHbh2gONqcwuwvMPzeIkL4ARVndahv3esf8s2vwReUdWJwFTc9xfT2FT1C++7mgYcAewEno91XAAiMgy4GZipqpMBP3AJffG3pqqD8gYcA7za4fkdwB0xjqkYWNLh+RdAkfe4CPgiDr63F4BT4ik2IBVYCMzCXbUY6Oo3HsB4huOSwYnA3wGJh7i8fa8H8jsti/lvCWQB6/A6lMRTbB1iORV4P17iAoYBpUAubprcvwNf7Yu/tUFb4mfXl9amzFsWTwpVdYv3eCtQGMtgRKQYmA58RBzE5lWnLALKgdeBNcAOVY14L4nVb/oL4PtA1HueFydxASjwmogsEJHrvGUx/y2BEqACeMSrIvudiKTFSWxtLgGe8B7HPC5V3QTcB2wEtgA1wAL64G9tMCf+g4q6w3fM+taKSDrwLHCrqtZ2XBer2FS1Vd0p+HDgKGDiQMfQmYicBZSr6oJYx9KNY1V1Bq6K80YR+XLHlTH8OwsAM4AHVXU60ECn6pNY/g949eTnAH/tvC5WcXntCufiDppDgTT2rC7eL4M58W8CRnR4PtxbFk+2iUgRgHdfHosgRCSIS/qPq+pz8RQbgKruAN7CndZmi0jAWxWL33Q2cI6IrAeexFX3/DIO4gLaS4moajmurvoo4uO3LAPKVPUj7/kzuANBPMQG7kC5UFW3ec/jIa6TgXWqWqGqYeA53N/fAf+tDebE/wkwzmsBT8Kdxr0Y45g6exG4ynt8Fa5+fUCJiAC/B5ar6v3xEpuIFIhItvc4BdfusBx3ALggVnGp6h2qOlxVi3F/U2+q6uWxjgtARNJEJKPtMa7Oeglx8HemqluBUhGZ4C06CVgWD7F5LmVXNQ/ER1wbgaNFJNX7P237zg78by1WDSkD1DhyBrASVzf8rzGO5QlcPV0YV/q5Flc3PAdYBbwB5MYgrmNxp7GfA4u82xmxjg04HPjUi2sJ8G/e8tHAx8Bq3Gl5cgx/0+OBv8dLXF4Mn3m3pW1/87H+LTvENw2Y7/2m/wvkxENsuCqUKiCrw7KYx+XFcTewwvsfeAxI7ou/NRuywRhjEsxgruoxxhjTBUv8xhiTYCzxG2NMgrHEb4wxCcYSvzHGJBhL/CahiUhrp9EZ+2wwLhEplg6jsRoTLwJ7f4kxg1qjumEhjEkYVuI3pgveuPY/98a2/1hExnrLi0XkTRH5XETmiMhIb3mhiDzvzR/wmYh8yduUX0R+642p/pp3FTIicrO4ORA+F5EnY/QxTYKyxG8SXUqnqp6LO6yrUdUpwP/gRuQE+G/gj6p6OPA48Ctv+a+At9XNHzADd+UswDjgAVU9DNgBfM1bfjsw3dvO9f314Yzpil25axKaiNSranoXy9fjJoJZ6w1it1VV80SkEjdOe9hbvkVV80WkAhiuqs0dtlEMvK5uMg9E5AdAUFXvFZFXgHrc0AX/q6r1/fxRjWlnJX5juqfdPN4XzR0et7KrXe1M3AxxM4BPOoy2aEy/s8RvTPcu7nD/off4A9yonACXA+96j+cAN0D7BDJZ3W1URHzACFV9C/gBbnaqPc46jOkvVsowiS7Fm+WrzSuq2talM0dEPseV2i/1lt2Em0Xqe7gZpa7xlt8CPCwi1+JK9jfgRmPtih/4s3dwEOBX6uYcMGZAWB2/MV3w6vhnqmplrGMxpq9ZVY8xxiQYK/EbY0yCsRK/McYkGEv8xhiTYCzxG2NMgrHEb4wxCcYSvzHGJJj/D8qIW3XCXAnQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3gc1dX48e9ZrazeLcuyXCS54oIrGGOMqcYYExOaQ+iYF0JIgBQSSHkTeOH3phCSkJdAIHQIhJjeiymmGBv3govc1S3JVu/S+f0xY1uWJdmytVp593yeZx/tzszOnNmxz8zce+deUVWMMcYED4+/AzDGGNO9LPEbY0yQscRvjDFBxhK/McYEGUv8xhgTZCzxG2NMkLHEb7qFiKSLiIqI9zCWvUZEPu+OuMzREZFPROR6f8dhOscSvzmIiGwXkXoR6d1q+go3ead3czydfthERH4rIs/6Ip6eSkSedI9bZYvXKn/HZXoeS/ymPduAy/Z+EJExQKT/wjEtdXDn9AdVjW7xGtutgZljgiV+055ngKtafL4aeLrlAiISJyJPi0iRiOwQkV+JiMedFyIi94lIsYhsBc5r47uPiUi+iOSKyD0iEnKooNxioK0iUiEi20Tk8s7umIh8S0TWiUipW1RxXIt5P3fjqRCRjSJypjv9RBFZKiLlIlIoIvd3sP7/EpHNIrJbRF4XkX7u9IdE5L5Wy74mIj923/cTkZfc33ObiNzSYrnfish8EXlWRMqBazq5z3uL2m4QkTz3d/9pi/lhIvIXd16e+z6sxfw5IrLS3f8tIjKzxeoHicgX7m/2/t47RREJd+MtcX/rr0UkpTNxGx9RVXvZ64AXsB04C9gIHAeEADnAIECBdHe5p4HXgBggHdgEzHPnfQ/YAAwAEoGP3e963fmvAP8AooA+wBLgRnfeNcDnbcQVBZQDw93PqcCodvbht8CzbUwfBlQBZwOhwM+AzUAvYDiQDfRzl00HBrvvFwFXuu+jgZPa2e4ZQDEwAQgD/gYsdOed6q5f3M8JQA3QD+cibBnw324smcBW4JwW+9MAXOAuG9HGtp8E7mknrnT393/e/R3HAEXAWe78u4Gv3GORDHwJ/I8770SgzP3NPEAaMMKd9wmwxf1dI9zPv3Pn3Qi8gXOnGAJMBGL9/e/bXmpX/KZDe6/6zwbWA7l7Z7hX598B7lTVClXdDvwJuNJd5FLgL6qaraq7gf9t8d0UYBZwm6pWqeou4M/u+g6lGRgtIhGqmq+q6zq5T3OBt1T1A1VtAO7DSVgnA004yXqkiISq6nZV3eJ+rwEYIiK9VbVSVb9qZ/2XA4+r6nJVrQPuBKa49SKf4STfae6yFwOLVDUPOAFIVtW7VbVeVbcCj3Lgb7JIVV9V1WZVrWln+z91r673vp5qNf8u9zdfAzzB/uK8y4G7VXWXqhYBd7H/WM5z9+kDd9u5qrqhxTqfUNVNbkwvAuNa/GZJwBBVbVLVZapa3k7cphtZ4jcdeQb4Ls4V+NOt5vXGuWLe0WLaDpyrQXCuYrNbzdtrkPvd/L0JCufqv09HwahqFU7i/p773bdEZERndsiNa18sqtrsxpmmqpuB23CurneJyAt7i2lwkt8wYINbZDH7MNdfCZS461fgBfYn2+8Cz7nvBwH9WiZt4BdAy6KRlr9ne+5T1fgWr6tbzW99TPbu3wFxt5o3AOeqvj0FLd5X49wRgfPv5z3gBbf46A8iEnoY+2B8zBK/aZeq7sCp5J0FvNxqdjHOFd2gFtMGsv+uIB8nYbSct1c2UAf0bpGgYlV11GHE9J6qno1TzLMB56q4M/Jaxiwi4saZ667/X6p6CvuLtX7vTs9S1ctwTk6/B+aLSNRhrD8K56p37+/yPHCxiAwCJgMvudOzgW2tknaMqs5qufud3Ne2tD4meW3F3WpeNjC4sxtS1QZVvUtVR+LcUc3mwHoj4yeW+M2hzAPOcK+291HVJpzb+ntFJMZNZD8G9jahfBG4RUT6i0gCcEeL7+YD7wN/EpFYEfGIyGARmd5RICKS4lYyRuGcOCpxin7a43ErGPe+wty4zhORM92rz5+46/pSRIaLyBnucrU45e/N7ravEJFk9w6h1F1/W9t+HrhWRMa56/l/wGK3KAxVXYFz0vwn8J6q7l3XEqDCrVyOEKdyfLSInNDRb3IEfi0ikSIyCrgW+HeLuH8lIslu5ex/s/9YPubu05nusUo7nDstETldRMa4xYLlOBcKHR0v000s8ZsOqeoWVV3azuwf4lSUbgU+B/4FPO7OexTnNn8VsJyD7xiuwqnE/AbYA8zHuYrviAfn5JIH7AamAzd1sPxlOMl772uLqm4ErsCpdC0GzgfOV9V6nPL937nTC3Cu7u901zUTWCcilcBfge+0Vc6uqh8Cv8a5ks/HuVJuXXfxL5zK83+1+F4TzhXxOJy7rL0nh7hD/Cat/UwObMdf3Gr+pziV2QtwioXed6ffAywFVgNrcI7ZPW5sS3BOEn/GqeT9lAPvDtrTF+e4luPUEX2KU/xj/Gxv6wJjTABzK5e3AaGq2ujfaIy/2RW/McYEGUv8xhgTZKyoxxhjgoxd8RtjTJA5ZBe5PUHv3r01PT3d32EYY8wxZdmyZcWqmtx6us8Sv4g8jtM8bZeqjm417yc4j8onq2rr5mYHSU9PZ+nS9loUGmOMaYuI7Ghrui+Lep7EafvcOpABwAxgpw+3bYwxph0+S/yquhDnIZvW/ozTI6LVKhtjjB90a+WuiMwBclX1kKMCuf2GLxWRpUVFRd0QnTHGBIduq9wVkUic3gZnHM7yqvoI8AjApEmT7O7AmADT0NBATk4OtbW1/g7lmBceHk7//v0JDT28zk+7s1XPYCADWOV0iEh/YLmInKiqBR1+0xgTcHJycoiJiSE9PR03J5gjoKqUlJSQk5NDRkbGYX2n24p6VHWNqvZR1XRVTccZ0WmCJX1jglNtbS1JSUmW9I+SiJCUlNSpOyefJX4ReR5nuLrhIpIjIvN8tS1jzLHJkn7X6Ozv6LOiHnfQio7mp/tq23t9tKGQDQUVfP+0Ib7elDHGHDMCusuGz7NKePCjzVh/RMYYs19AJ/7UuHCq6psor7Xux40xByotLeXvf/97p783a9YsSktLD71gK9dccw3z58/v9Pd8IbATf3w4APllBw2UZIwJcu0l/sbGji8U3377beLj430VVrc4JjppO1KpcREA5JfVMqJvrJ+jMca056431vFNXnmXrnNkv1h+c/6oduffcccdbNmyhXHjxhEaGkp4eDgJCQls2LCBTZs2ccEFF5CdnU1tbS233norN9xwA7C/77DKykrOPfdcTjnlFL788kvS0tJ47bXXiIiIOGRsCxYs4Kc//SmNjY2ccMIJPPTQQ4SFhXHHHXfw+uuv4/V6mTFjBvfddx//+c9/uOuuuwgJCSEuLo6FCxce9W8T4InfveIvtQdEjDEH+t3vfsfatWtZuXIln3zyCeeddx5r167d1xb+8ccfJzExkZqaGk444QQuuugikpKSDlhHVlYWzz//PI8++iiXXnopL730EldccUWH262treWaa65hwYIFDBs2jKuuuoqHHnqIK6+8kldeeYUNGzYgIvuKk+6++27ee+890tLSjqiIqS0Bnfj7xIThESvqMaan6+jKvLuceOKJBzwA9cADD/DKK68AkJ2dTVZW1kGJPyMjg3HjxgEwceJEtm/ffsjtbNy4kYyMDIYNGwbA1VdfzYMPPsgPfvADwsPDmTdvHrNnz2b27NkATJ06lWuuuYZLL72UCy+8sCt2NbDL+L0hHlJiw8mzK35jzCFERUXte//JJ5/w4YcfsmjRIlatWsX48ePbfEAqLCxs3/uQkJBD1g90xOv1smTJEi6++GLefPNNZs50Ojd++OGHueeee8jOzmbixImUlJQc8Tb2beuo19DDpcaFU1BuV/zGmAPFxMRQUVHR5ryysjISEhKIjIxkw4YNfPXVV1223eHDh7N9+3Y2b97MkCFDeOaZZ5g+fTqVlZVUV1cza9Yspk6dSmZmJgBbtmxh8uTJTJ48mXfeeYfs7OyD7jw6KwgSfwTr87u20sgYc+xLSkpi6tSpjB49moiICFJSUvbNmzlzJg8//DDHHXccw4cP56STTuqy7YaHh/PEE09wySWX7Kvc/d73vsfu3buZM2cOtbW1qCr3338/ALfffjtZWVmoKmeeeSZjx4496hiOicHWJ02apEc6Atc9b37Ds4t3sP7umfZ4uDE9yPr16znuuOP8HUbAaOv3FJFlqjqp9bIBXcYPkBofQW1DM6XVDf4OxRhjeoQgKOrZ+xBXLQlRvfwcjTEm0N1888188cUXB0y79dZbufbaa/0U0cGCKPHXMLKfPcRljPGtBx980N8hHFLAF/X0i3eeossrsyadxhgDQZD4e0eH4fUIBfYQlzHGAEGQ+EM8QkpsuHXbYIwxroBP/OCU8+fZFb8xxgDBkPhrSkmNjyDfyviNMUchOjq63Xnbt29n9OjR3RjN0QnsxP/27fCPU+kXG0Z+Wa2NxGWMMQR6c87UcbDkEUbLZuobQ9hdVU9SdNihv2eM6V7v3AEFa7p2nX3HwLm/a3f2HXfcwYABA7j55psB+O1vf4vX6+Xjjz9mz549NDQ0cM899zBnzpxObba2tpabbrqJpUuX4vV6uf/++zn99NNZt24d1157LfX19TQ3N/PSSy/Rr18/Lr30UnJycmhqauLXv/41c+fOPardPhyBnfhHnAdv9mL0no+As8kvq7XEb4wBYO7cudx22237Ev+LL77Ie++9xy233EJsbCzFxcWcdNJJfOtb3+pUdy8PPvggIsKaNWvYsGEDM2bMYNOmTTz88MPceuutXH755dTX19PU1MTbb79Nv379eOuttwCnc7juENiJPyIeBp9JWu67CGeSV1rD6LQ4f0dljGmtgytzXxk/fjy7du0iLy+PoqIiEhIS6Nu3Lz/60Y9YuHAhHo+H3NxcCgsL6du372Gv9/PPP+eHP/whACNGjGDQoEFs2rSJKVOmcO+995KTk8OFF17I0KFDGTNmDD/5yU/4+c9/zuzZs5k2bZqvdvcAgV3GDzD6QnpV5TNBsigotwpeY8x+l1xyCfPnz+ff//43c+fO5bnnnqOoqIhly5axcuVKUlJS2uyH/0h897vf5fXXXyciIoJZs2bx0UcfMWzYMJYvX86YMWP41a9+xd13390l2zqUwE/8w2aiIWHM8X5lA7IYYw4wd+5cXnjhBebPn88ll1xCWVkZffr0ITQ0lI8//pgdO3Z0ep3Tpk3jueeeA2DTpk3s3LmT4cOHs3XrVjIzM7nllluYM2cOq1evJi8vj8jISK644gpuv/12li9f3tW72KbALuoBCI9Fhp7NrI1fcE9ppb+jMcb0IKNGjaKiooK0tDRSU1O5/PLLOf/88xkzZgyTJk1ixIgRnV7n97//fW666SbGjBmD1+vlySefJCwsjBdffJFnnnmG0NBQ+vbtyy9+8Qu+/vprbr/9djweD6GhoTz00EM+2MuDBXx//ACsfQnmX8dvEv/AXbfc2HWBGWOOmPXH37WsP/7Whs2kTsIZV/6RvyMxxhi/C/yiHoBeUWxLOIVTS76krLKKuOioQ3/HGGNaWbNmDVdeeeUB08LCwli8eLGfIjoywZH4gYgTryTp3Q95760nOWfuzf4OxxgDqOoxNSTqmDFjWLlypb/DOEhni+yDo6gHGHTityjw9qPv+qeobWjydzjGBL3w8HBKSkqsK5WjpKqUlJQQHh5+2N8Jmit+PB5qxl3H2KX38M7HH3DujJn+jsiYoNa/f39ycnIoKirydyjHvPDwcPr373/YywdP4gfSz7yemqX3oUseoemscwjxHDu3mMYEmtDQUDIyMvwdRlDyWVGPiDwuIrtEZG2LaX8UkQ0islpEXhGReF9tv82YIhLYlXEBZzYs5KPl67tz08YY02P4soz/SaB1ecoHwGhVPR7YBNzpw+23qf85txImDeR99LCVLRpjgpLPEr+qLgR2t5r2vqo2uh+/Ag6/UKqLhPQdSV7CiZxV9SbZxfYkrzEm+PizVc91wDv+2LCOvog0KSEr6xt/bN4YY/zKL4lfRH4JNALPdbDMDSKyVESWdnWtf0qmM0Ra4bZ1XbpeY4w5FnR74heRa4DZwOXaQSG7qj6iqpNUdVJycnKXxuDtPQSAmoKsLl2vMcYcC7q1OaeIzAR+BkxX1eru3PYBolOo90TgLdtOY1Mz3pCgeY7NGGN82pzzeWARMFxEckRkHvB/QAzwgYisFJGHfbX9QwRHTfRA0jSfzUVWwWuMCS4+u+JX1cvamPyYr7bXWSHJg8koXcHS7FJG9I31dzjGGNNtgraMI6rvcAZ6drE6e/ehFzbGmAAStIlfkjIJpYm8HZv9HYoxxnSroE38JGYC0Fy82XrrNMYElaBP/AMoYF1euZ+DMcaY7hO8iT8mFfVGMEgKWZ1T6u9ojDGm2wRv4hdBEjMZHrqLVdmW+I0xwSN4Ez9AYgZDvLtYnVPm70iMMabbBHfiTxpMSmM+24srKKtu8Hc0xhjTLYI78SdmEqINpFLChgKr4DXGBIegT/wAgzyFbNplXTcYY4JDkCf+wQAMDy0iq7DCz8EYY0z3CO7EH5MK3nDGRpawscASvzEmOAR34vd4ICGDod5dZFlRjzEmSAR34gdIzKRfcz67q+oprqzzdzTGGONzlviTMomtzUFoZpMV9xhjgoAl/sRMQprqSGU3m6yC1xgTBCzxu006R4aXWJNOY0xQsMTvJv6JsaVW1GOMCQqW+GPTIKQXI8OK2VRYgar6OyJjjPEpS/yeEIgfxCAppLy2kV0V1rLHGBPYLPEDJGaS3JALYA9yGWMCniV+gMRMIit3AGote4wxAc8SP0BiJtJQzdDIGrIKrWWPMSawWeKHfS17piSUsdGu+I0xAc4SP0BiBgDjonazeVeltewxxgQ0S/wAcQNAQhgaWkRlXSO5pTX+jsgYY3zGEj+AtxfED6B/cz4Aq7JtDF5jTOCyxL9XYibxdblEh3n5ckuxv6MxxhifscS/V2ImsnsrJ2Yksmhrib+jMcYYn7HEv1dCBtSWctoAL1uLqigoq/V3RMYY4xOW+Pdym3ROTSwHYNFWK+4xxgQmS/x7uYk/w1NIXEQoi7ZYcY8xJjBZ4t8rIR0QPKXbOSkzkS8t8RtjApTPEr+IPC4iu0RkbYtpiSLygYhkuX8TfLX9TgsNd7po3r2Vkwf3JmdPDdm7q/0dlTHGdDlfXvE/CcxsNe0OYIGqDgUWuJ97jsQM2L2VKYOTAKy4xxgTkHyW+FV1IbC71eQ5wFPu+6eAC3y1/SPiJv6hfaLpHd3L2vMbYwJSd5fxp6hqvvu+AEhpb0ERuUFElorI0qKiou6JLjETqoqQugpOykxi0dYS67fHGBNw/Fa5q05GbTerquojqjpJVSclJyd3T1Buyx5Ksjh5cG8Ky+vYUlTVPds2xphucsjELyJTRSTKfX+FiNwvIoOOcHuFIpLqrisV2HWE6/GNAZOdv1s/ZdrQ3gB88E2hHwMyxpiudzhX/A8B1SIyFvgJsAV4+gi39zpwtfv+auC1I1yPb8T0hdSxkPUBAxIjmTAwntdW5vo7KmOM6VKHk/gb3WKZOcD/qeqDQMyhviQizwOLgOEikiMi84DfAWeLSBZwlvu5Zxk6A7IXQ80eLhifxoaCCjYUlPs7KmOM6TKHk/grRORO4ArgLRHxAKGH+pKqXqaqqaoaqqr9VfUxVS1R1TNVdaiqnqWqrVv9+N/QGaBNsOUjZo1JJcQjvLoiz99RGWNMlzmcxD8XqAPmqWoB0B/4o0+j8qe0iRCRCFkf0Ds6jGlDe/PGqjyam611jzEmMBzWFT/wV1X9TESGAeOA530blh95QmDIWZD1ATQ3c8G4NHJLa1i6Y4+/IzPGmC5xOIl/IRAmImnA+8CVOE/lBq6hM6C6GPJXcPbIFCJCQ3jVKnmNMQHicBK/qGo1cCHwd1W9BBjt27D8bMiZgEDWB0SFeTl7ZApvr8mnvrHZ35EZY8xRO6zELyJTgMuBtzrxvWNXZCL0PwGy3gfggvH9KK1u4NNN3fQEsTHG+NDhJPDbgDuBV1R1nYhkAh/7NqweYOgMyF0OlUVMG5pMYlQva9NvjAkIh0z8qvqpqn4LeFBEolV1q6re0g2x+dfQswGFrPcJDfFw3phUPvimkIraBn9HZowxR+VwumwYIyIrgHXANyKyTERG+T40P0sdCzH9YNM7gFPcU9fYzHvrrAsHY8yx7XCKev4B/FhVB6nqQJxuGx71bVg9gAgMnwmbP4KGWiYMTGBAYoQV9xhjjnmHk/ijVHVfmb6qfgJE+SyinmTYudBQBds/R0S4YFwaX2wuZldFrb8jM8aYI3Y4iX+riPxaRNLd16+Arb4OrEfIOBVCI/cV98wZl0azwhur8g/xRWOM6bkOJ/FfByQDLwMvAb2Ba30ZVI8RGg6Dz4CN74IqQ/pEMzotlldXWHGPMebYdTitevao6i2qOkFVJ6rqbTjl/sFh+LlQngMFawC4YFwaa3LL2FJU6efAjDHmyBzpg1hTujSKnmzoOYDARqe451tj++EReGW5XfUbY45Ngf0EbleITnae4t34NgB9YsM5ZWgyr6zItR47jTHHpHYTv4hMaOc1kcPojz+gDJ8J+Suh3OmX/6IJTo+di7f1vOEEjDHmULwdzPtTB/M2dHUgPdrw82DB3bD2ZTj5B8wY2ZfoMC8vL89hyuAkf0dnjDGd0m7iV9XTuzOQHq3PCBg4BZb8AyZ/j4heXmaN6ctbq/O5a84oInt1dP40xpiexcr4D9eUm6F0J2x4E4ALJ/Snqr6J960LB2PMMcYS/+EaPgsS0mHRgwCcmJ5IWnwELy3P8W9cxhjTSZb4D5cnBE76PuQsgewleDzCRRPS+HxzMQVl1oWDMebY0VGrnnNE5OI2pl8sImf7NqweatzlEBa376r/2xP6owovfL3Tz4EZY8zh6+iK/7+BT9uY/glwt0+i6enComHi1bD+ddizg4zeUZwzKoVHFm61q35jzDGjo8QfpqoHjTWoqsUES++cbZl8I6jC6hcB+NV5I2lsVn73zno/B2aMMYeno8QfKyIHtVMUkVAgwnch9XBx/aHvaNjm3AwNSIzkxlMzeXVlHku32wNdxpier6PE/zLwqIjsu7oXkWjgYXde8MqYDtmLoaEGgJtOG0xqXDi/fWMdTdaNgzGmh+so8f8KKAR2uMMtLgO2AUXuvOCVMR2a6p3kD0T28nLnrONYm1vOi0uz/RycMcZ0rKPE/7aq3gEMAK5xXwNV9Q5VDe4RxwdNAQmBbQv3TTr/+FQmZyTyu3c22AhdxpgeraPEnwygqjWqusZ91XRTXD1bWAykTTwg8YsI/+/CMdQ0NHHXG9/4MThjjOlYR53MxInIhe3NVNUgL+c/FT7/M9SWQ3gsAIOTo/nh6UP40webuHB8IWcel+LnII0x5mAdXfHHAbOB89t4zfZ9aD1cxqmgTbBz0QGTb5w+mOEpMfzq1bVU1jX6KThjjGlfR1f8O1T1um6L5Fgz4EQICXOKe4ads29yL6+H/71oDBc99CV/+WATv5o90o9BGmPMwTq64hdfbVREfiQi60RkrYg8LyLhvtqWz4RGOMl/28EPN08YmMC3x6fx3OKdlFUHdz24Mabn6SjxXy0iU1tPFJGpIjL4SDcoImnALcAkVR0NhADfOdL1+VXGdGcQ9qqSg2b917RMahqaeG7JDj8EZowx7eso8f8/oLyN6eXAX45yu14gwn0yOBLIO8r1+UfGqc7f7QsPmnVcaiynDOnNU19up76xuZsDM8aY9nWU+FNUdU3rie609CPdoKrmAvcBO4F8oExV3z/S9flV2gSIToF3fwHFmw+aff20DArL63hj1bF5XjPGBKaOEn98B/OOuK8eEUkA5gAZQD8gSkSuaGO5G0RkqYgsLSo6qK+4niEkFK542XmK94lzofDA9vvThyUzLCWaf36+DVXrysEY0zN0lPiXish/tZ4oItcDy45im2cB21S1yH0C+GXg5NYLqeojqjpJVSclJycfxeZ8rO9ouPYdZ6CWJ89zyvxdIsL1p2SyPr+cL7ccXA9gjDH+0FHivw24VkQ+EZE/ua9PgXnArUexzZ3ASSISKSICnAkc230aJw+Da9927gDeueOAWXPG96N3dBj/WLjVT8EZY8yB2k38qlqoqicDdwHb3dddqjpFVQuOdIOquhiYDywH1rgxPHKk6+sxEjOdAdl3fA75q/dNDvOGMO+UDBZuKmJldqkfAzTGGMchx9xV1Y9V9W/u66Ou2Kiq/kZVR6jqaFW9UlXrumK9fjfhKgiNhCX/OGDyVVMGkRAZyl8/3OSnwIwxZj8bbL0rRSTA8XNh9X+gqnjf5KgwL9dPy+TjjUWssqt+Y4yfWeLvapO/B011sOzJAyZffXI68ZGhPLAgyz9xGWOMyxJ/V+szAjJPg68fg6b93TVEh3m5/pQMFmzYxZqcMr+FZ4wxlvh9YfJNUJEH618/YPLVJ6cTFxHKnz7YaO36jTF+Y4nfF4bOgIQMWPLPAybHhIfyg9OH8MnGIl63p3mNMX5iid8XPB6YeDXs/PKgrhyuOyWDcQPi+e3r6yiqCIzGTMaYY4slfl8Z+11nXN7lTx0wOcQj/PHi46mqa+K/X1vrp+CMMcHMEr+vxKTA8HNh1fPQWH/ArKEpMdx29lDeWVvAW6vz/RSgMSZYWeL3pQlXQVURbHr3oFk3TMvk+P5x/Ob1tZTX2mAtxpjuY4nflwafCTH9YPnTB83yhni494IxlFTV838fHdylszHG+Iolfl8K8cL4K2Dzh1CafdDsMf3juGRif574Yhvbiqv8EKAxJhhZ4ve18e5QAyuebXP2T88ZTpg3hHvf+qbN+cYY09Us8ftawiDnSd4Vz0BT40Gz+8SE84MzhvDh+l0s3NRDB5wxxgQUS/zd4YR5UJ4LWe+1OfvaqekMSorkrjfWUdvQ1M3BGWOCjSX+7jDsXKeS9+vH2pwd5g3hf+aMZktRFXe9sa6bgzPGBBtL/N0hxOs8ybtlAaS28psAAByVSURBVJRsaXORU4cl8/3TBvP8kmxeXZHbzQEaY4KJJf7uMuFq50neZU+0u8iPzx7GiemJ/OKVNWzeVdmNwRljgokl/u4SmwojznNa9zTUtLmIN8TDA5eNJzw0hO8/t4yyanuwyxjT9Szxd6cTroeaPbDu1XYX6RsXzt8uG8/24mqufHwxZTWW/I0xXcsSf3fKOBWShsJXD0Jz+613pg7pzcNXTmB9fjlXPWbJ3xjTtSzxdycROP1OKFgDi//R4aJnjEjhocsn8k1+OVc9vsSKfYwxXcYSf3cbdSEMPQc+ugdKd3a46FkjU/j75RNZn1fO3EcWWf/9xpguYYm/u4nAeX9y3r/5YzjEEIxnj0zhsWsmsaOkmkv/sYicPdXdEKQxJpBZ4veH+AFw5q9h8wew9qVDLj5taDLPXn8iJZV1XPLwInaUWIduxpgjZ4nfX068AdImwjs/h+rdh1x84qBEXrhhCrUNTXz30cV25W+MOWKW+P3FEwLnPwC1pfD+rw/rKyP7xfLMvMlU1DZw2aNfkV/W9vMAxhjTEUv8/tR3NJx8C6x8FrZ+elhfGZ0WxzPzJrOnqoHvPrqYJdt2o4eoJzDGmJYs8fvb9J9BYia8eVu7T/S2NnZAPE9ddwIVtQ1c+o9FXPzwIj78ptBOAMaYw2KJ399CI2D2X2D3Vvjwt1B/eBW3Ewcl8tnPzuDuOaMoKKvl+qeX8qtX19LcbMnfGNMxS/w9QeZ0Z2D2xQ/D7zPg6Qtg5fOH/FpErxCumpLOJ7efxo3TM3lu8U5++p9VNDY1d0PQxphjldffARjX7L84D3dt/hA2vQuvfg96D4P+Ew/51dAQD3eeexwxYV7ue38TNQ1N/OU74wjzhnRD4MaYY41d8fcUnhAYfDqccy/c8AmExcGXf+3UKn5wxlB+PXsk76wt4KrHlrCnqt4noRpjjm2W+HuisBg44TpY/4ZT9t8J807J4C9zx7FiZykXPvQl24rtYS9jzIH8kvhFJF5E5ovIBhFZLyJT/BFHjzb5e87ALYse7PRXLxifxr/+azJlNQ1c8OAXPPPVDuvh0xizj7+u+P8KvKuqI4CxwHo/xdFzxfSF4+fCiuegqqTTX5+Unsir35/KoKRIfv3qWk6490N++PwKNhSU+yBYY8yxpNsTv4jEAacCjwGoar2qlnZ3HMeEk38IjTXw9T+P6OsDkyJ57eapvPGDU7jshAEs3FTEnP/7gheXZndxoMaYY4k/rvgzgCLgCRFZISL/FJGo1guJyA0islRElhYVFXV/lD1BnxFOF85L/gEFa49oFSLCmP5x3DVnNAt+Mp1J6Qn8bP5qfjZ/FbUN7Q8GY4wJXP5I/F5gAvCQqo4HqoA7Wi+kqo+o6iRVnZScnNzdMfYcZ/wSEHhkOnzwG6g/8s7ZekeH8fR1k/nhGUN4cWkOM/+ykE83BelJ1Zgg5o/EnwPkqOpi9/N8nBOBaUvqWPjB13D8d+CLv8BDU2DLR0e8uhCP8JMZw3nu+sl4RLj68SV875llrM0tswe/jAkS4o/+XUTkM+B6Vd0oIr8FolT19vaWnzRpki5durTb4uuxtn3m9OlTshnGXALn/C9EH/ndUF1jE//8bBt/+yiL2oZmwrweRvaLZdrQZK48aRDJMWFdGLwxpruJyDJVnXTQdD8l/nHAP4FewFbgWlXd097ylvhbaKiFz/8Mn98PoZFw6VOQedpRrXJXeS2LtpawJqeMVTmlLN2xh9AQDxdNSOO6qRkMTYnpktCNMd2rRyX+zrLE34aiTfCfa6B4E3z7YRhzcZetektRJf/8bBsvLc+hvrGZEX1jmH18KnPGpTEgMbLLtmOM8S1L/IGophRe+C7s+AJm/g5OuqlLV19UUccbq/J4c3Uey3eWEuIRvj0+jVvOGMrAJDsBGNPTWeIPVA218NI82PAmjL4Yzv09RPXu8s3k7KnmiS+28+xXO2hqVk4e0puqukYKy2vxeoQ7zj2OmaP7dvl2jTFHzhJ/IGtugoV/hIX3QXgsnPsHGH0RiHT5pgrLa3noky0s2lJCUnQv+sSEsbGwkvX55Zw/th93fWsUiVG9uny7xpjOs8QfDAq/gdduhrzl0P8EOOXHMGwmeHzbarehqZmHPtnC3z7KIswbQnrvSFJiwhmQGMm8UzKsXsAYP7HEHyyam2DZk06b/9KdkHwczPxfp8tnH1ufX87Ti3aQX1bDrvI6thRVEuIRfjpjOFefnE6Ip+vvQIwx7bPEH2yaGmDty/Dp752unU+5DU7/JYSEdlsIuaU1/PKVNXyysYixA+K5eEIaJ2QkMqxPDB47CRjjc5b4g1V9Fbx7Jyx/yin+GXuZc1egTZAxHVJG+nTzqsrrq/L4w7sbyS11BpOPDfeSGhdBfGQoiVG9mH18P2aN6Yv4oE7CmGBmiT/YrX0Z3rgN6sr2TwsJc1oBTbzGJxXBLakq2btrWLJ9Nyt27qGooo7SmgZy99SQW1rD8f3juGPmCE4e0vUtkowJVpb4jdPBW105eEKhoQpevwW2fuz0AzTrDxAe1+0hNTUrr6zI5f73N5JXVkv/hAjGD0xg/IB4RqTGMDg5mj4xYXY3YMwRsMRvDtbcBJ/+wakHQKFXNEQlQ/9JMPU26Du620KpbWjiP8tyWLSlmBU7S8kvq903LzrMy5A+0YzqF8votDiG940hs3cU8ZHWbNSYjljiN+3budh5+reqCCoKIOsDqK+A4bNg+s+h37iDv6Pq0+KhwvJaNhVWsLWoiq1FlawvqGB9XjkVdY37lkmIDGVoSgzHp8Vx/IB4hqVEkxQVRkJkKN4QG07aGEv85vDV7IHFj8BXf4faMmf83zN+6QwCn7MM3v8l5K10+geafCP0HdMtYTU3K9l7qskqrGRbcRVbiyvZUFDBurxy6hsP7FI6LT6CM0b0YcaoFIb2iWHhpiI+XF9IXlkNP585gmlDg3iMBxM0LPGbzqstgwX/4wz9GJsGaRNg/esQ1Qcyp8P6N52hIQedAtNvd1oJHc1dQFUJRCR0+oGzhqZmNhZUsK24ij3V9eyuqmd9fjkLNxVT02KUsdS4cEJDPGTvqebGUwfzkxnDCLU7AxPALPGbI7dzMbxxK+zZDif/AKbe6lz9V++GFc/CVw9BRR4MPBmm/wwyTgVPSOe2kb8aHpsB474Ls+/vkrBr6pv4fHMx24orOXlwb0b1i6W2oZm731zH80uyGds/juunZXLWcSlE9OpkvMYcAyzxm6PT3AzNjeBto0K1oRaWP+2MEVCRDxGJMOQsGHImJA2F+IFOx3Ht3Q3UlMIjp8GebSAe+P5iSB7m0915a3U+//PmNxSU1xLZK4TTR/RhQEIkcRGhJESGMnZAPMNT7EEzc2yzxG98r6HW6SU0633Y/CFUl+yf1ysaRl8Ik2868KExVfj3FbDpXbj0aXj5RqcY6TvP+TzcpmZlybbdvL4qj4837KKkqo6Gpv3/HxIiQzkpM4lR/WIZ0ieaIX2iSU+Ksopjc8ywxG+6V3MTFG2APTugLNspyln7klMnkD4NBp4E8YOgJAu++KszjOSU78Onf4SP74Hr3nOWORI1e5x+ilLHduprqkptQzNFFXV8vX03X24pYfG2EnL21OxbppfXw4i+MYxMjaVZlbzSWvLKakiLj+Dc0anMGJVC7+iwfeuraWhid1U9e6oaSIgKpX+CdVhnuo8lfuN/1budriNWPOv0H6RuS5yRc+CSp5yioPoqeGA8JGTAde86FcxbP3HqFDJOPXRfQ6XZ8PQcZ/0XP+Z0T32Uquoa2VJUSVZhJRsKylmXV876/HJCQzz0i4+gb2w4GwrK2V5SjUcgKTqM2vomqhuaaGre//9LBM4bk8rNpw/huNTYo47LmEOxxG96lqYGKMuBqmLoNx5CvPvnLX0c3vyRc8VesNbpVwicFj8jZjuth+LSnJZGsWn7v1uyxUn6teWQlAkFa+A7z8OwGT7fHVVlQ0EF76wtoKiijojQECJ6eYgK85IU1YuEyF6szC7l6UU7qKxr5IT0BPonRJIcE0ZKbDgDEiIYmBTJgIRIosK8h95gK1V1jby9Jp+M3lFMHJRgTzobwBK/OZY0NcKT50F9JQyd4bxqdsO6V2Hj2870vbzhznME/cY787UJrnwFEtLhqfOhaCNc8RKkn+K33WmprLqBJ7/cziebdlFUUceuirqDnkGICfOSEhdO39hw+sSGOX9jwujlDSHEA6EhHtLiI8joHUV0uJdnFu3gHwu3sruqHoD0pEgumtCfCYMSSIkNIzkmnNhwr50MgpAlfhMYGutg9zYoz3VeRRshb4XzQFlkElwxH5KHO8tWFcMT5zoD0ofFQkxfpwhpwlUw/NzONzn1AVVlT3UD2bur2bm7mpw9NRSW11JQVktBeS2F5bXsqqg7oMioJRGnfnza0N7cfPoQcvfUMH9ZDou2lhywXO/oMEanxTK6XxxjB8QzYWA8SW5dhK+UVtfz8KdbOW9MKmP6d38/UMYSvwl0zU2AHPzwV+UuWPU8lOc5TU1zlzuVzYmZcMJ/QZ8REN3XOSlEJBzY5LShxik+iu0HkYmdj2nTe1BXcdTDYDY1K6XV9TQ2K43NSm1DEzl7atheXEV+WS1nj+zDxEEHxldQVsv2kioK3ZPHpsJK1uaWkbWrct9JJLN3FMf1i6V/QgT94yNIS4ggNS6CfnERxEYc3R1CbmkNVz++hM27nMF4bjw1k1vOHEp4qP9PtsHEEr8x4BQjrX8dvvybM0RlS2GxThFRbD/nYbXiTfsroBPSneKkURfCiPM6vltoboKP74XP/uR8HnYufOsBiO7jgx1yFWfBZ/c7D8BlTGt3sdqGJtbklrF0+x6W7djDlqJKcvfUUN90YHFTrxAPUWEhRIV5iQ0PJSU2jL5x4cRGhFJZ20h5bSNNzc2M6BvL2AHxjO4XS0JkLzweYUNBOdc8/jVVdY386dKxfPBNIf9ZlsPg5ChuPn0IM0b1JfoI6jFM51niN6YlVSe5V+Q7HdNV5Dufd29z7g7iBzp1B8nDnTuEvBWQvcRZLiEDptzsnAzKcpzle0U5y8YPhA/vgqz3YMLV0HsYLLgbwqLh9F84J4/ew6GxFta/Ad+86rRcOv8BSD2+8/tRXw2f3QdfPADNDc7zEle/4XSvcZiam5WiyjpyS2vIL60lr7SG4qo6quuaqKpvpKy6YV+xU3lNIzHhXmIjQlFVduyuZm8KEXF6Uq1rbCYhMpQnrz1xX+ulTzcV8d+vrWVHSTVhXg9nHteHU4cmM2FQAkOSo9t9UK6+sZmsXU5/TCiMHRDPkD7RNoznYbLEb8zRam5yHlD74gHIbfnvUYAW/488XmeAm0nznGy4az28ciPkr2rxFY9zN5E4GBqqneT/7Yedpq3NzU5vqXnLYdjM/XUWLTU1wuoX4JPfOSemsZfBSd+Hf1/unAzmvQ9Jg331S+xTUdvAmtwyNuRXUFrTQEVtA83Nyg3TB5MWFw45X0PqOPD2orlZWZG9h9dX5vHWmgKKK+sApzK7d0wYIhAiQrMqTc1KQ5Oyq6L2gIfqAKJ6hTBhUALThyVz2vA+DE6O2lcsVdvQxOdZxby3roCtxVWcNyaViyb0Jy6y+4Yc7Uks8RvTVVSdJN5Y5xQLxaQ6LY1KNjvFQymjDn54rLkZdm9xHmor2uh0fzHiPEgZ7dRD/PtyJ0mO+jZkfw3lOfu/O3AKHD/XGStBPFBZCF8+4DyrkDoOzrl3f6ul4s3w+AznDmTWfc53IpMgrn/3Vmarwnu/hK8ehKHnwNxnD+juQ1XZVlzFip2lrMwupbSmgWZVmpsVjwghHsEbIvSJCWdUv1hG9nPuHFZlO8sv2lJC1i6ndVdsuJew0BC8HqG0uoGahiZiwrykJUSwoaCCMK+Hs0emkBoXTmQvL9FhXuIiQ0mM7EVCVCgx4aFEhXmJ6hVCfVMztfXNVDc0Ut/YvP/V1Exjk9LQ1ExErxB6R4eRHBNGcnRYj+7WwxK/MT1ZYx28+WNY8yJknuYk+v4nwLpXnH6Qdm85cPmUMXD6nc6YCa0rYXOXwVPfOrDZa2SS05JpxGznpJC/ynmV5TpjL9RVusvMhOHnQZ/jjrxCWhXe+RksecR56G7bQme7lzx56AfwOiFnTzUfbyxiU0EFjc3NhNXtpq/s5rgJ05iSmUQvr4d1eWX8a/FOPlxfSEVtI9X1TYdecSdE9QphVFocx6fF0TcunPqmZhoaFW+IkBwdRu+YXqTGOU1v91Zsl9c2sHT7brYXV5OWEEF6UhSDkiJ9UvFtid+YY0Fz88Etk1SdO4nGWue9xwt9RnbcfXX1bucOpLrEuaPY/pnbyqh8/zJxA5x6il7RzslgzzbnpAEQN9BJ2hmnOpXS2xbClo+cepC0iTDoZOdvaIRzFwLOyaux1qm3WPEsTPkBzLgHljwK79wOx50Pg6Y669r5lVMUNfpi5y4nJqX9fdm1wTkhluU6sUSnOK2w4gc6r/JcZ/yIdS9DU71TPHbu7519O+jnVarqGymtbtjXhXdlXSNVdY1U1TUR6vU4D9+FhhDm9RCuNSSWrqYhaQSe6BS8IUJVXSPFlXUUVdSRtauS1TllfJN/8JgQLXkE0pOiCAsNYWNBOa1b53oEhvaJYeyAOEb0dboDqaprorqhkbmTBpCZHN3+79MBS/zGBLvGeqfuQJucIqKoNga2ryiAje/AlgWw7TOoLXWme7zQ/0QnWecug13fdLytU34EZ/5m/13DogfhvV847xMzYcBJULAaCtc6J46+xztDfvY/wTmZ7K1w37zAWU5CnCK1qiJoqjt4e72inRZN0SlO6yZtcoYPHTvX2V5rqk5RWe5yp7guZaTTnLe2zJmWs9TpKiR7sVNpHh4HM+6F8Ve0eSfU0NRMdX0TYV4PoSEeGpqcPp+KKuvI2VNDVmEFmworqKptZGJ6IpMzExnSJ5r8UqfZ7ZZdlazOLWNVdil7qhv2rTfM6+GRqyYxfdiRDRxkid8Y0znNzVC4xrljGDAZwlv0L1S920nazY1OJbUC3jDnSeqIBOg95OD1Fa5z+lyKH7h/2q4NTnHWzi+dhNuyeMrjdU4Ix891enaN7uMk7NoypyVVWbbTGZ/H6zwrsTe+slx470745jXnc+/hTo+vIb2cO4KaUtjx5YH1KODUh1QVs6+ivu/xMPgM52T01UOw43Onu5Cxl+1P/gnpkDbJ6Takudmp/F/4R+ekNfgM56nzqGSnx9qs9527sKhk544lph/ED3DuvHoPgyFnoZ4QSqrq6eX1EBkactQ9wVriN8b0bM1NTsW3NjlX9xGJnR6N7QC7tznFW5vecSrMRZw6htBI5+4i41TnLqay0DkplWRBfDr0nwj9JkBEfIvYmmH5k/DBbw4sLgPnbiDzNOdhv8K1kDTEuaPa8pHT1Qg4J530U5zp1cXOHU15ntOpYF2Zs0xCOpzyY+fEUpHvFM9t+wxOuwMSM47oJ7DEb4wxR6u23CluAufuo3CtM/bElo+cu5lpP3HuPjwhzoksd5nTTfigqc6zHG2uswy2f+7cKeStcE5MDdXOvMjecNGjzt3DEehxiV9EQoClQK6qzu5oWUv8xpiAp+rUaax/zWnmmz7t6FpX0X7i9+dz07cC6wHrmNwYY0Rg6FnOy8f8MoaciPQHzgP+6Y/tG2NMMPPX4KF/AX4GtNvwVURuEJGlIrK0qKio+yIzxpgA1+2JX0RmA7tUdVlHy6nqI6o6SVUnJScfWRtWY4wxB/PHFf9U4Fsish14AThDRJ71QxzGGBOUuj3xq+qdqtpfVdOB7wAfqeoV3R2HMcYEK3+V8RtjjPETvw6Do6qfAJ/4MwZjjAk2dsVvjDFB5pjoskFEioAdR/j13kBxF4ZzrAjG/Q7GfYbg3O9g3Gfo/H4PUtWDmkUeE4n/aIjI0rYeWQ50wbjfwbjPEJz7HYz7DF2331bUY4wxQcYSvzHGBJlgSPyP+DsAPwnG/Q7GfYbg3O9g3Gfoov0O+DJ+Y4wxBwqGK35jjDEtWOI3xpggE9CJX0RmishGEdksInf4Ox5fEJEBIvKxiHwjIutE5FZ3eqKIfCAiWe7fBH/H2tVEJEREVojIm+7nDBFZ7B7vf4tIL3/H2NVEJF5E5ovIBhFZLyJTAv1Yi8iP3H/ba0XkeREJD8RjLSKPi8guEVnbYlqbx1YcD7j7v1pEJnRmWwGb+N2hHR8EzgVGApeJyEj/RuUTjcBPVHUkcBJws7ufdwALVHUosMD9HGj2juK21++BP6vqEGAPMM8vUfnWX4F3VXUEMBZn/wP2WItIGnALMElVRwMhOJ07BuKxfhKY2Wpae8f2XGCo+7oBeKgzGwrYxA+cCGxW1a2qWo/TBfQcP8fU5VQ1X1WXu+8rcBJBGs6+PuUu9hRwgX8i9I3Wo7iJiABnAPPdRQJxn+OAU4HHAFS1XlVLCfBjjdOnWISIeIFIIJ8APNaquhDY3Wpye8d2DvC0Or4C4kUk9XC3FciJPw3IbvE5x50WsEQkHRgPLAZSVDXfnVUApPgpLF9pPYpbElCqqo3u50A83hlAEfCEW8T1TxGJIoCPtarmAvcBO3ESfhmwjMA/1nu1d2yPKr8FcuIPKiISDbwE3Kaq5S3nqdNmN2Da7R7uKG4ByAtMAB5S1fFAFa2KdQLwWCfgXN1mAP2AKA4uDgkKXXlsAznx5wIDWnzu704LOCISipP0n1PVl93JhXtv/dy/u/wVnw8cNIobTtl3vFscAIF5vHOAHFVd7H6ej3MiCORjfRawTVWLVLUBeBnn+Af6sd6rvWN7VPktkBP/18BQt/a/F06F0Ot+jqnLuWXbjwHrVfX+FrNeB652318NvNbdsflKO6O4XQ58DFzsLhZQ+wygqgVAtogMdyedCXxDAB9rnCKek0Qk0v23vnefA/pYt9DesX0duMpt3XMSUNaiSOjQVDVgX8AsYBOwBfilv+Px0T6egnP7txpY6b5m4ZR5LwCygA+BRH/H6qP9Pw14032fCSwBNgP/AcL8HZ8P9nccsNQ93q8CCYF+rIG7gA3AWuAZICwQjzXwPE49RgPO3d289o4tIDitFrcAa3BaPR32tqzLBmOMCTKBXNRjjDGmDZb4jTEmyFjiN8aYIGOJ3xhjgowlfmOMCTKW+E1QE5EmEVnZ4tVlHZyJSHrLnhaN6Sm8h17EmIBWo6rj/B2EMd3JrviNaYOIbBeRP4jIGhFZIiJD3OnpIvKR2wf6AhEZ6E5PEZFXRGSV+zrZXVWIiDzq9if/vohEuMvf4o6hsFpEXvDTbpogZYnfBLuIVkU9c1vMK1PVMcD/4fQGCvA34ClVPR54DnjAnf4A8KmqjsXpP2edO30o8KCqjgJKgYvc6XcA4931fM9XO2dMW+zJXRPURKRSVaPbmL4dOENVt7qd4BWoapKIFAOpqtrgTs9X1d4iUgT0V9W6FutIBz5QZxANROTnQKiq3iMi7wKVON0uvKqqlT7eVWP2sSt+Y9qn7bzvjLoW75vYX692Hk5fKxOAr1v0NGmMz1niN6Z9c1v8XeS+/xKnR1CAy4HP3PcLgJtg31jAce2tVEQ8wABV/Rj4ORAHHHTXYYyv2FWGCXYRIrKyxed3VXVvk84EEVmNc9V+mTvthzgjYN2OMxrWte70W4FHRGQezpX9TTg9LbYlBHjWPTkI8IA6Qyga0y2sjN+YNrhl/JNUtdjfsRjT1ayoxxhjgoxd8RtjTJCxK35jjAkylviNMSbIWOI3xpggY4nfGGOCjCV+Y4wJMv8f1ndwhcx0MKEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -2192,28 +2265,27 @@ "metadata": { "id": "-yyn2luJQ1OU", "colab": { - "base_uri": "https://localhost:8080/", - "height": 527 + "base_uri": "https://localhost:8080/" }, - "outputId": "6dbb3da5-1a42-4af6-b1ed-43d705a4353c" + "outputId": "179b2264-fbe1-431b-8030-720f726a022e" }, "source": [ "# Get the prediction model by extracting layers till the output layer\n", "prediction_model = tf.keras.models.Model(\n", - " model.get_layer(name=\"image\").input, model.get_layer(name=\"dense2\").output\n", + " model.get_layer(name=\"images\").input, model.get_layer(name=\"dense2\").output\n", ")\n", "prediction_model.summary()" ], - "execution_count": null, + "execution_count": 30, "outputs": [ { "output_type": "stream", "text": [ - "Model: \"functional_1\"\n", + "Model: \"model\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", - "image (InputLayer) [(None, 128, 32, 1)] 0 \n", + "images (InputLayer) [(None, 128, 32, 1)] 0 \n", "_________________________________________________________________\n", "Conv1 (Conv2D) (None, 128, 32, 32) 320 \n", "_________________________________________________________________\n", @@ -2276,7 +2348,7 @@ " \n", " return text_list" ], - "execution_count": null, + "execution_count": 31, "outputs": [] }, { @@ -2287,14 +2359,15 @@ "base_uri": "https://localhost:8080/", "height": 594 }, - "outputId": "a3eaad8d-2703-49be-bb19-2ac749abc54a" + "outputId": "c2332c59-b7fd-4a9d-ec96-8e06912dbd91" }, "source": [ - "# Let's check results on some validation samples\n", - "for batch in validation_dataset.take(1):\n", + "# Let's check results on some test samples.\n", + "\n", + "for batch in test_dataset.take(1):\n", "\n", - " batch_images = batch[\"image\"]\n", - " batch_labels = batch[\"label\"]\n", + " batch_images = batch[\"images\"]\n", + " batch_labels = batch[\"labels\"]\n", "\n", " preds = prediction_model.predict(batch_images)\n", " pred_texts = ctc_decoder(preds)\n", @@ -2310,12 +2383,12 @@ " \n", "plt.show()" ], - "execution_count": null, + "execution_count": 32, "outputs": [ { "output_type": "display_data", "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAJBCAYAAACDGOdsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzde3Rc53nf++87wACDwYUAiDsB3sU7RZGURImSJcqRJUexnMRp3KY9bZy2PnHrpKddx+nt1CtN49apz7JP0+U2yYqbqxvLdpM6jmNblhRbjKOrSfEO3kncAeIODOY+s88fg3frnc0BSEkUOSJ/n7VmAXPbs2fmnb2f/bzP+27jeR4iIiIiIuUqdKtXQERERERkOQpYRURERKSsKWAVERERkbKmgFVEREREypoCVhEREREpawpYRURERKSs3REBqzHmD4wxn1n8/33GmDNvczm/bYz59I1du7e1Hp4xZuMS933MGPPDm71OcnO919q0Kfh9Y8y0Mea14DobYy4bYx5f/P/fG2O+/G6vk5SP91p7ljuH2mb5KJuAdXGHlTDGxIwxY4uNpO5Gv47neX/ted7m61ifqwI/z/M+4Xner9/odZLbk9p0kYeBDwDdnufdf73rLOVD7VnKldrmO/deSBSUTcC66GnP8+qAPcC9wL8LPsAYU3nT10rk7VObLlgDXPY8b+FWr4i8I2rPUq7UNm9z5RawAuB53hDwHWAH+F3gnzTGnAPOLd72IWPMEWPMjDHmJWPM3fb5xpjdxpjDxph5Y8xXgYhz3wFjzKBzvccY82fGmHFjzKQx5ovGmK3AbwMPLh6xzSw+1u8aWLz+cWPMeWPMlDHmm8aYLuc+zxjzCWPMucV1/G/GGHM9798Yc78x5uXF540srlNV4GFPGWMuGmMmjDH/rzGm5HdpjNlijHlucR3PGGM+ej3rIDfWndymjTH/CPiS89q/FlxneW+5k9uzlLc7vW2aa8QPxpjtTkwwZoz5t8aYDwL/Fvjbi+t89K196jdHWQasxpge4CngDefmnwL2AduMMbuB3wN+EVgJ/A7wTWNM9eIX8w3gj4Fm4OvAzyzxOhXAt4A+YC2wCnjG87xe4BPAy57n1Xme11jiue8HPgt8FOhcXMYzgYd9CLgPuHvxcU8uPnf1YmNavcRHkAP+BdACPAj8GPBPA4/5aQpHkXuAnwT+YYl1rAWeA/4EaAP+DvDfjTHblnhdeZfcyW3a87z/EXjtX13mo5L3gDu5PUt5U9tcOn4wxtQDzwPfBbqAjcALnud9F/hPwFcX13nXEsu+pcotYP3G4tHID4EXKXyA1mc9z5vyPC8B/J/A73ie96rneTnP8/4QSAEPLF7CwH/xPC/jed7/Al5f4vXup/Cl/YrneQue5yU9z7veAUt/D/g9z/MOe56XAv4NhSOqtc5jfsPzvBnP8/qB7wP3AHie1+95XuPi7VfxPO+Q53mveJ6X9TzvMoUf1KOBh/3nxc+jH/gvwM+VWNSHKHTD/v7ist4A/hT42et8j/LOqU3L7UTtWcqV2ibXjB8+BIx6nvf5xfWd9zzv1etc51uu3Oo5fsrzvOeXuG/A+X8N8PPGmF92bqui0Hg8YMjzPM+5r2+JZfYAfZ7nZd/GunYBh+0Vz/NixphJCkdZlxdvHnUeHweuqwjcGLMJ+AKFDGqUwvd0KPAw9/PoW1yfoDXAPtslsaiSwtGj3Bxq03I7UXuWcqW2yTXjhx7gwttY37JQbhnW5bgNaAD4j4tHGfYS9TzvK8AIsCpQ77FU6nwAWG1KF2J7JW5zDVNo+IDf/b4SGLrWG7kOvwWcBu7yPK+BQm1JsH6lx/l/9eL6BA0ALwY+pzrP8/7JDVhHeefupDYttz+1ZylXd1LbXC5+GADWL/G8a63zLfdeClhdvwt8whizzxTUGmN+YrE+42UgC/wzY0zYGPMRCqn7Ul6j0EB/Y3EZEWPMQ4v3jQHd5urBTtZXgF8wxtxjjKmm0P3w6mIK/p2qB+aAmDFmC1AqwPwVY0zTYr3O/wV8tcRjvgVsMsb8/cXPImyMuc8UisKlvNzubVruLGrPUq5u97a5XPzwLaDTGPPPF2t2640x+5x1XmuWGMBdDsp2xZbjed6PgI8DXwSmgfPAxxbvSwMfWbw+Bfxt4M+WWE4OeJpC4XE/MLj4eIC/Ak4Co8aYiRLPfR74NIWa0BFgA4VBTde0WDQdW6Zo+lPA3wXmKfy4SgWjf04hzX8E+Evgf5RYx3ngicX1GqbQxfCfgerrWU+5ee6ANi13kNu9PRtj/p4x5uT1LEvKy+3eNlkmfliMCT6wuN6jFGZNeGzx7q8v/p00xvjlCuXEFJdqiIiIiIiUl/dkhlVERERE7hwKWEVERESkrClgFREREZGypoBVRERERMqaAlYRERERKWvXOtPVDZlC4HOf+xxtbW08+OCD3HXXXYRCtyZO/tSnPsXnP//5W/LadzLP84InPXjXpdNpr6qqinQ6DUBFRQXGGJLJpP+YhYUFXn/9dY4dO0YkEmHfvn08+OCD/v2JRALP88jn8wCMjIzwjW98gxdeeIE/+7PCTCfz8/M899xz/NEf/RHPPffcTXyHcjPcirbrnmUnn8+TzWZJpVKkUimSyaR/SaVS5HI58vk8uVzOf7x7ce+3l2w2Sz6fJxQKlbxUVFRQW1tLNBolGo1SU1NT9Ley8s3dxlNPPcV3vvOdm/0RyXW42W03l8t5AMYYjDF4nofnedg5+O121P5v25sxhmw2SygU8re37rz99na7LM/zyOVyGGP8tuguz7I/I/vXLtNet+tTUVFBPp/3l5/L5fzleJ7n/ybsOiy+V3/d7XLs8t11d1/bLstdxvz8PGfOnOEv/uIvmJiYYM+ePXzqU58iHo+/o+/ivWy5dntTTs06OjpKU1MT4XD4uoLVbDbL8PAwfX19bN68mZaWllsW5Mp7UzgcBvA3KLlczt8YJpNJvvjFL3LlyhVGR0f9x8diMfbs2UN1dWGa2qqqKrLZLJWVlXieRzabJR6PE4lE/I3Un/7pn/LKK6/Q17fU2ftERO4MNjALXneDQRtk2sDTDUSDQZ293Q0CjTFUVFQA+MFtMCgNBpH2fzdoDgawbnC6VLwRfH/2tuB6Bv/aZdv1tQeiQ0NDHD58mJGRkasCbrnaTQlYq6qqirIA15LJZLh8+TJHjhxh3bp1VzUQkWspdTSdyWSYmJjgmWee4ZVXXuHAgQNs27aNiooKKioq6OrqKmprNktVWVlJPp8nFosxODjI5s2bgcIRcl9fH1NTU2Szb+d00iJXc9ugPciyf0td3OxqqcfZLKu92MDAvbg7crss9/HB55VaV7mzuYEmFAebwXZZis2SugGgXY5llxfMpAazusEg1y7b3u5mVN3H20uQDazd9xZct+D14LLdzKrneczMzHDp0iXOnz9PPB6npaWFrq4uBa3LuCkBayQSIZfLkUqlim63jcjleR7pdJqhoSEGBwepqqpasvGKXEsoFPJ32NPT0/zgBz/gueeeY8+ePXzwgx+ko6PDDzZra2uLnpvNZouO2GOxGKOjozz++ONA4cBqdnaWhoYGGhoabu4bk9uWe/BjA85sNksmkyGXy5HJZMhms2Sz2aJg1GasSgWqbmmAXX4ul/OzSW63q+1NWOqigFWWUyrgsttheDMrGnz8UoFsMBB1n2eDTzdBEQxWg68ZXFbwsaXatPscN6h277e3u0mSUsGwza4ODAxw/vx5JicnqaysZP369axdu1YB6zJuSsBqg9VMJlMUpLq1Iq5MJsOVK1eYm5ujqqqq6LFvN2AtlUWQ25+tT8rn8wwNDfHMM8+wY8cOfuVXfgVjDNFo1G+Dwe4ez/MIh8N4nkcmk2FhYYF0Os3OnTv90oKRkRE2bdpELBbjyJEjt+ptym3E1l3Dmz0DqVSKdDpd9DeZTC4ZlJbKkLr3AUU7e5u1cutY7cWtNbT3uesnAtfOdLp1oe5j7X3BAM8+Nhjguve52dalMrJul7/b9kt129vfiRuX2Newywm+j6UCXPe3B4WeZvvYWCzG2bNnuXz5MgAdHR0cOHCAVatWKWBdxk0JWOfn56moqGBhYYFMJuPXCNo6Q5c9uu/r62NyctJvWG6h/9uRTqe1cb2DuDWrdgebTCaJRqN88pOfpLa2lkwmQ2VlZdHOOli2YgdpjYyMcPHiRUKhEHV1dcTjcaamppidnWXNmjXEYrGb/h7l9uT2RAUHXbmDr1KplD+Ayg1WM5nMVd34wa59eHNH7AasblBqg1X3Pnu7pVIYsdLptH+AX6ob37a9ysrKou2sDRLdgUkuNzAtVepV6jnuc+1gw2AXvbu84G/AvS0Y6Lqvb9lBY3Y93P2JW3Nr45vh4WEuXbrE2NgYDQ0N7Nixg3Xr1vkJOintpgSsUCgLqKur84PVUmy3VzabZWZmhsbGxhtSAuB5HtXV1e846JX3jlwuR1VVFclkknQ6TSwWY35+nlwuR319PVA4YMpms36bdDNbUGizdiT2xYsXOXz4sN+OKisr6evro729nY6ODi5evHjT36PcnoIBayaTKZodwAaryWTSLwtwA1e36949SA9mg4I76eDFDVjdnbi7HVVJgFi21t8GaW77gkJvl22n8GZQFwqFSKVSV426t9xA07LBoOd5VFRU+AGwuw42ELbBZDgc9gfQLpWVdV/bXabNAGcymau69/P5vJ98s8vLZDL+e7PrYHv7FhYWOHjwIGfPniWdThONRlm/fj21tbXKrl7DTYngGhsbaWpq8kddA37DcQNS+4Wm02nS6TQdHR3k83lSqRRVVVVFjWa5wDdIda93nnQ67dc/5/N54vE4CwsLVFZWXtV2UqkU4XC4aMMHb7YbO5ozmUzysY99zK9X/dKXvkRDQwMdHR3U1dXdvDcntzV36jVbjuJmVhOJhB+42rpWd8oqN8saFOxaXepSWVlJIpG46nYo7hlThlUsGwgGR/nb/TbgZxrtQZWdbtBy25mND+yUUplMhkwmAxQCVps4cDO37nNsPOEefNn1CmZE3bKBVCpVdLDmvqZdrlseYEsI4vE41dXVVw0csxf7+7x06RL9/f3E43Ha29u599572b17t7++srSbErDaL93Wobo1g0E2ZR6Lxfxu1mCBtk2bZzKZkmUFIpFIBHhzw2Y3Mu4O1pYDuBtIt7szlUrheR6zs7PMzMwQiUTYunUriUSCRCLBzMwMiUSChYUFbWjkhlmqhjVYEmADVjs2wM2uugFrqdHPpTKnpbKrwexrsGxGGVax3PITdyBVqZH0djtrEwrBYC04o4DNTM7MzLBy5UoikUjRIKhgm3RH9bvTVAXLD4KDsUKhkL/vKFUL687H6t6fz+f959nH29ew2dZcLsfMzAzf+c53GBkZoba2li1btrB79+6i58jSbkrAajNYy9VnuPVXiUSCdDrtBxvBjaL9Ut3gQsTl1gzZI2O7w7VlAO4GolSXkN24Xbx4keHhYSKRCPX19Xiex+HDh/3eACg9Mlbk7SgVsAYHXLklAe6MATaAtSUB1+r2D7Z/d9vqBq3BAVnW9U5VKLe/UnWgcPVgLCgeuBTcn9vu/FQqxfz8PNPT08zOznL27Fmmp6fp7u5m9+7drFq1quh17Kwu7uu4WU7bVoPTb9nH2ftssBscGObW4ZaagssGtG6Q7f4+UqkUL7/8MpcuXSKVStHZ2cmaNWtoa2srWmdZ2k0JWO3RfvAoP8it13KD1aVmByg1LZYIFDYubr2U267cLir7WLtzLrUDvnDhAlNTU3R1dfkbpEOHDpHP5+np6aG2tlZHxnLDBKe1KjW1lFsC4F5ssGq7MYPBqZs1tYJZVsAPfG23q3tRb4KUUmo/Hdw/l6pPtYGgMcafUWhmZobh4WEGBwcZHx9nYWGBwcFBYrEYExMTrFixgtraWv+kQm7A58584dbElgqcS/0OXKUGd7kBqv3frWe1cYn7HHtWq9dee414PE5DQwPr169nzZo1RCKRojpZWdpNKwlIp9NF81q63MaTy+X87Kr9om3XbZB71gwRl512Kh6Pk0gkGBgYYGhoyO+esRsVG6C63VTB5QwNDZHP51m7di2e5xGPx5mYmCCXy7F3715aW1tv9tuT21gwy7/UxP9W8H93JwvFPVFL7RCDZVo2ILav765DMHsmYrntLxgcBkfrB2tI8/nCXNfj4+OcP3+e06dPc/nyZdLpNLW1tTQ3NxONRv3gtauri8bGRr/n1u32d5ft1rIG26sbUJYqnXGnunIH6LqBaz6f9+OQ4GldrUQiwfnz57l06RKhUIj169ezc+dOuru7/cFgpTK/UuymRHvRaNTPcJWSTqf9Lltb9GxHDULxEZPrrQy8kjvLzMwM8/PzHDlyhEuXLjE0NMTly5eZmJhgfHyclStXMjc3x4oVK6ioqPAzSsGMQDKZZHZ2lpaWFrZv344xhomJCe6++24OHz7M3r17aWlpuUXvUm5HwXo8NwhYat7H5QQfH5yix75m8HqpiwJWWYpNSLkDqdyDJ1vqYoMzN+BLp9MkEgkuXrzon+o6kUgQDofp7OzkrrvuYseOHUxPT3Pw4EHi8Tjz8/NFA7eCQXCwPrXUbyg4J3xwMJU7o4GdVSabzfqDdKH4lK/uDAT29kwmw+TkJF//+tdJpVI0NTWxZ88ef2YA94DyWr3Qd7q3HLC69SDufGbLTepfUVFBOp32J7p26wuNMX7gaRu853lEIhFaWlr87Gx1dfVVGTAVKctSnn32WX7/93+fkZERIpEIK1euJBQKMTU1xac//Wm6u7vp7e3ls5/9LBs2bPA3VsFRz5OTkyQSCbq6ulizZg3xeJyLFy/6GdampiZ/7kGRGyE4FVWpzGpweqpS3K5Ky92hL/d8N6tk/3fPklVqXeXOZoPVYP2obYPueBQ3kF1YWGBkZIQXX3yR3t5e8vk8ra2t7Nmzh82bN9PZ2enPwhKNRtm6daufJLh06RJbt24Frh7T4mZ4S2U93d+UDXrtbcEzyNnYZH5+nkQiwYoVK6ivryccDvs9w/l83j8NvV1+MplkbGyMl156ib6+PsLhMPfffz/bt2/390lusBtcRyn2lgJWO6H/1772Nfr6+vA8jxUrVtDa2soTTzzBtm3bSo7an56eJpPJMDU1RSaTKWpYwcZtu1utiooKampqSm5UFazKUr761a/y9NNP8773vY/m5mYGBwf5wQ9+QGVlJZ/5zGf4zd/8TVavXk0kEiEUCnH8+HGee+45EokEn/3sZ4HCUfezzz7L6Ogomzdvpr6+nsnJSebm5njttddoaGjwBwnamkGRdyqYYV2uHGApwbo99/ZrBZl2YGKwJMDdiYssxbZZ22YqKioIh8NFg5lsVjUWizEwMMALL7zA6OgoVVVV/sj5np4eotGo391us5v5fJ7XX38dYwxbt27lrrvu8uMOt27UTaJls9mi8kGbaHPZ3539fdla8EQiwblz5xgbG2NgYIBUKkV3dze7du1i3bp1RCIRP+B1Z+dIJBKcOXOGgwcP0tvb658g4Md//MdpaWkp+i25MxkorlnasgGr2xWfz+c5f/48Bw8eZHx8nPb2dh599FGGh4c5e/Ysk5OTLCwsUFdXd9VRvB1ZXVNT4x+9uGl8d4RecDYBbRzl7fjCF75AbW0tkUik6Eg3lUrxJ3/yJ7z44ot88YtfZMWKFSwsLNDf38/Jkyepra31l5HJZHjjjTdoa2tjzZo1XLlyhbNnz3L//ffzO7/zO2zbto1IJEJNTY3OUCI3TDAL5I5MfjvZl7f6HHc+11IXkVJsQGh7q+z+3N2/2zY8MzPD5cuXOXv2LH19fUxNTdHd3c1DDz1ET08PDQ0NfumAZWODy5cvc+bMGYwxVFVVsXXrVtra2orOoOlmcN1yl6W63O3jk8kk8/PzjI6OcuXKFaamppiamqK/v59cLkcymSQcDlNTU8Pc3BzpdNqfYssu3/M80uk0ly5d4vDhw/T29jI3N0ckEuH9738/K1asKIp77LSLwXnA5WrLBqy2sWSzWS5fvuzXA1ZXV/P000/T1dVFc3OzXxhtR6i63fx2OfaMQS57PVjDYadOyeVyVFdXv+MjDrcMQe4M9fX1NDY2+nNUptNpP9N/9OhRmpqa6OzsJBKJkMvl/JqkRCLhL2N+fp6FhQV27dpFV1cXsVjMz/bn83mefPJJmpubr5q+ROSdKDW1mpv9eSsB6FKDs67necGsaql2ru5LsWyQWqpm2t43OzvL4OAgp0+fpq+vj7m5OTzP46677uL+++/3R80HSw1zuRyJRIJXXnmF8+fPMz8/T1tbG01NTUSj0asGdwVrV90pp9y5VG07TyaTXLlyhf7+fj+bOjc35/ecxeNxWlpaWLVqFWvXrmXVqlV0dXX5c6+6mWN76tU33niDEydOMDk5STqdprW1ldbW1qvmOHY/I3f+WLnadZUELCwsMDQ0xJUrV6itreWee+5hw4YN/jmBKysr/fkBS51ezDYIe3YJdw4zwJ+I3RYo20zswsKCP7egmzK3gjVa7tGTO+WVUux3HreWCgptbHZ2loaGBiYnJ3n88cdpaGjw25k9bas9ixXAyMgIuVyOlpYWcrkc09PTdHR0+CM9t2/fTjQaXbZ+W+StWmrUf3D0td2pl7rujny2z9Vcj/Jusvthd+YV+9fGACdOnOD8+fMMDAywsLDgn5Z069atrFu3jpqamquWm8vlWFhY4MSJE7z++utMTU0RiUT850Wj0aKBXsFB2jZGsMGgGxzaRMalS5c4ffo0V65cYXR0lFQqhTGG+vp62tvbaW5upq2tjY6ODtrb22loaKCmpsaf5s0uM51Oc/nyZY4fP865c+eYnp4mHo+TyWSIRqPEYjFqa2uJRqN+9vlaY4DkTdcsCQAYGBigr6+PbDbLli1beOihh6iurvYbRj6fZ3Z2luHhYdLpNKtWrSpajq3tsAErvDklVSwW48KFCwwPD1NZWUlTUxN1dXV+A3PPyRuUy+WYnZ0lHo9TX19PbW3tVef0BU3qfieypQD2srCwQDKZZMOGDYyOjvLII48QDofJ5/MMDg5y7tw50uk0u3bt8pcxOjoKFH4HIyMjTE9Ps27dOo4cOUI0GqW5ublogyNyIywVVLptzZ2n2t0Bu71TVnC09FLLdtkuSre70r1tqefJncsd9R8MFlOpFOfPn+fQoUOMjY0RCoVobW1lzZo1bNu2je7u7qIzRdnEVjabJZlMcuHCBf76r/+aS5cuUVVVxdq1a9m5cycbN26kqqrqquktSx3cuQOoEokE8/PzjI+P+8Gq7T2uqqqisbGRhoYGOjs7Wbt2Le3t7TQ2NvpBqnsCDXc9BwYGeOmllzh16hRzc3PE43H/hB9zc3O8+uqrrF69mtbWVlpaWmhsbCw6nav2I8tbNmC16fAjR45w/Phx1q1bx7333ut304dCIf/0gAMDA0xOTtLW1sZP//RPF3XDR6NRf8AVFDaGyWQSz/O4ePEiL774IidPnqS6upp77rmH7du3A4VuXSjUpJTKro6Pj3Po0CGmp6fZvHkzGzZsoKmp6aqzscidx92AJRIJYrEYFRUVbNiwgddee43a2loymQxVVVUcOXKEQ4cO0djYyN/6W3/Lf549NfDg4KB/5J9MJjl69Cg9PT1+YKCNjLxbgiVSbtAYLA9wM7HuOdbd3oZSAWtw8nRbG2gDAfu/e5ulti+W7XJ320Q2m/VnAXj++ecZHh6mtraW7u5utmzZwpYtW6ivr79qqjQ7wCoejzM0NMRzzz3HoUOHyOVyrFmzhv3797Nz507q6upKlgK4B2huiY2dl7uvr8+vhT1//jwVFRXU1dWxadMmenp6aG5uprW1lebmZmpqavy5UoODxm1iLZlM0t/fz7PPPssbb7xBLBbze53taelPnTrFmTNn2LBhA5s2bWLv3r1s3brVP+ticMo4udqyAWs4HGZ4eJhz586RTCZpaWm5as5JewQxPT1NQ0MDbW1tV21I3VMLJhIJv6Z1dHSU5557js2bN+N5HufOnWNgYMAPWO28rcEv0fM8YrEYX/jCFwiFQtTW1jI4OEgikeCBBx7Q/KxSdHrL+fl5YrEY9fX17Nq1i9/7vd/j5MmTdHV1MT09zYkTJxgfH+euu+4q2tjGYjHy+Tx/8zd/w+OPP86HP/xhFhYWuHLlCnv37iUUCmmwldxwwe2dDSJtQGB7Btz7XG49XalBq272yXK7JN2ANRKJ+INdqqqqrppeUDtYsYKzWeRyOWKxGL29vRw8eJDp6Wnuvvtutm/fTmdnp98jarOfdiYBKAS6k5OT9Pb28jd/8zecPXuWhYUFenp6ePLJJ7nnnntoamryX9dmd+2Bnb3N9tLa7v/e3l4uXLjAG2+8wfDwMJlMhpUrV7Jr1y4effRRf73ckxW5dbT2t+X+7mz2+A//8A/p6+u76pTGxhh/NhrbM71p0ya6u7uLSiDe7qDKO8myAWs8HufLX/4yZ86c4amnnmL//v1FXfqAPzNAXV0dTU1NNDU1+YNcgml6t+s0m83yB3/wB9x///3s2LGDlpYW/+QCVVVV/khCz/NIJpP+htJ27545c4aFhQX279/P6Ogonuf56XwRwN94TU5OMjU1RXV1Ne3t7Wzfvp2vfe1rVFVV8cwzz3DhwgV27tzJ/v37mZiYoK2tDYCpqSlmZ2fZuHEj69evp66ujng8Tj6f52d+5mf8o3vttOVGCmab3Pkt7U6turq66NzppSbzD07TE1ym+1rucuwO1m5PI5HIkhlWtX2xbKBo21c8HufEiRN84xvfIBKJ8HM/93OsW7fOb0O2a932HNjnT01NcerUKX70ox9x+vRp/4yFjY2NfOhDH2LXrl3U1dUV1coGZxuyvbm2u95Oa3jo0CF/2sy6ujq2bNnC/v372bt3Lw0NDUXr487Nal/Ddt/bEsdUKsXAwAB//ud/zuXLl6murubee+/l/PnzTE1NUVdXR3d3N/v27QNgw4YNdHZ2smLFiqISCLfuXJa2bMA6MTHB6dOnqa+vZ9WqVaxcudLfWKVSKQBeffVVhoeH/fpA243vmpubI5lMkkqlmJubY25ujoGBAbLZLDt27IeXinQAACAASURBVKC5uZljx475g7qg0JgSiYS/sU2lUv5RTyaTIRaLsWfPHvbv38+rr75Kc3Mz7e3tpNNpv4RAswPc2eyPf3h4mJGRETzPo7a2lk996lN8/OMf57d+67d44okn6OzspL+/n6985Sv09vbya7/2awB88pOf5P3vfz8rV66kra2NcDhMPB6nvb3dP9lAIpHQQZK8a4IDquz2Nxiour1abtBgLVcK4NbPBUsCbNBaXV3tX9xtqravYtnZVrLZLLFYjFOnTvHKK68QCoW455572LhxI5WVlUXTW7qzTySTSUZGRvj2t7/N+fPnmZmZ8XvKotEoGzZsYPfu3TQ0NBSVCdq2bqdi8zyPTCbD7OwsExMTDA0N8aMf/YhTp06RSCSorKykpaWFXbt2cd9997Fp0yY/EHXPYBUc8GiD1kwmQyqVYnh4mAsXLvjTetbV1fnZWTsbwebNm/ngBz/IXXfd5R/82d+x26th34tKbJa3bMB6+vRpEokEO3bsoK2tza+lsnUq+XzhPOvj4+P+B19VVXVVXZ+tF4zH4ySTSf+I6cknn2TlypVXDQgIh8N+cJBIJIqmjrADrY4dO0Y0GvXPM7x27dqiZSlYFSgc6Fy5coVUKkVbWxuRSISOjg4+//nPEw6HaWpq8ufey+fzdHR0+M9taGjg7rvv9rMBxhi6u7v53Oc+R3t7OxUVFf4ULKVOmCHydpQqCQhOF+QO0HB3qu7UOO5zSgWsboAaDFqrqqqKSgHci0oCpBQbqKVSKc6ePcvRo0dZWFjgfe97Hw8++CDV1dX+HL/uiH4bXNqxLIODg36gapMBzc3NfOADH2DFihX+84KzAtmAdW5ujsnJSU6dOsXJkycZHx/3k2Y1NTWsX7+e+++/n61bt9LR0eEnyWxAauMXm/BwT9OayWQYGxvzs78TExPk83lWrlwJFMrP7LRb9fX1rFu3jg0bNviBbHBKK7d8x/Ysy9KWDVgHBwf9nbg957otiLYNc3p62j8zylIj+quqqvwBWleuXKGvr490Os2+ffv8omzP82hoaGDFihX+zt8904ptuLYIu7e3l4ceeqhohoDq6uqiyYtFPM9jenoaz/Po6uryj/D37NlTtLFLpVLk8/miaa2MMUSj0aLlVVdXs2nTJv+62pncaKVKAkoFrG5NXXC2gOAAjuUCVncHaq+Hw2Gqq6v95IF7cQNWtX+xbEB36dIlTpw4wdjYGO3t7ezevdufUcWygevc3ByXLl3i6NGjnDp1yh8L09HRQTKZZHp6GmMMGzdu9E/UEuxVsCWI8Xic3t5ef0zC1NQU09PT/inhQ6EQHR0d7N+/3z+9a01NTdHpUeHNwNt9X+l0mqmpKS5cuMDhw4cZGBggk8nQ2trK5s2bWbVqFaOjo3zrW9/iypUreJ7nr7M9havbQ2KXa9nfsyxv2YB1fHycXC7nj5SDN0fd2UnWs9ksTU1NzMzM+KP0gplNe3SxsLDA6OgoAwMD3HXXXdTV1ZFMJrl8+bJfDtDd3U04HCYajfqTClt2sNXly5cZHx8HCnWGbW1t/oTuNrMgAvi1VAAtLS1+NtStS3J31sqUyq0WHLUPb+7c3KDSzbC6g6zsLALL7QCDJQA282P/D2ZVFbDKtaRSKQYHB/0TDNXU1LB582ba2tr8bS28OXPA+Pg4Fy9e5NixY5w6dYp8Ps+aNWvYuHEjmUyG/v5+pqeniUajbN++ncbGRuDNNmfbezweZ2BggAsXLnDs2DHOnj1LZWUlDQ0NNDY2Mj4+Tj6fp7q6mm3btrFt2zZaWlqKpsB054Z35221gfDc3ByHDh3izJkznDt3jlWrVrFp0yb/Yl/nlVdeYXR0lObmZjZu3Mjq1av97n/3rF/uCQJKHZBKacsGrFNTU+Tzeerr6/0NoLsxnZ6eJhKJsHr1aj8d747Ottra2qiqqmJqaspP92/duhUo1EDZqSV6enpYt24d4XCY9vZ2BgcHSaVS/oS8UMiwDg8Pk81mmZqaora21p/A3WYYbFlCcNCX3FncM4/YufXs7dlstmi6n+BpAEVuleXmlHRPb2n/ukkEu512g9VSAbA7irnUxdauBrOrwd+JSgLEmpub4/XXX+fEiRMYY/yJ/eHNbW4ul+PKlSsMDg7S29vLqVOnGBoaoqmpie7ubh555BHWrVvHG2+8wfnz58lmszQ2NrJp0yay2Sye5/mnXrWlBJcuXeK1117j5Zdf9k/+Yrv7Z2dnmZubI5fL0drayr333ktjY6Pf6wtvjnUI1tPOzc0xNjbG8PAwMzMzvPDCC1RUVNDW1sYjjzzCjh07isb1VFZWUldXRzabpaenh56eHr+EIViiA1f/Lm1PtSxt2YjOdqXaqU3c7qZYLMaRI0eIRCKsWbOGiYkJZmdnGRkZYceOHUUb3VWrVlFTU0N/fz/JZJK77rqL5uZmoDB1lZ2zrKGhgdbWVr8oGgqTt69cudI/GnKnd7l8+TL33nuvfy532+DcGhm5cyUSCb+rf+XKlX5xfTweJxKJkEwm/dP6WTrKlVst2EPlDviwXZulAla7s7UjnINn+nPrXksFqW59nZtZDWZZNTZAShkYGODUqVPE43EeeOAB9u3bx8qVK0mn0+TzeZLJJDMzM3z3u9/ljTfe8HtJ29ra+MhHPsLdd99NTU0N+Xyeubk5/0xYra2t/jgYOyVmOp1mdHSU119/ne9+97vMz88TDofp6Ojggx/8INu2bePKlSu89tprGGNobGzkoYceoru72y8vtFlO+/uwJxSwJ4k5efIkx44dY2RkhHA4TGtrK48//jh79+6lqanJn4/eZnl7e3t54YUXALj77rvp7u4uOg2sO3OB26Ph/i2V8JM3XXOWAPvh2mJ7W6tq0/9PPPEETU1NHD9+nPn5eeLxeFH636qoqCAWi9HU1MQDDzzgN5JEIkFFRYVfM2VrBm391KFDh1i/fj3hcNhPz6fTaebn50kkEn7KPZ1O+xNmq1tXPM8jGo0yNjZGPp+nubmZ5uZmQqEQkUiEiooKv9jeHtXaDUawblXkZnIP9t1BU7bb0p1k3B1oZWvv3P+DswwESwqCc0ba63ZGADullZth1SwBUsqRI0cYGRmhu7ub1atX09zc7AeEU1NTfOlLX+L06dN+iVZ7ezu7du1i//79rFu3zt8uj4+PMzMz4w+4rq+vJxKJ4Hkec3NzjI6OcvDgQQ4dOsTIyAg1NTVs3LiRD3/4w/6pWj3P48KFC1y5coVoNMqmTZs4cOBA0Vk03UDVzsf97LPP+iUEdjrN3bt38xM/8RN0d3fT2NjoB6FuSU48Hud73/senuf5Z8eyMybZ35YdWOUOSg/O7qFe4eUt++kYY2hqaqKiooJUKuVvnLLZLAcPHmRycpINGzb4qfCLFy9y8eJF0ul00RxjK1as8Octa2pqoqenx28s9khrx44dbNu2ze/Suu+++/jmN79JX1+fn7Kvqqqirq6OmpoaYrFY0UwApc6GBfjTDmnDemcxxjAzM0NfXx/JZJLW1laMMSwsLFBbW+t3UdmdsN1oaIoqudVKZVjdLsXgSQGCA67sBOylpqsKBqn2fzvnpA1I7TystjRgqQyrerLEOn78OLFYjJqaGrLZLP39/YyOjnLq1CmOHTvG+Pg46XSatrY2Hn74Ye677z5Wr15d1Htqt8O2XWYyGSYmJjh79ixjY2N873vf80f9RyIR9u7dy759+7j33nv9ulR7sgA7kCmdTvtd8/a+RCLB5OQkIyMj9PX1+eu3sLBAJpNh48aN/qCpXbt20dTU5P8Gg3Mip1IphoaGOHHiBAAf/ehHWb9+PbW1tX5vsHtKY5tttTPP2N+xux+S0pYNWNva2hgfH+fKlSv+9A9zc3McPnyY48eP8/jjj/tdqvbDthlYN8uZTqdJJpP+EQYUjibOnj1LdXU1mUyGNWvWsGrVKn8Kobq6OlauXMng4CCzs7M0NDSQyWQYHBzk2LFjVFVVcerUKf7rf/2vfOxjH6Ozs9NvAO762FGFtoHJnaOyspJDhw6RzWbp6OgoqlkNDrAKzocncqsEsyxuYBrMtNrb3XIo99StbjY1mEl1g1X3toqKiqJANZhh1YkDpBRb39zb28vw8DAAs7Oz/tkwa2pq2L9/P/v27WP16tU0NTX5g6XdILCuro6uri4uXLhAf38/x44do7+/n9nZWWZnZzHGUFtby8MPP8yP/diP0dLSQmNjY1FAaEfk28Hhhw4d8nthp6enmZycZGZmhlgsRiaT8X8rTU1N7Nq1iwceeICenh7q6uqIRqP+78nt4bAnO5iamuLb3/62nwyxA8qBogPJYBlAsAfEzbZKacsGrA8++CDPPvssZ86cobOzk3A4zMjICC+99BKhUIitW7f6ae+6ujqMMX6jst2tgD+tRCQS8b/IyclJ/vIv/5JIJMK9997LmjVrqKqq8r+4SCRCa2srx44d88sALl26xJEjRwiFQjz99NM8//zzvP7664TDYQ4cOMD69etZsWKFHwTbI7RUKkUymSSRSLyLH6WUm2QySSgUYtu2bWzdupWqqiq/jsitB1SQKuUkmGENZlbdnZu9ze4QbQ/VtWpV7WODgaobsNqg1ZZZKcMqy9m6dSvj4+MkEgkSiYQfrDU1NbFjxw7Wrl3L2rVr6ezspK6u7qqDH9tua2pq2LZtmz811eTkpD+He2VlJXfffTdbt25l586d9PT0FE1n6Y5xiUajRKNRFhYWWFhYYGJiwq+BTaVSfmKto6ODe+65B4AtW7bQ2dlJe3u7nyENzh5gfzOAf4r5U6dOkc1m2bBhAy0tLX6vbqkBj6XGTLgzdOg3tbRlA9Zdu3bx/e9/n4sXL7J69WpmZmbo7e1lYmKCxx57zJ+uCmDt2rWcPXuWqakpjh8/TkNDgx+c2hpYO3BrZmaGQ4cOcerUKR544AG2b9/unxfYdv9XV1ezZs0aTpw4wdmzZ4nH41y8eJHh4WHa2tp49NFHAfj+97/Pa6+9RjKZZP369XR0dNDS0kJlZSXZbNYf1BWNRpmcnHzXPkgpP3aU6apVq2hvby+aci048bSCVikXblt0B1zZ/936O7sDDc6larM/pepVbbDqBqjBQLbUX/d1LO1cxdq5cydnzpxhbGwMYwwNDQ20t7ezbt06duzYQXt7O9FotGhOUrdL3LbvyspKOjo62LlzJ7FYjLNnz/q9s2vXrmX37t2sW7fOn0fVmMJZrtxaUZst7ejooKqqirm5Oaanp/2ztjU2NvpnMFy9ejW7du0iFArR09PjTz/lDlwMsus9NzfH4OAg09PTVFdX89BDD1FfX+8Hnu7vNDjvavCkHu5BqJS2bMDa09PDypUrmZmZ4ejRo1RUVDA2NkZ3dzcPPPBA0WM3b97M0NAQBw8e5OWXX6aurs4/a9CKFSvo6OggFosxMzPDsWPHePHFF6murmbnzp20t7f7c2MC/ijV7du381d/9Ve89NJLtLS0EIvFgMKR3Lp162hqaiKVSnH69GlOnTrFmTNn/EZaXV3tN1w79ZZG4N05crkcx48f908GYDds7pF4cGOkna+Ug2A7DO7A3InO3ayNW69qH+d2OdrbgrcHB2KVekzwNpGgDRs2sHfvXvr6+giHw6xatYr169fT09NDQ0NDUduEqwcUuqUB9oxUFRUVtLa2+tNb7dy5k9bWVj+r6o7Ct8uy/69cuZKtW7cyNjbG5cuXSafT1NTU0NLSwurVq/0yxJUrV/qDqUrNbWzX2/O8orIye9bNoaEhwuEwLS0t7Nu3z5+zPrg+tm41uHz3PahscXnLBqy1tbU89thjHD16lIsXL5LL5di8eTNPPfWUH4zaL6O9vZ09e/YwOzvLqVOn+Pa3v82TTz4JFKa1uv/++6moqKC/v59vfetbhEIhHnvsMbZs2VJ0dio3pb9t2zYaGxs5fvw4dXV1NDU1sXv3bh5++GHC4TBdXV384i/+IidOnOCll17i9OnTTE9P+zMVdHR0sHnzZg4cOEBXVxevv/76u/lZShmx05Ns2rSJrq6uokGA2Wz2qjOi2Q2FBueJiLx1K1as4Cd/8ieZnZ31y0psFtVuZ0uVk9j7bQBq67AbGxuJRqNs2LDBTza4JSn2IMpOY+lO42aMYcWKFezatYvu7m56e3sJhULU1dWxatUqGhoa/Ok67TLck8hY9jZ7u5sNBvzTzHd2drJ3715/cC9QNPDRBqUVFRWk0+minhAdAF6/ZQPWmpoann76aZ5++unrWtjevXvZu3fvVbdXVVXxyCOP0Nrayssvv0wsFuOpp56iu7ubSCTiZ1RtLZZVW1vLr/7qr/KlL32J+fl5HnvsMQ4cOOAPlrEF2g888AAPPPCAP/ovlUr5y7SnbQ0OspHbWygUYmJigo9+9KN0dXUV3ecGrPbgSERE3j4b2NkTtNgg0/YI2JMA2SDQjlmx403siHt3fuHKykq/jhqKg0Cb9XS7721G1GYuI5EIHR0dtLa2+suz6+Z217sDodwyG/fscW7gaWfjsCc7WL16NU888YRfDuD2gASDYFsa6Q4AVtB6fYzqJURERESknGmkiYiIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUNQWsIiIiIlLWFLCKiIiISFlTwCoiIiIiZU0Bq4iIiIiUtTsqYDXG/IEx5jOL/7/PGHPmbS7nt40xn76xaydy/dSW5Xahtiy32u3WBo0xnjFm461ejxut7AJWY8xlY0zCGBMzxowtNqS6G/06nuf9ted5m69jfT5mjPlh4Lmf8Dzv12/0OsntRW1Zbhdqy3KrqQ1K2QWsi572PK8O2APcC/y74AOMMZU3fa1E3jq1ZbldqC3LraY2eAcr14AVAM/zhoDvADvAT3N/0hhzDji3eNuHjDFHjDEzxpiXjDF32+cbY3YbYw4bY+aNMV8FIs59B4wxg871HmPMnxljxo0xk8aYLxpjtgK/DTy4eFQ3s/hYv/tg8frHjTHnjTFTxphvGmO6nPs8Y8wnjDHnFtfxvxljzPW8f2NMjTHmD40x08aYXmPMvwys81ZjzA8Wl3vSGPNh574fGGP+sXP9qqNBuXnUlk3IGPOvjTEXFtfpa8aYZuf+Bxbf84wx5qgx5sBb/IjlJrnT27Lcend6GzTG3G+MeXnxeSOL61RV4nH3mUI2usK57SPGmKOL/y+5XTbGRIwxX168fcYY87oxpv161u/dUtYBqzGmB3gKeMO5+aeAfcA2Y8xu4PeAXwRWAr8DfNMYU7345X0D+GOgGfg68DNLvE4F8C2gD1gLrAKe8TyvF/gE8LLneXWe5zWWeO77gc8CHwU6F5fxTOBhHwLuA+5efNyTi89dvdgQVi/xEfzq4vqsBz4A/B/O64aBvwC+B7QBvwz8T2PMNbsy5OZTW+aXF9/vo0AXMA38t8XnrgL+EvjM4vv7FPCnxpjWJZYlt5DastxqaoPkgH8BtAAPAj8G/NPggzzPex2YBJ5wbv77wB8t/r/kdhn4eWAF0EPhM/wEkFhifW4Oz/PK6gJcBmLADIUv+L8DNYv3ecD7ncf+FvDrgeefofDhPwIMA8a57yXgM4v/HwAGF/9/EBgHKkusz8eAHwZu+wNnOf8D+JxzXx2QAdY66/ywc//XgH99nZ/FReBJ5/o/dtb5fcAoEHLu/wrw7xf//wHwj5d7H7qoLd/EttwL/JhzvXNx2ZXAvwL+OPD4Z4Gfv9XfoS5qy7qUx0VtcNnP5p8D/9u57gEbF///V8D/XPy/GYgDnYvXl9su/8PFz+XuW/3d20u51nr8lOd5zy9x34Dz/xrg540xv+zcVkXhSMEDhrzFb2FR3xLL7AH6PM/Lvo117QIO2yue58WMMZMUjsQuL9486jw+TqHhXu+y3fc7ELzP87y8c1vf4utK+VBbLlgD/G9jjNtec0D74n0/a4x52rkvDHz/La29vNvUlgFjTMy5us3zvP63sX7y9qgNAsaYTcAXKNTxRikEmIeWePiXgV5jTC2FLO5fe543snjfctvlP6bw/p8xxjQuLuf/8Twvcz3r+G4o65KAJbiNbAD4j57nNTqXqOd5XwFGgFWBmpCl0usDwGpTuljbK3Gba5jClw7AYqNYCQxd641chxGg27neE3jdHmOM+x2udl53gUJDtjpuwPrIjXUnteUB4McD7y/iFWrRBihkWN37aj3P+40b8Lpyc9wxbdkrdAHbi4LV8nHHtEEKGeTTwF2e5zUA/xYoWf+6uI19GfgIhXKAP3buXnK77HlexvO8X/M8bxuwn0L5wj+4Aev+tr0XA1bX7wKfMMbsMwW1xpifMMbUU/iCssA/M8aEjTEfAe5fYjmvUWjEv7G4jIgx5qHF+8aA7lIFzYu+AvyCMeYeY0w18J+AVz3Pu3wD3t/XgH9jjGlarPP7Jee+Vykckf3Lxfd3AHiaN2tkjgAfMcZETWE+tn90A9ZH3j23e1v+beA/GmPWABhjWo0xP7l435eBp40xTxpjKhbX+YAxpnvJpUk5u93bspS/270N1gNzQMwYswX4J9d4/B8B/xLYCfyZc/uS22VjzGPGmJ2LdbxzFEoF8txC7+mA1fO8HwEfB75IoVj4PIW6EjzPS1M4ovgYMAX8bYq/KHc5OQrB3kagHxhcfDzAXwEngVFjzESJ5z4PfBr4UwoNewPwd65n/RcLq2PLFFb/h8V1uQQ8D/wvIOW8v6eBHwcmKNTz/APP804vPvf/A9IUflR/CPzP61knuTXugLb8m8A3ge8ZY+aBVygMkMDzvAHgJylkCcYpHPX/Cu/x7dOd6g5oy1Lm7oA2+Cng7wLzFILzr15jkf+bxe5/z/Pizu1Lbpcp9Mr+LwrBai/wIsXZ2ZvOFJdxSDkzxvwT4O94nvforV4XEREReW8wxlwAfnGZGuCypwxGGTPGdBpjHjKFudI2A/83hSMlERERkWsyxvwMhZrbv7rV6/JOlOssAVJQRWH+uHUUpvJ4hkLXv4iIiMiyjDE/ALYBfz8wq9B7jkoCRERERKSsqSRARERERMqaAlYRERERKWvXqmG9ql7A8zyMMf5fgFwuhzHGv92WGeRyOcLhsP9Ye382myUUChXdZpeVz+dJp9NMTk7y6quvEgqFaG1txfM82traWLVqFdFo1F9+ZWXhLTz11FN897vfvVGfi9xAnueVnND43TQ5Oenl83kOHjzIK6+8wvT0NBs3buRnf/ZnaWlpIZ8vlPLk83kqKir8dpjP5wmFQlRUVJDP5/32nMvlyOfzVFZWEo1GiUQiRa+Xy+VIpVKkUikqKysxxpDJZPw2bowhFAr5r5nL5aiurvavl/o9AUXPyefzxGIxjh07xuHDh3nyySfZsGGD/1uyfwHq6gonTPn+97/P17/+dYaGhvjABz7AL/3SL/Fu8zyPVCpFIpEgFAoRDof99+Cy7y0UCpHNZq+6LxQK+c+pqKjwvwN7v/3u7PdmH2fvM8YULdduK7LZLKlUipdffpnnn3+ecDjMhz70ITZs2EB9fT1VVVXkcjmy2SyNjY03ve0eOnTI3+5mMhkSiQTJZJJEIkE8HmdhYYFUKkU2m/Xbkl1fz/Oorq4mHA5TVVXlX8LhMJWVlVRWVhIOh6moqPD/2ott9/ZSWVl51W32ewm2N/c+9zn2d2W/O3d97Xdmf2P2d2C/n2w2SyaTIZPJFD3+Wuxvyb5He3Hfe/Cx8OZvLJvN+uuYy+X89+d+BvazuZZHH32UgYGBaz7u3XCzt7vZbPYt1xfG43HOV0FD2wAAIABJREFUnz/PK6+8QigU4uGHH2b9+vVUVS01tSl+u7qVDhw4wIsvvnhL1+F2tVy7veagKxt8usGo+yP3PM/fQcTjcdLpNI2Njf7O3WU3SHaDYZeVyRTO9JXJZBgfH+f06dN+ULt582ZisRjxeBxjTNEyb3WjlfIWi8Xo7++nrq4Oz/MYGxujr6+PFStW+EGU25bhzUApk8kQCoXwPI+pqSnOnDnD3NwcDz74IDU1NSVfz7bvTCbjB1PuwVk2m/V39DYAs+tg/9rnpdNpP2i2wVc+n2dmZoYf/vCHTE5OMjQ0RE9PD9XV1Ve9B2t8fJzW1la2bNnCvn37uBncYMYNWux7dAME+x7tNsT+TafTRCIRKioq/O2D5R5Y2M8QioP7bDZ71fYn+DnHYjGOHj1KZ2cnfX19tLe3U1dX539PwefLjaNtt0Bhnz81NUVlZSXt7e309/fT3d29bMAqd65lt8huNnWp++3fyclJrly5Qj6fp6amhnA4TC6X84NTuxPK5XL+Dn92dpaLFy/6R9C5XI75+Xnm5+dZv349TU1NNDQ0MDs762cHSm3oNHBMgs6dO8fAwABTU1O0t7cTDofp7e3ljTfeYNu2bQBFWU948+DLPTCDQhagv7+fiYkJHnzwwZLtzb3NDXbcLJTb01DqOcH1sEGq2zORSCSYnJwkk8kwNjZGJpOhpqbGf6zNsFlTU1Ns3ryZDRs2sHbt2nf6sV634Pt0s9X2tuDBZzCjms1mi7YfwcfagNgN7t0Davt8m7G2wa27LJuNvHTpEuvXr6elpcU/qL6eDNq7wc0KB7N9bqbSfq7B6zZYdzOa9r24n51tW+53ZR/jfl7u92g/Z3c5dln2QMz9DdnvNHjJ5XJFv7NSbWSp9+i2Ifc3FDwosp+B/dyC+ySX+zrBz9s9yLQX9zN1BfdP2jctz2bRW1tbWb16NZcuXbruTLrcea4rYC2VvXF/iPl83s/4VFZW0tXV5WdZ7eMXFhaYm5sjl8vR3NxMJpPhwoULnDlzhkQi4S+vurqazs5ONm7cSH19PWNjY6RSKZqamqitrQXezPba106n02rkUuT06dOcPHmSUCjkZ87Onz/PyZMnWVhYoK6urmgnHtwR2tvt31QqxcLCgr9zXo7dwdkdvFv24nZ1u8GV+1puFtINCGzQaoyhrq6OqakpUqlUUQlOcIe5sLDA+vXraWtrWzIz/G6wwYp73b4fN1Bys6WuyspKv4s7uNxgcBUsQ7LPt59HqW5fgJqaGpqbm1m5ciWTk5PMzMwUBTS3KthIp9P+/9ls1t+pu8FrMPizF/t52oDKDX7d7yC4XXfvt9+Pvc1+l+4BRXAZwVIAt/vcDUbddQwGrG75jX2P7l/3ue7FXU/3fdiSAJvssJdSAat9nlte4QaswVKJUiUBSqa8NZlMhlgsRiwWo7Ozk46ODs6fP699uSzpHfd5eZ5HIpFgfn7er99zf+TGGOLxOCMjI0xOTvobjJGREY4fP05lZSWpVIqqqipCoRA1NTV0dXURjUbJ5/PMzs7ieZ6fbQ3uBNPpNPPz81d1G8qdbWxsjP7+fjZt2kRrayurVq1ibGyMV199lTNnznDvvfdelU0tFah6nufXrLrlK0HBrGkmk/F3bsHgDfC7s91ucHc5bvAZzARXV1fT0tJCPB4nmUz6ZQd2ue5Osrm5+arbbgY3GxfMjtqAwe3Odx8T7Oq3bMDillTYQMly69vsctzr7nfd0NCA53k0NzczOTlJMpkkk8n4B8a3SjBgTafTfi1nMONq61jdiy2jCLbJ5TL69vtyg1a3HtitWw0+3163tZ12G+/2iLlZVBusurcHA9ZSmU73/drPIZhdtuw6uwGrDWCXypy7GepghjUYrNrr7mdR6iBAwdfSEokEV65cYWxsjK1bt1JbW+tvz4IHpiJwjYDVzSaV2vjZ7OaFCxeYmJggHA7T0tJCc3Mz8OaP9fLlywwODpLNZmlrayOfz3Py5Em/6yoajdLT00MymWRqaorR0VE2bdpEPp8nlUpRXV1NTU1N0aAJKOzA+vv7/a4fEWt2dpZkMkltba0f4G3dupWjR4/yu7/7u+zcuZNoNOq3KTfbFw6H/bZva1ntAVU8Hl9yh2cDKXgzYLPLtmzQ5R7QWaW6Zm3gC4V2n0wmmZmZYcWKFVRUVJBKpa4qvXGzar/wC79wIz7Ot8wNPNwssxvIugNa4M3eG7e21wYkbnezW6sazPzZ6zYTbQNbt7zALiscDjM1NUU+n6euro7p6WmGhoaIRqNUVFTcsjo6N2DNZDKk02nS6bQfvNqAyg3a3Kykfe/pdPqqQBDebFeWm/F026TbK2DbZqkeNvdxdmCTzZAHxyuUugTXI5jhdINVG7TbMrJMJlO0/m4m1w2c3b9LZVhLDbqy2eZgwGqXtVQPpPuepDQ7oNAmBaqqqpifn/fbrQJWCbpmhtXtknSDV5utyGQyfk3d2rVr2bx5M/8/e28e3eaVnnk+FwBBAiAIgCS47xRFrbQkqyTLJS+yq5yyy047GaemamZyUlk6lZNJz1+dM52eyUz3TKU7M3/MmZzTPZOcTvdJKjWVTHpqix2XXbbKlmzLtnZZGyWK4r6BJLiC2PHNH9R7dfEJpGRZCyQ9v3NwCBAfPnz4cHG/5773ed+bTqfhdrthWRbGx8f11KXD4cDU1BROnTqlL8Qejwf79++Hw+FAb28votGo7ihGRkaQSqVQX1+v92de/OLxOMbHx5HNZhGLxe76ySIPDjMzM5iZmdFttqysDK2trXj88cfxj//4j3jzzTfxta99DWVlZfoCa0ZYAOjEQYlgut1uxGKxNQdH5gW9rKwMqVRKt1VzSlEiCPJe5kXU9Fnap6ZFjM3OzqKxsVH7uxsbG/Xv0fTM3k/kcwoiKkVwlJaW3vCZZXsZRJhC1RRb4q8UT6LpM7RHAuWcmBdAGeCWlZXpwbDf78fMzAyGh4fR0dGRd1z3mkQioe9LxrwIV/uUtT0SWWg63/Rwmti9qXJf/q7lbzX3bdpaRNBJIEIy8s3BivnbKWT3AHCDSDVvpoCXyLPdCiH3xcdqis31vMliuTHPqfz2TbEq/YU9ml/ofDGQsjbpdBoLCwuIRCLac+7z+XTbvl8eclK8rCtY7WZ94PpFXO6fPn0ay8vL6OzsRHNzM5RSupTV8vIyTp06hXg8jnQ6Da/XC6UUYrEYysrKEAgE8Nxzz8HtduPKlSuYnJwEAIRCIViWhenpaSwsLKCzsxNlZWV55v5MJoOPPvoIqVRKR5sIESQamUqldOSnoqICTz/9NAYGBvD6669j3759eiBkCiKJ0oiIFb+a/H+9ZAszwiO/A/tFVba3LEtH8exRLnlvuejKcYRCITz++OOYmJjQMxArKyt5fkG7MLkf2AWj/dyZ0Vd5LOcwmUzqzyAi1oxeS9Q7mUze8F2Zos0UD6Y4kveqrKxEfX09JiYmsGnTJp0smkwmdem8+4EpWCWKKOJMhJtdtJoDLXPQYyZfCaa4WiviuZZ9QJ6T/Zn7lqh0JpPJS3AyLSnrRRzlOfMzmp9NzoOUTEun03nlvcxt7VF5sxzVegM6u/VAzqVpLXC73Xni14w+0xJw68j3J23F5XKhtbUVyWQSqVSqKPoxUlysK1jtnibg+gU9m81idHQUuVwOVVVVCAaDOjtZvKVHjx7F4uIiYrEYMpmMjoI6HA7U1NRg7969KC0thcPhQCwW0+KzubkZ8XgcAHQJIjkWy7IQi8Vw7NgxzM7OIhAIoKOj475eYEjx0djYiLNnz2JxcRHJZBJOpxNerxfV1dV44okn0NfXh7feegtf+9rX0NDQoKN2In6EbDYLt9sNr9eLTCaDgYEBbNu27Yb3s/tfzYQX80JmRrJML58pHsyBmTnVb1mrFQA6OjowNjamo2/mhbgYoqsy+zE6OgqlFGpra7WglGnA6elpRCIRbNiwAeXl5XpAakaj7Vnqsm/LspBIJDA+Po5z586hvb0dDQ0NulqCvEbOiznwNiN95eXlaG5uxtWrV/U0fCKRQCKRQGlpad7U/L3EjOyuVRmg0FS6+dccKMh5MNuXIPsVYXsrwtI8FlO8mjVx7RaDQlFa8/jtn1+EuunbtUdbpe6x3csr20sbsNeZXes3Yg54TFuARO7N+rX2KKtsY/dU0xKwNjL4kLJ8mUwGCwsLKCsrQzgcvt+HR4qQW0q6Ek+UveOZnZ1FKpVCS0sLAoGA/qEmk0ktFmSKCLh+sfB4PHjssccQCoUAQHdKTqcTPp8PJSUlmJqaQi6XQ1NTE0pLS/VrI5EITp48ifn5eR19Mr2IhABAR0eHnpaXuqhKKZSVlelo2pEjR9DW1gaPx4NAIAAg38sqFz2JBOZyOS3C7JhTr9L5ihAwPZemCDNFmennlN+bTEeaUazS0lLtA19aWsLCwkKeL1aO/3YRX7oIeLlwLy0tYWpqClNTU/r9/H4/IpEIHn/8cYTDYXg8Hh2xXlxcxOHDhxEKhbBv3z6Ul5djaWkJg4ODOHPmDHK5HKLRKI4dO4b6+np8+ctfRn19fZ64N6f4zWnieDyOwcFB/OQnP8Hi4iIGBwfR2tqK9vZ21NXVwev1oqSkRIsm+zS2eX/Lli24cOGC9sJb1mqJvmAwWBRiwx7plHZjRvKB6yJSvhszmi3tzB7ty+VycLvd+rWFIlqFpu3twlj2W8h3aAo6AAWjkPbvxfSq2m8iZO0JWHbvq1xzzOS8Qr5xO4WSuuT45RqVTqdv8LLab+TmlJaWory8HLlcTtucpP8oht8eKT5uSeXZOyLLWi3Cvry8DJ/Ph2AwqKc2E4kEhoeH9YVdftTSAD0eD9rb21FfX69F5vj4OJLJJILBIKqqqpDL5TA3NwcAero/l8thenoaFy9exIULF7SloLq6Gm63uygiS6R4CIfDKCkpwcLCAlZWVrSvzul0orKyEnv27MHPf/5zfPLJJ/B4POju7kZFRUVeQpBc6CRKBUAn6ayFvCYWiyEWi8Hr9eqpZhGT6XQaZWVleVnrQL6ItU9nm9ExKU+VTCb15ysvL78jUVY5PmA1AhKNRjE0NISxsTFEIhGsrKzA5/PB5/NhZWUFly9fhsPhwIYNG9Dc3IyqqiptB/rkk0/Q3d2NnTt3AgCGhobQ19eHZDKpBe7o6CjOnj2LmpoaeL1eBINBfZ7sSVm5XA7xeBwjIyP4+OOPcenSJezYsQOWteqVl4S0pqYm1NfX3xC1NqOvcuvo6IDL5cLg4CCqqqp0Kb329vaimJI0j9UsHWVWmLAnqQHIa7PSJu1iXcSBPbJqH/jYX7eWjUCOV5AIayFvsRmNNbcXsVjIu2qfqjePvZDv1ZypkPc0rSd2Cu3HtJfI4NOMtoo9wPS32vdJCuN2u+HxeJDNZjE5OYkdO3boxzxvpBA3rcMqnY48lgiMTKO1t7frCKiUr7p06ZK2CsgqFnIh9Hq92LFjh7645nI5DA0NIZFIoL6+HjU1NdpCINHWXG61vNWlS5fQ29uLVCqFRCIBpRSampoYXSU3EAwGAQCRSATz8/NasCql4Ha78eKLL2JgYAAXL15EWVkZPB4PtmzZogWqmVgIXLe5xOPxvGQiE7ngxeNxXL58GdPT0/D7/QiHw6ipqUEgEIBlra6cFQqFUF5enmcVsCcFmcmOmUwGi4uLiEQiGB8fRzqd1tPi/f39iMfjKC8vR0VFBfx+f95xyXKeTqcTfr9/3WiX+TkikQguXryIY8eOYWpqCuXl5WhtbUVzczNqamp0dG54eBjpdBqlpaV61kSEZUNDg67+ceXKFaysrGD//v1oaGiA0+nE1atX8ZOf/AR9fX2orq5GRUUFlFI6Km6PFkajUZw+fRpnz55FT08PfvmXf1knbkxNTeHixYtYXl6G3+/X0RtThJnn2+FwoKqqCoFAACMjI3qVq0gkolfaKhbM6WbxOJtiCshPsrIHGUxvtj06ahee9kSpQpHpQpFV+zYyM2GKVnPK3L5/OZa1IquF6tAWqiQgNzlvco7MSKsd89zZb3L+TFtBKpXSdhNZBtcceD7qyLmUyhYyWJDZUNEVJSUlSKVSeuZGrFdmWxJ/61rvA+TnECwvL+tkWrMdS16DOSCTAID09SsrKwCgXyvIQITf7f1lXaUnnYJ0YCJWFxcX9QUqHA7D7XYjHo+jv78fvb29eqTZ09ODgwcP6iiAw+HQnlXpoKanp7VfVcrJXL16FQ6HQ3vfxLM6NDSEbDarS9AsLS3B7/ff4OkiRNrlwsKCrtMrHsfy8nIAwK//+q/je9/7Hi5cuIBAIICGhgaEQqG8bH4RuUtLSxgbG9NldOxIe04mk+jv78cPfvADJBIJVFRUoKmpCbt378bWrVuhlMK5c+cQDofR1dUFj8eTN41oJiKZ1oSlpSWcO3cOBw8exOjoKFKpFMbGxrC4uIjR0VFUVVWhubkZ3d3d6Onp0RYHALhy5QpOnjwJn8+HL3/5y/p3VlpaekPpplwup32cb731Fj799FM4HA40NjZi9+7d2LVrFzweD7xeLyzLQnt7Ow4dOoTR0VEMDw+jra1ND2Dl3MkSqIuLi9i8eTM2bNigP1tLSwsaGxsxMTGByclJdHV16YuUlBKTc5FOpzE6OoqPP/4YFRUV+J3f+R34/X4kk0ls2rQJExMTOH/+PPr7+xEKhdDe3q79x6bwsEe1m5qacPbsWb3KXiAQwMrKyg3C/35him2JTBYSX2ZU2i4qAeSJU3lsij8AeYJS9mM+b4+omhFseyKWOUVueknN64ndm2smWJklrNaqP2u+zvSfimAtFFVfC1NkmWJYPp89UiyCtbS0NG9g9Kh7WMVfvLS0hGg0iqmpKV1hpaenB9XV1QBWRaDM1ESjUcRiMd0fSr+UTCZ1GT/xuQPXkxHFyiL/j8ViOH78ODo6OlBXV6ctibJw0dWrV3Xfl8vl4PV60dnZCa/Xi4WFBfT29qKkpETPGkvbkn2ZS3qTe89NqwSYX5BlWUgmk5iamoJSCps2bdLbnTx5EgMDA3A4HPD5fHjmmWcwODiITCYDv9+PWCyGuro6dHd36x92PB7HJ598AsuysHnzZtTV1SEej+sMwUAggHQ6jZ/97GdIJBJwu926s0un03jxxRf19AxLYBATj8eDmpoaLCws6On5srIy3QmJNeXrX/86Xn/9dRw6dAhTU1P4+te/riOtJSUl+sIXj8cRjUb1AgKFSCQS6Ovrw1/8xV9gdHQUjY2N2L9/v/ZuAkBTUxMikQgWFxe1ODMjuvJXEsWkk5SSRvIbSSQSGBgYwMrKCqanpzE7O4tLly7h008/xYEDB/D7v//7+rgWFhbw2WefAQBqamqwbdu2Nb18lrWa0HTu3DkcPnwY4XAYL730ErZs2YJgMHhD5MHhcGDPnj06gWJlZUV7gpPJJCYnJ/HZZ58hl8thx44d2LlzJ9xutxYGMi04NTWF6elp7as0KwKIGFhZWdGD5YqKCh2pKSsrQzabRXNzs7ZgvPPOO/B4PAgGg3j11Ve1+DS/OxlAf/WrX8WxY8cwPDwMh8OB5ubmvOja/cRuCZDIlJmhDuQLS7sINC0B5vMi8EzxbkYS14rECvbfgQwG5LXyvmZZKfO9TLFsTvObFQHMqKkpYteLroqYMaPMtxIZk88pbc4uWAW51kg7Nv3Bcv4eVbLZLC5duoS+vj7MzMwgnU4jFothdHRUD2DF015eXo6amho9qzo+Po75+Xk9O5bNZjE/P4/Tp09jdnYWzz//PGprawEA8/PzuHjxIlZWVrB371692Mf58+cxOjqqbWChUAhXrlzB8ePHsbS0hLm5OR1ECAaD8Pv9GBwcREtLC/76r/8as7Oz8Hq9qKioQHl5uT4Gj8eDbdu24YknnuCM7n3kpmfeHHlblqXXMnc6nQiHw0gkEnj99dcxNzcHh8OB6upqPPXUU3C5XIhEInpklUwmdQN1Op1IJBI4e/YsAKC6uhpVVVXIZrOYmprCzMwM2tvbkcvl8Oabb+rqAu3t7fB4PDh58qSO7piVDAgRysrK8KUvfQnDw8OYm5vD8vKyjtgD0Mv59vT0oKKiAu+88w4OHTqEK1eu4Hd/93exe/duANDTf+FwGN3d3ZiZmVnTEjA9PY0jR47A6/XiO9/5Dp5++mkdKRgbG8Pc3BwikQhmZ2dRU1OTF/UVQSARAallLAkeDQ0NqKmpwTPPPINEIoFIJII/+IM/wPLyMn77t38bO3fuhMfjueHiCgAbN25EKBTCkSNHAAB1dXWora0t6MUVIfHGG28gk8noZUuXlpZQUVFxg+dQqi/IYFa8g2VlZdoukM1m8dprr+nBqkSuhaqqKjgcDp1EZnoOT58+jbGxMR1hmZycRCwWg2VZeVN+Ev2SSPMPf/hDzM3NYe/evVhcXNRL8ZpRMDnf4XAYmzZtwtTUFCYnJzE+Po7FxUXU1NTcbvO7Y9jFqmBOdQumQLWLQQA3CNpCgtWsOGEKVVMEr4Xp9zaz602xau7DFJ72CKmI07UEayG7gH279bzma2EXwOsNWuwl18S+djvv+7Bw8OBBnWOyfft2bNu2DTMzM/irv/orLC8v6yRRaQc1NTX42te+hu9///v427/9W2zcuBH79u3TQSgRj6+//jouXLiAP/zDP0QoFEImk9Fe/oWFBfh8PuRyORw5cgSBQAAVFRVwu90YGxvDoUOHMD09jW9961s6ibusrExrB1kts6+vD+FwGN/4xjf0DNXy8jLm5uaQzWbR19eHvr4+dHV13c9T/EizrmCVOpJym5+fx+DgIGZmZrBp0yYsLy/j/fffx+LiIkpLS9HW1oZNmzbB6XTqOnnl5eVYXFzM6zTT6TTOnz+PmZkZ+Hw+dHd3IxAIYHBwEJcvX9arCf30pz/F3NwcPB4Pdu/ejUgkgo8++ghKKezatUuPZG+W+UkeTerq6uB2uzEyMoLR0VF0dnbqC78k6pWVlWHDhg0AVtv7e++9h7/8y7+E0+nE9u3bASCv4xSPk510Oo35+XlMTEygpqYGTzzxhI7SulwuNDY2orKyEslkEp2dnRgbG8Pg4CC6urp0EX2ZOQCuVwuQC7iZiOB0OhEMBtHS0oIrV65gfHwc3d3dqKqqgtvtviHxw+12o7W1VScmffLJJ3jllVfWjLBKFr7D4cDWrVuxfft2VFZWahFjTwxzuVzw+/15kVHLslBeXq6TKcvLy/Oel0oEwGr0OplM6unDkpISDAwM4Ny5cxgfH0cwGMTJkyfh8XgQj8cxPz+P/v5+LC8v6+VVzSnrUCiEl156CX/zN3+D8+fP49lnn0U4HM6L8AHXBVpZWRleeOEFzMzM4MSJE+jv79dLQt8PzO9Pou/SFuR/dm8psP4SoWakVNqUua0pLKXOrd27av4thIhVuxVBXifPi6/R7ku1R0jXqgwg0ddCXle5FYoI3wx7BNrEnP2QcybCR27yWMo7mt/Jo8D4+DiuXLmCuro67NixA21tbSgpKdH2werqaiwuLiIej8Pv9+uFgxobG9Hd3Y1Tp07pwagMLP1+Px577DG4XC68/fbbOHz4MJ5//nm936mpKbhcLtTW1mqNUltbi6WlJZw8eVJXG3rllVewZcsWnVRrllsrLS1FNpvFSy+9hFOnTuHEiRPYtGkT6uvrUVtbi4aGBh0pXllZYYDsPnJTD6tSCvPz8wBWy1iJ5zQajeoQvtvtxsaNG9He3q49ZWNjY0ilUti6dStmZ2cxNzeH4eFhPR0bj8fh9Xq1WFVK6WSqVCqFgYEBzMzM6EhZOBzG2NgY4vE4AoEANm3apEfw9LASO7lcTkfzJXKWSCR09Eg6LIkQSkQ/k8nggw8+wA9/+ENMT0/r6Sa5GEmxazvZbFZ7P6W0klmkXJIAkskkampq8Itf/ALLy8tobm7WkQLppE2Pn+kNlM8lImv37t0YHBzUnq2mpqaCEVan04nu7m5MTk7i2LFjOH36NJ5//nnt5TVJpVKYmZlBKpXSfjAAaG5uRm1tLSorK/N+a2YGt4lE6paXl9HS0oKKioobLvoOh0P/5uU2NDSE48ePY2BgAJWVlXj22WdRUVGBDz/8EFeuXNF1GkdGRvDOO+/g+eef15naIqhdLhfq6+vh8XiwvLyMs2fPorq6GnV1dXnTtVKiyOl0orm5GY899hgmJycxNDSEn/zkJ6ipqdF+u3uJGX02hbhEIc3HnwfT+yqPges1g+W7lELupki9FcFqHpf0y+b/zNk6EeFrVQQwxaq9XJU9umr3tcpzn/eaYLc+2AcDdi9uaWmp9oHLfbmZr3tU+OSTTxCLxbBv3z40NzfrRSQkQLCwsKBzC6QNKqXg8/nw1FNPYWpqSlcYqq6u1rNPXq8XXV1duHz5Ms6ePYtdu3YhFAphYWEBV65cAQD09PTo2ZJMJoOVlRVddSQSiWBwcBB79uzJ618FCVzs2bMHlZWVmJmZ0XWu6+vrEQwG4XA44Pf70dbWRkvAfeSmVQLS6bROpJKLSyaT0WWtQqEQmpqa0NbWpsPoudxqWSqlFMLhMBobG7XHLRqNwuPxwOVyob29HTU1NbqDlPdMJpOIRCJoampCQ0MDWltbMTU1hYWFBbhcLvh8Pr0aFiGFEG8jAJ1MY/rr5L6Msn0+H1pbW/HMM88gmUzi9OnTyGQyiMfj6OzsxPLyMoBV4VnIEiDbrqysYGlpSRcXB/IjXpKoaFkWhoaGdLTBrJphJm7IhVMimmZH393dDafTibGxMb2ksTxnIgmMtbW1yGazmJubw8jISMHi3LFYDOfPn4fX60U4HNaedZfLpUvJmRdt8XgtLS3dkMQl4qO2thZer/eG0kZybLLoyOjoKBKJBGZnZ+F2u/HMM8+gu7tbJ3BOT09jZGREC5qDBw8im82ioaEB4XBYJ1ctLi5ibGwMSikkEgmcOnUKXV1dunKAmbghwkwSLWpqajA3N4e+vj7uQUh1AAAgAElEQVQcPHgQO3bsuI3W98UwI6xyfGY5JruAtFsF1hKyZluSx2sJx9v1YdqF7XqiulBiVaHFAgp5VQtZH0QcmRHkz0uh4IdZ3cAsYWUKVbtoFR4lwXrlyhXkcjmEQiGdKwCsDsDKy8sxOTkJn893Q9sSy9PWrVvx0Ucfob+/H36/Hx0dHbqspc/nQ3V1NT777DMkEgk4HA5tmZKEzbq6OgQCAZ0jsGnTJjQ1NWmbT39/P5qamnRil2mFcTqdqKqqgsvlwvT0NEZHRzE6OoqpqSlUVlYiFAohHA7rsnvk/nDTocLQ0BCuXr2qvyyJsKysrKCyshKtra16pSnxv8mUjyRUdHZ2IpPJ6Gisz+eDx+PRfhJpAH6/X3tZg8Egtm3bhqamJjgcDgwODiISiehVMCRDs5hW+CHFgyTUeDweRKNRbVGRtiJCQKJBwGqVCrG0JBIJjI2N4f3338fg4CBKS0sRjUbXTPATq4vMPgDXa02aIsLhcCAUCqGjowPHjx/H0NAQPB6PLudkHpNZesX0B8pFNRQK6ShmNBrFwsKC/h2aWNbqYh2yIt3S0hJ6e3sLirFYLIYLFy7A6/XiwIEDyOVyOgFBLELmfiXzVpKtzFJQ4mcNhUK6dIzdc+lwONDS0oK2tjb09vZiZGQEwWAQPT092Llzp06m6OzsxOjoKMbGxjAyMgKHw4G+vj6kUik0NDSgublZX0xisZguXyM1Vk+ePKkj6VKpxBQ6sgx0RUUFtm/friOz9wMzgiODGHNBiZtFPNfqD+2CVQZHEmUWS4AI1kIDn1vFtAcUusk0vzm9L4t82L2rpsfV/N2aiVr26fzb8ZHaj9Hch4gaSYIsKSnJE6piBZDHjyLz8/N6JgW4HtFPJBLaDrW8vKxXJ5P2lcutlqKSyinRaBTnz5/HysoKmpqa9D7Lysp0hROXy4W6ujq0tLRgbGwMp0+fRmdnJ1KplM6d2bRpExobG7G0tIT+/n4cO3YMAHQ/aI+UKqV0WUCHw4GhoSFMTk7qKizbt29HLBbTfRK596wrWJPJJD744AMAQENDAzo6OhCPx3Uh8b179+qLhFyMUqmU9n9VVlbC7Xajvr4euVwOU1NTOsze2NiYdwFzOp1awI6MjGDbtm3aZ5jJZDA4OIipqSnU19ejqqoq73W3M/1DHm6cTidCoRDa2tp0BHB6ehqVlZU3+Oyk7UjkZNOmTfjOd76Dt99+GydPnsSJEyd09npLS0vBC1JJSYleDCCVSmF5eVkXFwfyRYTL5cLOnTvx9ttv49ChQ/B4POjo6MgThZlM5obkFVPQijgWC87Vq1dx+fJlvQqWiYjempoadHV14e2338alS5f0AgamMJGBZTabxf79+3WykkzPyW9Npt3OnDmD3t5eNDY26tIvgrwuEAjkFamXAYN81paWFjz99NOorq5GMplEd3c3duzYoRMjxEa0c+dO5HI5/OIXv8DY2BgcDof2DV+4cAHl5eXwer0IBAJ6yddwOIyRkRG8//77WiRVV1frGs+WZWm/2+DgICorK7F9+3aUlJRoO8S9xu5BLlQR4Hb8mcB1kWpaRyRyaEZYzUCA3MzB3XrvIZi/LzMaKveTyaQWrOZ9Eaz2COtawtd8fzNCervXhEJi1fT4St1Vt9utharpZ31UI6xSG3hlZUUvayx5L7W1tfB4PDh37hy6urqglNIzq6lUCufOnUM6ncYzzzyDkydPYmRkBNPT07hy5YoWrel0Gk1NTfD7/SgpKUFbWxuy2SwWFhZw9OhR9Pb2QimFlZUVnTsgNqa6ujr89Kc/RSAQQHl5ufb8S58vSPvu7OxEW1sbBgcHceTIEYyOjiIWi2Hz5s3YuHHjI51Ydz9ZV7CKP6SiogI+n0//SHt6enRNSeB6ZrE0loGBAaRSKWzbtk1f3GRKErgeQTAvgDLFUldXl5edK4kr0kgjkQhOnz6NL33pSwCgo2aEmIjg2717NyYmJjA7O4vR0VF0dXXpi79MX8tFT/4vF6RvfvObeOGFF/Dhhx/i6tWrKC0t1Sti2XG73aisrERDQwMcDgempqb0Clem4JQLqixLePToUW0J6Ozs1Ntks1kdrTSn0eUiLiJ169atOHv2LMbGxtDb24uenh7tiRVkhZ7a2lo89thjePvtt3H+/HksLCzkTZEDq2KpsrISZ8+eRSwW05GRZDKpL0iZTAbLy8s4f/48PvroI+zatQuPPfYYmpqa9L7k/IuoMAVSNpvNS5gsLS3F7t278dhjjyGXu76crUwrivBvaGjQMy8///nPcfjwYZ3QIRcoieQeO3YMuVwOL7/8MrLZLN555x189NFHOHLkiI6ibt68GfF4HFevXkU0GkVHRwd27NiBjo4OuN1u7N279042yVvGLljlfJmRq7WSikyBaa8sUGh7y7Lylhs1Ras9yWg9u4FgF7TS/5veUjOimkgktC88mUzmCVZ7dNU89nspGOSzi7AXoWomWtnvm699VHj55Zdx9OhRvPvuu9iwYQPcbreuwbp9+3YtRn/0ox+hvr4egUBAD1wsy8Iv/dIvoaGhAU1NTRgdHcW5c+cwPDyMoaEhAKt9yv79+3XE1e12o6urC9XV1fjwww8xOzuL+vp6jIyM5LVXef/GxkYcOnQIR44cweXLl7FhwwZ0dnbmLQlrRn2VWl0Jr7GxEePj43jzzTfx3nvvYWpqSuf1kHvLuoJ1YGAA8XgcTz/9NOrq6vKiRGLUlwuPRIOSySQSiYSedhNDM5BfqFrqWYrgtE99ykVLOs5XX30Vhw8fRl9fH/bs2aP9KwCrBJAbkSSnhoYG+P1+XL16FWfOnMGePXv0tFKhKJNc1CXCVFVVhV/91V8FcF04FCp143Q60dHRgW984xv43ve+pxMQOjs7dXKTZVl6huLEiRP41re+hb/7u7/DO++8g8HBQTz99NPYv3+/Ttiy15KUqOb8/LyuTfxrv/Zr2L59Oz744AO9TGuhi7l08D6fD36/H/Pz8wW38/l82Lx5M86fP4+PP/44r+qA1DFcXl5Gb28vAOCll17Cxo0btS/MPJ9Sv9CcGpbfuEQ7zWQW0/YgNS7N14oXrrS0FN/+9rfx2muv4dSpU3q55mg0iuXlZVRXV6O+vh4vv/wyurq64Ha7sXPnTnzwwQf44IMPdGLHO++8g9LSUjQ1NeErX/kKtm/frpf0lfN9PzAjdIVEqnxv9iQgyTMwfZ1mPVlT5MrzEmGyR3DN5Cz5a1pVCrHec3IspngVcZpKpfR9KY0m28m2t5tYa0+usf/P/HymMLf7VgtVBPB6vfB6vXqlPLmZgvXz2CgedPbs2YO6ujocPnwYqVQKLS0t2LVrl55Cb2lpQVNTEw4fPqx1Qm1tLTo7O/XvVNpne3s7Wltb9TUeuL5EszmgczhWS9m98soryGazun+dmJjQ5TAlklteXo4XX3wR+/btQ29vL4aHh3X0VxK7Y7GY7huljcbjcUxPT6O1tRXHjh3DZ599pnMayL1lXcE6ODiI8vLyvJplgiQqANejKbFYDLOzs7reqrlcnZlwIZEa8aBKo5QOSgSslFeRzvPJJ5/Evn37dKFwAHnvQYggFx9Z7jOdTmNubk63VWk3pi9QokwOh0O3PZkKl4sXgBtWh5L3E/Hz6quv4sc//jEmJyfxxhtvoKOjA83NzXqGYGJiAtu2bcOWLVv0VFVfXx/efPNNzMzM4PHHH0djY6O2GMi02dLSEiKRCM6cOYOpqSm88sorqK6uxv79+7F161Ztqyl0kZTVY8rLy9HU1IRkMqktNyZ+vx979+7FqVOncOzYMbz//vtIJBI6KhwOh9HZ2YmvfvWrqK+v1yW57FNrTqcTlZWVqK6uRnl5uX7OPo1r9+2a/YwMDsyKDgB0SRuv14uvfOUr2L9/PxKJBOLxuB4My02+q2AwiBdeeAFPPPEE5ufndW1FqQEtvnpzoZT75UVcS7AK4v2V5UHNqXSxOZji1n4zo5bSH0sU226XEQpFbM22Y4rV9fyzZqRVxLRpATAFqnnfHmG9FczBk90GYf7fFKpmWy6UXCXtyhSnHo8n7zmzf3iUAikulwttbW16psWcWRJ27dqlywXKeTdX+rOz1m/QHACb719RUYH9+/fj3XffxcjICHp7e9HQ0IDe3l5Eo1G0t7djYGAA6XQaKysrmJmZwfDwMKLRKL71rW9hYGAAJ06cwOLiYt6MgJQz3Lt3L3bu3Ik33nhDLwZD7h03rcMKQGdtSjkKM7lKLvAA9BJrlmWhrq4OQH49SXkMIK8DkX3YvUkyMpLnZORq1lAzIwGEmGSzWQQCAXR2dmJmZkYXk5aEPeD6RUsujlKw31xPHbjeQZrC1UQ6Xr/fj61bt8Ln86Gvrw8DAwO4cOGCzryvqqrCtm3bsG3bNgQCAZ0kdfbsWfT39+PMmTP47LPPUFlZiZaWFp1wI2WmEokEysvL8dJLL6GjowOlpaU68gisdtqFOn/5vVRUVOC5557D5s2bCyYPSLbsb/3Wb2FgYACRSAQjIyN6Sr6jowMNDQ2or6+H1+u9QQTJOQ0EAvijP/ojlJWVobW1NS+50n5ccn7t/5P/F3qd6Y80/Znm55DPbO47HA7r/gyAtmzYfaL247iXFBI8drEmQlNWBZTV0GTwX8jvKcX07aXIzCVTBXvikWkHMC0q8txa56pQQlShmqmmcDWFrdm2Pq8NwPxt24/RDKCYYlXOpcwsFBKrkvwjQtV+e1QFK3B9Jmct1hOnn4dCvweZsZEFYkZGRuB2uzE7O4tPP/0UqVQKvb29eqbL5XIhGAyiqakJGzZsgMvlwsaNG1FbW5sX7TdnMUKhkPa/k3vPuoK1q6sLo6OjiEajCIVCehpfLs4SDZWFAlZWVpDNZvXo0xyR2xMGzBG7fcpQtjNN/mZnab8QMcJK7Hg8Hj0F/txzz2Hbtm26eLW9szGjfED+FGEhj+B6dficTicqKip00k9HRwcWFxd1NCwYDGovplIKHo8HXV1dCIVC6OrqwvDwsJ6umpmZQS6XQzAYREVFBSorK9HV1YX6+nps3LhRC0bpUAX7MYtIl1mRffv2IZFIFKwo4HK5UF1djcrKSjQ2NiKRSOjVp/x+PwKBQJ43t9AUNbAaGdmxY4f2BN/OoNLed6z1vGAXd+Zjcx92j+HN3udeY17w7RFWs5+Ui6gEDsSDWsinKrMJ9sx8s/3YE/vk/c379j7Xfs4KRVlN0WqW6bInVZkWhkJi9fP282a7tItWewTQFKymQBUBKtFUiaiKYDWrBZg3+/dH7iz267/pj/f5fAiHw4hGo5ibm0Nrayt27dqlPdJiCSsrK9OViaRqgMxCmW3PbhEBcEdEN/n8rCtY29raMDk5iYmJCdTW1uYlm5hTdAD04gCyCo9M59kv7vZIijQ2swM0/yedpD3yYd+eopWY/OAHPyj4/wsXLtyV9zPL9CiVvzIRcN0/ODY2hgsXLmhbjPl8KpXC/Py8LqAtyQhSTq62thbxeBwzMzPaQyqDRiB/CtTr9d70mD/88MM7eQoeSr797W/f8/e8FcFjTl/LYKikpOQG360p2s2MfKfTqduXbFdIsMp7mZHatTBzHOyYUVazpqr52IzAiqj9IqWqRGCYEXjzGO1WAIfDoQWo3ZNq/5/cJBJrRmbtZcnI3cEeUDAHHxs2bEA0GsXs7Czm5+fx5JNP6hwb+S5lwCcBDDNQcaciweTOsq5graysRElJCaanp3XhdTO6KSNXy7IwOTmJSCSCUCiEmpoaHaI31/sW7CLUvl/zsXQyMtI3O02zgyXE5Dd/8zfv9yGQh4D7IVjtgqdQ/yaWgEwmo4WqTKkXmvq2LCtPrIpAs1dwkPdcD7vv0/SCrretYIpXM/pqt3fYvbhfBPv0v9zMcyHRURE04ms2o6sSWfV6vbo6hXmze7kpWO8dIjBzuRy6uroQiUQwPj6O8+fP44knnkAoFNKBNHtbMJO7SPGyrmAtLy/XoXP7kpZmhQApTSJTjhUVFXle1UJTh8D1ZC0RpuZoXyJQ9qkwE7NCATsGQsjDgD0L2o4ILbsXtKSk5IaIu12wiqASgbVeDWu7uJN9mVUdCiXWmMjxmALVnPK3R25FPNsjsKYYuRXM6Vvz2mVPrDLvl5SUwOfzwev1wufz6bq+pmA1LQHiHy90M88huTvY24y0M8kl6OrqwuzsLPr6+tDb24snn3xSJyWay2YD97ZMGrl9bpp0VV1djeXlZczMzMDn8+n1uMUTBwAnT57E7OwsGhoa9EpBMnqXbGvgeuRAOk6Z8k+lUjd0MJJ0ZYpW6bTMBgpcX76QEEIedOwiVWrRSp9nLotrXxFKIqz2yKYEE9xut655aiY5mZj9qz0yaR6DPcu+kDjL5XK6IkUikcibQhdPoVneaq2yVvYEMjlOE/tUv/1YTcFtTt+b0VFTsJplq8xFAszFAkT0msKXvtW7jzkzYFpWzGn9hoYGdHd3o7+/H6dOncLTTz8NAAW/o/XyEkjxsO63lMvlsG3bNpw6dUoviyqrQ0hHkkwm9ShafrDmtL4ZLTAzVCURw1xVRbAsS9dhXKu8ilKr64SbHTkhhDzomN45s18zhZFUUDGL68v9QtUOzKSr0tJSXSnBPhUPXBeChco+yf7sAnatPjibzaK0tFRXMxCRJ1UNCq1yZRfg9ioB5mydPfmr0DHZ7QuyWIVYAMxqAGYE1awEIM+btgGpJmLe7GKI16W7QyKRyKtIYG9/Sin9XeZyOYyPj2NhYQGBQKDgd8Ks/weDdQWrZVkIBAJ5U/+Li4u6NprL5cLJkycRi8XQ1taGxsZGLURlfWozu186F1nBRn7Y5ghJtpXIrOl3NfchEQNzP4QQ8qBTSPCYfn6ZgbLfZPrcnoQn/WahiOx6grWQGC0kBNdDkr2SyaSOqrpcrryVrURAm9HWQp/NtBXYqwaYgtoU7IVEtwhms25qoTqrEl21e1VFtJrRVTNxi8k6dx+Hw4HBwUEsLy9jy5Ytuja7vSJEQ0MDDhw4gIMHD+LgwYN4+eWXUVZWdkMCHnkwWFewyrRTbW0tkskkZmZmUFJSglAoBIdjdaGAhYUFAKvLt/r9/ryyD4XM/JI8JXVdxa9UKOHKnM6SDkqmdExvE6sEEEIeFkzBKn2e9H8yu2XPuDcf2wWr7KfQwgGFptjtQtDeh6/3104ul9MzaiJazYL8ZoTVLLclgrrQ8qz2hC05Z/ZIql1oy19TrJorV5lLrprJVvaEKjl2U6yagpUBlLuPBL1mZ2cxPDyMlpYWHUgzA2Berxetra1wOByIRCJ6poF5Lw8m6wpW+eHV1tZidnYWkUgEc3NzuhrA4OAgcrkcGhoadKJVoTIi5vSNdCjSCa1lpjfFqvnYHDnL9BcN04SQhwW74JGKLKagtItW83GhC7E9G79QbdObeUPt3MoFP5e7vvyrOWUui2GIn1Siq5IIVsgWUEhom1Vk7Elia4npkpISPd1vJlQVWiBAoqt2r6rMJNqFKoXQvcHpdOr8mtHRUcRiMbS2tiIQCAC43t6dTqe2d0jJQTMaTx4s1hWsEs2UOpCxWAypVApDQ0NIp9MYGhpCMBhEc3Mz/H7/DSNxeWwXlGZjkfC9rLoikVa7TUBeIx1tIdM/IYQ8bBQSXuYsk/SVN0s+tftAC0VW7/RMVaGpV7vlIJVK5QkJ0xNqX1hAch5M4W2PrK4nHMVSYdoA7IlU9pspVkWwSrUcEeD2yK5AYXT3qK6uhlIK586dw9WrV5FMJlFXV5c3WwsAsVgMTqcTPp8vb3ET8uBxUw+rjJCbm5uRyWQwMDCAyclJTE9Po6SkBK2trboILwDtPZUftznNL/uUkY9SKm/ps0IRArNWoLkv+yiblgBCyKMC+zvyKCM6oKqqCnv27MG5c+dw4cIFXLp0CdlsVnuhJei2tLSEPXv23JDobWocUvzctEqA1Fv1+/2orKzEzMwMLMtCMplET0+PXiRAIqWFlr0sVPNM9iui1RxdmxFZsRSYUz92n6x9/4QQQm4fCmJSzJgBMI/Hg127dmHr1q3o6+vDpUuXsLKygpWVFSSTSdTU1ODAgQPYt2+f9jCb+2GS3IODYsdECCGEEEKKGZo5CCGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSooWAlhBBCCCFFDQUrIYQQQggpaihYCSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKKGgpUQQgghhBQ1FKyEEEIIIaSoeWQEq1Lqr5RS3712/yml1KXb3M+fK6X++M4e3Z3jZsenlLKUUhvu5TGRu8OD1qaVUv9SKfWXd/t9SPHyoLVZQtaD7fne4rrfB2CilBoEUAsgCyAG4GcA/sCyrOU7+T6WZX0AoPsWjufbAH7Hsqz9xmt/704ey52m2I/vUYNt+jqWZf2be/E+5IvBNkseJtieHx6KMcL6imVZ5QB2AdgN4H+0b6CUKiqhTchNYJsmDxpss+Rhgu35IaAYBSsAwLKsMayOhLYBeir7v1VK9QHou/a/l5VSp5VS80qpI0qpHnm9UmqnUuqkUmpJKfX/AigznntWKTVqPG5WSv1IKTWtlJpVSv07pdRmAH8OYJ9SalkpNX9tWz0FcO3xP1VKXVFKRZVS/6CUajCes5RSv6eU6rt2jP9eKaVu5fMrpfYopY4rpRaVUlNKqf/DeO4/K6UmlVILSqnDSqmtxnP24/tDpdSEUmpcKfVbt/Le5O7ANq3+lVLq+9fut13b128opYaVUjNKqf/hds4ruXuwzSqHUupfKKX6rx3T3yulKo3nn7j2meeVUmeUUs9+zlNM7iGPent+0ClawaqUagbwEoBTxr9fBbAXwBal1E4A/wnAdwBUAfgLAP+glCpVSrkB/ATA3wCoBPCfAfwXa7yPE8AbAIYAtAFoBPB3lmVdBPB7AD62LKvcsqxggdc+B+DfAvgGgPpr+/g722YvA/gSgJ5r2/3Stde2XGtsLWucgj8D8GeWZVUA6ATw98ZzPwPQBaAGwEkA/88an+1rAP45gK9e2/4ra7wXuQewTRdkP1an0Z4H8D9d69BJkcA2i3927fM+A6ABwByAf3/ttY0A/hHAd699vn8O4IdKqfAa+yL3GbbnBxzLsormBmAQwDKAeax+Sf8XAM+15ywAzxnb/t8A/lfb6y9htWN5GsA4AGU8dwTAd6/dfxbA6LX7+wBMA3AVOJ5vA/jQ9r+/MvbzHwH878Zz5QDSANqMY95vPP/3AP7FLZ6LwwD+NYDqm2wXvPY+gQLH958A/Kmx7cZr226439/1o3Jjm857n38F4PvX7rdd21eT8fxRAN+839/Zo35jm817n4sAnjce11/btwvAfw/gb2zbvw3gN+73d8gb2/PDeCtGz8arlmW9u8ZzI8b9VgC/oZT6Z8b/3FgdBVsAxqxr3+Y1htbYZzOAIcuyMrdxrA1YjXACACzLWlZKzWJ1NDV47d+TxvYrWG18t8JvA/hfAPQqpQYA/GvLst64NnL7EwC/BiAMIHdt+2oACwWO74TxeK1zQO4ubNNrcyf3Re4cbLOrtAL4sVIqZ/wvi9UknlYAv6aUesV4rgTAe5/r6Mm9gO35IaBoLQFrYDaUEcfRNAEAACAASURBVAB/YllW0Lh5Lcv6WwATABptvo61QuQjAFpUYcO1VeB/JuNYbeAAAKWUD6vTCGM3+yA3w7KsPsuyvoXVaf//DcD/d23//xWAf4LV6f0AViNVAFDIwzKB1R+O8HBOEzzYPDJtmjw0PEptdgTAi7bPV2ateiFHsBphNZ/zWZb1p3fgfcm941Fqzw80D5pgNfkPAH5PKbVXreJTSn1dKeUH8DGADID/TilVopT6VQB71tjPUaw2xD+9to8ypdSXrz03BaDpmnelEH8L4DeVUjuUUqUA/g2ATy3LGvyiH04p9d8opcKWZeWwOpUBrEZT/QCSAGYBeK+951r8PYBvK6W2KKW8AP7nL3pc5K7yULdp8lDysLfZPwfwJ0qpVgBQSoWVUv/k2nPfB/CKUuqXlFLOa8f8rFKq6Q68L7k/POzt+YHmgRWslmUdB/BPAfw7rBrhr2DVGwLLslIAfvXa4yiA/xLAj9bYTxbAKwA2ABgGMHptewD4BYDzACaVUjMFXvsugD8G8EOsNs5OAN+8leO/Zo5eXscc/TUA55VSy1hNwPqmZVlxAN/D6jTEGIALAD5Z6z0sy/oZgP/z2ue4cu0vKVIegTZNHjIegTb7ZwD+AcDPlVJLWO1v91573xGsznb9S6z6FUcA/CEe4Ovqo87D3p6VUv+1Uur8reyrGFH5dgxCCCGEEEKKC44ECSGEEEJIUUPBSgghhBBCihoKVkIIIYQQUtRQsBJCCCGEkKLmZgsHPJIZWblcDouLi/jwww8RjUaxfft2dHd3w+v13u9D0/T392PDhg33+zBuCcuy7sc6x+u23WQyibGxMZw+fRrDw8NobW3FU089herq6tt6s+9+97v44z/+49t6LSle7kfbTaVSllIK6h4sD55IJNDf348LFy5gZWUFTz75JLq6uuByFeOaMuRzck/b7vDwsO5zs9ksUqkU0uk00uk0UqmUfpzJZPJu2WxW/wVWr7+5XA6WZSGXy+nXJpNJfT+TyeRtI68tLS1FZWUlQqEQgsEgQqEQQqEQAoGAPs4DBw5gZGQEpDhZr89lr7QOXq8XR48ehc/nQ2tra1EJVvLFiEQieOuttzAyMoJwOAyPx4NEInG/D4uQeyJUgVWx+tlnn+HkyZPo7+9HIpHA7OwsvvOd7+Rd4AkhpBigYC2AZVmIx+M4e/YsJiYmUFVVhVQqdb8Pi9whLMvCkSNHkMlk8Pzzz6O5uRmVlZUoL38kVrcjjziWZSGZTOLSpUs4evQozp07h9nZWbjdboRCIWQyt7OaJCGE3F0oWNfA4XDA4XCgtbUVjY2NcLvXWpSCPIhEIhFs3rwZW7ZsQSgUQklJCRwOWrpJcXA3oqy5XA5KKSSTSRw7dgznz59Hb28vZmZmkEqlUFpais7OTpSWlt7x9yYPP+YMVSaT0XYA0xIg/xcbgGkJkOl9+99CVgKxDZj2AdMeIDfZPp1O62Nj7fkHFwrWAjgcDvh8Pjz22GMAgIaGBvh8vvt8VOROkEqlEIlE0N7ejp6eHgSDQbhcLtwrzyAhN+NutEO5oKdSKQwMDOD999/HyMgI5ubmYFkWKioq0NDQgJ07d8Lj8Xzh9wJWBbIIjXQ6jVwuB7fbrfvS2xkg3gmxYVkWlFLIZrOYn19d9drr9d5g+ZL3siwL2WxWiy8A8Pv9ed8T+w5gaWlJ3xcPq3z3yWTyBtFpispsNnuD8JS/so9MJoNUKqVfV2h72Z8pkhOJRF7AiYL1wYWCtQBKKZSXl+Ppp5++34eSRzweRzqdhmVZWFxcvN+H88CRyWQQjUZx7Ngx/Mqv/Mr9PhxC1kUurF9UDMlFPZ1OY3p6GocOHcLZs2eRTqfhcDjg9/tRV1eHbdu2YcOGDV/o/UQ0SOJqNBrF4uIiYrEYMpkMqqqq0NzcDLfbjfLy8s/1XrLvL4qcj8XFRZw5cwZKKXR0dKCtrS1vu2w2q+0Ti4uLmJmZwfz8PMrKyrB9+3aUlJTobWVG7lHGvCaZAt+edCUi1IyE2iOlZgKWPWJqF6vm9nbBmkgkUFpamvddUbA+uFCwPkCcOXMGV69eRSKRwOTk5P0+nAeORCKBwcFBHVUh5GHHjKxOT0/j3XffRW9vL9LpNHw+HyorK1FaWopAIIDm5uY7Uh0gm80iGo3i6NGjGBoawsLCAgCgoqICNTU1GBwcREtLyw2i714Si8XQ29uLy5cvw+v1IhwO37BNLpfDysoKRkZGcPbsWfT29iIej6O9vR0NDQ0Ih8NwOBw6YvuoI98zkC9YzWoBYgcQ0WmPlorwNMWobCf3zaoA5nYAdPRWqgokk0nE43E4nU59bBSsDy4UrA8QLpcLFRUVCAaDj/xo/nYQOwCrPZBi5k5HVldWVnD16lUcPHgQH3/8MRKJBCoqKtDc3Izl5WWUlpZi8+bN2Llz5xcWkJZlIRqN4sc//jHm5+ehlEJdXR2qq6tRUlKCeDyO3t5ejI+PY+PGjXdUsN5MOGazWSQSCZSUlOCNN97A5cuXsby8jPb29oKJZrFYDIcPH8Znn32G6elpKKVQWVmJbDaLEydO4MCBA/B4PIyuXmNubk7ft0dYRbiK/9QUrPboqilUgXyBaReo5v1cLgeHw5FXBisej2vLlyD7JQ8eFKwPED09PdiyZQuUUhgcHLzfh/PAIQZ+ClZSzNypaF0ul8PS0hJOnjyJ9957D+fPn8f09DQ2bNiA9vZ2xONx+Hw+bNu2DXv37r0jPv1sNoszZ85gcHAQlmWhu7sbW7ZsQUNDA3K5HC5fvoxcLndXkhxvdt4sy0IikcCRI0dw/PhxANCfv729/YbtP/nkE3z66aeYn59HMBjExo0b0dnZiePHj2N6ehrLy8uwLAtlZWV5EbxHlUKC1Uy+MgVroZtdhJoDN/luzb/mNvI60w6QTCbhcrngdDrz2gYjrA8uj7RglQYu9wX5MWQymbwIgDkyS6fTcDqdemrCNHXLj0NGfMlkEg6H44aRHrD6w7ZPV0iyQiKRwMLCAqLRKLLZLCorK1FbW4tAIMCqBbeJw+FATU3N/T4MQu4aciGfnZ3Fu+++i6NHj2JkZAQrKyvYunUrnnnmGUQiEbjdbtTW1qK7uxuhUAgOh+MLi+VMJqMXIWhoaEB3dzdqamqQSqWwsLAAy7IQDoexYcOGe7Y4genfPXXqFM6dO4elpSW0t7fjy1/+MjZt2lRQrPf398PpdKK0tBRNTU3o6elBOBzGwsICFhcXcfXqVXg8HtTW1qK6uhplZWX35PMUK7FYTN+XpCt7pHUtwQpgzcipCFYZ4Kw3OBAPayqVQklJCVwuF1wuV97giIL1wYWC1ZgKkvvSkeZyOSSTSQCrPxJ7QzcTAOxTSuLVkR+by+UqmDAgx2BOjWQyGSwtLWF4eBhDQ0OYn59HfX09fD7fHbmoPKpIhLWqqup+Hwoht40MhNd6LpvNYmZmBufOncPZs2cxNDQEANi+fTsOHDgAv98Pp9OJqakptLa2or6+Hi6X6454MbPZLGKxmBYVsVhM+8YlW7ulpeWerqaVTqcxMTGhF0mYn5+H2+3G9u3bsXHjRoRCoYIiaHl5GU6nE1VVVSgvL9cJQ21tbRgeHgYAzM7OIh6Pw+FwoKGh4Z58nmIlHo/r+3IdE/FolrOyR1XN6KoZFDLbo9gulFK6PJsdEbWFSmrRw/pw8EgLVuB6RNN8bApLadw3y061+2LkByli1dyXuY2M/sV8nkqlsLi4iPHxcVy6dAkTExO6PqLX66VX6gvg8XjQ2dmpl1/NZrNIJpOIRCIAgKqqKni93oKdoYz4zfOfzWaxsLAAl8uVV+ePkLvJWu0TWG2T4+PjOH36NE6dOoWBgQE4HA50dHRg//792LhxI2ZmZuByuRAIBFBTU6NLNNmnWG8Hp9MJv9+P2dlZLC4uore3Fw6HA7lcDj6fD8FgEB0dHTph6W5jWRaWl5cxODiI8+fPIxKJoKysDI8//ji2bNmCysrKNX20HR0dGB4ehsPhQCKRwMTEBJxOJzKZDJaXl3Vf7XA4EAwGH3nBavaB9hqoIhwL1VktdA02EZEq7cUM2ph/pVSZWVGAgvXh4pEXrCZKKTidTv0jupXanGtFO2QawpzKMKc+ZL8SYRUbwPz8PIaHh9HX14eJiQlUVFSgtbUV7e3t8Pv9XOP7C+D3+/GlL31JP06lUhgfH8exY8fg8Xiwe/dulJSU6DYg37/Zocp3KpnQFy5cgMvlYtUGcs+w90lmaZ/p6WkcP34cH3zwAa5evYpcLoeNGzfiiSeewPbt25FKpRCPxzE/P4+Wlha9aMadEqwulwsbN25ENBrF3NwcLl++rMVcfX09Ojs70dzcfE88nyJWR0ZG0NfXh8nJST1ofeGFF1BTU7Nuf/rkk0/C7XZjZmYG6XQac3NzUEphYWEBMzMzuh8vKyvjSohA3jkoJFglMFMouepmiVDS7xa62Z+XGct0Ok1LwEMG1Q+uR0NFqMiP7FYKaMfjcZ0paiJCNZvN3hCVs/+QJLNxZmYGAwMD6O3txfDwMEKhEPbs2YOWlhb4fD4a+78AZhFqt9utO7qLFy+it7cXXV1dKC8vzysSLt+RdKbSPnK5HGKxGI4dO4b3338f8Xgcp0+fvp8fjzzCSJudn5/He++9h48//hjj4+NIpVLYunUr9u/fj61bt+rI09zcnC7PVFVVlbdwxhe1BLhcLjz11FMoKyvDiRMnsLi4iHA4jI0bN2Lz5s2orq6+o4PutWwMUh3h4sWLOHr0KAYHB+FyudDR0YFXX30V4XD4hmQcO7W1tfjKV76C0dFRzM3NIRaL6YUWnE4nnE4nAoEAQqEQgsHgHftMDypinwOg25qZeGXWXgVwg3BdC9MGYLcIFHpe3tfpdBZMuiIPLhSsgBaW0vk5nU49vbGer0sSqWTKwZ5UZVlWwc5ZoqniG0skEohGo/jkk09w6dIlrKyswOfzYffu3Whvb4fH4ymYsEXWxkymk+LfQ0ND+Pjjj/Haa68hFAohkUjg8uXLyGazCAQC+hw7HA7dycmAw4y0plIpnDhxAocOHcLAwAAaGhoe+YQLcm+wl7wSn/3Y2Bg+/PBD/OIXv8D8/DxisRief/55HDhwAG1tbdoqMD4+jvPnz+PrX/866urqdPLmer7Yz4NSCn6/H8899xyee+65L7y/2yGbzWJpaUmXpIpGo3C5XOju7saLL76ImpqaW8oFKCkpQUlJCTZt2nSPjvzBxhSsco2zi1a5zgL5drybCVYgP4pqv2/6W03BWkisMsL64ELBeg27jymbzWJlZUWPpktLS29o+Llcbt11twtdAJxOpy6rFI/HdTbvW2+9hStXrmBpaQmhUAg7duzA1q1b4fP5KFRvg1QqpaOjlmUhHo8jkUggGAzq8zkzM4PZ2VmEQqEbIi4yaJHpUiGbzWJsbAxvvPEGFhcXEQwG0dPTk7csISF3A/uFVga7ly5dwqFDh3Ds2DEsLS0hk8ngtddew4EDBxAMBrXXOhqNYmhoCBs2bMDGjRvh8XhuGGDbfdrFjmllkM8Sj8fx3nvv4ciRI4jH46iursauXbuwZ88ehMPhPDsW+9Y7hylYzWRis0KAaQkAbr0mqvig7YJVFm6QGVKxIsh9Wc2NZa0eDihYbcj0ms/nu6GslYlZjiqTyXyuaa5cLod4PI5cLoeFhQV8+umnuhRMfX09enp60NPTo5cudLvdOlr7IF1M7ifyfYinaWxsDEePHs0Tlp9++imi0Siamprg9Xr14ESS3+S7lzYRj8cxPj6OH/3oR9oysrS0hJaWFly9evW+fE7ycFJITNkvuktLS7h06RJOnTqFvr4+zM3NobS0FPv378ezzz6LYDAIl8uFRCKB2dlZ9Pf3I5PJ4Mknn8wTq3av9u1e0M3i7/bjtX+udDqNSCSC4eFhTExMIBqNIp1Oo6qqChs2bEBXVxcCgcAt1VaV97Ks1RW9Lly4gOPHjyOZTCIYDOLJJ59ET08PKisr75j1gdyIWWrRFKZmBPROCUcRqCZmW5D3lJnP+7WiGrmzULDaMLP612vk5o/FFKsyJSG+VAB5XliZUpbkh97eXly8eBErKysIh8PYunUrtm7dqi82JSUl2vPDkla3jjnFmUgkMDo6it7eXpSWlurva2xsDAsLCygrK8tb11xsIQB0GZZUKoWR/5+9Ow+O87zvBP99+j7QDaAb932SAAjwFC+RMmXJsizJKjuKHCtbm4o9m+wmk81OqnZ2ZjLrmXJlktmtsStVWzuz693sJDMTuWJb6+zYkS3bGduyKIqkKN4AAeI+G0cf6PvufvcP4Hn0NggekiCxSX4/VSgC7Lv77ff9vb/n9/yehQW8+eabWFtbU8NPL7zwAvr7+3Hu3Ln780LpoXS777kMKmOxGC5evIhr165hdHQUKysrcLvdOHr0KE6cOIHq6mo4nU7kcjkEAgHcvHkTS0tL6OzshNvtvuU+gY3M5PDwMCKRCAYHB9Wog1QsFhGPxzE/P4+1tTW0tbWhvb29ZCGOO832ln9ns1kEg0FcuXIFU1NTCAQCyOfzsFqtCIfDql/rwYMHS/at8rVvN8Qr22ktLi7i7bffxvT0NNrb23HixAn09/er4He72+qD9Xw+j0QiAYPBAJfLxQTBB6D/rPSZ763zOD6KrScoW/unb/3RB67669GD6Y4B63bL1QFQWSh9Wl+/M5Cp+GQyiXg8rtL08gxc3q/X60VlZeV92zFsbafxYcnnLmdFykydzCTIGlc5aSedTiORSGBubg7Dw8OIx+OorKxEX1+farQtg+WtE8I4nHFvZECZz+cxMzOjaoP1y0EGAgFVLyxb++hrmYH3+wnKVkGTk5MIh8Ow2+2wWq3YvXt3SZkB0U7a+n2XnURGRkZw/fp1jI6OIhAIoLKyEgcOHMCBAwfQ0NCgrru+vo6lpSUsLy9D0zR0dnaqMia575OjEOFwGBMTE1hYWEAul8PBgwdRVVWFYrGIZDKJUCiExcVFjI+PIxwOw2QyoaGhAXa7HblcDvF4HNFoFF6v95aa7nw+j3Q6jVQqhVAohLW1Nfh8PrVMbEVFBaxWK0KhEGZnZ+F2u7F3796SICiXy2F1dRXZbBZCCLXYgcFgQDgcxszMDKampjA7Owuz2Yze3l709PSgqqrqjrWM8jiQTqexurqK6elpGI1GPPHEE3cs+aJSWwNWmbyRrcC2GzGQQ/334m4lHPpyLvkjJ86yu87D4Y6f4tbekjLTJ7N+ciOUDfJlJioWiyEajSIYDCIUCqn7khlC2Y+tubkZjY2N6OjogM1mU0Hv1qEleb8yGNT3L9XP6JdBhNVqvachABk862tiJBmEy+ewNaCWXx59v1UZsG7tF7c1WE8mk1haWsLIyAimp6dhs9nQ0dGBgYEBNTyt/4IZjcaSWh26O3mykEgkMDIygomJCTgcDuzfv1+9t/F4XNWpyrIL/fur794wMjKCGzduqM84k8mgu7tbZW54IkEfB/12lc/nEQwGcePGDZw5cwaBQAChUAgGgwGNjY1ob2+HEAILCwsqUFheXlblAvX19Whvb1d9g2UQJ2th5f5atqRKJpMwm81IpVJYWVnB9PS0Cn7r6+tVXX8ul1MlB6FQCPv27UNjY2PJSV8ymcTy8rJqtB+LxeByueD1elFVVQW32418Po/x8XHMzMxgcXHxln1dMpnEyMgI0uk0zGYzGhsb1YTZhYUFjIyMYGVlBdFoFPX19airq0Mul0MkEoHVaoXNZoPZbIbVar2l7lX/PR8dHYXJZMKxY8c+9oB1uyy0PE6kUikkk0lYrVbY7XZYLBZ1HJDkcSWTyaha0WKxiOrq6k98IujWoFAGjfoFdID3A8ud3GduPebKrKr8lxnWh8MdA9ZCoaA2Qv1qTDLIS6VSavg0nU4jGo0iEAjA5/NhZWVFZVddLhdsNhtcLpdqz5TNZrG2toZsNguXy4WKigpVoykztDKwjcfjWF1dVQFGNptVO6JUKoVoNIrm5ma0t7ejpaUF9fX18Hq9aiPebhhBnvHH43GYTCZYLBY1wUYGJGazWQUxVqu1pJ+qDEzT6fTGG6lrDSPPLPW9O+XfqVQKa2truHbtGsbGxhCPx9HW1obDhw+jtbUVTqcTZrMZNputpDZWFpKztdW9KxQKmJ+fx/j4uBrm7OjoKNlhypVR5PK5+kknuVwOS0tLuHjxIsbGxhCLxeD1eqFpGhKJBB5//HG43e5bDiJEO0nfo/nq1av4+c9/jrm5OVgsFrVftVqtGBkZgclkUllMo9GIQCCAeDwOj8eDgYEBWCwWVY8tT4zT6TT8fj9mZ2eRSCTg8XgwODgIm82G9fV1+Hw+zMzMYGFhASaTCY2NjXj22WfR2toKq9WKeDyOmZkZnDlzBkIIFSzK7FkqlcLy8jLGxsbg9/vR3d2N+vp6NDY2oqKiAmazGfl8HoFAAG63W32/tgas6XQaY2NjKBQKcLvd8Pl8SKVSWF1dxcLCgirVsVqt6OnpwcLCAiKRCNxuN9xuNzweDxoaGtRKd3I/kM/nEY1Gsbi4iKmpKaRSKbjd7jvua/XBrn65UX0SBACsVmtJdndrsCRHdPSz29PpNMLhMBYXF7GwsACv14vOzk40NjbCarWqk2YZ1ObzeXWSEY1GkclkcOzYMfT29u7MBniPtiaJ5GuSASSAD5RRvZ3b7Wu3KwXQ17HSg++un6LNZkMul1MbiVyiVAarMmibnZ3F2NgYpqenkU6nVeZKTmapqKhAbW0tqqurVTYrHo+joqICBoNBZUuB9wPCaDSKpaUljI2NqRn06XRarS4EvB+EyjP/3t5e9PX1oVAoqLpEGVTKADQWi8Hn82FpaQm9vb2oqqoqmYQgN3B9EbmUzWaRTCbV85TZ1Uwmo4Jxmd2QsyZlOw95IJmdncXc3Bzy+TwqKipw/Phx1NfXw2azqbNCoPSEQZ5d8+zw3sgyil/+8peYnJyEx+NBX19fSb/EdDqt+vTpbyN/v379Ot588034fD6YzWY0NTWhsrISS0tLaGhoQFdXl1qvmkX99HGQJ9CBQABnz57FuXPnMDk5CYPBgH379qGlpQWpVApLS0tqxTaz2YyVlRWEw2E1eiDrXmdmZuByuVTdaTqdxtTUFE6fPo1f/epXEELg5ZdfhtVqhd/vx9raGqamprC0tAQhBOrq6nDixAl0dXWp26+trSEWi6GhoQFmsxlOp1NNXFxdXcXk5CQWFxeRTqdV+U1HRweqqqqgaRpCoRCmpqZw7do1zMzMQAiBhoaGWwJGl8uFEydOYHp6GolEAsvLyxgZGVGlPdlsFhaLRS3ksbq6CrvdDpvNBofDgZaWFrXUqjzJlMu2ylKCQqGAuro6fPGLXywpndCP+Mm6TDnUvbi4iFAohHQ6jWQyifn5eVgsFlRUVGD37t2q7Z1+8pHBYIDZbFajh4lEAmtra5ibm8PMzAzm5+dVGVgqlcKBAwdw8OBBOJ1OrK+vY25uDvPz84hEIiWz4hOJhErmfNIB69Z6Y/keyWPadiUB93qiL+ck3GlC39YOAvoJV1vLFejBdMeAVW4g+ma/wMYH7nA4VA/AiYkJXLhwQdU+ydWCHA4HDh8+jObmZlRWVqqATNYLWSwWdZYve5ImEgmsrKxgcnIS4+PjWFtbQzAYRDabVUNX0WgUdXV1AICamhpMT0/DbrcjGAzCarXC5XKhqalJFc/rs6r5fB7r6+sYGRnBwsICLl++rArznU4nANySZZPZN3nmGwwGEQwGMTs7i3Q6ja6uLhWQy9cpz7JlUBuLxTA7O4vx8XFMT09jfX0dFosFzz33HLq6ulSwe7eZuvyy3RuZkZKfUU9PD44ePVpydi+3abld2Gw2pFIp3LhxA2NjY7h69SoCgQD6+/vx2GOPwWq14vXXX8fi4iK+8IUvwGazqZOauy3dS3Sv9IGRbH7/9ttvY3R0FOvr6wCAV155BceOHUNlZSUSiQQCgQDC4TDW19eRy+XgcrkwNjYGAOjr68PJkydx4MABdRIvM6vDw8N46623cP36dbjdbjQ3N8PlcmF6ehrxeFyVLB05cgQ9PT1obW1Vk0gLhQImJiYwMzODZDKJqqoqDA4Ooq6uDul0GpcuXcL169eRyWRQV1eHvXv3qmVZ5f5+eXkZFy5cwLVr17C2tqYCk127dt0SsNrtdvT19aG9vV2tBGiz2VQWs6amBgMDAyr5YLVa4fF4UFtbi7q6OtTX16uJaDLYvHnzJi5evIjp6Wlks1m0trbixRdfvGtduqZpWF1dxZUrVzAxMYFsNgun0wmTyYRAIABgY47G8vIyWlpaYLPZUCgUYLFYsGfPHtTU1MBsNiMajWJ4eBiBQACpVAqpVAq5XA5Wq1WdYFRWVqqAPx6PY319HU6nE06nE3V1dQiHw4jH4yVBe39//45vl3cjj5/ARmJH37+6UCiUzMvQB7TyOvr3+04dMgCoRIP8VwalNpsNTqcTDodD/Wu320ueGyfSPbjuWsMqv9ySbB1SLBZhMpkwMTGBt99+G+Pj48hms6irq0N/fz96e3vhdDpRU1MDu92uNkz543A4YLPZ1BdZrukuW5Jks1ksLy+rZf28Xi+cTqfKNMoVi2TwZzAYEAqFYLFYVB2P3W5XwXYmk1FLEi4vLyOXy8Hv96sG/pL88hgMBmQyGYRCIfh8PnVQWFlZUaUMsVhMzUytqalRXxCPx4Ndu3bB4/Go4bzp6WmMjo5iYWEBsVgMFosFBw8eVP0Q9QGr/PLKv2WmlUPP904Igddeew0+nw8tLS1qe9Sf1dtsNlVTFwqFMD09jXPnzuH1119HU1MTqqqq8Morr2BgYACRSATvvPMOFhcX0dfXh2PHjpXUXXMnSDtJBnMXL17E5cuXMTU1hfX1dZhMJnzlK1/B0aNHVabQbrejqqpKDSefPXtWZQuPHz+OkydPYteuXaioqFCZSOYBOwAAIABJREFUuFQqhenpabz77rtYXFyE0+lERUUF6urqsLa2huXlZRSLRXR1dWFgYEAFqjLokLXhN2/eRCqVQmVlJWpqauD1elEoFPDOO+/g3Llz6oReTih1Op3qpDyRSODKlSu4ceOGCvLkPISenp5th3FlXfl7772H6elpCCHQ1NSkgvLa2tqS0TJZzrW15CsQCODdd9/F5cuXEY1GYTAY0N7ejmeffVYlQ7Z+HvqRv5GREayvr2NmZgZGoxFtbW1oamqC3W7H2tqa2s/LMjb5nslJoM899xza29sxNjaG1dVVFItFlQmPRqMoFotYX19HRUUFqqur1fB6R0cHnnjiCVRWViIUCmFkZARLS0vIZDKw2Wyora3F8ePHcfDgwY9r07wtl8ulfpd9sOV7l8/nkc1mS1a5kgmdrfT7Un0phb4O1mAwqGy6HEUwm83qWLr1R9+ph/vqB9cdA9btaniEEKoQP5VKqR2HPCseGhpSPfTkmY/dbi+Z7S435GQyiVQqhUgkgvn5eUxPT2N6ehpra2vqi9rb24vu7m40NDSoAEF+qWdmZhAIBNSwSm1tLZqamkq6Dsi6oEgkgng8jlAoVBJ0VlRUoKKiQg3ZyLO/aDSK5eVljI+PY3R0VGXh4vE4IpEIhNhY0UV+EX0+n9pZy9mmDQ0NaG1tRTgcxpUrVxAIBJDNZuF2u9HT04PDhw+r90l+wfW9Vk0mkxpaA96fCMZ6nLsLh8MYHh6GwWDAwYMHsWfPHlVLLMmd2NmzZ3Ht2jWsr69jZWUF6XQag4ODOHHiBDo7O5HL5TA1NYXr168DAE6ePKmGC7cbgSD6KPL5PCKRCE6fPo3x8XEsLS0hm81i165dOHXqFI4dOwaXy6Xq5vWzoaPRKKamppBOp7Fr1y4cOHAAXV1dcDgcJV1crl+/jitXrsDn8wHYCDbkxKdMJgOXy4X+/n60t7erk3F5wixbW8l9msfjQV1dHdra2mAwGDA+Pq4WMWhsbERfXx+6u7vVCJuceOvz+TA/P49wOAyj0Yiqqiq0trZiz549t+3Bms1mMTY2pjoVtLe348iRIxgaGlIrd+nnLsj+1fqe2alUChcvXlR9mW02mxpFaW5uLmlrJ+VyOVXnevHiRQQCAXi9XrS1taGhoQGNjY2orKxEMplEIBCApmmwWCxobGxEV1cXrFYr1tbWMDk5ibm5OZw/fx6tra2oqKhAR0cHisUi/H4/FhcXVVuvtrY2eDweNDU1oampCTU1NarmNxwOY3R0FHNzc6p/98DAAPr6+tDW1lbSauyTUlFRoX6XZXhy7ovMgMq5HPI4K4NQfYZ1a2sq+X8ASo6NciUyi8WiTkpkZrWiokIlkCoqKkreD45SPrjuGvnoJxrpW1LJGk05BFVXV1eyXrQcKtXfXi5lqq9ZXVpawuTkJGZnZ+Hz+ZBMJlFZWYmuri54PB50dHSoNikyUF1dXcX6+jrGxsagaRpqa2ths9ng8XhQU1ODmpoaVTejn8AlG1X7fD5Eo1FYrVYMDQ2hsrJSlTfom2zfvHlTtZ+SQ09ydqqc2ZrJZGAymVRDelnuEAqFsLS0hGKxiOnpaczOzkLTNLjdbrS2tmLfvn2oqamBzWZT78nWrgNy2Ey+7/qdMd3ZzZs3sb6+jra2NlUvt/W9a29vV9ueLGNpbGzEU089hZMnT6K1tRUOhwPXr19XE0a8Xi+GhoZKPjP9utZEH5Ucar5x4wZisRgcDgeamprw6U9/WrVR0w+lyuxfNpvF1NQU/H4/2tracOrUKfT19akTeFmzubS0hOHhYczOziKZTJZsxxaLBW1tbWpSlNvtLpmdLmfqT05OIhAIqNZWsrvJ8vIyzp49i2AwCIfDgV27dqGzsxMul6skaAwEArh27RoikYgKlpubm9Hd3Y2WlhZYLJZtJyhFIhGMjIwgl8uhqqoKe/bswcDAgKoT3fq+SHIfGgqFcPXqVVy6dAnz8/Po7OzE3r17VRbZZrPdMopVLBYRCAQwPj6OqakpzM/Pw2q1orGxUbXNkpnj9fV1GI1GuFwuVFVVwev1oq6uTn1Gi4uLCAQC6r1wOp2Ix+Pw+/1YWlpCMBgEADQ0NKCzsxMNDQ2orq6Gy+VSiR85EilPTAYHB9Hf34/u7m7U1tbet9UR9UGhTP7ILj4Wi6VkqVTZXWhrfLBdJnVrsCqTZrLjg/yRtcoyqyqDVhm46p8bPZg+UKpua5NeOZnIYrHAYrHA6XTC7XbfsiZ7Op1WQZgMyBKJBJaWlnDjxg1MT0/D7/er7GNnZyf6+/vh9XrV6iT6L7WcHZpOp+H1etUs2draWlUvqx9uyOVyiMViWFlZwcLCAvx+PwwGA3p7e7Fnzx7Y7XakUik17D83N4fR0VFMT0+rs8aamhrU1taqnoGy+bbMSIRCIcRiMdV+y2w2Ix6PY25uDlNTU4jFYvB4PKivr0dvby9aW1tVkKSf0ahfW1lm7eQSo/ovMt3Z1atXkclk0NfXh6ampm2D/UOHDiEYDCIWi8Fut8Pr9aK9vR179+5FfX09hBBIJpNq0p/ZbMa+fftQV1entq/t+jsSfRQ3btzAO++8g+XlZXi9XnR0dGD37t04dOiQGmXamkXM5XIIhUKqbrW/vx9DQ0Pwer3qxLdQKCAcDuPSpUuYnZ1FKBSCpmlwOBywWq2orq5GT08Purq60NTUVLIctbx9JBLB8PAwFhcXYbVa0dnZiZ6eHtTV1SGTyWB4eBiTk5MAgI6ODnR1dcHlcpUkDmKxGG7cuIFLly7BZrOhubkZHR0daG9vR11dXUlHFr1CoYB4PA6fzwej0Yju7m7s3bsXjY2Nt0xK1e8rZTC/vr6usr/T09OwWq3o7+/HgQMH1D5iu9n86XQac3Nzqs7WaDSqSZcyuJbHtHw+D4fDgc7OTlRVVaGyshKFQgF+vx9+v1/N3WhqaoIQAoFAANPT01heXkYkEgEAtLW1Yffu3ejo6EBlZaVK/mQyGfj9foyMjGB4eBiJRAKtra04fPgwuru7UVVVBbPZfN8m527NYsrP3Gq1qgmuW3u764NW/fPeWkK4NYiVk6K3Bqv6H33gyoD14XDXgHVrX0r96kGyjtVisSCRSCAUCiGRSKggTHYD0PdTzWQyKBaLWFlZUcXuyWRSZbfa29vVzEoZ+MbjcTU8v7CwoGbXd3d3q0yXzWZDZ2cn2tvbVV2sfO6JRALz8/NYWVlBLBZDoVBAQ0ODmiAg64Xm5+fVDM1gMAhN02Cz2dDY2IihoSG0traisrJSDW3IYneZbdYPDTc3NyMSiWB5eRnRaBRGoxFNTU2qvleuuCTPLOVkNX3gKltryVYm7MN674aHh9VQX319fcl7LXd8hw4dgsfjQTKZVLXHsr1aLpeDEAJra2u4efMm/H4/ent78cwzz6huE3KnDHB9ato5w8PDqnl9U1MTHnvsMfT19d2SQZSBa6FQQDQaxfj4OGZnZ9HQ0ICBgQE1fCyvn8lksLCwgLfffhupVArr6+twOBzwer1obm7GwMAAhoaGbulWot9/y3pvmYk9ePBgSfB17do1ZDIZeDwe7N+/H06nE5FIRJU2hUIhhMNhnD9/HnNzcxgaGkJ7ezv6+vpQW1sLALc9CZSjTnV1daiqqsKxY8fUhFV9UKPv9gFALYowOTmJK1euYHV1FSaTCY899hgOHz6M+vp69T7Jx9eLRqPq2GAymdDZ2Yne3l40NzeXzKkoFouqK059fb2aN+Hz+UoWZJClYkIIXL16FZOTk8jn83C5XKrFoexAIt/7TCaD1dVVDA8P4/LlywgGg2hpacHx48fR09OjPmt9lvKTpp/YJPeN2WxWHcdk/3b5fsljnb71lT7br/9X/yM7LOiDVbvdXhKk6oNVlgQ8PO4pwyqb/ssvsgyc7HY7qqur1ZnjysoK5ufn0dXVpTIBWw/ohUIBa2truHz5Mubn5wFs1L7I4ZWOjg7V21JmRicmJtSa05lMBo2Njeju7lbtrQqFAvr7+0tqmGRGIJvNYmRkBCMjI2p1lp6eHhw5cgS7du1CPp9HLBZTNYozMzOIRqOw2+3o7u7G0NAQ+vr6UF1dXdK6yGQyobKyUmWGTSYTKioq1CxPi8WChYUFpFIpNYN1aGgI/f39JT3+CoUC7HY70um0ak8iJ2rpV+iQARcD1nsTjUaxZ88eNDc3qx2lfC/lgdhsNqttAHi/l66+Znh8fByBQAAOhwPt7e1obm4uGdqSE+PYH5d2imzB1NTUhFOnTqG/v78k67h1pEu2pnr99ddhs9nw+OOPY/fu3eogLYdmk8mkqhuVJ2/V1dUYHBzEkSNH0NXVpR5ja+9QuY1XV1erIFMmB+RIRCwWQyqVAgC0tLTAZDJhdnZWLUIgV8uqqanB+vo6PB4P9u3bh127dqGyslIF4TIjvJU8Af2gM+ATiQRmZ2dx4cIF+Hw+1Z3l+PHjqu+1frh5KznXIp/Pw26349ChQ6oHrQyQDQYDrFar6hYge8/Ozc1haWmpJGlx4sQJ1V4vEokgGAyipqYG+/btw4kTJ+DxeEpm2Msys9nZWVy8eBGRSAQWiwUvvPACenp6SlpH3c+JubfLsMrMulyhTE4gk0kl/eqC+kAVeH871AeuMhkmJ23LRYO2lgLIDgHyOvrnRg+mewpYt+sx6XA4UCgU0NfXB5/Pp2b5X7lyBblcDgMDAyV9WOVKIpOTk7h+/Tp8Pp+atdrd3V1ShyQnLs3OzpYMwzgcDtTX16vhWqPRiObmZrS0tJTUSMkveSwWw9WrV/HWW28hFArB6XSio6MDx44dQ0dHBywWCzKZDK5cuYKRkRGEQiE1hNHV1YXPfe5zauanPsAE3m/mLYd7QqEQHA4HqqqqEA6HVU/BfD6P3bt349SpU+js7FSvGXi/PRiAklVJ5GQ1+Tj6QnMGRvfmi1/8Ih577DG1Is92O3N5cqBf5UoemGUgcOnSJSwvL6uTF/n+53I59ZlxB0g76Td+4zeQSqXUgiv6bCdwa09KORG0tbUVTz31lJpgqC8l0q/w1NjYqJrvP/HEEzhw4MC2M+PlY8muKWazGV6vF08//TSAje+P/rsl5wIAwLVr13Djxg0YDAZ4PB41QdVsNsPlcsFsNqvZ/pOTk6irq0NDQwMMBgN6enpgtVrV4gMf1c2bN3HhwgVVq37kyBEcPXr0lmAVuP1IicyWWiwW3Lx5U03Ara6uVvsEGaSurKxgeXkZiUQCmqahqqoKu3btUovaeDwe9TgvvPACPvWpT8HlcqGurg5ut7uklEH+m0gkEAwGEY1G4XK58Mwzz6C3t7ekNZT++d+PoHVrUKifXCWfk2z5KANWfeCqL43TB6fb/chyAH1Aqi8FkL/r557onxs9mO4YsEajUaRSKRUobbdihxyWeOedd1RtaTAYRDwex4EDB9QXKpFIYGJiQtXemM1mNDQ0YNeuXWhtbVVZ1UwmozoALC4uwu/3l2RnZWsMIQT27NmjzkYleWaXyWQwNzeHt99+W91Ha2srhoaG1FCOpmkYHR3F+Pg44vE4rFYrmpqa0N3djd27d9+SVZXL0cp+rLKe1mQyqYL9xcVFXL16FSsrKygWi6ipqcHx48fR3d1dklmVBxy5E5f3rV/OTrbn0rdk4Zft3vzmb/7mPddy6duIyRORYrGIcDis6sq6u7tx8OBBta3JzBLw/mo1RDtBTtK51+96a2srWlpa8MILL9yxptpiseDzn/88hoaGkMvlSur/5f7odrOy9WQPbn2JmNlsRnNzM1566SX85Cc/UQmJmpoatLS0oKGhAZWVlWhqalIN9q9fv45IJKJG8KqqqtDZ2Qmv17ujE0z1AZEcdq+oqNh2YtfWwA8APB4PGhsbYbPZMD8/D4PBgNXVVdUlwG63I5FIwOfzYXl5We0Pmpub1ZwFOTFY7mPka+vt7VVtr/QJF/3EJE3TSk44YrEY3nzzTYTDYWSzWdTU1KCrqwt1dXXqNd2PTjL6gHVrYkW+HjmSKH9k9l+/PW3NtMrRXf1Sq7I7gGyDJgNWmW2V2VcGrA+XO27Vk5OTeO+991RBusfjKanbkcum1tbWYv/+/XC73WpJ1uvXr6ulRnO5HCYnJ9VqVUajER6PBwcOHIDH44HJZFLDRtFoVK2cYrVasWfPHty4cQPhcFjtVIvFItra2lBXV1cSSMsAMJ1OY2lpCRcuXFBnuUNDQzh69Ch6enpUZiwSieDmzZtYXl5GOp3G7t27cfDgQdUGZrsWXMvLy5idnUUqlYLNZkNrays8Hg/MZjMWFxdV2xJg40Dymc98Rk080A9Jm81mpNNp1WBZ32hZBtzA+3W/MqDil+3e3GsmWj/RTb+DLBQKOHfuHCKRCA4dOoTHHntM1YnJiXUAVMsWfi60kz7I9qTPRt3tejabDV1dXWok4cNO0Nn6WHK0aO/evfB6vUgmk7BaraoHpgwa5HD/Cy+8gL1798JoNKpm7263G06nU7WM2yldXV2wWCxqiVrZU/ZeEwBOpxMHDx6EzWbDtWvX1MqNsVhMTbTNZDKwWq3o7e2F3W5X7ahktk+fydUHrFuz5/JyPVm60d/frxI/ct6FyWSC1+tVI3cf5TP9qPQ1rPoON/I1CCHU0sAyQaPPtm7Nouonbut/9BlW+aMPVGW5gL7dFUcmHw53DFhv3ryJ0dFRzM7OqprN+vp6tS6zw+FAOBxW2UD9hlJbW1vSGUD2bZWB2cDAAPL5PObn5zE3N6eWUpU7LNkbdWRkBKurqygUCqivr0dHRwd6e3tLWmfpM13JZBILCwu4cOECJiYmIITA4OAgHnvsMXR0dKilYPP5PILBoGo9VV1djebmZni9XgghVMCYTCaRTqdVfVY6nVYdCVwuF6qrq5HNZjE/P4+RkRHMzc2hWCzC5XJhYGBAZVZl3zh97aO+RklfAgBALdun71cnv9j88u0s/RCcfP8NBoPKknd0dKCxsVHNxpb10VtnrxLthJdffvl+P4UPRX539KNg+vZv+u+JLPvaGpTog7edyrDKgFJ2tNF3P7gTfYCZy+XUKlOyHj6fz5csRiJLJ0wmk5oMJOvi9Y+nr9e825wE/XC6XPhGLizgcDhUMKtvjyj97d/+7Yd5uz40fVmbfmKg/kdOINb/bBewAijJqMof/cpWMt7QT7ySJ0ZyVFL+zt7lD4c7fopyA5DN+eUKHk6nE01NTfB4PKpbgKzpAYCqqio0NDSosxu5rKqs+ayoqEA2m8Xs7Cz8fj/GxsZgt9vR0dGBjo4OtVrJ2tqa6iLQ1NSE3t5eVQtks9nULEo5gz6TycDn86k+gZqmoaWlBYcOHUJXV5ea4Q9AzayV3QBkgBiNRtVOIZVKlUx2yOfzMJlMqKmpQXNzsxriuXLlCiYnJ7GwsIB4PA6Hw4Guri50d3erM1/5BdLvUORZqJzVurWOUk680u/IGRztPLlzBd5fllfWZBeLRXi9XtXGDHi/nGO7gxHRR/X973//fj8Fog9MnxnfrtRCZljlRKytpQFbM6vyd/3CGPqAVZ9hlUGr7L6z3Q89+O74Kfb39yOTyWB2dhbRaFQNiycSCWSzWSQSCWQymZJg1Gq1orKyUjU7lrWiLpcLLpcLuVwOFRUVatUnv9+vzlTl7WpqaqBpGqanpxEMBlFZWYmBgQHs2bOnZMUrOalA1vnIZVKnpqYAALt27cLAwAB2796tCv31Z36yVlS2pZJdCGRzbZ/Ph66uLrWSiZwEUV1dDY/HA6PRiFQqpdrJyDKGpqYmDA4OqtZc8ixxu4yBfB5bfwfe7zfHgOjjp6/dE0IglUohEAjAbrfD7XarEhF9jRsz3UREG/R1ovrFbvSTq/QZ9a1ZVn2AurV+dWvAKnu/y2BVP/yvv952x96dytzTJ++OAWtrayvq6+sRCASwvr4Ov9+PlZUV1Wzd4XAgk8kgmUwikUigoqICtbW1qK6uVlkpeebU3d0Nu92usqoy4Kuursbhw4fVY8nVPILBIObm5lBbW4vdu3djaGhIBYAy4JRDSjIrJoNXu92O3t5eHDt2DB6PB3a7vaSuR9ZytbW1obe3V5UcLC8vw+/3q5mMfr8flZWVqK2tVRMG3G53ybKcMrMcj8fV5KsDBw6oVljyy6LvO3cn8suqLxNIJpOq/EGWFtBHJzs+6Gdcm81mtXyjpmno7e1FfX39LZNA9GfsbDdGRET08bpjwCrXuZcZT3mWlMlk1EQgOQMzm83CbDajoqJCDaPra2pcLpdq1i/XGQaghsq3TijyeDz4gz/4A2SzWVUisF1GS38bp9OJ1tZWfPazn1UlA/rspf42Mmh96qmncOXKFayvryMcDgMA6uvrUVtbi6NHj6Kvr081lJdBsT44sVgsKuCWM1D1ywQWCgX1XACo91AGoFtttya9vr8ds3o7Z2uQKU945IQGs9mM48ePo6GhoWRi1tY6YnYIICIi+ngJHmyJiIiIqJyxmIOIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDViIiIiIqawxYiYiIiKisMWAlIiIiorLGgJWIiIiIyhoDVgBCiP8ghPjTzd+fEELc/JD38y0hxL/Y2We37eP8cyHE//NxPw7tvAdtW/ughBBvCCF+e6evSw+2h2G7F0K8KYT4nfvx2HT/PQzb8IPOdL+fwL0SQswCqAdQAJAA8AaA/17TtPhOPo6maacB7L6H5/MVAL+jadpJ3W1/byefy+1omvavP4nHeVRxW/vwNE17bqevK4TQAPRqmjb5oZ8Y3RW3+5LH/jqAHk3T/utP4vFoZ3Abfrg9aBnWFzVNqwBwEMBjAL629QpCiAcmCKeyxm3tAcHPYUdxu6cHHbfhh9SDFrACADRNW8LGmdMgsJGBEUL8gRBiAsDE5v99XghxRQgRFkK8I4TYK28vhDgghLgkhIgJIb4LwKa77EkhxKLu71YhxN8KIfxCiKAQ4t8KIfoBfAvAcSFEXAgR3ryuGjLY/Pt3hRCTQoiQEOKHQogm3WWaEOL3hBATm8/x3wkhxL28fiHE14UQr27+3rF5X78thJgXQgSEEP/zh3lf6Vbc1sTXhRCvCSFe3XwN14UQu4QQfyyEWBNCLAghPqu7vho2FUJ8RQjxthDim0KIdSHEjBDiudtct0cI8SshRGRzG/7u5v+/tXn1q5uv/8vyfRNC/FMhxAqAvxJCDAshXtTdt3nzfg7cy+ukUo/ydi+E+ByAfw7gy5uPfVV3cbsQ4szm6/qZEKJGd7tjm+9DWAhxVQjx5L2+37TzHuVtePO2BiHEPxNCTG0+p+8JITy6yx+47fWBDFiFEK0AngdwWfffXwRwFMDA5kHqLwH8dwC8AP4vAD8UQliFEBYA/xnAXwPwAHgNwK/f5nGMAF4HMAegA0AzgO9omjYK4PcAnNU0rULTtKptbvsUgP8FwG8AaNy8j+9sudrnARwGsHfzes9u3rZtcyNq+wBvy0lsDFE8DeBfbn5Z6CPitgYAeHHzNVRvvg8/xca+oxnAn2y+5ts5CuAmgBoA/wbAv7/NDvdfAfjZ5mO0APjfAUDTtE9tXr5v8/V/d/PvBmy8p+0A/lsA/wmAfvj2eQDLmqbpPze6R4/ydq9p2k8A/GsA39187H26i/8rAF8FUAfAAuAfb95fM4AfAfjTzdf8jwF8XwhRu93rpo/fo7wNb/rDzdd7CkATgHUA/27ztg/m9qpp2gPxA2AWQBxAGBsf6v8BwL55mQbgKd11/08A/2rL7W9i44P7FACQlyd7AAAgAElEQVQfAKG77B0Af7r5+5MAFjd/Pw7AD8C0zfP5CoC3t/zff9Ddz78H8G90l1UAyAHo0D3nk7rLvwfgn93je/F1AK9u/t6xeV8tusvfBfDK/f7MHtQfbmu3bGt/r/v7xc33xrj5t2vz/qs2/34TGzVb8nlP6m7r2LxuwzbX/U8A/m/9dqy7nYaNekL595MAsgBsuv9rAhAD4N78+/8F8E/u97b0IP1wu79lu391y/+9CeBrur//IYCfbP7+TwH89Zbr/xTAb9/vz/VR+uE2XPI4owCe1v3duHnfpgd1e33QMqxf1DStStO0dk3T/qGmaSndZQu639sB/I+bZx/hzVR8KzYOak0AlrTNT2jT3G0erxXAnKZp+Q/xXJv096ttFH0HsXH2Ja3ofk9iY2P9sHbyvojbmt6q7vcUgICmaQXd37jD/anH1TQteYfr/hMAAsC7QogRIcQ/uMtz8mualtbdtw/AGQC/LoSoAvAcgG/f5T7oVtzu7+x299cO4Etb3o+T2AgS6JPFbXhDO4D/T/faRrExGa0eD+j2+jAVHus3rAUAf6Zp2p9tvZIQ4hSAZiGE0G2MbQCmtrnPBQBtQgjTNhujts319XzY2Cjk4zqxMeywdJfbUfnjtrbDNE1bAfC7ACCEOAngvwgh3tJu3xlgu/fkPwL4HWzs185qGzVstHMepe3+bo+91QI2Mla/uwOPTR+fR2kbXgDwDzRNO7P1AiHEA7m9PmgZ1nv1FwB+TwhxVGxwCiFeEEK4AJwFkAfwP4iNiRkvAThym/t5F8AygP918z5sQogTm5etAmjZrHXZzt8A+KoQYr8QwoqNmqjzmqbN7tBrpPLAbW0HCCG+JIRo2fxzHRs7+uLm36sAuu7hbv4zNmYG/yNslBjQx+dh3+5XAXQIIe71GPkqgBeFEM8KIYybr+NJ3TZN5edh34a/BeDPhBDtACCEqBVCfGHzsgdye30oA1ZN097DRrbm32Lj4DeJjVoSaJqWBfDS5t8hAF8G8Le3uZ8CNmr2egDMA1jcvD4A/ALACIAVIURgm9v+FwD/AsD3sbExdwN45V6ev9gopo6LDzbpiu4Dbms75jCA80KIOIAfAvhHmqZNb172dQD/cXPo6jdudwebQ3/fB9CJ27zPtDMege3+tc1/g0KIS3e7P03TFgB8ARvdBfzYyG79T3hIj7EPg0dgG/7fsLEv/ZkQIgbgHDYmnD2w26soLdEgInpwCSH+JYBdGhu+ExE9VB6mGlYieoSJjR6D/w2A37rfz4WIiHZWWad/iYjuhRDid7ExrPWGpmlv3e36RET0YGFJABERERGVNWZYiYiIiKis3bGG9fXXX9cWFhawa9cu1NfXw+12w+l0wmw2w2KxwGw2w2g0flLP9UNrb2/H/Pz8/X4ajyxN0+5p7eOdfthIJILXXnsNDQ0NOHjwIJqamu5+qzKytraGqqoqmM1miHtbPvpDOXr0KN59992P7f4fZPdj252entbeeecdrKyswGAwoK+vD0eOHIHH44EQ4mPdFuijuXnzJvr6+u730wBwX7bdHR+u1TQNhULh7lfUXX99fR03btzA7OwsHA4HHn/8cdTV1UHTNAghNlZMMhiQSCQwPDyMy5cv4/nnn0draysAlHzHDAYDDAbm9T5ht91u7xiwDg8PY35+HtevX0dNTQ16e3vR39+vglez2bzzT5Voh7jdbiwuLsLpdD5wO51kMonvfve7eOGFF9DS0gKL5XZt/Ohh84Mf/ACRSAT5fB6FQgFGoxFutxuHDx/mdkCPrEKhoPbjMvCUQWihUICmabhx4wb+5m/+BouLi/B4PBgcHMTS0hLq6+uRz+dhMplgMBiQy+Vw/vx5nDlzBg6HAzU1NepxZJmkwWDgyWGZuWPA2tDQgEAggEAggOnpafh8PgwPD6OzsxOHDx/G4ODgA5FhpUfT/Pw8jEYj7HY7TKYHqyGGzWbD8vIycrkcWGf+aAmFQkgkEjAajcjn81hdXcXs7CyGhoYYsJY5fld3nqZpKBaL2waQMmA1GAwIBoN49dVXsbS0hOPHj2P//v1oamqCx+MBABWsFotFLCwsYGZmBk6nE5/97GdhNBrV4xiNRhSLG2uWPGiJjofdHY/iQ0NDcLvduHbtGqampuD3+xGPx5HJZJDNZtHR0QGLxcKzECpLMkvldDrhcDju99P5QLLZLGKxGDKZDA+Cj6BsNguLxYJisYhUKoVQKIRIJAK3232/nxrRJ06fXZVkhlXTNCSTSYyOjmJ6ehp79+7F4cOH0dvbC4fDoU78ZLCaSqVw/vx5LC0toaOjA83NzTAYDKpUQNM05HI5jiCXoTsGrJ2dnaitrYUQAolEQn2I+XweY2NjWF9fR3V1NQNWKksrKyuIRCIwGo2w2Wy3vV42m0UkEkEul7ulzlWedcuz+E+KPCmUQ1306KiqqkIwGFS1e4VCAdFoFKFQCK2trSqrROWHn8vO227/J/9PCIF8Po9AIIDz58+jsbERjz/+ODo6OuB0OtX19d+lhYUFXL58GWazGS0tLTCbzSqDazQaP1DNLH2y7hiwyqHUoaEhRKNR2Gw2GI1GVFZWwu/3I5VK8WBKZalYLOLGjRtYXV1FMplUO6StcrkclpaWcP36dWQyGXzpS18quTwcDiORSMDhcKihpXuVy+UQjUZVWYLVar3n2zJQfXS1trZidnYWuVxOHUATiQT8fv/HGqwyEKZyIzOoJpPplm1T1rEmEgmMjY3h8uXLePnll7F//364XC51eyEELBYLCoUC8vk8Ll68iNXVVRw6dAjd3d23ZFKFEDCbzSrbyu9E+bhjwGo2m2EymVBXV4dPfepTOHToECwWC9xuN3K5HGpqaljDSmVpfX0dkUgEQgik02kkEglUVlaWXKdYLGJmZgZvvPEGrl69is7Ozlvu55e//CWGh4exf/9+PP/88x+oFnZhYQGvvfYaPB4Pjh8/jsHBwXu6naZpiMViKBaLiEajyOfz9/yY9OBzOBxwOp1Ip9PIZrMqyx8KhZDP52E2m0tOZrar69vu/7e7jrzvYrGIfD4Pi8UCo9HIgzSVBSFESYyxtZ41l8thdXUV3/nOd+D1evHEE0+guroaAJDP51EsFkuCzkwmg/PnzwMAmpub4fV6VWZVlgzIETUqP3c8+sqDs9lsZu0UPVB8Ph8ikQjS6TQqKirUGbfeuXPncPr0afh8PtTV1W3bjiaTyaCrqwvNzc3qvu5VV1cXfv/3fx/hcHjbx78dTdMQjUbh9/tRV1f3gTKz9ODzer0A3p/wkclkEI1Gsby8jFgsBpfL9ZHq62TWqlgsIplMIplMYmVlBRMTEzhy5AhaW1u3PWB/ktkmZrZI0m8LsjQrn88jn89jZWUF58+fR11dHb785S/DbrerjKwMdOXJWaFQwNTUFFZWVvDkk09icHBQlQPorysDYf19UHl4sKZOE90jm82GQqEAl8t1y8zqZDKJH//4xzhz5gxqa2sRi8XQ3t6OU6dO3XI/X/rSl7C8vKzO1D8ot9sNl8v1gQ+++p0sSwMeLfX19bBYLMhmszCZTKr+em1tDYFAAJWVlXcN6O52WTabVT0oA4EAMpkMCoUCPB4PGhsb1Yzqj5O+LRGDU7odeXIlS2SAjf1iPB7HyMgITp8+jZdffhm7du1Sw/j6EjBN05DJZJBOp/Hee+/BbDajtbUVLpcLqVRKnfzJrK3svfqot7XK5/MIh8NIpVKw2+2orKy87xPRGLDSQymfz2N5eRkmkwmJRELVki4uLuLs2bO4du0aOjs7sbq6qoZCt8tkmkwmNDY2QtO0D322/UF3esViEfPz8ypTwNYqj5bKykpUVVUhHo+rXqxy5vLS0hI6OzvvuE3oM0a3o2kaJiYmMDExgWg0qrbRmZkZHD9+fNvSl506eOsDVfm73kfd3pmdfbgUi0WsrKzgV7/6FZ566ilUV1cjn8/j8uXLOH/+PDo6OjAwMKDqTmW9q1x0IJ/PQwiBcDiMN998EwcPHkRnZ6caqRBCIJPJwGq1lpQQPOo1rD//+c/xq1/9CtPT06ioqMBXvvIVnDx58r4+Jwas9FCqqalBOp1GOp3GmTNn4PP5VE2oz+fDqVOn0NzcjB/84AewWCyoqqqC3W5XzaX17kcP13g8joqKClWHRY8Os9mMmpoaLC4uqv/L5/PIZrMIh8O3ZPu3HlDvFvAVCgWk02msr68jFoshnU4D2Aj0gsGguv+dPljL+8xkMkilUmpSYiqVQrFYhMlkgt1uR2NjI6xW6y1Duvf6XB7VAONhJLOl+XweV69eRSwWw8mTJ2E0GjE9PY1MJoNPf/rTcDgcat8tZ/nL28rtbmZmBoVCAYcPH0ZNTQ2EECX1sHJio8VigcPhgMPhKJnwJbdDme2V7bRWV1exvLwMv98Pr9eLAwcOoKam5oHr/b1VW1sb6uvrMT4+jqWlJUxMTDBgJfo4GAwGVFRUIJvNYmZmBtFoFFVVVaipqcHAwABOnDgBTdNQWVmJdDqtVm67Xy1NcrkcCoWC2jFGo9E7liHE43E4nU4enB9CBoMB1dXVMBgMKBQKaiJIJpMpmXh1O3fbJmTQGIvFkM1m1aS+QqGAZDKJfD6/42Uo8iAfi8WwvLyMhYUFJJNJRKNRpNNpFItFWCwW2O12tLW1oaWlRbUcYskA2Ww2tLW14dKlS0gkEgA2RgNk0Dk2NgaLxYL+/n41eUoyGAzIZrO4fv06Ojs70dbWpvpyJ5NJBINBzM7Owu/3IxgMqmNHX18fent74XK51EREOQnS7/djdnYWc3Nz8Pl8WF5eRiAQQHV1NQqFAp544olbJvk+aDo6OnDq1Cl4vV7E43F0dHSofYX8Pur3T3Jyc6FQQF1dHWw2246PDjJgpYdSOByG1+uFx+OB3W5HfX09ent7sWvXLtTX18PlciEWi6l2VTL4M5lMJZkl2bBa/p3P57G2toaKioodmYiYz+cRiUQQj8dVob8MohOJxLbtXIrFItbW1tDe3s5JAQ8hs9mMqqoqGI1GlcnRNA3ZbBYrKyuqpux2q/7cjTzIZzIZdaIEbJw0ZbNZxONx1XD9w9y//voAShY/GB8fx9TUFEZHR1VmVV/HajAYMDIygsHBQbUGvGyn+GGD1kd5WPeTdLt+qXJoPhQKqa4nstuQTBTcrl5UdglwOp34zGc+g/n5eVy4cAGrq6sAgKamJpw7dw7FYhGNjY3o7e2F1WpVgZIc1k+n0xgeHsanP/1pNTFrfX0d8/PzGB0dxfnz55FMJuFwOBCJRJBIJPD000+jsrISNptNlYTJCZCXLl3C6dOnMTU1BYPBAIfDgUwmgytXrqC1tRX79++H2+1Wrz+Xy2F+fh4ejweVlZUlgdwn3eP7Xtntduzfvx/79+9X/6dvZZrL5RAMBhEKhZBMJhGJRBAMBpHJZLB3714MDg5+oMnG94IBKz2U5JngsWPH8Pjjj6OpqQlGo1FlpoLBIIQQ8Pv9cLlcJWfDMoNVLBYRCATgdrtVuUAgEMCrr76K48eP48SJE2q4Su7Qtk7wul3/V2Bj9vfKygouXryIZDIJm80Gq9WK/fv3q4Blu8ChUChgcXERzc3NJZfJ5yL7CN6LXC7HkoMyVFdXB7vdDqB0G1pbW0M8Hi856Mk2PLcLyrYGEsViEVarVU2ikFmjQqGASCSiJnZ90CHNrbWp8t9UKoWlpSVcuXIFb7/9NjRNQygUgsViUd8z/eTCZDKJeDyOYrGIxx9/HA0NDbDb7be0N2KJQHmR+1x9XXIul0Mmk4Hf78ePfvQjnDlzBuFwGM3NzTh69ChOnDiBpqYmFRhupZ9AVVVVha9+9at44403cPbsWWQyGZjNZszOzsJkMuHw4cPqJE+2qpKdMEKhEILBIIaGhmA0GuHz+fDmm2/i9OnTiEQiaGhowNNPP42DBw9ifHwcP/zhD9Wy9HI/K0/yTp8+jTfeeAPr6+tobm7GwYMH0d/fD5/Ph+9973uoqqpS3yu5+Mvy8jK+/vWv48UXX8RnPvMZWCwW1elAtg69E31phP4Yo9+29St/yX3DTm/7si90LBbD2toa3nrrLZw9exZra2swGAwwm83I5XI4d+4c/viP/xgul+uW8iX9iays0Zfff7PZrPZ722HASg+lVCqFfD6PpqYmVFVVwWKxlASOXq8XFy5cwNraGiorK0smXMlgb2lpCT/96U9x8uRJ9PX1IRaL4erVq1hfX8eePXsghMDFixdx/vx5RKNRDAwM4KWXXip5Hj6fDx6P55alYTOZDL797W9jdHQUbW1tOHXqFIaGhlRLFRk0FwoFtUynfm35n/zkJyUTDQBgbm4OFy5cgMvlwnPPPXfX96hYLOKnP/0pwuHwh36faecJIVR3i1wuh1wuB7vdDovFglgshoWFBbUC4QedySxPTuRkFFkSYDQaYTQa1UGoqakJNpvtAwetcmhQDvEXi0UsLi7i3XffVZkwk8lU0v1AP5oBbPShTafTeOutt+BwOHD06FGV5ZLKLWtabs/nfpDbEVD6mc7MzODP//zPMTMzg3g8jlgshpmZGVy4cAHf//738fTTT+OP/uiPtr1PGYBZLBaVrQsGg3j22WcxODiIxsZGVFRUwGg0qklTMisr96WRSARnz55FU1MT7HY7fvazn+GNN97A6uoqWltb8corr+DZZ59VAZcc2Uqn02oUQH5XfvGLX+A73/kOYrEYvvCFL+D555+Hy+XC9evX8dd//dfo6+vDZz/7WVRXV6uTQL/fj8uXL2N9fV2tvrWwsIBf/vKXuHTpEurr6/GNb3zjltcuO3cAG6sxzs3N4erVq3j22WfV8Up+l+T119bWkEgkSk7yZMcDYOP7+VGWKc9kMigWi1haWsJf/dVfYWxsDPl8Hl6vF88//zxsNhvq6+sRiUTUSKEcybFarTCbzUin08jn82rBnqtXr2JiYgKZTAYnTpzA1772tds+PgNWeihdu3YNfr9fZVW3y3LOzc3B4XCgvb0dNTU1JZcFAgH8/Oc/x40bN7B//371Jf37v/97tTrKW2+9hXfeeUfNQL1x4wZOnToFp9MJm82GV199Fe+99x6++tWvYt++fQA2Mg4zMzP43ve+h2QyiVdeeQVdXV1wuVzqDL5YLMLv9yMSieCb3/wm3G43Pv/5z+PkyZNIp9MYHR3F2toaIpEI/u7v/g7PPPMMmpubkUqlMDc3h3Q6jc997nN3bRz/J3/yJ6ipqUEul9vZN58+EpPJBKfTibq6OszNzSEYDCISiaia1tdffx1OpxOdnZ0qs2qz2WCxWLZdDUj/fzJDos9qZDIZNayZTqcxMjKC2dlZWK1WOJ1OFRTfrjerrGNLp9OYnp7GhQsX0NbWhv3790PTNIyNjWFkZATJZBIWiwWJRAI9PT341Kc+BYvFgnA4DJ/Ph9nZWSwtLakuB3KEIxKJqAB9u9dULrbrePAoMRqNqhWbrPO8cOECvvvd7yKdTuOZZ57BL37xC+TzedTU1KjFMc6cOYNf//VfR39//7b3q5/k9NZbb2F9fR1PPvkkenp6YLFY1EQrmVmVJ0K5XA7pdBp+vx9nz57F0aNH8c1vfhOzs7Oora3Fb/3Wb+HkyZPwer3qPrLZLH784x/D7/dj79696OjoUIHv6dOn8Rd/8RfweDz4tV/7NTz22GNwOByYnJzEX/7lX8JsNuMP//AP0dDQAJPJhEwmg3w+j3g8jvHxceRyObjdbrz55pv49re/jYWFBezevRtHjhy57euWo3fBYBDf+ta3VIKju7sbDodD1eem02kEAgF84xvfQC6Xw9e+9jVUVFSULIqwU59xJpPBj370I4yOjsJsNuPpp5/GSy+9pEogZED8/7f3ZbFRnef7j2cfzz4eLzO2Ga94wSwxBmwwS4CQlASSRlWbJmoitRFqLipV6U2vKlVtb3rR26iq2qpRU6ntL4kSpaE4CyQm4NjG2DEYvDBexh6vs+/7/4L/++bMMDaQJoXCeSSUeObMOWfOnPN9z/e+z/u8KpWKo+6kRadmKO+//z5Onz6NmZkZRCIRAIBWq8XQ0NCGxxcJq4gHEl6vl1fe+ZNbOp2GVCpFMBhEKpWCSqWCWq3mKmy1Wo233nqLi7ZSqRQikQh8Ph8kEgksFgt8Ph+Gh4dRVVUFhULBgxN5Bfb29iIcDnO0CQDrmN544w0kEgm8/PLLqKyshFKpRFFRERe99Pf3Y2hoCKlUCq2trejq6kJDQwOAmyvcqakplJSU4PTp05icnITX68WxY8dgMBhgsVjQ09OD3/72t3j11VcLSgNoAIxEIqipqSmYihNxb0GFH0VFRdxamNJpY2NjePPNN/HEE0+wJk6YIaD0oVQqLVhhL5FI4Pf74ff7WRJC+m2lUolAIIDBwUHYbDaeaCj6JJz4SFdLjQfGxsZw5coVuN1uuFwu6PV6KBQKzM/Pw+12c4q0uLgYXV1dqKurg1KpRDabRUtLCxYXFzE0NISxsTGk02loNBqEQiFEIpGcNO/Xjbt1ISgEIZl+mEH+wdFoFP39/XjzzTchkUhw6tQpKJVKfPzxx3j66ad5YX/58mWcPXsWbre74P4oWppIJBAIBHD58mV0d3ejpqaGs07Al1kxIrdyuRxSqRSRSARzc3NIJpP4+9//DpVKhePHj6OzsxNWq5X10el0mu/VmZkZaDQa7oSVSqUwMzODP//5z0gmk3j88cexc+dOaDQafP7553jrrbcQi8Xw85//nIuuaMwXto7NZrO4ePEiPv30UwDACy+8gIMHDxbssEifpQVhNBqFy+XiwlyKVqZSKYTDYczPz+Mvf/kLpqamoNPpEAgEOFJMhDWRSEAqld52vL+djC2TyfC5dHV1cWGWWq3mxS/9dlSDkU6nEY/HEYlE8M477+D999+H2+2GWq2GTqdDPB6HSqXCc889t+G5iYRVxAOJhYUFJoD5EUSJRAK3281RShoEqAq0p6cHjY2NOH/+POx2O4xGIwKBAJaWlpDJZFBXV4dz585BLpejubkZS0tLHMklgb/D4eDCAKFuh/RTVFgjjIpRAdbk5CRUKhXkcjnq6+tht9s5HUbfKR6PY35+Hm1tbWhpaUFFRQXkcjnsdjvi8TgGBgZw+fJltLe335LWTSaT+PTTTyGVSlFdXX3PzaBF5IJ0yOXl5WzXE41GWSNNE2AqlUJ1dTUaGxvR1NSE8vJy9u2lwqp8T0ma0N1uN0KhEE8qFN1XKBSIxWKYmpqCw+GATCaDXq/PMWGnfVMmYGxsDFevXsXCwgL8fj/i8Tji8TiuXr0Km812yzMolUpRUVEBrVbL96ZUKoVareaoGJ1nMpnkZzNfrwd8tba0+RA+n/8JHuboKvDlQikej2NhYQFOpxNKpRLHjh1Da2srpFIpfvrTn6KiogIVFRXIZDIoLy9HNptdV7dIBUvJZBITExMIh8Ooq6uD2WxmMiS0p6IxmKKTlJLesmULmpqa0NbWhtraWpSWluaMexRhXVhYQDAYxN69e1FfXw8A8Pv96O/vh9frRUdHB7Zt2walUomLFy/i0qVLKC0txfPPP4+mpiZeOAqfOSo4DIfD+Oyzz6BWq/H0009j9+7dsNls66boSQIWCAQwOjqKQCCAtrY2lJWVoaioiAMky8vL+PDDDzE+Po5UKoWGhgYUFxczaacAxb/+9S+cPHkSRqMxR7JB1onpdBrDw8NwOp04ceJEwa6OcrkcoVAIsVgMCoUCpaWlKC0t5XMVypSEYxBwU9YwMjKCM2fOwOPxsARubW0NarUae/bsWTfKzr/Tbe5BESL+JxEKhRCNRuHz+RCLxXjVS6JwiUTC79GE5fP5MD09Da/Xi+rqaqyuruLIkSMwm81YXFzE9PQ0YrEYbty4AYfDge7ublgsFrhcLhaMh0IhpNNpbN68GVeuXIFarYZMJkMqlWJNUklJCebm5tDf34+dO3fCaDTySpg0VORDKSy8IULtdrvh9XoBAMePH0dzczOMRiMAoKGhAUePHsW7776Lnp4emM1mVFRUcPqIqnUvX74MjUaDiooKsfXrfQYq4CsvL4fVasX09DTC4TCnBzOZDHw+HyYmJuDxeOD1euH3+9Ha2orS0lIu2KNthZNnIpFAMBhk6QgV6CUSCcTjcY5Yud1uDA8PQ61Wo66ujtO8woIJt9uNsbExDA8Pw+FwIBAI8LnHYjFMTk4imUzC5/PlEFahMwE9e8lkEqFQCIuLi5z+BQCz2cwG73cTXb1bTenXERn9uojv/ypIZjI5OYnh4WHE43FugarX6yGVStHZ2clZr9nZWczPz0Oj0dwiycpHJpNBX18fdu7cibKyMiamADiCKPwNiSyFQiF4vV7s3bsXCoUClZWVPCYLtwWAYDCI/v5+yOVybN68GWVlZUin0/B6vRgaGoJEIsGBAwegVqsxMjKCgYEBZDIZHDhwAO3t7Tk2TnT8cDgMt9uNaDTKUeLvf//72L17N6xWKxQKxbr3DPm8zszMoK+vD0qlEkeOHOHgRTKZZH345cuXEQwGodVq0d7eztkZchYZHR2FTqeDSqW6ZeEnJPfnzp1DZWXlhr+F0N+WFrzCZzNfx0yFb5OTk/jggw+wuLiIzs5OlJaWYnZ2FlKpFE1NTTh8+PBti89EwirigQTpkYgkCvVA6XQaMpmMIz+krXE6nRgcHERjYyNmZ2eRTCZhs9mg1Wrh9XrhdDp5UGtoaOCoQTAYRDweR1FREa5cuYIdO3agpqYG0WgUdXV10Gg0CAaD8Pl8SKVS2LVrF1ZWVnDmzBnEYjG0traisrISxcXFUCqVMJvNrA8Sag1pYvd6vZx6sVqtORXdNpsNJ06cwMzMDIaGhmCz2bB161bU1tZCr9cjFAphdHQUMzMzOH78OJMbEfcPiGyaTCZYrVaYTCasra3xwE8LIErzBYNBeDweeDwe1NTU8D1XXFycE52kbefm5tM1KLUAAB3LSURBVDAxMZFDUAFwyl4ikbBWWqvVQi6Xs3SE9HyJRAKTk5O4cuUKZmZmEAgEkEgkAHzZaIMyEn6/n9ORADhNa7FYOB24vLyMGzduYGVlhSM1ZrMZtbW1MJlMOdIeoQ1WPoTbiPjvgn7rwcFBzMzMoKmpCfv372edqUQigUaj4YWTy+WCw+FAdXU1TCbTuvultLrT6cSzzz6b45BBizHSPNPCiNLQoVAIoVAILS0t/FwJsxC0/2QyyWOm3W5HVVUVS1Lm5ubgdDphtVphs9lw9epVDAwMIJlMYvv27di1axc3GQC+vP+pmn51dRXZbBZarRbbt2/H4cOHWTdLxy8EslAcHR3F+Pg4Ghoa0NHRwRmRlZUVLvqloExpaSm2bNkClUqFWCwGl8uFkZERTE1N4aWXXlrXipGe56tXr+LQoUPrZt0oMENzUyQSQTQazfG+pWsvXNx6vV709fWhv78f1dXVaGpqwtzcHCKRCKxWK7q6urB58+bbZvtEwirigQRFaTQaDZRKJT/kwWCQI6aJRIKLRZaWlnD9+nVMT0/jO9/5Dl577TXIZDJ2F8hkMkgkEgiHwzAajTh+/DjMZjOvwH0+H6RSKS5cuICDBw/i0qVLiMVieOSRR2A2m+FyueB0OlFVVYVHH30Uy8vLOHfuHP72t7/hwIED2LdvH6qqqhCLxdDW1oZ3332X5QJqtZoHCLIBMZlM2LRp0y0dVYjEvvLKK/jlL3+Jf//735ienkZ3dzdqa2uxsrKC999/H8FgEIcOHeLrIuL+AU2m1IGNjMsBcIEFtaAEwN2qyOexra0N1dXVOZX+6XSaZS1ffPEF5ufn2SJHo9EgnU5zC2PyePV4POjv7+eoKaUiA4EA3G43BgYG4HK5OIVPzwl5F0ejUdYPCnV96XQafX192LRpE0dqL1++jL6+vpwija1bt6K+vh56vf6uI6B3sv3XoV39Ksd9kDE9PY2xsTHU1dVh27Zt0Ov1OZXsVOQXCASwsrLCnafWy/IQuXU4HJxJUqvVTFjpuaD7juoTqO6ANNNEaul9+jyNqcFgEGfPnkU4HEZ3dzfKy8tRVFTEtoPZbBZ79uzB6Ogoenp6YDAYcPjwYXR2dqKkpIQXUMIsBMkBaG7Ytm0bfvSjH8FisbCl20att9PpNGZnZ/n4hw4d4oxbLBbDwMAAPvvsMwQCAWzduhVerxctLS0oLy+HVCrFwsICent7cf36dbS1taGiomLdwkmfz4e3334byWQSNTU16xJHcv8wmUyYnZ3FysoKlpaWYLPZWDcvrOWgRYPT6WSXkCNHjuDq1au4ceMGWlpacPjwYezcuZOzQBtBJKwiHkjQAGY0GjkyJJFIWKSuUChgsViwuroKr9eLwcFBuFwunDp1CtlsFlNTU6iqqoJOp4NMJoPFYkFLSwvcbjdefPFFKBQKKBQKeDweXt3X19fj+eefh0KhwNDQEGQyGUpLS6FSqaDVapHNZjEyMgKz2YxnnnkGHR0deO211/Dhhx/i8uXLeOSRR/Doo4+ioqICZWVlnPqnSZwqTtfW1rhSVaj9isfjLLSvra3Fr3/9a/zxj3/E+Pg4ZmdnodFoeNVeXl7OKaz70bT6YQdFMYxGI8xmMxcnSSQShMNhjgqRjynp/FZXV3Hu3DkUFxdDq9XyokcY8aDovFqtZoeMSCSCqakp+Hw+eL1eJhp+vx+XLl2Cz+dDY2Mj3G43FhYWsLKywu1VAUCv10OlUiEajXKxIS0aiYDHYjHWHTocDvT29kKpVHKnIIrUFBUVoba2Fvv372etoVBDSyiU9r8TKUD+NqIl1deDWCyGs2fPIpvNorGxEXa7nd0raDwm+cnFixcxNDQEo9GIXbt2rXv9i4qKEI/H0d/fj0OHDgH40j6LZCJEQqlwiiKpJDshiyciVMJoYDabZcLa29uLHTt2oL29HQaDAYlEAsvLyxgdHUUmk4FGo8Fbb72FHTt24Omnn0ZjYyNnMchvlTIQlOpfXV3lItlXXnkFFRUVXPRE12S97x4OhzE7O4u5uTmUlJSgra2NF4aTk5P4/PPP2fZtbW0NOp0OBw8e5KLK8+fP48qVK7BarTh58iQXmAlB40gwGMTU1BRaWlo2LMoi7ezWrVsxNTWF2dlZjI+Po62tDSqViq85ecWmUinMz8+jr68Pi4uLUCgUnOVrbm7GY489hh07dkCpVG4ojyCIhFXEA4lYLMZFTbTqlcvlKC0t5W4c7e3tmJ2dRU9PD7Zu3YrHHnsM9fX1bBZ99OhRGI1GSCQS7txB/qg0yBiNRrzwwguIx+OQyWRMTCl1TzIEg8EAs9nM6dimpiY0NzfjN7/5Debn53HmzBn09PRgaGgI3/3ud2G327G8vAyPx8OpVuoBn0qloNVqOQ21urrKBEUYqaiqqsKpU6fYxcDv9+PGjRt45513cPTo0Q3TcCLuHWjQJkeK0tJSdrEg4ka+pEILH5osSSpA6TrSnJEHI0VImpub0dbWBovFAr/fD7PZzP3UQ6EQtFotUqkUPB4PQqEQhoeHuUCGNHLFxcWoq6tDU1MTtFotLl68iLGxMS7oIggjYqTNO336NORyOReIkDWRzWbD8ePHYbVaWau4kQxAeN3WiyABt5qs5792t/sttN3DnK1YWlrC1NQUnnjiCTQ3N+dU4BOppMXV3NwcbDYbTp48CYPBsO71paIjp9OJsrIyHo+F0XqSeAkLiYqKihAMBqFUKjmTRNvmE1eSyqyuruK5556D2WyGQqHg7SnIce7cOfzkJz/Bli1b+Dki/2IigiRnoUzE3NwcfD4fjh49ys1rqJaCnoX1SNry8jK8Xi+qqqrw1FNPwWw2I5FIYHh4GH/605+gVCrZo/jcuXMoLS1FXV0dstks/vCHP8DhcGD//v145plnYDab+ZrlF+ESMaY5cSOQhV5LSwvOnz+Pubk5LC8vIxaL8TNMBJ5kCbOzsxgaGmKy/fbbb6O1tRUvvfRSjgzgToInImEV8UBCp9Oxzk+oVyISkM1m0dHRwdZXdrsdmzZtAgCUlpbi1Vdfhclk4nQSfTa/k5VUKs3RBdEKNJPJoK2tDVVVVRxloJX++fPnMT8/jwMHDkAqlcJqteJ73/seampq8Ne//hWvv/46Xn75ZfT19WFgYACdnZ0oKyuDTCZjYvriiy9CpVIhmUxyxWw+0uk0ysvLmfDSKlqlUuW02xNxf4EmMLlcDqVSieLiYiastABTq9U8aZKNEEWeEokEp+RocSWXy6HT6dDZ2Qm73Q6NRoOSkhLupKZWq7Fv3z5IpVJ8+OGH8Pv9THLpnEgXLpFIYDAY0NLSgm3btsFut0Or1bI5uMvlYm9FMlyn7wOALeCEUV8yfq+srMTzzz/PllrAlwWHX7XTVSF8UwVZD3Ok9sKFCwDAjhVE6IRkNZvN4rPPPsPc3BwaGxtRWlq6YXOKYDCI8fFxVFVVwWg0cncoahKQzWZ5TBYeCwBqamrY/ooKTkn/TaDMm1arxauvvopNmzahuLiY3Q5I7qXX6/HKK6+gtbWVM3X0fFAGA7gZWQwEAlAqlZiYmMC1a9egUqm46AvI7UxHpLgQJicnMT09Db1ej7a2NqTTaTgcDrz22mtQKBR48sknYTab0dfXB4lEwtrTiYkJLCws4Mknn8T+/fs5MCGMOhMymQycTifOnDkDiUSCRx555JbCLCGomUllZSUMBgPS6TSWlpYwNzfHAR3g5lyZTCYxOjqKTz75BA6Hg8ePrq4uvPzyy1x0RuSdmjVsFOEVCauIBxI/+9nPkEwmeQASggaLiooKtvigB4dE+Var9Y77l+dvI5PJ8MMf/hASiYQHC4lEgvLychw6dAiDg4MYHBzEyMgIkskkR5h8Ph/MZjNaW1tRVVUFuVzOvbeBmxN+Y2MjfvWrX+V4ZK5XNEWvK5VKRKNRuN1uOBwOyOVyVFRU3PU1FfHfgfB+Ki4uhsFggFarZeN9Io27du1i3fPi4iI8Hg+i0Sh7Hup0Oi6+0ul0KC8vR3t7OzQaDesKqcKXMhBdXV0oKirChQsX4PF4coghkd7du3ejuroaZrOZ22oSuVQqlTh48CDOnj2LlZUVjqgJvV6FhY9kOyRMV1KqlCQFpA2kCA2dr7Aqf6Poa/7r3xSpfJjJKgBMTEywlITGTopmJhIJ1kUPDAygvr4eXV1dHDBYL7JGXbEeffTRgvcskUbSWdNxhVrV/CgoEUf6vWQyGdRqNZMwkq+cP38ePT09rMl0OByora2F2+1GOByG1WqF1WplMixcHAo9gzOZDFtECReBADacY1wuF9xuN8xmM6RSKXvBymQyPPvss9i6dSvm5ubg8XiY1H700Ud477330N3dzS2+hdZ2haKrCwsLWFhY4MLfOylYJNnO/Pw81tbWcOnSJY6WEqGne4J8lSsqKvD4449j//797F9O2UigcEAoH3dMWEksTfqMdDoNpVL5tenf8i9SIW1SPvK3EVapFUr/iHh40NjYyG0g1xsQSCcohHAQ+09QVVV1y2sUZaUOKS6XC1NTUyguLoZer0dNTQ20Wi2sViuKi4tRW1vLgynd08XFxewPeKeggppgMAipVIrm5mZuESji/oMwoq9SqWA2m1FaWgqv1wuZTMYRCYPBgJqaGqjVamzevBmRSCSn6xQ1xCC9tU6ng8ViYd0r3fv5kpmOjg7odDo4nc6c6CaZfDc1NXHrWCoIpIlXq9Vi586dkMlk6O3thdPpZPIJ5D5XwuIZmuQ8Hg8uXLgAm82GTZs2obKykgsn6XzznQCExPVOpAN3C+H88bCT0o2wtLSE7u7unLGFrhfpRD/66COUlJSgvb2dx7eNfi8au4iU0n1L2wstreif0HJJuO/8/xKIBOd7wVosFjQ0NCCdTnPnw+npaXg8Huh0Oq72F56DkIzG43EAgMlkgkajydHxCqUA6wUcSN4jk8mwuLiI9957D263G9/+9re5oM3j8bAP+PLyMk6fPg2j0Yjt27ez/RcVM6VSqVvmtfn5eXzxxRfw+Xy8WL2d7Iaumd1uZ8eZxcVFXjRQIS8FSYLBIAwGA/bt24fOzk7YbDa+5iSZy9//erjjWTmdTsPn82FtbQ1GoxHxeBylpaUsOr7dAfNXw3RTCQlvIcJJN57wRsgfQIThdVqF322PbREPFoQr6vsJMpkMVVVVMBgM8Pl8qKmpYXN2vV7PFlXpdBrHjh0DcHPgvJN7WTgg5mNxcRGLi4vQ6XTYunXrfXltRNyEUL5CJLK+vp7JH3WkosgpRWDoMxS1oIgFjb00mVDqlKKdwjSeVCqFzWaDXq9HbW0ta9LomGq1mj1/CcIxnCQu5HdsMBiwuLiIUCgEANy+0e128zgttL+hggyn04m5uTnU19ejsrKSLbCIgNOx8jtvCcd/4bUUbnM7LWuhOexONK8Pe2AkFosBwC1uEZlMBoFAAENDQ5iYmMC+ffvQ1NTElnpCbpAPpVIJk8mEwcFB+P1+GI1GLvChY+VLRdZLsd8NaGFPzwO1K6aFV1lZWc6Ci44NfLkos1gs3LhFaD0oXChuBNp+ZWUFn3zyCcbGxrB3717s37+fLQp9Ph/8fj/kcjnOnz+PlZUVPPXUU1zwJnRHKAQq4iU+t14bc0I8HsfKygoHLWlxTIsKoe8zLXSF2UuXy4VwOIzKykqUl5fzYlcYMd/wmmz4rgDU13l8fBzl5eVcaUr6kNtBeDKk8wOQM7nmi+uFJy/UOwHgMD2tvIWVsDTAitXPIu5X6HQ66HQ6VFdXr7vNiRMn7mqflAouFDV2OBxwOBywWq2ora3dsP2eiHsLITmSSqWwWCyor6/H8PAw/H4/1Go1LBYLysrK2AmASBr9pmq1mkkp7ZMIHv0/QRihouOaTCZuMykklER6aftCwYNsNguj0Yi9e/di06ZNmJubg9frZYmMVCrF5OQklpaW4PP52H6IghjhcBihUAizs7O4ceMG6urqYLfbUVZWBovFwoU3pOEVZlHovqbxP58U0BxD7xXSwn7TEdsHFSqVCpcuXUJnZyfrG8k7eHR0FJ9++insdjs2b94Ms9nM8/ZG15a00q+//jrGxsbQ0NCA+vp61lkKP0v3T/59/1VAemqz2YzNmzdjy5Yt6O3t5XatHR0dOQ0MqNhKuChsa2vD5s2bc9qhCheQ+ZmCfFCzBYfDgZmZGWzfvh3PPfcc22jF43F2J4hGo/j888/R1dWFrq4uGAwGfsbpuafCzPxjVFRU8HxEbcILIZPJYGlpCR9//DHKyspw9epVuFwutroiPS4tVDQaDaqrq7Fp0yYsLy+jt7cXo6OjKC8vx86dO7Fnzx7OJpLG+XbP2V3lPamfrd/vR01NDTweD0pKSnLaSwKFo6l0cemHEurv8vVIdHGoaIbEuslkkolqMBhEIpHgTijUvSJ/pSwONCIeFhSSOAA3uxZRFyKtVguz2YxIJFKw9Z6Iew9hIQcVlRiNRpSXl3NaniZumpjyCwvzFyP546twe5rYhEEFYapeWHhF50cTc36Qgf6WSqUwGo0wGo1oaWnJaX4BALt27cLi4iK3dXU6nYhGowCQUxSzuroKj8eDkZERaLVaWCwWNDY2wmg0clcvo9EIjUbD10FIRgnrBUMKyQuEnxFeP+Hr+RnA/G0eRpjNZkxPT2N+fp67kwUCAVy5cgVvvPEG2tra8K1vfQsWi4W1zUK9ayFoNBps374dzz77LPMOIjgUyQO+jKwSOSz0G98taDzV6/Ww2+147LHH1t22kPaSpDhCFLpX1ju/LVu2YGZmBlevXkVzczN+8IMfoKSkhD+jUqlyHDaam5vx4x//mDMg+ZrVQo4ENTU1OHLkCGQyGVpbWzck+Ol0GmfPnsXvfvc7aDQavv52ux0tLS1cKyJ0BDl27BgsFgt6enowPT3NC9R4PI7W1lZYrVb+ne4k61d0mxUIv5lKpTA0NISPPvoIyWQSJ06cYOEthZEpJEwHpjA09T1fXl5GIpGAwWCAyWRi/Qfpp2ilQl8gGo0iFoshEolgbW0NHo8Hy8vLmJmZwerqKjKZDFug2O126PV6rkykiTudTqOlpQXz8/O3vRgivhlks9l7MZI/3Pk5AXp6etDb2wuTyYSTJ0+ivr4ebreb2yHu2bMH/f399/gs70/ci3s3KxiUaSKORCJwuVxQqVQ8UQmjnTQ50SJfiI00/cJJjD5HUfp8IiokrsLggJC8Cf8VSsfTGC9MJzocDgwMDGBgYACBQAAAWB9LDgP0WdLHURZNrVajpaUFjY2NqKioYAswqVSK4uJiltcIr0M+2RSSd6G8LP814XkUiuxJJBJMTEzcth/6fwv/7Xv3H//4R/b//u//EAqFUFlZCYlEAqfTiUgkgv379+PUqVNQKpXczILut1Qqxb+ZiC/hcrmwsLDAZv50najhQCqVYpvEaDSK7u5u9h0HbiXFdJ9/1fqMbDaLhYUF/OIXv8D4+DgAYPv27Thy5Ai6urqg0+lytPFksUjPejKZhN/vh0ajgUajueW5o2NIpdJ179u7OnPSQrjdbiSTSVRUVOTcdPmIRCKYn5/H7OwsHA4HfD4fAHAap7y8HHq9nlcI4XCY22XGYjHEYjEkEgmsrKwgEAjwa9FolL/g8vIyFhcX0dLSgvb2dvYDJKnAf1o8I0LE/zLi8Ti3lK2qqoLJZEI2m71t724R9w6FInhqtRp1dXVcSEhjsZBQUlpSmPLOjyDmp7jz098AmKwKia8wmpUf2coPelAQohCI9FKGTaFQoKWlBVarFTt27MC1a9c4CjM+Ps4+ssCXhVlE1KlF7MDAAC5dugS5XM7+xGVlZbBaraj5/y1lSYOr0Wi4EpyuhbCaXPid6HsWir7m11uIsgHg8ccfh81mwz//+U9MT09DrVZjx44d2L17N1sI0r0rrDPZqDD2YYbNZoPVagWAnPtVCIPBgLa2Nn5ev8nrWFRUhKqqKvz+97+/Rba0kbyMniuVSgWdTvcfncMds7miopsVykajEXNzcxgZGWFrh3g8zqtf6mohk8ng8Xhw/fp1rK2twefzMekEbg5YwWCQRfjUqYVS/qRrSiQS3KeaTH5pG1r1Ly8vIxQKYX5+HpWVlSgrK8OOHTu4z7oIEQ8TstmbrfZMJhNWV1exsLAAk8mE6urqHLIh4v4FRfmA3BR/IeK5HmkS+j0KP0vI/5vIGRFh0oMK95FfvEHb5UdphZpS4eeF3rBCck1NN2pqapBMJhEIBHD9+nWMj49jfn4efr8/J1JKpJLmDalUyoEOtVqN1dVVXLt2DWVlZdwaVqVSwWg0oqmpiQ3hDQYD1Go1FzyqVCoolUpu0kFFIXQdhPpY+o2E6emHuXFAR0cHz9ekl1QoFHj99ddv6ygkjkkiCBS9LYS7IqwGgwHV1dUYGxvDyMgItxwjnRUZXAt7yi4uLnKYmPz6qAsKtYkkKQENAvF4HD6fj02nKcxNFaKJRIJblpF1BA1KXq8XGo0GLpcLZWVlqK+v521EiHjQkc1mOaUbjUZx7do1uN1uNDc3o7Ky8l6fnog7gFCLKvw7X+tfKIq5XjGHkNAWihgKt8vXwAr3R2O08Fw2iuoUijxSxEX4eXJEKC4uRiqVgtFohMFgQGNjI1ZXV7G2tga3243l5WWEw2FuQywk9pR2FJLqeDzOf8vlcrjdbqyurvJzQpFVap9M5JWsjGheI5KdzWZRUlLCXYuCwSA3SRB2E3oYMTU1da9PQcQDjrsirFqtFna7HU1NTRgcHMTS0hKWlpbYL1Cj0eRYjigUCkSjUej1epSUlECr1SKdTiMUCrGVwfz8PCKRCKdsSMhfVlbGRLO+vh4ajSZn9Ts9PY2BgQE4nU62TwGAQCDAA9ri4iKAwnIFESIeVEgkN/vER6NRLCwsIBgMQqvVcnW1iP8N5BO9/L8LWTflk9Q7LTwVEtlCqcV87Wb+fteryF+vOElImoX/iCzL5XJ2Q6iurmYLn5WVFZaOUdYuGAwiGAwiFosxYaViXbIhImIbDAZZJ0u+4rQ9FdlotVpIJBL4fD5IJBKWlxHRJisxACxhk0hudtAT/Y1FiPjmcFcCT5VKhcrKSuzevZuLn2ilSlX9whSKwWCA0WiEzWaD3W5n02rqepFKpWA2m+H3+7mYgFr0yeVyjhRRYZcQtbW1sFgsuHLlCncICoVCWFpaQiwW49U2VbOJEPEwgNJwwM2IksfjyZHhCO1exOfi/kWh4p58wlfIA1KI/N9XaBsjTKsL/3+j+6JQRXz++eUXdBXaV6FthHpRIpdEIpVKJXQ6HcrKytgbNh6PIxgMwu12w+v1wu12w+/3I5lMsu41FApxsIICIdSlKD9anEgkOEASiURYYiA8D0r9u91uzM3N8XZ0jpFIRCSsIkR8g7irCKtUKoVGo0FDQwNOnjyJDz74AOFwGH6/n7soKJVKKJVKKBQKWK1WtLa2ora2NqcqjAoGhL3OhWJs0qaSGDu/IwvJE8rLy9HR0cEa2uXlZUxOTmJychKRSAQ2mw3d3d1crSZCxMMEhUIBj8eDVCqFWCyGdDrNVlZC7Z2I+w/55A/ALVFJ4evrEVwhGaXX1nufxt38au18HexGBUZCIltIVpAPoY2W8HwKnQdl7TKZDNRqNQwGAyorK5ngUn1DNBpFJBLhVrXkOBCNRvHFF19geno6p+1rMpnkqG3+dxNaxdE5qdVqmEwmeDweJqw6nQ51dXW3NFUQIULE14e7LqGndGNTUxNKSkoQj8e5n61arYbZbGbbFZPJlNNbGMjVQVE0qLi4mAXrQvsU4MuKU6ompEEwk8lw20KqjiWPPtItFRcX875FiHhYQHpwn8+Hzs5OuFwuqNXqHN9VmUwGn88nFiXeh8jXsArJJL2eH139KlpS4eeF+6VK/Hwt7O1IZ/4xiEgKySvti8hfvmcqfZ4yAWSJQ+/RvS00GqfX6TN6vR6ZTAY1NTU53zGTyaCtrQ3hcBiBQIDnkHg8zi0u19bWoFQqsbq6ynOZQqHA6uoqlpaWoNPp0NXVhdraWoRCIb7uer0eRqMRTqdz3d9AhAgR/xlu58MqQoQIESJEiBAhQsQ9hRh6FCFChAgRIkSIEHFfQySsIkSIECFChAgRIu5riIRVhAgRIkSIECFCxH0NkbCKECFChAgRIkSIuK8hElYRIkSIECFChAgR9zVEwipChAgRIkSIECHivsb/A0mEAp11xXrbAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqwAAAJBCAYAAACDGOdsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOy9eXBc13Xu++1GAz0BaMzzRBAkCIKzSEqUKFETqVkeJNuRk8h+iRI7juOKU+89+926eeVKfIdKJc+pejexnWs5SjykriVb9tNk0RLFSRzFSRwAAiBBDCQBYmqgGz0P7w9gbe4+bICUTItN6vtVoQB0nz5n9znr7PPttddaW6VSKRBCCCGEEJKt2G50AwghhBBCCJkPClZCCCGEEJLVULASQgghhJCshoKVEEIIIYRkNRSshBBCCCEkq6FgJYQQQgghWc0tIViVUi8opb49+/fdSqnTH3I/31NK/fX1bd2HakdKKdVyg47dNHt8+404PrnMzWbXSqlvKaV+/Ls+Drn1uNlsnXw8uBXsUim1XSn13I049vXmIxOsSqlzSqmQUiqglBqeNYT8632cVCq1K5VKtV5De76olNpt+eyXU6nU317vNv02mDcMyT5o1+TjAm2dZCO0y7Rj39JOg4/aw/pEKpXKB7AGwFoA/9m6AT171xeez48E2vV1hucra6Gtk2yEdvkx4IaEBKRSqfMA3gCwDNBT4H+ulOoG0D372uNKqaNKKZ9Sao9SaoV8Xim1Wil1WCnlV0r9LwBO4717lVKDxv/1SqlfKKVGlFJjSqn/oZRqA/A9ABtmR2W+2W3TvJlKqT9RSvUopcaVUv+fUqrGeC+llPqyUqp7to3/pJRS1/L9lVLrlVJ7Zz93cbZNeRm2+1MAvw/g/5xt5yuzr9copX4++516lVJfMz7zLaXUS0qpHyulpgB8USnlVUo9P3us80qpbyulcma3z1FK/b1SalQpdRbAY9fyHciVfNztepY8pdS/z36Hk0qptca+r5vdkhsLbZ1kIx9nu1RKPQzgPwH43OyxjxlvNyql3p39XluVUmXG5+6YPQ8+pdQxpdS913q+P3JSqdRH8gPgHIAHZ/+uB3ASwN/O/p8C8BsAJQBcAFYDuATgdgA5AL4w+3kHgDwAfQC+DiAXwNMAYgC+PbuvewEMzv6dA+AYgO8A8GDG+DbOvvdFALstbXzB2M/9AEYxM2JzAPh/Aew0tk0BeBVAEYAGACMAHp59rwGAD0DDHOfiNgB3ALADaALQAeAvLftusbZp9n8bgEMA/u/Zc9EM4CyAh2bf/9bs+fjk7LYuAC8D+P7sOagAcADAl2a3/zKAztlrUgLgndnj2z8q27iZf2jXacf5FoAwgEdn2/jfAOz7Xdgtf2jrN9LW+ZM9P7TLtON8C8CPLa9tB3AGwOLZc7AdwH+ffa8WwBhm+mwbgM2z/5ff6Oua8ft9xEYVmD3ZfQD+GYDLuED3G9t+VwzOeO00gE0A7gFwAYAy3tszh1FtmL3YV4ivazCq5wH8nfFe/qzxNhlt3mi8/zMA3/yQ5+YvAbxsMdi5BOvtAPotn/+/APyrYbCm8VcCiMi5nn3tGQDvzP69DcCXjfe2gIKVdv0h7HrW9t4y/l8KIPS7sFv+0NZvpK3zJ3t+aJdpx/kWMgvW/2z8/xUAv579+xsAfmTZ/k0AX7jR1zXTz0cd0/HJVCr11hzvDRh/NwL4glLqL4zX8gDUYOZink/NntlZ+ubYZz2AvlQqFf8Qba0BcFj+SaVSAaXUGGZGJOdmXx4ytg9ixvCuilJqMYD/BzOxNm7MeFoPXWO7GgHUyFTDLDkAdhn/W89lLoCLxqyCzdimxrL9XOeSzA3t+jLWzzrVTOzY9bZbcmOgrZNshHY5P3PtrxHAZ5RSTxjv52JmpjXryKYgZNNIBgD8l1Qq9V+sGymlNgGoVUopw7AaMOPytjIAoEEpZc9gWKkM25tcwMzFlON6AJQCOH+Vz10L3wVwBMAzqVTKr5T6S8xMP2TC2s4BAL2pVGrRPPu3nssIgLI5bq6LmLn5hIZ5W04+KB8nu56P6223JPugrZNs5ONkl1c7tpUBzHhY/+Q6HPt3TrbWYf2fAL6slLpdzeBRSj2mlCoAsBdAHMDXlFK5SqlPA1g/x34OYEaQ/ffZfTiVUnfNvjcMoE5lSHaa5T8A/G9KqVVKKQeA/wpgfyqVOncdvl8BgCkAAaXUEgB/Ns+2w5iJ9xMOAPArpb6hlHKpmaSpZUqpdZk+nEqlLgLYCuAflFKFSimbUmrh7M0JzEw3fE0pVaeUKgbwzd/2y5E5udXtej6ut92S7OaWtnU1k4DzQcUBufHc0nY5e+wmpdS1arsfA3hCKfXQbJ/snLXtuuvQlutOVgrWVCr1HoA/AfA/AEwA6MFMXAhSqVQUwKdn/x8H8DkAv5hjPwkATwBoAdAPYHB2e2AmdvMkgCGl1GiGz74F4K8B/BwzhrkQwO9dS/uVUg1qJktvLm/l/w7g8wD8mLmB/tc8u3sewFI1k8H3y9nv9DiAVQB6MRO8/QMA3nn28Sxmpj1OYeZ8vgSgeva9/4mZmJVjmJmmyHguyW/Px8Cu5+R3YLcki/kY2Ho9ZuIbyU3Ex8AuX5z9PaaUOjzHNmZbBgB8AjPVBUYw43H9P5Cl2lClh2sQQgghZD6UUj8A8GIqlXrzRreFkI8LFKyEEEIIISSryUq3LyGEEEIIIQIFKyGEEEIIyWooWAkhhBBCSFZDwUoIIYQQQrKaeRcOmJqaSqVSKeTm5sJmm9G2qVQKiUQCAJCTk6NfU0rpHwBQSiEajep9ydJa5jbyuuwHAJLJpCwPhlQqhW3btuG1117D2NgYysrKcPvtt+Ohhx5CUVER8vO5KMnvgp/+9Kf4/d///eu2v1Qqpa6+1fUlFoullFJIJpMAkGZ3YodiZ/F4HJ2dnfj1r3+NHTt2YOPGjXjwwQexatUq5OTkpNmr+Xcymcxoz/F4HP39/QiHw1iyZAny8uYqx3fjKS8vx+joFZVXyCw3wnZfeOGFVGlpKaqqqlBZWQmv1wuHw4Hc3Nw0u1VK4Ytf/CJ+9KMffdRNJDcBH7XtpmYAgLS+1kSe74lEAtFoFD09Pfi3f/s3bN26FalUCnfccQe+8Y1voKmpSdt7Mpm8oh+WPnyOdqC3txc/+clP8Morr8DhcKC9vR1///d/D5fLBQCw2WxX7E+w3mPmsazHna8d18I//dM/4S/+4i+uvuHHiPnsdl4Pq4hUYMbQ4vG4FquzO0Y8HtcPbtkuFoshHo8jNzdXbysPdhGuIlLNB34ikUjbfzAYxNtvv43BwUE4HA7E43GcP38eFy9e/EAngHz8MAdWmToUscNkMolQKITe3l50dHSgqKgIDz744BWDIdnWXNfYup9EIoFgMIj33nsPL7zwAiYnJ7VgJuRaiUQiCAaDmJycxMTEBHw+HwKBACKRyI1uGiHXhFWoWh1ayWQS09PT6Ovrw+HDhxGLxQAAW7ZsQWlpqdYeSqkrxOrVkD49EAjon2AwiFgslqYv5mufVcCS7OCqS7NmGtmYJBIJ2Gw2LVrlfRkVmSMVqziVzyUSiSsEQSKRwPT0NAYHBxGLxdDe3g6Hw4FAIIDTp0+jtbU1Y3uTySSi0age+UQiERw8eBA+nw/Nzc1YsGCB9hgnk0nk5ubqYyulYLPZ9M0Sj8+suGaz2a743vL5eDyOnJyctG1McS7/J5PJtFGdeWOYwsr0RJsDBuu+RQiZwsncv7yfk5Ojz6vVG2gONMz2SudxM2MdIcvfVhKJBHp7e3Hq1CmMjo6ioaEBDQ0NV4zAzf1muh+SySQikQgGBwexbds2dHR04IEHHrjCbgi5GrFYDIFAQNtuNBqF1+vV/ZW1LyUkG7A+T662rc/nQ19fH0ZHR7WDa8GCBXA6nRmflQDm7MvNfjaVSmF6ehqBQADxeBx2u11rjLn6Y2u/nmlGLtNxr/UelOc/+e24qmAVwzEvtJx8U2Cabnt5T0STVawBuGJ/gmwTj8cxMjKCeDyOhoYGrFq1CrFYDEeOHEFnZyceeeSRjO1NJBIIh8O6PRcuXMBrr72GixcvYu3atdi0aRMaGhpgt9u18BPBaLbRZrMhkUhkbLv5fibBmml7U4Saol1+W6epTQ+0nCPrCFUplSb8zX2bbRFRbLfb09ojn5HvIMcToX6zY+0gzMGAEIvF0NHRgc7OTiQSCTQ1NcHlcsHhcKR9/modZCqVgs/nw+HDh3H48GFEo1EUFhaykyIfGBmsx+NxRKNRBINBBINBJBIJOBwOOJ3OtHuZkGzBqhVMrGJzZGQEZ8+eRTgcRiqVgsPhgNvtvmIfc03XZ9pGfk9OTiIYDKbpEPn8tYjM6zkYnE8okw/GvL1ePB6HzWZDbm5umqgyL7rVA2s+oDOJXXMfIpisF1TEVFdXF3JycrBx40Y0NDRgaGgI0WgUg4ODCAQCKC0tzdhuEWhKKQwODqKnpwejo6Ow2WwoLS1FfX09JDbXKrbFayoxY9FoFIlEIi1+TG4C06uZ6Ua12+1a/Fk9nxJOYY3flW1FONrt9jShZZ2SlvMs4lq2k8+JoLUOFsybOBaLIRQKwWazwel03hKem0yDBglXEQ97KpVCJBLBwMAAzp8/j9LSUtx+++3Izc3NKAjmGnDJ9bh06RJ27twJn8+HtrY2LFy4MKvjV0l2Eg6HoZRCLBZDOByG3++H3+9HLBaDw+FAcXEx3G53WsgVITcaq7Mk0/S69JXxeBzDw8Po6enR2xYVFcHlcmXMk5lv4G/qCTnW+Pg4pqamAMz0+3l5eVfMoGZqe6b2X+vzMFM8q+k4Ir898wpWuQDWWEC73Y5YLKYfxma8CZDu/RNRJwLKjHk1hZb52VQqhVgshvfffx+pVApFRUVwOBxwuVxwu92YmprC2bNn0djYmLHdEveSTCYxNDSEeDyOeDyOYDCopwlycnK0IJSbQgS0TEmYHuRYLJYmwEX0iadWXpNtbDYbYrFYmsfYeiPYbDbk5eXpG9T09Fo9p7m5uVeETOTl5aWdezPex2y/CHIAaedb2piTk4NTp04hFouhqanpAxnQzYKcN1OIJhIJTE1NYXJyEkopVFVVYdGiRdp2zKRCwezEIpGIDnvx+/3o7+9HT08P8vPz8Vd/9VfweDy3hPgnHy2RSEQ/WIPBoLavWCwGp9OpZ3Tm82YR8lEj9midWhfk2ZNIJBAKhTAyMoKLFy/qz+Tn5yM/Px92u13bfyaP6HyzXeLouXTpEnw+HwDA4XCgqalJ9/2Z4mvn+/+DkEgk0pxQ12Of5DLzClYZ7QgyBZ5KpeByuXSsowgzm82W9pA3vXgiEnNzc3W8is1mQzQa1a+Zx5LM7YqKClRXV8PtdqO0tBSVlZVIJpMYHx/P2GZT/E1PT+Oll17CxMRE2tRAbm5ummdYhLUZ2xqPx7WnErjS4Mw4T2m7GQsrN6GIH+CyN1puXBHNcl6kLbIP0wNtvRHkXIlwNQWptFfCAMTLK++ZxwKAM2fO4J//+Z+hlMLDDz98S2SNZ+o0zdcikQgikQh+9rOf4cSJE/B4PGhsbITH47nCjjN1NkopOJ1ORKNRRKNR7N69Gy+++CJisRjWrVuH6urqjB0XIVcjHA7D4XDogXIkEtFJV7m5uXC5XHrGZ64kEkI+ajKJtUwDqkQigTNnzqCzs1OLSrfbjbVr1+oBmTkoMz9n9VRmChGIx+OYmppCKBTSz/GCggIAl3Nr5Jksz9e5vMPm98gkyK3vW/NOKFSvL/MK1mg0qr2jcoElgFmmrcy4TEkQAGbEmRiYKa7kPZmOtRqbxFT6/X7k5eVhbGxMCyyZnjeTuTJhToVHo1EdG2O32xGNRrV3WDyMEvIgwk4EtBmuIB5WEZ3SBhkxyqjQ9GjKjWH11okQls9K+IK8L99N2i77N8Mp5PjWh5b5Wflf2iHXSI4n8XH/+I//iNHRUYRCIWzfvh1+v/8aTOfmQc6FOfjIy8vTnvpwOIz169fjgQce0LZgnTUQ5PyaMcWdnZ3Yv38/ent7UVlZiSeeeOIDZ7YSYiKD4Egkoh+80WgUTqdTl7lyOp30sJKsYb5pb9OBlUwm0d3djb6+PuTk5MDj8eBTn/oUnnvuOT11L9uZInAuB4A8Y83+1nRQ2Ww2FBYWpj1jzdBGa27DfELzaq+zz//dMq9gNQUYkB4bKqLJWvpKPiOCTwzHmn0vnzdjPMXTKSIuJycHDocjzZDk+HV1dXO2W/Yt3oloNAqXy6VFhDl1L8IauHxDSFkuEaHm1L95A4l32JyqF+R7iWC0hgzI9LSIZnNkZ4pi4PIgwYxxNQUrcHl0K55ZabOIbzN2U4RyLBbTo9xQKAQAupTOzY55LaxecrGjnp4eRCIR5OXloaysDBUVFVcMhjIJAvm8VKTYs2cPOjo6UFFRgY0bN6KpqYnTteRDk5ubi1gshmg0inA4jHA4rEOpJiYmMDQ0BK/Xi8LCQnpYSdZgPsPMXAt57gmxWAz9/f24cOECAKCgoAD3338/vF5vWjiAua+5HAemo8t0xPj9foTDYf2eCOFM5TTNfWZ6Xba/lu8/VzgEuT5cUySwOYIRg7LGoJpT0WaMpvm/NQBZvAhmsLSIgNHRUUxPT6Ourk4nR50/fx69vb1wu90oLy+fs71yPMmsjcfjqKqqwrJly7Bw4UIA0DXZTIFshjCImDbLYVjjbOUGML1p5muyrdyA1ix+06trHn8uoWOKXdlW2id/m7Gw5j5FtMkxpWboa6+9hnA4jIKCAu2BNhd8uFnJFHdqxvQmEgm89957mJqaQn19PZqampCfn5+2QIb5eWtHJPfEsWPH0NPTg1gshubmZtx///1pgxhCPigejwcAtFiVvkri8IeHhzE8PIzx8fFb4l4ltwbWPjLTDKwsGDAxMYFAIIDc3FyUlJSgvr4eQLqX1qobTI1g9q2iTcz8DVP4irNJnFPW2thmW6/GfH36XKECVmcW+fB8qNQ103CuJrRMYzNjYK1T4OZPMpnURdcLCgq013Z4eBj9/f2w2+26U5+vfeIpzcnJweLFi9Ha2orS0tKMxzSPDaS7+OUmsnpSJdZVtrPepEDmbHVT7Iu4NCsPmILI9AibP2Z7reXFrO+Z0yXm9QgGg+jq6tJ1bl0uV8Yb+mYl03kHZs51IBBAT08P/H4/mpubsXDhQt2xCea5spZHAWbiYN9991309/ejpKQEK1euxMKFC/X1ZSdFPgxFRUV6ZkQ8q9J/hkIh+Hw+DA8P48KFCwgGgze6uYSkYe33rE4ayR+Ix+PIy8tDZWUlCgoKrohbvVahZ3phpa+WZ7/M9k5NTaVVOvqwfNDP0st6fbkmwWp6C01vqim2gMwXxxRU8lnphGV6GriyRqbEjIrwi8Vi8Pl8mJ6eRnFx8Zx1CE1xEY1GkUzOFNtubm5GTU2NnhqQEZi024xnke8lFQTM103RIsewVlEwv7MZu2otDSavm+2W85BpIGAe27yZZVszZscUzeaxJQ43lUrpmziZTGLJkiXweDy3jMjKJFbN8ImBgQGduNfY2Ii6urp5k6TMayr/yyotY2NjaGxsxJo1a3RCn1X8EnKtlJSU6KQrc9ZEys9NT09jfHwcg4ODmJ6evtHNJURjPs+szzTpDyORiH5m5uXloaqqCrm5uWmLYli9qObnrfXSzSQqEagSRiP5Nj6fLy2ccb62X29uxDFvVa6pDqt0mCJ4TLGk1OVC85Ktbnpec3NzEQgE9HvS8UYiEV3zUwzJjMuUY3u9XgBAIBDA5OQkiouLsXnz5jkNIJlM6kLEFy9ehN1u1z8VFRXIz8/X5bhENMsNIkgb5LvLjWcd+ZnT7PK/jBLD4bCeGs6UiWjGnMrn5fubFQgkQUziXOUmlHhUOd+SYGbG61hvBvOmjkajGB4eht/vR25uLs6dO5cWt3srYL2m8loikcDevXsxMTGB+vp6VFZW6lhpc5BhftZ6ThKJBH75y19ibGwMpaWlWLRoEerq6tLioa+lSoDYllxX05bcbvdvewrITUhhYaG2R9MmxD5l6VZZXICQbMF87ljD6ICZfjEajWq7dTqdKCsrAwCdZ2Hu61qOY81FcTgcKCsrQ35+Pqanp5GTk5M2e2jtzz+saDSP/2GhU+ODMa9gFSEnwkiSd6wZ72JkMoUlHszp6WnY7fa0pdYkpiQajV4RUG2OxERklpeXw26349ChQxgaGkJ5eTmqqqrmFAM2mw0Oh0N7PlOpFBYsWICGhgYUFxenGYiEC5hiUfYh4s/M+M/kJbWuHmWKd1P0yn5FMJkeXTl+phGkiEu5Kc1zbQrnVCqFvLw8PR1i3oTSSZhtDYVCOHToECKRCFavXo2+vj74fD5UV1fPbzE3CabX37xeqVQKExMTePvttxEMBvH4449j0aJF+jPmYhLmtL4ZLgIAly5dwp49ezA9PY3HH38ca9eu1YMHh8Oh92cNIzAFbTI5s572uXPncOLECZw4cQLnzp3D1NQU1q9fj29+85tpsVmmTUhpOCvWKS9r9qz8bV20gmQPbrdbl64C0kvVAbgirIqQbMCavGw6emKxmH72DQ4Owufz6T7I4/Fox4xUH8pU2iqTsDRFo2wnM1zy+dzcXJ2fMNdS8+a+r/W++qD3H+/Z3555BauINPH+mOLULF8lGenA5QekZKibVQMy7d/03Jo1UKWMi9/vx/j4OA4ePIju7m6sWrUKJSUlc7bZDD34zW9+g1gspr2q1oQas3C+GYKg1OUam1J+yhTupniRh4dZqF/Og5SkAi5XQZBzaI25sY4YAei2Wb27IoSl/q0Zq2oGmUt5JrM0mQw6IpGIFlY1NTXwer0YHR29ovbuzYoZxiHXVBLNenp6cOnSJdjtdh0/JdfETIST8wOkr9ASCATwox/9CKFQCC0tLVizZg2ampr0IhDz1SI029Lf34+f/exnOH36NPx+P1wuFyorKwHMLFsoNmTGNosdWAdKmTA96qb9iJ2Q7MTr9aKkpATFxcUIBAJ6ACoPcgB6FSxWCSDZgnVxGuDyjJbNZkMkEoFSCkNDQwgGg3o2sLCwUDuIzDBBWXEwkUjoEBmz4ov5HDb7NxGp8my02+1YsmRJmlg1P2fmq/yusM5Kkw/HVUMCrMgFzsvL0/VBrbEhYkimiLXuQ4SsPMBFSEmA9LZt2xCNRlFVVYVt27ahu7sbhYWFaG5u1sWFMyFGHwqF0NXVhWg0ivz8fH0MMVoR3OY0sFmkH5gR5eZIT76btFum0M1MfVNQirdTQgPMY1hvGFO0WsMLTHErWAWv/G92ECJSzbhYaVsoFEJHRweSySQaGhrw4osvYmpqCnfffXdaSMLNjAxCzNjpQCCA3/zmNwiHw3jwwQf14CcajSKVurx4hHUAYdrG9PQ09u/fj3g8jscffxzNzc1pdmStFWy9dvF4HENDQ9i3bx9GRkbQ0tKCqqoq+P1+HD16FA6HA5/+9KfTYrPmi4OyYgrSTJ+Rc8KOMztxu93Iz8/XoQHT09O6TzIH9+ZDkJAbjZmrYoY6SZWLYDCIqakpHDhwAENDQ0gmk4hEInr59JKSEpw9exZHjx5Fc3MzWlpa9DLEbrdbF/83sc6CSV9dX1+P8vJyDA4OArjcf1oH7FZHgBXzeT/fd86UXG2S6Ri8fz848wpW4HLxetPbao5SzKL3wGWvKXB5EYBMHh4TuZjygI5GozrBSimFEydO4NKlS9i4cSOWL1+elvhlxTQwt9uNQCCAkpKStILEALQXUkSntMEUFzK1IB4OU7hKjK35Y/WmSqypNXNfzo3pHTXPhQhda6iE6QE2PyftMsWwbCPn3izPJddxaGgIiUQCly5dwuTkJEpKSlBbW6tXH7mZMcM1xF6k0+zq6kJOTg5Wrlyps7HFAy+Dmrlq505PT+ONN95AIBBAdXU1mpubdUdqenNNTztwuVxLJBLB0NAQfv7zn2NwcBBr1qxBc3MzBgcHceLECQSDQdx1111oa2tLs8lM01jyt1xvs1M1Bak5oMwUpkCyC4fDAY/HA6fTmTYzZM6YWMvkEXKjkTC8SCSCyclJjI2NYWhoCBcuXMCFCxcwOjqKYDCIkydPYnJyEvF4HBcuXMDLL7+M3bt3Iy8vD5OTk/D5fCgsLITX69WDt5KSEnz961/XOS2C6bgxvbPi/JJn/Pnz57FmzZo5B/NzTddn6nszzYbKe9bX5uODOCHIDFddOEBOqhiD+cAzBZBZScAUtNYRhPUCmytKyfuxWAzDw8MIh8PYs2cP+vr64HA4UFtbi8rKynlHJeIFi0ajCIVCSCQSqKmpgdPpTGufPLzNdsvxzdhVqyGbIzKryDXPVaY2mkle5nGs59I6qpO2Wrczj2s9B+brcwli8dx0dHQgFAph2bJlqK6uviVK5VinepRSmJ6exunTpzE2Noa6ujosWrQIbrf7ivMogyYznjWVSun6wHv37gUA3HfffWkJW9Z4K9NjLpmrAwMD2LFjB06fPo1169Zh6dKlCIVCGBgYwNTUFFpbW3HXXXehqKjoilkL+S7m77kwBbM8SGKxGPx+Py5evAifz6c7cJJdmEstW23ALHVFSDbR39+P48ePY3R0FKOjoxgfH8f4+DhGRkYwMTGBcDisV1cUR1Y4HEZ/fz+Ghoa0c2jt2rUoKChAIBDA1NSUXpXQ+ly1PguBy7NZk5OTCIVC+hkqM2iZZpbMvvKDhkpZnUpmArnA8Kvrx1U9rOKlshqKGfNpTjXLRTe9fMCVhYTFeEzPn+w7kUhgfHwcqVQKb7/9tk5CaWlpgcvlusKbZCKfD4VCGB8fRzKZRFlZmY6BAS4LuEQioeMO5bNWMZvJa5bJY2x+VsSmGRtrjWGxhgVIu02RbxXBpgAypz+sAwTrNIVV7MixZNvu7m5EIhE0NDSgvLwcvb29VzOLmwLxLAMz52Z8fBz79+9HNBpFXV0dQqEQJiYmEAqF9LZmIp4E6judTuTm5mJqagpnzpzB4OAgKioqcM8996CoqChjIL/ZgcbjcUxOTmJgYACHDh3CiRMnsHDhQmzevBmxWAzvvfce+vr6UFpaik2bNmHp0qU6Bkv2J/vKNEDJJGzl71gshsHBQXd4JdAAACAASURBVJw/fx4+nw9+vx/9/f04f/48gMxhP+TGYoaxWAe+IlpvpXrJ5Nbgrbfewu7duzE8PAyfz6fLSiaTSe0ptdvtGB8f1yUVPR4Pqqur4fV64fF4EAgE8Pjjj6OsrExvV1ZWBpvNljG/wny+SSgWMLNokJmsnClEK5P4/aDiUu7HYDCo480lfMFMGqMn9fowr2A14yplSjUej8Pv9yMQCMBms6GgoEB7mKxTsBLnagpM88JJDKz8LcZtt9uRn5+P4eFhBINB1NbW4uGHH8bq1avTaqNmQh7S4l0167tZxadkz1vFgUwlSHtMoSBhAuLlEFFqxhtm+q6mSJW/zWPLtuFwGMFgELFYTJf8MG9EUxTL95HzJ3+byWtmPVBzkCCfAYChoSG43W5UV1ejsLDwajZzU2AdAE1OTqKnpwcHDx7U1+5Xv/oVamtrUVxcjJycHH3u3W43cnJyUFlZidzcXDQ2NqK4uBgXLlzAvn37AAAbNmxARUWFrsxgJlNZB0KRSARnz57Fu+++i9OnT+POO+/EJz/5SeTm5mLfvn3o7OyE3W7H+vXrsX79+rQBn7UkmvndzP+t94PYYjQaxf79+7F9+3b09/dDqZmEwunpaWzbtu2WiVe+lZB716xZDaQvySzvMemKZAs//vGP0xIB3W43PB4P3G43Fi9ejLKyMhQVFWH79u3o7OxEOBxGY2Mjnn76aSxduhRFRUW4cOECmpqa4PV6dU1rpRQcDsecz1XgckUWCeuSvyXZS1a9lKRx0yMaDod16c3S0tIrQm0yOZrk73A4jImJCXR3d2NgYACRSAQ1NTVobW1FeXk5XC4XQ3euI1f1sMpFlyn2/v5+vPjii/D5fEilUli9ejXuvfde1NTUaFElvyXzz+l0XlHHVYxQxJ7pnTW9uk6nE3/+53+OVatWaS+plMjIhBjG9PS0zjKUbG8xNjFaEQR+v/+K6XprlQMzfEBGbtJOU3TKTQCkhx+YgteMlRRhnEgkEAgEcPr0aRw4cACnT59GXV0dvva1r+naqKYn1zzXMpKV7yQ3o0z9Z2qj1MKrqKjA0NAQ7r77brS0tOj1nG925BpItYmTJ0/ijTfegM/nQyQSwaFDh5CXl4cDBw6grq4O1dXVqK6uRnt7O/x+P4qLi1FRUaGT5i5evIj9+/dj3759KCsrw9NPPw2v15sWUiLXxiw3FYlEcOzYMWzduhXd3d1YsmQJPvGJT8But6O/vx8vv/wyHA4HNm/ejLvuukvXCLaG2lgxRat05GID8XgckUgEqdRMLWIAaG5uhsfjwaVLlxAMBlFYWIiNGzfi+eefRygUus5nn/w2yPLIshpQpsQ7q4eIkBuNZPPn5eWhvLwcK1euxPr161FTU4OKigo987lz5079bK+oqMAdd9yhnQN1dXVacwBIy/iX/tV0JMnz2VxGfXR0FGfPnsXo6CiSyZlVDbdv345PfvKTesAnz7jp6WmcPHkSL7/8MhYuXIhnn31Wr6KZyTMqA0WlFILBILq7u7Ft2za88sorCAQC2pv80EMP4dFHH0V7ezvcbvcVnttMTgZyda6qTCQG7vjx49ixYwcOHz6McDgMl8uF1atXY8eOHQiFQlixYgUWLlyIioqKtFGPxKXI/5LgAlxOBhFhJXF2Pp8PPp8PDocDGzduRGtrq56ezZRgYkUywWOxGOrq6uB0OnV5IDMGN5FIoLe3F7t27UJfXx/Gx8dRWlqKtWvXoqWlBS0tLXqUZ2IugGB+B3NKQerKyfbSZvHAyTmKRCIAZh5SP/nJT7Bz504EAgHY7XZcuHABv/zlL/H444/rm8dcbEAeZpLYJW0Ih8MYGhrCjh07cPLkSTz33HOor6/X1RXMBLrBwUGsWLECzz33HCoqKvTrNzsyIEgkEvD7/Th37hw6OzsRCARQVVWF4uJiLF++HLfddhsWL16svazSQcq1tNlsmJycxN69e/HOO+/AZrPhjjvuQElJib6GZgdrjsDj8TiOHTuG//iP/8ClS5ewdu1aPP3001BqprTL9773PYRCITz99NNYvny5HmCZ01Om59wULnIswezE5Wf//v147bXXtP3K6i9erxef//zncfvtt98Sg5NbDZle9Pv9euABXJ79kXvY4XDw+pGswW634+mnn8Y999yjY/tlRhSY6ZNDoRACgQDC4bCuxy4ziPIjziHTgWQN57N6O6VPzMnJ0cnaeXl5+hk5Pj6OQCCgnVAibiXMa/fu3di/f79+JkiyoymUzVngSCSCt99+G6+88gqOHj2qc3HsdjtCoRDefvttFBUVobi4GI2NjWkagiECH555ezvxwr3xxhs4duwY+vv7EYlEsGjRIjz77LPwer2455578O///u84ePAgNm3ahE984hPIz89PW9JUkAslAdfAjGAzV8ianJxEb28vwuEwACA/Pz+tphoALSjma3dvby8SiQTa2tp0Jri5ZGY0GsWOHTvwk5/8BMDMw1ySX/r7+7F06VL82Z/9mRbcpidNBIoIcREVMro7evQodu7ciT/5kz9BbW2tbpMIEjF+mTZOpVJ455130NHRgdzcXCxevBgejwcnT57E66+/jk2bNumbX4SvNX5YKZU29bxr1y4AgN/vx8DAgB65RqNRhMPhtJie5uZmXQLrVpm+MFcZO3bsGA4dOgS73Y6HHnoIv/d7v4fCwkLk5eXB6/WmrSokscfmgMLn8+HixYsYHR1FZWUlnnrqKeTk5OgBiSD2Lnbh9/vxi1/8AgMDA1i3bh02b94MAPjud7+Ljo4OTE1N4Stf+Qra2tpQUFCg7cEc1JlehVgshmg0iry8PH0PWEWrJBy+9957+M53voOxsTHY7Xa9BOKGDRtw//33Y9GiRXpBD5JdSKyxGQNoDmIcDge8Xi/Ky8t1MikhN5qVK1fi/vvvx4IFC+B0Oq+Y4bPb7XC5XGnPMumvAOjBujltD6SHJmbyVMr+5e+ioiKUlpaiuLgYADA5OalXdfR6vbpNoVBIe1cnJyeRl5eHEydOoKWlJa3Wu5kzIpVmBgYGsG/fPhw/flxri/b2dtx111148cUXEQgEsGPHDhQUFOCZZ55J86ias6vkgzGvYE2lUti9ezd27tyJCxcuwOFwYMWKFXjqqadQU1Ojhd/U1BQmJiZw5swZnDx5EuvWrbtidSggPf5SBJ7EAIq3b9euXfjFL36hL7C4061JRnNdbIlJmZycRE5Ojs62FpLJJPx+P3bv3o1f/epXGB0d1SED+fn5AGY8HKOjowiFQnqKI1PyktkuiZs9ePAgfv7zn2N4eBjPP/88vvnNb+obUQYA4imWNZXHxsawbds29Pf36weQxP/K/2aSm5npaI5eu7q6sGPHDhw6dAjRaBRtbW04c+YMjhw5gpUrV6atOGZON7a1taWNhm+FG0nsTgYhly5dQnFxMe666y40NjbC7Xbrkb1cRzPmyVxl6MCBAzh27BhcLhdWrFiB4uLitBAN85zJfmKxGLZv346zZ89i8eLFWLVqFeLxOLZu3YqDBw8iLy8Pf/iHf4hly5bpuGHT02CNTz5//jwOHDiArq4ufPKTn0R1dbUOPxCR7PP50NfXhyNHjmD37t0YGBhATk4O6uvrcfvtt2P58uVoamrSVTNuhet8KzI1NYVQKJQ2sJffNpsNHo8HxcXFFKwkq/jqV7+aNpMnfaEZ1mKz2bQTyhSzwOWFiszqPGbfnCmW1AzFkm2KiorwzDPPYPXq1dizZw9ef/11hMNh9PX1ad0SiUTQ3d2N/fv349y5c3pwODg4iGAwqBPEzOdrTk4OJiYm8IMf/ABnzpxBb28vQqEQ8vLy0NbWhs985jO6mkEyObNEvMygSl9rzpKSD868gnVoaAhvv/02+vv7kZubi6VLl2Lz5s1oamrSD+WxsTE9fXXu3Dl0dHTgtttuSwsHMAWWOWVpFsM+d+4c3n//fRw7dgyDg4PaCE0vkJnYMpeHVYShJF1VVFQAmBF8Iip7enrwzjvvYHh4WHufzESn4uJirF27Fk6nMy1pSdovN4u0UQTDwYMH8c4776C3txdKKZw5cwYHDhzAwMAA/H6/vlldLhcikYjOTr906RK6urrg8/l0kLbf70deXh4qKip0wLk50jMfZHIdDhw4gPfffx/T09Oora3FsmXLcP78edTW1moPdjKZxNDQEPbv36+nOCRG1vyONzsyCOrp6UF/fz9isRjq6+uxZMkS7dG3xlybHaJ41YeHh9HT0wOfz4e6ujps2LAhbVUs87xZA/l37dqFQCCA9vZ2VFVVYXh4GF1dXUgmk9iyZQvWr1+vQ13MkALZhxnv3NXVhV27duHMmTOIRCIoLy9Pi8eWckc+nw/vvfceLl68CJvNhqeeegpLly5FS0sLqqur4fF4tPf2VrjOtyISCiAzBOZqd3l5eSgqKkJZWRkqKiooWEnW0NzcnJYfYvWKysqRVVVV8Hg8mJyc1B7LTCUe50o0tTrBTMeRxMY2NjYilUphYGAADocD4XAYZ86cwbp162CzzSycc+rUKT2dL7NYY2NjWmCbxwFmNMSxY8dw4MABXLhwAdPT01rfTExMYPfu3RgdHcX09DQAoLS0FGVlZVf0s+x3PzzzClbx6Ii37o477kBbW1vadLKZIDA9Pa1rrJlZ8xKTYhVaIi4HBwfx7rvv4tixY1rsyY94n6yjq7mIRCIYHx/X8Xrnzp3TU6x5eXmYnp7GqVOn0NnZqT28MqorLy9HfX096uvrsW7durRkLdOra42DjcfjOHv2LPbu3YuOjg7E43G4XC6Ew2Fs3boV586d03GpHo9HC9ZAIICcnBz4/X593oCZQPD8/HysX78eixcvTvMyW88fMHMj9fb2orOzE6OjoygoKEBJSQmGhoYAACtWrNDfxfTWmd5hM1HrVknmiMfjeP/999HX1wen04mFCxeivLw8rYMzxbo5CJHRf0dHBy5evAiv14vly5ejtbVVd26mt9v0sMbjcVy8eBFnz57VgnRgYADd3d0Ih8PYsGEDNm3ahNLS0rT2SgcpAzKxLbELm82GqakpHD9+HFVVVYhEIjp0RmwLAC5evAi73Y7bbrsNTz75JGpra/Xa9JlqC5PsYmJiQg+grYmWTqcTRUVFKCkpQVFRUVqCHyE3EqtzB0ivbAHMOAdkoDU+Pq5rWwOXdYJVnFpnNq3PJ2vogMSSer1eVFRUoLi4GIODg+ju7tYJ04ODg+js7NTl/USvnD9/HtPT02kLAwnhcFiv0hUIBHRtV+nvh4aGtNZwuVxobW1FS0tLWl6C1TlCPhjzCta3334b4XAYxcXFuOOOO7Bq1aq0NekDgQCCwaA2FFlOUOIqzelvM9MduFzG6sKFC3jzzTexY8cO7RUqLi7GxMQEksmkToYxDR6Yuxiv3+/H2bNntWB94403tAEXFBRo40omk9qwXC4X6uvrcdttt2HlypWoqKiAx+NJi5sV47V6OaPRKMbGxrB9+3acPHlSe1LlPJ04cQLA5ZttamoK4+PjAKCNOxgMamMuKirCwoULtTe7vLwcDodDixZTIEkGezweR0dHB8bGxpCTkwO3241IJIK33noL7e3taGho0O2ZmJhAb28v+vv708SZGSd3q9R3DIfD6OjowPDwMJYsWYJly5allUoBMg+A5LyEw2G8//77mJqawuLFi3VBa+mEzSQ6M0QgmUzi6NGjCAQCaG5uxqlTpxAMBhEOh9Hc3IxnnnlGx0hlKutmDgLN2n6tra0YHBxEUVERVq5ciVAohLGxMSSTSeTn58PtdmNychIejwcOhwN/8Ad/gKamprRV3sxwFpZEyk4uXbqk6wObFVFyc3O1YC0sLITb7WbSFckarJ5OIPNCPFLuKZlMIhgMYnh4WH/eDCUwZzPFzs1QOInZl+3NMplScrOurg719fUYGBhAV1eXjg3fv3+/dsbZbDaUlJRgdHQUvb296O3tRUlJCbxeb1pY1tjYGI4fP45wOHzFMzIUCukKAeL4WrduHRYvXnxF5RcmXX145u3tLl68iHA4jCVLlqCurk6feIm/3Lt3L1577TXE43E4nU5Eo1FMTk6mTQdIQLVcLJnClmnTF198EVu3bkUwGERpaSkWLFiAiooKvPrqqzoA25y+FRE8Fz6fDx0dHQCg4zLdbreuHxsOh7VnNT8/H2vXrsWaNWuwZMkSnYhjLodoZiuaBifTClNTU3jjjTewc+dOXLp0Ka2cksvlwrp16wBcXmlDPiM0NjZiz549Om5y06ZNeOqpp3QWutyIkt0o51IEtySq9ff3w+/36xJiXV1dWL58Ob7yla9oL3I4HMbOnTvxxhtvaA+ieP9SqVRaUtfNjiz7Nzk5CYfDgcbGRixatOiKOCkgfblgGZjk5eVhcHAQIyMj8Hg8WLRoEVpaWtLKrMhUkikaJNFg37592vMty96uXLkSjz76KKqqqnR2rJncFQqFEAwG4ff7cfLkST2wCIfDcLvdKCoqwrJlyxCLxXD//fdrD5vY5cjICPbt24eCggIUFxejoaEhLctV2jdXqSySHVy6dEn3VebUp/RZ8jB1uVy8liRrMB065vLsANL63Pb2dtTU1KCvrw/RaBTDw8Npi7ZI/XCrc8rsu6wOLNEKZq11h8OBiooKLFmyBPv378fFixcxMjKCSCSCPXv24MyZM0gmZxYWWrduHV555RWEQiHs2rULFRUVuhJHIpGAz+fDiRMn9IpcbrcbwWBQ54I4nU4UFhZiwYIF2Lx5M+644w4dz2uK91spsflGMK9gFQ/gnXfeibq6Or1O8PT0NA4cOIDvf//7Oj4EAIaHh3HkyBGsWbMGy5cv19PQMsKSUlBjY2N477330NnZiR07dsBms2Ht2rV48MEHUV9fj61btyIajeqyENayPgDm9A75fD50dXUBALxeL7797W8jFAqhoKAAoVAIhw4dwuuvv45UKoXFixfjS1/6kvZAifgwy1CJy98UjbKyRX9/P/7hH/4B58+fTxPChYWFWL16NZ555hk0NDToz4rBioBIJpMIhUKor6/Hr371K0xNTWFkZASDg4MoLS3VxzbXtTcDzWOxGMLhME6dOoXu7m74/X4UFBRg4cKFaG1txYMPPqgFfzgcxiuvvIKtW7diYGAAwOWVoI4dO6Y9c9Jh3OyEw2G8/PLLGBoaQkNDAxYuXKgTjXJychCJRDImrolgjcfjeOmll3Du3DmsXbsWCxcuhMfjucIWzUoBck1zcnJQWFiIeDyOe++9F21tbaivr0dlZSW8Xq8e2CUSCbz//vsYGxvD+Pi4rgecTCZx5swZnXjjcrkwMTGBrq4u3fk1Nzfj6aef1glaYrtSxqu8vPyK4H6zo7SuMEeyB3MZS0Fmg4qKilBeXo7i4mImzpGsQ/oUeXZan3cygyozg4FAAGfOnEE0GoXL5dKJhmbxfzMUQPot0ylmOh6slJaWYvXq1fjXf/1XhMNhHD16FLt27UJvby/i8TiqqqqwadMmbNmyBQcOHMD58+exbds2RKNRLF++HEVFRfD5fOjp6cGhQ4fg8/lQVFSETZs2obOzE4cOHdIC+4knnsCnP/1plJWV6dUR5fuY5bTEE3wrzWZ+VMwrWJcuXYrjx4/j+9//PlpaWuDxeDA6OooLFy4gmUzC4XDgT//0T+H1evHrX/8aR44cQV9fH/7u7/4OGzZswGOPPabLsIyNjenkoh07dgCYWQmjpKQEf/zHf4y2tjb9MF+/fj1efPFFAEB1dXWaB0sExVwdtXjAPB4P2tvbUVdXp8MRxMt65MgRDAwM4OzZs7h48SJqa2vTahqaQdjA5Wlbs1zRvn378NOf/lRP70vNt7y8PDQ1NeGJJ55AXV0dcnJy4HK50hLFzJu6oKAADzzwAPbt24dgMIgTJ05oT9uyZcvg8Xh08XvJYJeR3f79+3Hs2DGcOXNGh1DcdtttePrpp7W4SqVS8Pv9ePPNN/Hqq6+iv78fHo8HDQ0NyM/Px549ezA6OqrPmyyYcLMTCARw6tQpxONxbNiwAXfeeSc8Hk/aNbWKczkHMhV/+vRplJWVYePGjViyZElah2hO35siVmznsccew7vvvovOzk4UFBTAZrNpj28kEkFXV5e+lmJfHo8HtbW1KC0txac//Wnk5ubqVbeSySR6enrw61//Gu+//z7eeecdPPXUU7Db7Vqo5ufno7a2FvF4HENDQ+jo6MCKFSt09Qv5juY5oODJPmKxWFrcstvtRmlpKWpqanSta0nOJCRbkD7RrGZjik5J1C4oKEBpaSny8/MRCAT0TNKSJUt0OULBdByZxzE9q+JokOezNYRQloUNBAL44Q9/qKf0CwoKsHr1anz+85+H0+nEs88+i+985zsIBoPYunUrtm/frnUDAL0C52c+8xmsX78eTqcTfX19GB4eRiAQ0OWsHn74YSxdujStVGQmj7P5P7k25hWsX/jCF/A3f/M3mJqawokTJ7RXr6SkBF/84hdRVFSE5uZm5OXlwePxwOPx4K233oLP58O2bdvQ1dWFYDCo61zG43EdW5pMJtHY2Ig/+qM/QmNjI1wuF4AZA62srITb7UYgEMD4+DgqKirSVr+ab9rajOE0E7akBNCiRYvw6KOP4rvf/S4CgQB+8IMf4Otf/zqKior05804P7npAoEAjh49iu7uboyMjODs2bNQSqGxsRHT09Pw+XwIBoP6O0hguSTNmEYroy0JAygpKcHXvvY1/PSnP8XBgwdx8uRJnD9/Hk6nE8uWLUN9fb32nA0NDWFoaEiLVgBp9Rol2Wf58uXaI/7CCy/gnXfewejoKIqLi7FhwwY88sgjOHXqFPbt26eTd6R01q2AZHGKZ1Omi8yYKvFKxmIxPeUKzHSIr776KiYnJ3HfffehsbFR27C8b43HNkf9Sik0NDTg2WefxZtvvok9e/Zgz549ulKF1+tFUVGRXhBj8eLF8Hq9elpJ4sGtlTUKCgpQX1+P8+fPIz8/X89gyDZOp1NPFU9NTWHnzp1YsGCBTtoz6x2a7SfZRTQa1Q9fCQOoqKjQ8XgFBQVpy0kTkg1I/2oNsRJxJs+rnJwcNDQ0oLq6GqdPn8bExAS2bt2KpqYm/T6ANA+tOQtmzjaaK1z5/X4UFhbqqjpSRaW6uhr33nsvXn/9dV1a0ul04o477sDDDz+sPb4bNmzQs75TU1P6/rLb7SgtLUVTUxOefPJJvYzs/fffj0gkgldeeQWTk5OYnp7GG2+8gaNHj+JTn/oU1q1bp0P7PB6PbhuTrz488wrWuro6bN68GUeOHIHX60VZWRk8Hg/q6uqwZs0aHUPlcDjQ3NyMxx9/HHV1ddi7dy+6urrQ19en3eXivSsoKEB7ezuWLl2K9vZ2LFq06IrOt6ioCPfdd58uPbVw4cK0YsJm5rQVWept9+7dWLp0qS7wLoLX6/WipaUFq1evxvHjx9Hd3Y0f/vCHaG9vR2lpqV4VSwx+enoap0+fxsjICIaGhuD3+3UMy6ZNmxCLxfDmm2/qkh2tra3YsmULCgsL05ZeNUeechOb8ZS1tbV44IEH4HA4cOzYMQwPDyMvLw9TU1PaQybLsEoWIwC0t7dj5cqVeP311zE0NISTJ08iGAziwIEDAICRkRGcOnVKxyLffvvt2LBhA2pra3XpJAl+lxv5VhCt7777LuLxuI6XMr3GkqxmZpXK68BMx3rgwAEUFxejra0NhYWF+jqZSW92u117VM3wApvNhsLCQr3ii8/n0wk0NpsNlZWVyM/P11NH0pHl5OTodppx0wD0gEvKrsmMgHTcMpPR0NCAL33pS3j++edx+PBhlJSUYMuWLaiqqkpbuIJiJ3uR+GZZVrqoqAiVlZV6iUuZPeE1JNmENavenMqXxCkRkbfddhv6+/sxMDCAYDCIbdu2oaKiAq2traivr4fNZoPL5dKzYub0uvxEIhH4/X6MjIxg7969OH/+PL785S/D7XbrNkgi84MPPojt27cjFovB4/Hg7rvvxpYtW9Da2qr7xaqqKnz2s5/FsmXLMDg4iFAoBJfLhYqKClRVVaGoqAiNjY26jmxzczM2b94Mu92OV199FSMjI9pj/NJLL2HXrl0oKSlBSUkJmpqasHnzZl3fNTc39wpvMrk68wrWkpISPPzww1i0aBHy8/NRXFys46gkW1oe5JK9Wl9fjwULFmBgYEB7dCRuUIReVVUVFixYgMrKyrSRhhh4Xl4ePvvZz2Lx4sVYvHixfqCbMaDWVYaE4uJirFq1CqOjozpDT4SAJCpVVVVh8+bNqK2txeuvv46DBw9iZGREey6ktqF4gvv6+hAMBuHxeHQNxPb2drS3tyMQCODAgQOIRqP62KtWrdJZkPJgMWvMyd9mRmRubi7a2trgcrnQ0NCAc+fOYWxsTC8ZW1RUhAULFujQA8kyb21tRWtrKxKJBHbt2oX+/n6cOHEC586dAwCd4LVixQqsW7cOa9as0ck4dXV1uO+++7B792709/ejrq4Obrf7lriJOjo6kEgkUF9frytXiAgwQ0zMgYPYVigUwsjICJYvX47q6mptD+Z5MT39ZrKBWS+zqqoKXq8X09PTad4FWdVKEqasVQvEXqzCUo5XVFR0RRaubFdcXIw777wTZ8+exW9+8xvs2rULNptN328yeyGhBhzhZx8St+7xeFBZWYm6ujrU1NSgtLRUVwYw4+wJyQbMuFJrqT+zvxIP6+rVq9Hd3Y2jR4+iv78fr7/+Ok6ePKlrj5eXl6OmpgYulwtutxtnz57VK2hNTk5iamoKfr8fly5d0nkYd999N6qrq7WTKplMwul0orW1FWvWrEFPTw9Wr16NzZs3Y/ny5SgpKdH9p9PpxOLFi1FTU4OxsTGEw2Fd97iwsFAfW5wSXq9Xa4y8vDy8++676OvrQygU0mEO4pCoqKjApUuX9MqKlZWVKC4u1vkk5NqYV7AWFhZi+fLlWL58+TXvsKSk3mjhhAAAIABJREFUBAsXLvytGlVQUICKigrce++9H/izUjR448aNqK2t1Zn0cgPl5OTA6/Vi/fr1aG9vx9DQEAYGBjA2NqZFtjwQwuEwSkpK4HQ60dzcjObmZlRWVqKsrAwrV66E3W5HJBLB+vXrMTAwgNraWqxcuRKlpaX6ZjEfKtZ6cqbQsdvtKCoqwooVK7BkyRKMjo6iq6sLJ0+exOTkJKqqqrB8+XK4XC6kUim9YkdhYSFsNhseffRRAMDhw4f1SM/hcKC2thZlZWV48MEH09qWSqVQUlKCp556Crt378axY8f0VMetUO5oYmJCx/76fD4kk0m4XC7dMQGXQz7MqfxEIoFAIIB4PI41a9bA6/VeEdMrwf9mPLU1gF5sze12p3lN5cdc6lcEtLUGrjXBK1PSlGxj2lR+fj6efPJJjI+Po7e3F/v27UN3dzeam5vR2tqKwsJCPVi8FQYntxq5ubnIz89HZWUlmpubsWDBAu3hoYecZCumQDX/Nt+Tfs/tdqOtrQ333Xcfpqen0dfXh1OnTumEaRF1tbW1KCkpgcfjwZEjR3Qyqyy1KuFsdrsdtbW1OnFV+kVxBpWUlOCxxx7D0aNHsWXLFixevBgFBQVafJoOpYqKCpSVlQFIj8t1Op16WXPpx4uKitDW1qZnP3bv3p0mpmVG9MSJE+jo6EB+fj6cTieWLFmClpYW9Pf3f0RX59bglivil5OTo71M8oAXb4Q5hZqbmwuv14uvfvWrOHnyJDo7O3HmzBmMjIxAKYXS0lKMjo6ira0NdXV1WLt2LWpra9OWnUskEsjLy8OTTz6pp9PFcwVczhqXUZlZqkPibyTxR8SHiJmGhgbU1NTgnnvu0duaJb7EYygluJRS2LJlC1asWIGzZ8+iq6sLVVVVaGxsRHt7O9xut165C7icES/LdJ48eTKt3NbNTmFhIYaGhnDo0CGEQiG0tbXp0BJzECE2Ya66FolE4HK5dN1VEZzWun+SZCevA5fXtJZraiY2yXUyp4LMNbCBywl/DocjLVbWXOoYuOzNkNho04tht9tRX1+Pb3zjG9i5cycOHz4Mn8+H0dFRnVk+OTmp48lJdlFZWYmSkhJd3aKurk7HJpuhUcwyJtmEWQrSilkeUvrDuro6PPLII6itrcVLL72Ezs5OLfBkeXURsNZ6wzabTc+WScjMZz7zGTzyyCM6UVme/Q6HAw6HAw899BA2b94M4HIeiTn7G4vF9IysOXNhtltKdcoMr4QuOBwOfPazn8X69esRi8XQ09ODEydO6DrZvb29GBsb0+cilUohPz8/LSGWXJ1bTrDKiEpEhRikJNaY8aNSYuPOO+/E7bffroVhLBbT4tKsHiD7EmEZiUR0AovcQLIPqeUpbRJRZCb+mDGQIkxkdCptlBAA8QrK+5KkFgqFkJubC4fDgerqapSVlWHRokXYvHnzFWXF5EeWow2HwygsLERLS4uOT75VvDfPPvssnn/+eVRXV+O2227DokWL0sR9pu8o56axsRGf+tSntHfVzDiVwYKcQxGrYgdmoL75+7fBTK7KxHxVHT73uc/hc5/73Jzvf/WrX4Xf7//QbSPXn7q6Oj3YbGxsRFlZWVocviSaEJLNmPGmpgdTkPJ/69evx+rVq3HkyBEcOXIEp0+fxvDwMKanp3WSlIjgsrIyVFdXo6CgADU1NaiurobL5UJbWxsWLFig82rM56k8n80qMWYYlrTpav0sAB3qZ66QKA4KCeuz2WxYtmwZHnvsMf3M9fv9OH78uA4Vq66uRmFhIf7lX/7l+p3wjwGKMWyEEEIIISSbYcQ+IYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgpUQQgghhGQ1FKyEEEIIISSroWAlhBBCCCFZDQUrIYQQQgjJaihYCSGEEEJIVkPBSgghhBBCshoKVkIIIYQQktVQsBJCCCGEkKyGgnUWpdQLSqlvz/59t1Lq9Ifcz/eUUn99fVuX8Tj/SSn1g9/1cUj2cbPZKvn4cCvZplIqpZRquZFtIDeWW8GelVLblVLP3YhjX29uKsGqlDqnlAoppQJKqeFZY8q/3sdJpVK7UqlU6zW054tKqd2Wz345lUr97fVuk5VUKvVfU6nUc7PtaJrtXO2/6+OSa4O2SrIV2ia5laA9px37W0qpH/+uj3OjuKkE6yxPpFKpfPz/7N15lJzHed/7b/U+PT37PgAGO4iFAFeJZEhRPFosWjJpmbZM24pC6yZOlKObHEmRneXaNzqOYim5jsVzTStyJNvylW1ajszYpCXLkiJzkUVxXyASBLHNYAaz70vv3e/9o7te1DR6BgMQwDSA3+ecOTO9vf32O9X1Pm/VU1VwI3Az8OuVT1DgJjVCZVVqlcqmXElUnq8Cl2PACoDneaeAvwWuBb/75uPGmCPAkfJ9P2WMedkYM2uM+aEx5oB9vTHmBmPMi8aYBWPM14GY89hdxpgh5/YmY8wjxpgJY8yUMeYhY8we4EvAbeUru9nyc/0uhPLtXzHGHDXGTBtjHjXG9DqPecaYjxljjpT38feMMWYtn7/iSurJ8u/Z8r7cdi7HUi4uldUz3qdyn/uNMf/eGPO6MWbGGPNHxphY9a3JhaSyaYKmlF51rPwZXjDGbKryvDZjzGPGmHljzHPGmM8apxXNGLPbGPPd8v4dNsb8vPPY+8tle8EYc8oY8+m17Jucu6u5PBtj7gb+A3B/+b1fcR7ebIz5h/Ln+o4xpt153a3l4zBrjHnFGHPXWo/3pXbZBqzlSuX9wEvO3R8EbgH2GmNuAP4Q+BdAG/D7wKPGmKgxJgL8FfA1oBX4n8DPrvA+QeBvgAFgC7AB+HPP8w4BHwOe9jwv4Xlec5XXvgv4HPDzQE95G39e8bSfAt4GHCg/733l1/aVC1DfGg7HneXfzeV9eXoNr5FLRGV1TT5c3t52YBdVWkjkwlPZ5FPAL5aPQSPwfwDJKs/7PWAJ6AYeKP/Y/asHvgv8GdAJ/ALwRWPM3vJT/gD4F57nNVAKpL6/wr7IW3Q1l2fP874N/Bbw9fJ7X+c8/EvARymVzwjw6fL2NgDfBD5b/syfBv7SGNNR7XOvt8sxYP2r8lXLD4AnKP2DrM95njfteV4K+OfA73ue94zneQXP8/4YyAC3ln/CwIOe5+U8z/sG8NwK7/d2oBf4Vc/zljzPS3ue94MVnlvpw8Afep73oud5GeDfU7ry2uI85/Oe5816nncS+HvgegDP8056ntdcvl8uTyqra/eQ53mDnudNA/+ZUhAhF4/KZsk/A37d87zDXskrnudNuU8oByc/C/xHz/OSnue9Dvyx85SfAvo9z/sjz/Pynue9BPwl8KHy4zlKwVKj53kznue9uMbPLWun8ry6P/I8783yMfgLuz3gHwPf8jzvW57nFT3P+y7wPKWgv+ZcjjkdH/Q873srPDbo/L0ZeMAY86+c+yKUCpkHnPI8z3MeG1hhm5uAAc/z8uexr72AXzl5nrdojJmidDXWX7571Hl+ErjgyeKyblRW1849HgPl/ZGLR2Xz9H4dO8tzOiidK93jUnmMbrHdv2UhSi11UAp2fx34vDHmVeDfqRfsglN5Xt1K29sMfMgYc4/zeJhSkFxzLscW1tW4BW0Q+M/lqxH7E/c872FgBNhQkReyUpfRINBnqidse1Xucw1TKhCA33XUBpw62wc5R2fbD6k9V1NZXQLizu3uKs9x8wb7yvsj6+NqKpuDlNJQVjMB5IGNzn1ueR0Enqg4RgnP8/4lgOd5z3me99OUumP/ilILl1w6V1N5PtdYYBD4WsXxqPc87/MXYF8uuCstYHV9GfiYMeYWU1JvjPmAMaYBeJpSBfSvjTFhY8x9lJr4q3mWUkH+fHkbMWPM7eXHxoCN5dyXah4GPmqMud4YE6XUTfGM53n9F+gzWhNAEdh2gbcrl8aVXlZfBt5vjGk1xnQDn6jynI8bYzYaY1qB/wv4+gV4X3nrrvSy+RXgPxljdpY/3wFjTJv7BM/zCsAjwGeMMXFjzG7gnzhP+RtglzHmI+XjEDbGvM0Ys8cYEzHGfNgY0+R5Xg6Yp1RXy/q40svzGLDFGLPW2O5PgHuMMe8zpQGIMVMaXLbxrK9cB1dswOp53vPArwAPATPAUeCXy49lgfvKt6eB+ylVSNW2UwDuAXYAJ4Gh8vOhlDz/GjBqjJms8trvAb9BKZ9phNKV/C+sZf9NKbl60axhIIvneUlKeX//YEoJ2beu5T2kNlwFZfVrwCuUuru+Q/Vg9M/Kjx2n1EX72SrPkUvsKiibv0OpxfM7lILJPwDqqjzv/wSaKHWtfo1S0JEp798C8BPlfRouP+e/ANHyaz8C9Btj5ikNyPnwWvZdLryroDz/z/LvKWPMWXOlPc8bBH6a0uwCE5RaXH+VGo0NzfJ0DRGRS8sY0w/8s1Vy0ERqijHmvwDdnuc9cNYni8gFUZNRtIiISK0wpXlWD5S7kd8O/FPgf633folcTS7HWQJEREQupQZKaQC9lPIE/xvw1+u6RyJXGaUEiIiIiEhNU0qAiIiIiNQ0BawiIiIiUtNWzWGdnZ31/uzP/oxHHnmEqakpbrrpJn7xF3+Rd7/73W/pTfv7+9m6detb2oZcPjzPM2d/1oWVzWa9TCbD9PQ0Bw8eZHh4mLa2Nu68804aGxsBCIfD7j5SLBaxKTKe5xEOh8lkMnieRzAYxBhDoVAgl8v5rw0EAv7risUixWIRO+90Pp+nv7+foaEhxsfHmZ2dJZPJEI1G/e0nk0l/O/F4nI0bN3LnnXcu27dAIEAwGOTrX/86H/3oRy/J8ZOS9Si7uVzOM2b527qpW8YYisUigUDAfyyZTHLo0CG+9KUv8dWvfvVS7u4yCwsL/vdL1telLruZTMZbXFzkxRdfZHBwkHw+T2trKzt27CASiRCJRMjn88TjcUKhEIFAwK8r5+bmiMfjfr3n1qlQqkvT6TTFYpFMJgPgl/9CocD8/DyLi4ukUimKxSKxWIxUKkUgEGDPnj3s37//Uh6Ks7rlllt49tln13s3atJq5XbVgDWXyzE5OcnS0hL5fB5jDKGQxmlJ7SsUCniex5tvvsng4CBLS0vE43Hy+bx/8s/n836FaIzxf2zQmclkKBQKhMNh//5CoUAmkyEcDhMIBPA8b9lrbSU8NzfHSy+9xPj4OOl02g98A4EAuVyOQCBAMpn0XweQSqUYHBzkiSeeYPfu3WzatGnZ90355lcXz/OWlS/P8ygUCv7JvlAo+Cft+fl5XnvtNb88i1xqi4uLHDx4kImJCSKRCJs2bWLLli20trb6F9324t8VDAaJRqMYYwgGgwSDQQqFAnBmQ4Ktc926sFAokEqlOHjwIHV1dWzfvp1YLEY2m6VQKNDc3HzpDoJcVKtGn8YYksmkf2LP5/N+QRKpZbYldHJykoWFBcLhMI2NjUSjpbm8bSVoT/iwPCAMBALk8/llFWQymWR4eJj5+Xm2bNlCS0uLH1DY98zn8ywsLHDkyBFOnDhBOp32K+L6+nqi0SgNDQ2EQiFSqRT5fJ6lpSXS6TS5XI5kMsmxY8fIZrMEAgG6u7v9oFXByNXBDVJd9oLIvQ2lcpFOp5mamlIZkXUzNDTEyMgIjY2NdHR00NHRQXNzM3V1df6Fv9sD5fZI2TrOXojZVlTbMGCfY3sWbN1sL+SMMbS2trK0tERzczP19fX+9iORlRacksvNqgGrPUm7Vzlq5ZHLxfz8PKlUCoCmpia6u7upq1u+iI2tPG25thdkbmCQz+eBUnfnsWPHmJ2dpa6u7oyuz3w+z+LiIkePHuXo0aN+C2oikaC5uZmGhgYSiQQtLS1EIhEymQypVIqZmRnm5+eZn59nenqadDrN8ePHCYfDRCIRWlpa/FZeufK5LauVbApKIBBYVkaLxSLZbJZEInEpd1XENzo6CsDGjRvZsGGDX9faINTtiXLjCNtwYC+2kskki4uLBINBEokEkUiEYDDoB6r2ecVi0U/VCgaDNDc3+4Gte5HvplfJ5W3VgDWTyTA7O+t3PYXD4TNO+CK1amRkhGw2SzQapa2tja6uLr9idANVe9vtdrXBgL1Kd1ux5ufnmZiYYNOmTctabFOpFOPj47z55puk02lCoRBNTU1s3ryZjRs3+hWqDTZCoRCFQoFsNksymWRkZIQjR44wMTHB4uIihw4dorm5mVAoREtLy7IARa5cbsNAZe6qLa9uWbDdreFwmN27d1/y/RWBUkpTb28vPT09JBIJv3fKDTBtq2gul/PvtwGrHSMwPT3N3NwcsViMYDBIJBJZVu7t6+z2ASKRiJ9qZbfl1un2ArDyQtC+vjKIdh93zxUXqtFAPSHn56w5rHNzc8vyVyvzT9ZqtVYDkQutUCgwMjLiJ95HIhFisZjfbW9P8rabyVYgoVDIr/zslbtlr/Lt4KnXX3+dDRs2+DlS4+PjPP/88ywsLOB5Hu3t7bzjHe+gvb3d347NhbVBciQSIRQKEYvFaGpqorOzkx/84Afk83mSySTPPPMMwWCQXbt2KR3nKmLryWqpAZV1cLFYJBqNsm/fPnp6ei7ZPoq4kskkN954Iw0NDQSDwWVpV5VBonufbX21MpkM/f39AGzfvp3GxsZlDQ2hUOiMFtpcLseJEycYHx+nubmZaDTqB7q2UaCysaKS21DheZ7fs+YO7nK/e26jhv1tW3NXakF230PO3aoBqztAxb1SqbRSi4C9KpqZmeHUqVNkMhlaWloUtMpFl06nGR4eJpfL0djYSF1dnR+cRqNRisUioVCIXC4HnL56DgQCpNNpfzt2EACcvoCbn5/nySefpKmpiZ/4iZ8gEokwNzfH0aNHGR8fB6ChoYFbbrmFtrY2v4J1cxNtl5V9Txs8d3R08N73vpdvfvObfm7rj370I79bTa58wWBw2UwUbmtMtdkDFhYWGBgYYGxsjDvuuOOS7quI1dHR4det7kApd1YL9z44nW5lA9xisUhXVxeHDh3i1KlThMNhrrnmGr/uzOVy/sCtysCvWCyyuLjojwew6QLu+9lBi3af7Lbsftjbtq6t/BzBYJBsNls1v9zdrh1gZgNkN1g930Y/WcOgKzh9Mg+Hw1XzQWxgW62bdWFhgYcffpjnn3+e2dlZduzYwV133XXhP4mIY2xsjLm5Of/qNhKJ+An8tuvIllu38rMVWuWIfsBPi4lEIn43/uDgINFolJGREY4fP47neTQ0NHD33XfT2tq6rEvMXum7OVbV0g/q6+u5++67+eu//mtmZ2dJp9OMjY0xOTm5DkdSLjVb19q/bRlyW+nhdOPA6Ogozz33HK+88gr33nvv+uy0XPXa2tr8FKnK3lS3y912/bspAnaQVSgUIhqNksvlSKVSZLNZlpaWSCQSfnqADVzhdG9DNpsllUqxtLTEwsIC2WzWf8y2bubzeb9ut/GJDaJtwGwbBmwvnNtQYJ9bOYjLncHA/XyVgyTt85QOcP5WDVhtN6ptHQqHwzQ0NJzxPNvsbk++NhgIhUIsLi5y4sQJBgYGSKfTtLW1+VczIhfL+Pg4+XyeaDRKa2vrshxQd3QpnO4hsJVsPp/3g1s4HUjaiiubzfr5VYcOHWJqaop8Pk8ulyMajdLX1+d3Y9mr/MpRrnZb9uob8FtZ0+k08Xica6+9lqeeeopiscjk5KQ/qEGubJW9WJUnvsrn2IufmZkZDTCRdWMvxCt7lOzfNoB0W2BtPWjz+aFUD8bjcaLR6LJeXnd8gZtS4DZKQGmwbS6Xo76+HjgdaLqpWJU9xzbAtN8lN+0gHA77MYvbWlxtwK57jrHv576/WlffmrO2sMZiMf+fYPPtqj2vsqnf5pUMDQ0xOjrK4uIi0WiUlpYWWlpaLvTnEFlmdnbWrzwbGxv9QQDu3Kk2cHRTWtwcJps2kM/nyefz/tW+DVjtNG+jo6P+IKqOjg527drlf1fcis2dDNv9nrgVsu128jyPDRs2+JNtp1IpFhcX1+FIyqW22rRW7uNQ6t2KRCI0NTVV7SYVuZTcwBCW51tXdq1Xpji5AZ/NQ00mk6RSKb+hzJ0lA07XqXY8wOLiIslk0q/X7XPcfbPbcYNVN7i2+1ipcvCY3aZ78Vit9bQyb1UzLZ2/VWs3tyk8Go0SjUarBqxuAOD+A3O5HP39/czMzJDL5WhqamLTpk1aCUUuulQq5VdQsViMWCy27HEbNLp5TpUrXdmRrHY72WyWhYUF/3thp1hJJpP+FFatra10dHT4wUO1Cm2lnES3JSIQCNDU1ER9fT2hUIhsNks2m71ox0tqS7VW1srxAXb1n3w+TywW82ehEFkPtrve9izZeqyyRdQ+xzYo2Cn73NdEo1F/PIG9ULevcbfrzgYQj8eXNSq4QWi1aeDsvrgXh5XnAnfwlfs6d/YY27vstrRW3ldtjI+cu1VbWO0EvoVCgbq6OqLR6IpdTm5Ss20hyufzDA0NsbS0hOd5dHR0sHXrVk3kKxedLbs2d9WdDcBdJchOZm0rEndkqF18AJYHCACxWIx0Ou1XSja/qqOjw6+4q02jYrdlWxgqu4hspWq319bW5i8woEFXVwc3TaSS22qUz+eZnZ1lcnKSQqHAli1bFLDKumlubiYSiZwx5RqcbiCoFrjZC/vK5aihNHh2cnKSHTt2+IOaKrvjbUBaV1eHMYalpaVlKwvarnj3O1WZhmVTD2x97da1boOcnTHJnj/cNAPbI+eqTAPQ9/OtWfNKV/YKqFqXU2Weih1cks/nOXnyJMlkkkAgQFtbG52dnUo6lovOlsV4PO5fILnTp9jKzwakgN/aass7sOwK3bYIRCIRurq6SKVSLCwskEwmaW1tpauri23bti1rAbDvY78TtlKzFaCdPsversx72rp1K5OTk6TTaV3oXSXsCbJYLLK0tOTPbGGXr3QHj4yNjXH8+HEymQwHDhw4p6WzPc/zL7rsYEKdUOV8dXd3r/jYuaaqJBIJQqEQU1NTHD58mFtvvXXVsm0D3nA47DeyuXmjbuOAOwOAu2+e55HNZv2FCirTt+D0xaTbamtf7w7UcoNet6fanUdWzt1ZW1jtSX7Dhg1s2rSp6sIB9nlw+oolFAoxOTnJ5OSk32XV3t5OT0+Pv/qQyMVipwXKZDJ+BWYvumxuaT6f9yszNy+p8mrc5jnZq/BIJEJnZye5XI6XX36ZxcVFNm/ezKZNm/xWAvudcAdvuYFsLpcjm80uW8HKvVq3QbPNlQ2FQlq04yphL5Lm5+d58MEHGR4e5r777uPd73633yVqy2wqlWJ0dBTP87jzzjvXNKgjk8lgjGF+fp4vfvGLjIyMcPvtt/OBD3yAaDRKPB6/BJ9SpDo3JzWRSFQd6F1Nd3c3uVyOTCazbEUsNzZxB3m5gxnd+r/aXKm2FbYy/9bN2bVjHdzlZF02faAyvUfWbtWAdXFx0T+pd3Z20t7eXvV57lxqbjdoKBTyl3a1j59LC4DI+VpYWCAQCFBfX08sFls2uhNOT/JcrZu9UCj4Oa82WE2n036Lqu36z2QyfuA7NjbG0NAQ+/bt86++bVDh5kO506jE43E/OHWT/e13JxAIsLCw4AescnXI5XIkk0k+9alPMTc3RzQa5YknnuDd7373sry5P/zDPwRgbm6OXC6WvNYBAAAgAElEQVRHc3Ozf6J+7bXX+OpXv8odd9xBS0sLMzMz7Nq1i+uvv55iscjAwACPPPII/+gf/SMaGhpYXFxkYmKCvr4+v9y63Jlgkskkf//3f8/09DTHjh0jHA6zf/9+3vGOd+ii6ip39OhRuru7qa+vf0ut9XNzcywtLRGLxejt7V3ThZgdR2CnIqyc5N+t691g1m1EsAPFGxoaaGpq8ged2++V+5mKxSKZTIaJiQl+/OMf8+yzzwJw3333+Ssb2p6QldIh5NysehZ056qcnp5menq66gk+HA77OX62Usvn80xOTjI3N0ehUKCjo8OfWHh+fv6ifSAROJ3D6g4CqEz8t4GjWwnZq+dcLueX42KxyNDQEIcOHaJYLJLL5YjFYuzYsYMf/vCHBINBYrGYP3+gO3AKTo9sdd/TTd6vTAkA/NZhO9uB2xIrV7ZsNsvv/M7v8LM/+7Ns3bqVw4cPc/z4cZaWlhgeHubBBx8kGAxy4403MjU1xeDgIC0tLX5ZTqfT/NZv/RYf//jH2bt3L8VikTfffJPvf//7XH/99eTzeX7/93+fp556isOHD7Njxw52797N2972Nv/9be+AvdAbGRnhH/7hH3jqqaeIxWLceuuttLa2snHjRvL5PEeOHOE3f/M3uf/++9f56Ml6mpycpKGhYdXxLmthu+VzuRxLS0v+LEOricfjfn1drdu92ngCWD7N1htvvMHJkydpb29n586dxOPxZQ0OxWKRubk5FhYWmJycZHBwkOHhYQqFAm9729vIZrO89tprFItFFhYWqK+vp7Gx8YxBv3J+Vg1YbcXlNndXu9KpHBFnB7jY/NdgMMi2bdvYtGnTGQGCyMUQj8dZWlryu35sq2Xl1a2bg+TOtepOc2WvooeHh/3WzkQi4S/3ZytWO5rVdhu5KldPgVJQWjkBtmW7tiYnJ/2ZDjTH5tXh0UcfJRKJcOjQIY4dO0Z7ezt33nknuVyORx55hOHhYT7wgQ/Q0tLC6OgoS0tLNDY2+vXu1NSUPyuLbcVvbm72y3Q6nebUqVPs2bOHu+66i71799LR0bFsMQuA6elpXn/9dV5//XXS6TQ7duzgwx/+sJ8SEwwG/TkqN2/eTE9PD3/yJ3+ybsdN1t/u3bv9VQXPl00HgFIv78zMzFlzYI05vbDR0tISqVRqWd6qDUqrxS82XzWbzXLixAm/TrbjDowxZLNZ5ufnOXTokD8+B/BX1Oru7vZbZG3rcDKZpLGxkXA47PfyVc4aI+fmrDmsdpBIZ2cnHR0dK16huCd4e9vmkoTDYTZs2EBHR8fF+RQiFeLxOOFweFnLqjvhs3u1bbs77eNuGQaYmJhgbGzMT29xR4wCfqvW0tKSvz3XSvP7VbaqVs4NOzY2RiaT8QNkOxG2XNmefPJJ7rnnHr/cdHd3s3XrVhYXF3n22Wf9wVfd3d3+muu2fNsV2Gxua29vL4lEYlnqydTUFNdeey379+9n3759fs+XLcdDQ0McO3bMvxjr7e0lHA6zc+dONm7c6L+fDUqKxSINDQ1ks1keeuih9TpsUgOam5svyHbsFJq2Xl1LI5fN+be9XJVzbK80a4ttcBsbG2NmZoZYLOYvXFAsFkmn0wwMDDAxMcHx48eJRqM0NDTQ2dnp5822trYSDoeJRqO0tbUxNTXlNzasNhhNzs2qAWs6ncbzPEKhEL29vXR1dVUtOLb7FU7nddikfrvaUHNzM8FgkPn5+WVrtYtcDJFIhEgksixvyA0MYfmUK5VTntjXZTIZ+vv7GRoa8luebNeUO62VXRqw2koq7jbdINXdJ/tc+1MsFhkcHPR7KBobG9c8+EAub8ePH2fPnj10dnYuGyBoux/37t3rz0DR3d3Nzp07aW9v98teOBxmYWGBZ555hubmZhoaGjh69CjRaBTP8zhy5Ag33HADt9xyi7/M8PT0NLOzs9TX1/tpBm1tbVx33XX09vYSiUTOyPu2+dj2e2QHEoq8VTalwF6EraVV0p3aym2EsI/B6WmmKhcRKBQKDA8P+1MhNjQ0+K21o6OjvPHGG0xNTeF5Hj09PXR2dtLT0+PPfezOsDE/P8/IyIifxuC2Nq+UliBrs2rAOj097Td5NzQ0rNjCMzExwdTUlD+5+eLiIk1NTRw/fpxcLkcikSCVSnH8+PFlk/SKXCzRaJRIJEImk/HXpHaXDLR5127PAJxeB9p2HU1MTHD06FGGh4f93oZEIkEsFiObzfoXX3Ywil0SsHIuP1spugOoCoXCGXMA2v1ZWFhgYGCATCZDPB6nvr5eLaxXCc/zmJub8wd8eJ7H0tKSP30VwL59+xgZGWHHjh3ccMMNfvd8IBDwVxP8zne+43dFjo2N8f73v98PWDs7O/3ZBebn5+nv7+fQoUPcddddbNu2jQMHDiyb4QLwg2dgWeqM3d+BgQF6enp4+eWXL/1BkyuK7d6H5SP4VxONRkkkEn53fDabpa6uzq/L3UGvNmB1l8+em5sjk8nQ0dFBOBz2exsOHz7MwsICxhg2btzI29/+dqLRqL88t92OTSmbmJigv7+fYrFIY2MjTU1NywZ5aQDt+TvrPKx2jd5EIrFibsq3v/1tnnnmGSYnJ8nlcn4agB04MjExwZ/+6Z9SLBZpaWnh2muvvWgfSATw0wGy2SxTU1O0tbXR1tbmr6ZiZbNZP23AtnrainJxcZEf/ehHnDp1alnlNjs7C7DsSt1uY35+nqamJn8KFLdytBWjbamyy2ra/Fa7/GsymeSHP/whMzMzfuBr58mUK98999zDF77wBXbs2EEymfQXXpmfn6enp4fh4WG+8IUv8OlPf5prrrnGP3Ha8h6Lxbj//vv5yle+wuOPP87P/MzP8MADD1BfX08wGOTnfu7n+NjHPsZDDz1Ec3Mzd9xxB3fffTf33nuvP8jEtpS6AxXd1Br7Xtabb77Jk08+yec//3n+9m//dl2Om1w5bE/BudR59mI/lUoxNjZGb28vDQ0NflDpztTipn7Z8Tm2x2z//v3EYjEGBgZ48803mZ2dpa+vj507d9LZ2bns+2a3adMKBgcHefbZZwkEAuzZs4dt27YBp3sj3P2Uc7dqwDo3N0c+n/e7ldyrFVcmk2FqaoqhoSHS6bTfmhQKhfypIjKZDO3t7ezbt4877riD3/3d371oH0qku7ubkZERPM/j1KlTfhdqa2urP5WJ29IKpwc+2S6oN954wx/UUrmKST6fp76+nng87k9vZZduBfyK1lZqcHp1IhugVk77lk6nGRkZ4fDhwxw7dgworah14MABNm7cyMGDBy/NwZN19alPfeqcnm/rWHuSz+fz3HvvvSwsLBAKhbjxxhuXpZP09fXxrW99a8XtpdNpf3U4WL5eujuzRiQSIZ1O8+ijjzI4OMiv/uqvXrAcRpFzHaAUCATYvHkzw8PDjIyM0NfXR09Pz7JUrMqeAc8rLcE9ODjIyy+/TGtrK01NTRw9epQXXnjBn+pt37599PT0ACwLgC07k8x3v/tdmpqa2LlzJ1u3bqWxsfGMRgs5f6sGrCMjIwC0tbX5ifvVpou47777uOaaa3jzzTcZGhry81RfeeUVcrkc27dv59Zbb+Wmm25i586dymGVi66vr48TJ074ZXFiYoKWlhY/N8ntyoHTifc2D/Do0aP+ogDhcNhPA5icnPSD4KWlJb9HIRgMkkwmOXbsGLt37/ZP7LYFF5avX+3Op7m4uMjg4CDHjh1jbGzMv3oPh8McOHCATZs2+Su/iKzEzkFplyO+7777eOihh8jn8+zZs2fNs0ycyxQ84XCYn//5n6dYLBKJRPyZMkTOl5syGAqF/NSYswkGg2zcuJFIJOK3mNoFZCpXEAT8KQonJiZ4+umnmZ2dZffu3UxMTPDmm28yPT1Nd3c3t956K52dnRQKBT+X2x2wa2dEOnr0KD09PVx33XV0d3f7cxK7CyEAy1ZXlHOz6hnQthZlMhnS6bQ/KrpSS0sL+/fvZ9u2baTTaZLJJKOjoxw9epRischtt93GO9/5TrZs2UJ9fb0fCItcLLFYjK1bt3Lw4EGy2SxjY2PMzs7S39/PLbfcQkdHx7J5hm2FZufRe+2115ibmyMUCtHc3ExfXx+JRIIf/ehHfquprbTcwVgNDQ1kMhmCwSCpVMpv8bLzFNsu/8nJST9dJpPJ+F2/dvnWaDTKzTffzObNm0kkEstaakVc7iTpbhdqIpHwl3fNZDIXZS5I90Rsb4u8FZ7nkUqlSKVSeJ7n52GfjZ3vvbGxkdnZWSYmJpienvandnPn4LatrRMTExw8eJCJiQlaW1sJBAK88cYbzM7O0tHRwTXXXENPT4//GncaRMumTe7bt49wOExzc7M/CMuts22amL4j52/VgNWdLzISiax4lRMKhWhoaCCRSOB5nr/uue1WamxspKWlxT/x6h8mF5ud2WJsbIx8Ps/U1BQTExPMzs4SDAbp6emhtbWVSCTid6na3KfBwUFGR0eB0lX79u3b2blzJ8VikZMnT3Lq1Cnm5ubo6enxr+ZtEPr666+zsLDAhg0bSKfTfiBhW1VtYGoHBdiLQvu9CAaDtLW1cc0117Bz506/dUEVnazG5tEBfot/IBCgr6+PiYkJXnrpJe6888513kuRs7NTYto0F2DNLazxeJyNGzeSTCaZmpryp3ZzGxfs3Nq2Ue3UqVM0NDSQSqWYmJjwF47Ztm0b27dvJx6P+w0O7iIvdl9tKk5HR8eyBWNsS6z7XPe3nLtVA1Z7YDs7O2lqalo1aHVX9THGUFdX5zfFLy0t+SOvlcMhl4IxhkQiwZYtW4DlU+4cP36cqakpWltbicVifsvq4uIi4+PjfldSLBZjw4YN/lX20tISGzZs4OTJkwwMDLB7927q6+uJRCIUCgXm5uY4cuQIo6OjnDhxwl/9yk09cHsqbIARj8dpbGykrq6OaDRKV1cXu3fvJpFIVF1ZTqRStXl+A4EA+/bt46mnnuLFF1/k9ttvX6/dEzknttfLDkZdq2AwSF9fH6Ojo8zPzzM+Ps7c3JyfW23HEdhgdWhoiHA4zLZt25ienmZmZoZQKERdXR2tra20trb66WN2CkM704sbvNqgtXJOevc5bt6sgtbzc9aVrgKBAL29vTQ1NS0bMeqyzeT2n2NbZG136OjoKMlkctnIPJGLyY4G7evr8yd0bmlpIZVKsbCwwOzsLJOTk4RCIX+FILuym+d5xONx2tvbufHGG+ns7PQDz66uLhKJBIODg366QCKR8POybTfWyMgI27dvp6GhYdmE1XbCdZtPmEgkaG9vp62tjZaWFpqamvx8VfcKXd8ZWY2tl22jQKFQwBjDnj17OHjwIG+88cY5nfhF1oubY2rnt15L2bV1t50n1fZ6nTx50j8H5PN5ZmZmOHLkCENDQwQCAbZt28b+/fs5cuQIAwMDQKlejsfjflzjzgpg960yHnKD0GqpA3bGF/WWnb9VA1a7woT9R9npHyoHfwQCAX/daZv4H4vFaGxsBGB0dJTp6WnS6bQ/tYrIxWQXvCgUCnR1ddHc3Mz09DSHDh0iEAiQTqeZnZ1dNkOArdDC4TCbN2/m+uuvp7Gx0e/mCYVCbNu2jRtvvJFXXnmFYDBIZ2cn/f39/mCTQCDgz6php9GyV+OhUIhIJEJdXR1NTU20tbXR3t7ut9JWTq9lK0TbjaXvjVRjl5C0uc/2YgdKrfdNTU0Eg0Hm5ub8OlmklqVSKTKZDIVCwR/cuhbFYpFEIsE111xDKpXi1KlTvPbaa6RSKbZt20YymeTw4cN+GoBNvQLYsmULr776KolEgo6ODn/1Klsn29jGpm/ZNByb7mWMIRqNVu0VW2m1Qzk3qwasMzMz5HI5pqam/EITDAbPSN63k5/bgSu2Od9eoUxMTPD888/T2trKddddpzXR5aJzl2K1cwLX19fT0dHB0tISU1NTDA8Pk06nyWaz/kwA7e3t9PT0EIvF/InS3RWoWlpauPXWW/0psW644QYOHz7M5OQkiUSC7u5u7r//fj8VpqGhgXg8TigU8gPSeDxOPp/3J7m2j9nWXjuzQOXCA6ropJqlpSV/jtZ8Pu8P+rNdlNdeey0LCwt84xvf4JOf/OR6767Iqowx/tLaNm90LT1Mbq7oli1b/Dr/xIkTvPjii/z4xz9mYWGBYrHIli1buPbaa9m8eTOxWIx0Os3U1JQ/U8ypU6fo7Oz0W1ptkOrOMGODULcnzKad2RXhbL2dSqXOKR9XqjtrC2tdXR3XXXcdXV1dK07k685zBvhzVtru0HQ6zeDgIOPj4/70QSIXk72Isl1JNnCNRCJ+2XTn6LPd9O5SqjatxeYvWc3Nzdx1112EQiHq6+v9PNjFxUXS6TTRaJS6ujo/f9bmL7lLZ9rK2F6R2y4ku0iAbVFwW1yV9yTVDA0NcezYMX8QoS3HdsngDRs2sGnTJr72ta8pYJXLQnd3N9u3b2dychJgzb1Lti7P5/N0dHRw2223sWPHDl544QWGhoZoaWlhx44d7N69m8bGRr/ODQQCtLe309vbSy6XIxQK+SvB9fT0EAgE6Ozs9OttG4jaets22Nke6copE91FNxT/nL9VA1abO2IPuG0JqmSbyt15zkKhEF1dXf7VxeDgIBMTE8rFk0uiMsfIThDttjzZWSxs1467Lrp9nV1EoHK0pw006+vr/dkI7CpDyWSSzs5OP+h198ENOt28Q5tyYwNUd1UsOJ2fJVLJ9gy4ywq7k//H43Hq6uo0R6pcFuwCL+985zt5+9vfjjFmTQtS2GDRXvTbHqu+vj5aW1tJpVIEAgG/kcHGMjaA3L59O0eOHGFmZgbP82htbaWvr4+GhoZl4wjcRgxbL7uDr+y+WO4UiMYYP9VBzt2qAasNVsfHx5mfn6elpaVqwGkDVDctIBgM0tvb63dx2jXdbfArcjHZysO2bFpubmjlvHzutCM2bcUdMAWnA0cb6EYiETZs2MDU1BQzMzP+PKxwekUUdyCMe7VtuV1FbsBsu6eqJfiLWKlUivn5eb9RwZZfe5K1k6/X19ev966KrIlNnYrH4+f0uspR+LbebGho8Mu/zfG2+ae2zu3o6GDnzp28+OKL5HI5f774zZs309LSsmwp18qBtG7dbOtst7fOXZgmlUqp4e48nXXpnHw+z6uvvsqWLVvo6OioWoDcqRvcvEG7NNn09LTfDbrWfBSRt8rtnnErmWqj7m0Ztt3vbre8W7ZtJeVup7GxkaamJpLJJOFw2B+saAcn2m4nt5vI3m8DWbs/7vQnbiCrAVeykmQyyfT0tH+7skVHLfNyNalsDHAbKYBldbh9TiAQIBqNsmPHDiYnJ5mZmWFsbIzFxUWWlpZobW2lsbGR5uZmf8pON2h1U7rsHNuZTMav8wuFAul02j8naMaO87NqwGpP2keOHGF8fHzVg1w5oa4xxl/LN5lM0t7eTktLy7IRrCIXi9ut7nYVVXbD2+dWJsS7t93y6pZxy05FZSstm2BfuRa7DYTd7bnbt/tqr8btQCyR1dgZJgYGBvylKW35LxaLjI+Pc+LECbXQyxWt2qAmW+/a+t5tDHAbAWxjRVdXF/v37+fo0aOMjIwwOzvL3Nwc0WiU5uZmenp6/JZfd+55Oz4ik8kwNzdHKpViaWkJwF9py8ZBiUTiEh6VK8uqZ0Obf9fd3U1vby+NjY1VKz17wrWjqm2uYHNzMzfeeCPZbJZ9+/axbds2f9CLyKVgV0uxAaR7Ze2O5LQVmb2gcgdrud3ygF8B5vN5IpEIXV1ddHV1MTEx4X9nKnOY7HfDbtO2+Nog2nbhGmP897brwtvcVpFqduzYQS6X45vf/Cb33nsvbW1tfnldWFjgiSee4PHHH2fbtm3rvasiF5Wb2uXe59bHlbdtl71tuNixYwednZ0cP36co0ePMjo6yuzsLDMzMwwODpJKpWhtbfXHPth8WTsft9so0tDQ4E9lGI/H2bp1K4lEourgdTm7VSPHlpYWstkst912G5s3b15xpSubN2WvWmxAGg6H+chHPsK9995LU1MTTU1NRKPRi7KmtUilyjwmm89qA85cLrcsaR5O52275biy295ejdtKJxaL0dTU5Oc52fd2pz+B06tt2ZHcgL9dd+CV/T7ZQBlYtoKKiCsWi3HttdfS09PD//gf/4P5+Xk2bNjA4uIiY2Nj7N+/n8985jN0d3ev966KXDTuVFNwunXVDVBt3V6tLrV1dzAYpKWlheuuu47du3eztLTExMQEY2NjzMzM+PFLJpMhk8mQzWZJp9OkUimam5vp7u72B3Y1NDT4g7ZsKoE7uFfOjdFJUERERERqmcJ8EREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKYpYBURERGRmqaAVURERERqmgJWEREREalpClhFREREpKZdtgGrMearxpjPlv9+hzHm8Hlu50vGmN+4sHt3aZztcxtj+owxi8aY4KXcL7n4VP5lPVxp5c4Yc7sx5ki5nvygMabLGPOkMWbBGPPfjDH/wRjzlfXeT6kNV1r5v9xc1IDVGNNvjEmVK4Ox8j87caHfx/O8pzzPu2YN+/PLxpgfVLz2Y57n/acLvU+XQuXnLh/v9ziPn/Q8L+F5XmF99vDqpvIv60Hl7pz8JvBQuZ78K+CfA5NAo+d5/8bzvN/yPO+fXeg3NcbcZYx5/EJvV1T+K977M8aYP7nY73OpXIoW1ns8z0sANwI3A79e+QRjTOgS7IfIelD5l/Wgcrc2m4HXKm6/7nmed7HeUMf9klD5vwJdspQAz/NOAX8LXAtgjPGMMR83xhwBjpTv+yljzMvGmFljzA+NMQfs640xNxhjXix31XwdiDmP3WWMGXJubzLGPGKMmTDGTBljHjLG7AG+BNxWvvKaLT/Xb+Iv3/4VY8xRY8y0MeZRY0yv85hnjPlYuQtp1hjze8YYs5bPX77S+YYx5uvlz/CiMeY65/E9xpjHy9t9zRhzr/PY+40xr5dfd8oY8+nKz22M+RrQBzxW/ny/ZozZUt7nUPk5veXPNF3+jL9SsX9/YYz5/8rv85ox5ua1fDY5O5V/EzXGPGiMGS7/PGiMibr7b4z5N8aYcWPMiDHmo+dznGU5lTvzdmPM0+XXjZT3KVJ+7BiwjdN15sPAA8CvlW+/x1S0UBlj7igfo1ljzKAx5pfL90eNMb9tjDlpSq16XzLG1LnHyRjzb40xo8AfVeyjMcZ8oVz2540xB40x167l88nqrubyb4y5G/gPwP3l936lfP+KcUDN8zzvov0A/cB7yn9vonQl+5/Ktz3gu0ArUAfcAIwDtwBBShVHPxAFIsAA8EkgDPwckAM+W97WXcBQ+e8g8ArwBaCeUgG7o/zYLwM/qNjHrzrbeRel7qAby+/7u8CTznM94G+AZkrB4QRwd/mxPmAW6FvhWHymvM8/V/4MnwZOlP8OA0cpFa5IeT8WgGvKrx0B3lH+uwW4sfJzVx7v8u0t5X0OlW8/CXyxfEyuL+//u5z9SwPvLx/DzwE/upjl40r/Uflf9j6/CfwI6AQ6gB86x+IuIF9+TrhcBpNAy3r/Dy/HH5W7Ze9zE3ArEKJUHx4CPlHtWFXuV/n2Z4A/Kf+9mVK9/Ivl49EGXF9+7AvAo+Xj2gA8Bnyuonz/l/Lnq6vYx/cBL5Q/nwH2AD3rXY4u1x+V/2Xv45df574V44Ba/7kUBWexfEAHygepzvknvMt57n+3hcq57zDwTuBOYBgwzmM/XKHg3Fb+B4Sq7FXWAOsAACAASURBVM/ZCs4fAP/VeSxRLqBbnH2+w3n8L4B/t8Zj8RmcAJBS6/YI8I7yzygQcB5/GPhM+e+TwL+glFflbtP/3JVf1PLtLeV9DlH64haABufxzwFfdfbve85je4HUehfQy/lH5X/Z+xwD3u/cfh/Q7+x/yt1nSieRW9f7f3g5/qjcrXpsPgH8r4pjtdaA9d+7r3WeY4AlYLtz323ACec4ZYHYCvv0LuBNSoF14Fw/k35U/lc5Fn75Ld9eNQ6o9Z9LkcPxQc/zvrfCY4PO35uBB4wx/8q5LwL0UvqHnfLKR7dsYIVtbgIGPM/Ln8e+9gIv2hue5y0aY6aADZS+BFAKLK0kpcK1Vv7n9TyvWO5OsE3/g57nFZ3nDpTfF+BnKeXgfN4Y8yqlwvr0Obwv5feZ9jxvoeI93G7/ys8WM8aEzvNYSonK/+ltu/s8wOmyDzBVsc/n+t2S5VTuAGPMLuB3KNVzcUoX7y+cxz5C6TMeq3J/R3nbLzg9tYZSq5s14XleutpGPc/7vjHmIeD3gM3GmEeAT3ueN3+e+ykq/6u919nigJq13tNauQVhEPjPnuc1Oz9xz/MeptQSuaEib6NvhW0OAn2mekK1V+U+1zClAgyAMaaeUrfPqbN9kDXa5Gw7AGwsv+cwsKl8n9Vn39fzvOc8z/tpSt2pf0XpCqua1T7fMNBqjGmo9h6yLq6m8r9s25T2f/gCbFfO3dVU7v478Aaw0/O8RkppV2vKf61iENhe5f5JSj0E+5xj2OSVBv1Yqx4Dz/P+X8/zbqLUs7UL+NXz3Ec5u6up/Fe+92UdB6x3wOr6MvAxY8wt5ST0emPMB8oH9mlKOUD/2hgTNsbcB7x9he08S6mgfb68jZgx5vbyY2PARpt0X8XDwEeNMdeb0oCQ3wKe8Tyv/wJ9xpuMMfeVC/UngAylvL5nKF01/Vr5890F3AP8uTEmYoz5sDGmyfO8HDAPFFfY/hilQQRn8DxvkFJ3xufKx+QA8E+BK2bKi8vclV7+HwZ+3RjTYYxpB/5vVPZqwZVe7hoo1ZmLxpjdwL98C9v6U+A9xpifN8aEjDFtxpjryz1jXwa+YIzpBDDGbDDGvG8tGzXGvK18/MOUUgvSrFzHy4V1pZf/MWCLbQy73OOAmglYPc97HvgV4CFghtIgpF8uP5YF7ivfngbuBx5ZYTsFSsHeDkq5n0Pl5wN8n1IC9qgxZrLKa78H/Abwl5QK33bgF9ay/+b0JP0rXYEB/HV5X2aAjwD3eZ6XK3++e4CfpHS1/kXgn3ie90b5dR8B+o0x88DHgA+vsP3PUQoKZk15JoEKv0gpr3UY+F/Af1yl20Quoaug/H8WeB54FThIqQvssys8Vy6Rq6DcfRr4JUqDpb4MfH0t263G87yTlAYE/htKx+NlwM708m8pHbsflevp7wFnnaOzrLG8bzOUumengP/nfPdT1u4qKP//s/x7yhhj0w4u2zjALE/PkIvFGPMZYIfnef94vfdFRERE5HJSMy2sIiIiIiLVKGAVERERkZqmlAARERERqWlqYRURERGRmna2hQMuu+bXv/u7v+Ohhx7ij//4j2lsbMTzPOw0asFg0P97vTz44IN88pOfXNd9uNQ8z1uPg37Zld0rged5FAqFVR8HKBQKZLNZHn/8cfbu3Ut3dzfxeJxAoOauoVV2z+L73/8+f/M3f0OxWOTBBx9c7925KD772c/yG7/xG+u9G+fkUte7+XzeCwaDFAoFisXSrFyBQIBgsLR+wqlTp3j11Vd55plnWFhYYPPmzdxwww1s27aNzs5OQqHVwxFjjL/iUbFY9M/tdvv5fH7ZNowx/mvsbyjVPXY7f/EXf8FHPvKRi3E45DytVm4vxUpXl1RLSws7d+5kcHCQffv2rXuAKrJezhY4Vn43bCVu//72t7/NG2+8wQMPPEBXV9ea39dup1rw6V48zs/P88orr7B3717/pCOXH8/z6OjoYMuWLeu9K7KOgsEgxWLR/94XCgXy+bx/cfriiy/y+OOPMz4+TjqdJplMYowhl8sRjUapq6sjFAoRCoX8ustuyw1W3fvcgNT+XSgU/PrEbsetX2wdFAgECIfDl+bgyAVxxQWskUiERCLB9PS0f1+1k7PIlcwNPNf6HFvhp1Ip/u7v/o7BwUFuuukm6uvrL+h+2fdLpVJkMpma6PmoJfYke671lm15euyxx3jXu95FQ0PDqq+/UBcJN910E7t27aKuru6CbE8uT4VCgUKh4AePgUAAz/PIZrNMTExw/PhxlpaWAOju7qa7u5vm5mbq6uowxhAOh5cFo/a3W4btduF0vWVv23rEfY3dB/e7VIO9OLJGV1zA6nkeuVyOhYXTS+XqZChy2mqBUCaT4cSJE5w4cYIDBw6wd+9eYrHYOW3fPWG4wbArn8/z2muv0dLS4rdyVAbXtlvR3e9q27qQPM9jcXGRI0eOMD4+zvvf//6L9l6r7YP7+1xel8lkePLJJ2lra+PGG28kHo+f8ZwLffyam5tpbm6+oNuUy49t/ay8AC4Wi4yPjzMyMsLMzAwbN27k+uuvZ9OmTTQ0NPh1gHvhWhm4uttzb7stq5Yb0Lp1kW39VTxw+briAtZiscji4iIDAwNqWRU5B6lUilOnTvH666/T3d3NTTfdRFNT0wVpias80RQKBX784x+zf/9+6urqqp5ILkTAerbXuHWE53kkk0mOHz/OU089hTFmXQLWlZytPjPGUCwWOXHiBCMjI+RyuTNe627j+PHjJJNJmpub6erq8vP/qgXKZ3vfWnX48GGWlpbo6Ohg48aNNb2vVwK3ZRRONyANDAxw6tQppqenuf322zlw4AC9vb0Eg0FCoRDhcNjvynf/R5XfX7e1tPKieLVUpMrnqRxcni55wJrP50kmkyQSiYvSNB8MBvE8j5deeumCb1vkcuVW/JWBC0A6nWZoaIgf//jHTExMcO+999Lc3HxGl9y5vme1k4/neeTzeSYnJ9m3b9+Kg60qX38++7HW19gT6/DwMC+99BInT57kQx/60Dm/34VSLWhcKfiuPImn02na29sJhULLtuMGrYVCgccee4xUKsUNN9xAPB73UwjctI3K96v23sFgsGa7Wb/97W9z6NAhbr/9dn7hF35BOYsXkZt36rauZjIZ3nzzTQYHBykUCvT09NDW1uanAkQiET/PNRKJ+Odwt0xXDriq1gILpYvcYrF4RmqA/dsdDKag9fJzyWuZ0dFRHn30USYmJsjlcuRyOfL5/Io/9jm5XO6MFpdqmpub2bt3L4FAYNVBJwDZbPZCfSyRy0JlMAKlSn5wcJAXXniBkZER3ve+99HT03POXdJnY08a+Xye8fFx4vE4TU1N/kloNXZUcLFYJJ/Pn/GZqqm8335298fK5XKcOnWKgwcP0t/fz65du7j++uvP85NeOO6+VjvBVut+jUajhMNh/5i6XaL2fzA/P8/TTz/NzTffzNvf/nb/mLojqe3zrcqu18thDu+enh7m5uYYHh4mk8ms9+5c0WwOqr0gst/ZXC5HNpulWCzS0NBAe3s7kUjEf10+nycQCFBXV7dsG3YGADdNIBQKLSvr7o99TmUagN1W5UXV5VB+ZblLHrDW1dURi8X4+Mc/7ido2wJXrTI81xaeaDRKfX094+PjZ1SwrmQyyS/90i+dNagVuRK43WeVAZ/tAi8Wi3zwgx9k8+bNZ7RQnCu3NdU9edlBGIcPH+aWW24hFov5J6GVtlM5kMMdSOG2GtqTmPudtvvhBm+VrTb5fJ5UKsVTTz3F//7f/5tIJMIDDzywbq2GK+XpVbYSVXvcDjq1F/xuPep+HtuqnUqlCIVCtLS0LNsHdzoiy/4fbarBWy0jl8I999zD2972NgCGh4fXeW+ubNUuaGzL6cTEBNFolI0bN/oDrcLhMKFQyG+hr2wRta+1Zdneb3+7r3HrBjtbQeVMA67Kizm5PJw1JaBYLDI0NMT4+Djz8/MUCgWampq46aabql61nE1DQwO7d+8mmUzy8MMP86EPfYhYLLasxaNaIVprwYrH43R3d7O4uEgul1txwEg4HOaDH/xgzXZliVwolTlfboA4MTHBU089RUdHBwcOHKCrq+uCfCfctIPKFo9kMkl/fz8/8zM/QyQSWTWnrFod47bAuM9zf7v7YP+2LYbVPt/jjz/O4OAgt9xyC+9973spFApnnRfyYqtWH7rdodXYk3gqlVo26rpym8FgkHg8TjabJZPJEI1GlwXxNlitNpjlcqozC4WCPwDXbdWTC89eWNrfUCqvCwsLjI+PA7B582YikYjfqmoHW9keUVv2bCALp7+7sLzHoVqrqi2bdmosO7VWNBpddvGqmUkuT2etkf/gD/6Aw4cPk81maWlpIR6Pc/jwYYLBIL/9279NU1PTub1hKMSmTZv4tV/7Nb74xS/y7ne/m66urjMKULVcqbWoq6ujvb2dXC7H5OQkGzZsqFoww+Ew99xzjwqtXPFWCuLm5+f57ne/S2NjI3v27KG3t3fF3C63hbTy/vn5eQ4ePMjU1BTd3d3ccssty7bhjtpdWlqiv78fYwyZTIbnnnuOTCZDb28vGzZsoLGxser+V7aInK173L1t73Pvd3M5n332WU6ePMn27du5/vrraWtrW7V35mKrVve53aLVuC3nW7Zs4ZlnnuGGG26gvr5+xe01NjYyNTXF5OTkGcfdHVFt//fue+fzef/EX8v5gOFwmGg0SiAQOOfZLuT8uBc+hULBb5G3A6Lz+TzBYNC/oHLLTjqd9gNWt5XfTTWw7+E+VtnzYO+H0y29nuedkdctl5ezXiofO3aMm2++mXvuuYf3vve9vOtd7+Kee+4B4Mtf/jKZTMa/krHN8LaL3+aeHj58mLGxMbLZLMYYotEoe/fuZdeuXXz1q19lbGxsWfdVNedSIQYCAfL5PI899tiquXHnGmzL1amyu7nyKj+ZTDI2Nsbo6Oh67+qaeJ5HOp3mBz/4Afl8nt27d9PT01N1eqlqf9vPXigUWFpa4oUXXmBubo6Ojg7/AtF9rlUsFpmamuLgwYMsLi7y2GOP8Z3vfIcnnniCv/zLv+TVV189Yz/t62DlwUbu39XyU63K7utiscjhw4c5ePAg+Xye3t5eOjo6lv2f14N972oDTly2/Lmtpp7nsXXrVoaHh8lms1WPh93eNddcw+joKIODg/5ja+kqdbtja509Byn169KxFzE24IzFYiQSCf9xd1BWZQu+DVTdC+TKuqRylSv3Ys7NbXVzV93W18q0Irl8nDVgve6667j99tu5/fbbufnmmzlw4AB33XUX73znO3n88cfJ5XJnFJJisUg2m2VpaYmnn36axcXFZYFjIBCgoaGB97znPTz//PN873vfY3R09IIUHmNKExA3NTXxzDPPLJvaReR8uHmY7k86naa/v5/XX3+dgYEBf1Lslbbh/tiLvMXFRWZnZ5mZmWFmZoa5ubkzgqWVKtazDYCptg3bEnf06FFOnDjBjh072LRpkz/p+0oBX+V9nlea8/Ppp5/m2LFjNDU1sWvXLnp6elb83EtLSwwPD3Ps2DFmZmYIBAJs3LiRxsZG+vv7GRkZWfbayi59d3tujlpl4LbS8XcVi0XGxsZ46aWXOHXqFH19fWzcuPGMeUvXQ+WAkbOpPDFv376d+fl5ksnksrJUmZ6xc+dOFhYWGBsb89Mlql0EVMtTtcFCracHrPYZ5MJzL2TcC6loNOq3nLopSbYutfWrW6Yq6yI3T7Wyx8Ruq7L8ut8hN02pMq1ALg+rpgQMDAxw9913E4/Hl+U0xeNx7rrrLr7yla+ccRKzLU6HDx9mdnaWb3zjG3ziE5+gubnZzwkzxhAKhbj55pvZunUr3/rWt2hubiYej9Pc3PyWKsFAIEAikWDXrl0cOXLE/yKczzZtYDE3N8f09DSJRIKWlhY/36va8+3ns8dicHCQTZs2aenJS+xswUsulyOdTvtdhqv9fyqDtWKx6Adfb7zxht+lvdJKP/l8nnQ67Y+WdRe2WFhYIJlM+l2s0WiU/fv309TUtGLXtrtfld3c1XIW3cAvm80yPj7OK6+8Qnd3N/v37/e7St0TROVJofK4FgoFBgYGePLJJ9m1axd9fX20t7dXDWxs0DQ8PMyRI0fIZDJ0dXXxkz/5k3R0dPDcc88xPDy84nfKbWXM5/NkMhkWFxfJZDLU1dWRSCT8nLdq+2tnIvE8z++KzGQyvPLKK/8/e3ceHNd1H/j+e3tDoxuNfWmsBECABAGCBDdzM0VKIimLWmzJ1jJlyU7K8bx4LDtx3iR5ZTvJTOLJJJ5MrJqZKFa9PJfLizSWrMWLrNFKUqJFizu4gCQIEiD2HQ2g0fvy/gDP0W0Q3GRJbFK/TxWKBHq7ffv0vb97zu/8Dm1tbWRlZem6kOZZyNeLefhTnaDN5va+mlmtVmprawkEAszMzBCNRuftEbVYLFRWVhKPx/H5fITDYf3e56uHqV7XXBg+3YNVmN0fKi1COi8+XKqdqSBR5Y+qnn6bzZZSqULdx5xfPt9xeO4Fl7kNmo9ZkUhEjzJA6spbKi3kUqM/4sZw2YD1X/7lX/jKV76C0+lMSYA2DIPMzMyLepTC4TBTU1OcOnWKb37zm/T29mK327n77rspKSnB4XCkHAStVivf+MY3+M//+T/z5ptvYrPZ2Lx5M263+6KeFUCfdC63BrBhGLjdblatWsXx48eJRqN6NuJ8V3/zHZRVz42qFfnGG2/w0ksvsXr1anbs2MGiRYt04vilJJNJpqam+N73vsff/u3f6uUt5Yruo2Eu02P+jOPxOOFwmKGhIfr7+ykpKaGysjJlyOpS1IExGo1y/Phx3n77bQoKCtiwYQMLFiwgIyNj3sdNTEzQ29vL4OAgY2NjDA8P6zxOt9tNMBjUAVh+fj4ul0uXVJrv4Go+4JsDubl5enN7zBKJhG7PsViM+++/X096Mj/GHIjM19umhvZ//etfs3jxYm6//XaKiorm3V9q0kUwGOTIkSMcO3aM+vp6HnroIdxuN+FwmKNHj5KRkXHRTHXzdqsUo6mpKQYGBjh9+rS+4Fi2bBnV1dW4XK6UfEt1EhsfH2diYoJ4PK5X1pmenmbPnj34/X4eeeQRSktL02YihtrX7+ci12KxUFBQQCKRIBgM6nXa556oLRYLXq8Xq9WKz+djcnISl8t1yVSI+S5E5n630pHdbqeoqIiJiQmGhoaoqKi47P3NvXLzXSyIS5ubbwqzx9tQKEQkEsHpdOoLd3MKoHmIHlJrqar/zz3fmydcweyiJ8FgUPfWquN8LBbD4XCQn5+vKxOYL/jk872xXDZgHRoa4sSJE3g8npQeH5htKOYTdDQaZf/+/bz22mv4fD76+/t14Petb32Lv/mbv+Huu+8mMzMzpaGWlZXxjW98g+eff549e/YQj8fZtm2bDkpV76iaHHHq1Cnq6urYsGHDvAGCOeAcHh7ml7/8JbfddpsOBNRzTUxMYLPZLlpSUB2wEokEHR0dPP744+zcuZNQKMTRo0cZHx/nz/7szyguLtY9IHN7vdRw6e7duzl79izT09M4HI7rPuv448j8GcViMcbHx9m5cye5ubnccsstOJ3OKxYTVwe3eDzO6Ogov/3tbzlz5gy33347TU1NV/xcX3jhBQ4fPkwymSQzM5OGhgb+3b/7dxQVFZGRkUFfXx+//e1v8fl8bN68mSVLlujAwTwEFg6HCQQCOJ1OHA6HPtj6/X46OjpwOBzz1g5VB/6RkRGOHz/O0NAQjz322FVNQjFPclLPMz4+zlNPPYXH4+G+++7TBcABXSfVbrdjGAZ+v58nn3yS8fFx4vE4CxYs4MEHHyQrK4tkMklfXx/nzp1jzZo1LFy48KLXV9//wcFBDh48SE9PD2VlZaxZs4bs7Gzdy5uZmUlVVZUeUkwkEvh8Pg4cOEBbW5vuPVXf7b6+Prq7u/mjP/ojFixYoIM1dYFrPoFeD+ZJJKqsj8Vi0Rf98/UwmUfBsrKyCAaD8wa+5qDMbrczPT1Nb2+vrhBhPonPl9NqbhNza7WmG8MwaGpq4uDBgxw5coRVq1bp2+YOH0ciEaampujv7ycYDFJRUUFxcbEsNnCV5ub3q/aakZGha+CWlJToEVvVbqLR6EWTrMzD++bA1Rxkqu/FzMwMJ06cYGxsjGAwmDJa4Pf7CQaDfOITn2D58uUkEgl9vJZg9cZz2TNtf38/hYWFKV9YdbBTuXYAo6OjvP766/h8PtatW0dubi7f+MY3iMVivPvuuzz55JMMDAwwPj6uJ2WYZ5/W1tbyB3/wBzz//PP86Ec/or29na9//esXBcgrVqwgGo3y3HPP0dzcPG/AOjU1xeHDh3nuuecIhULs2rWLF198kYKCAj7/+c+zdetWxsfH+elPf0pzczO33XbbRQfjRCLB4OAg//N//k/+5E/+hMbGRsrLy3nppZc4cuQIv/zlL/n85z/PD3/4Qx588EE9w9bc8xUMBjl06BAul4vp6WlycnKu+0nw40gdnGZmZjh37hwHDx7krrvuIj8/PyVF5XLUsFZvby+vvvoq8Xicr3zlK1itVj3sZbfbL3lie+SRR3jooYf0wVfVCUwmkxw4cIADBw6wePFi1q9fj8vl0jNZzYHyyZMn2bt3Lx0dHTQ0NOiybJOTk/zmN7+hrq6OtWvXpryuOX8rEAjQ1tbGiRMnuOuuu3Rv5HzvfW7Aor7z4XCYgYEB3njjDaxWK48++mhK7qsKbsxF6+PxOJmZmQSDQZYtW8a2bdtwuVw6TeLQoUPU19ezcuVKvF7vRdsSDAZpbW1l586dJJNJVq5cycaNG3E6nUSjUfLy8nRRchXYh0Ihzp07x1tvvYXT6eShhx4iJyeH6elpjh8/zu7du+nr66O5uZmmpibdy6zetzqBXu/RkFdeeYU333yT8+fPY7PZqK6u5r777iM3N5fKykp90aIuEsy9Rh6Ph3feeUfXvTT3Xqn3qepiHj9+nNbWVl2v1Hwf86pDMPs9UkPs8y1MEI1G6ezs5Lvf/S73338/a9eu1SumARcFxFdrbGyMsbExampq9HOFQiFdrqi9vZ3+/n62b99+0WMXLlxIZ2cnZ86cSfm7OQe6ra2N1157jQMHDlBSUsLg4CD19fV8+tOfZsGCBbLIzFUyp7GY05QyMjJ0qTUVrFqtVv0D702Wnq/OrznnVPXQhsNhxsbG6Ojo4N1339XtQV0Mx+NxgsEgExMTnDhxgkceeYSmpiY8Ho9uN9f7Oy6uzWUD1nXr1vHqq69SVlaGy+VKOfk98cQTfOYzn8Fut/P444/jcDjYtGkTK1eu1PlksViMrVu3Mjo6qieolJeXXzQEmZGRQWFhITt27MDlcvHCCy9w4sQJnnzyyYuCAPU8Bw8e5I477rhom+12O/X19fzVX/0Vjz32GF/96lfxer04HA48Hg/wXgmYs2fPctttt6U8Ph6P09nZyZNPPsmf/umf4vV6+cIXvoDdbmfVqlUcPnyYoaEhLBYLOTk5fO1rX+O///f/Tl5env4iqqt1v9+PzWZj37595OfnS1mV6yCRSDA8PExnZyd+v18Hq/BekHWlGc+xWIxTp05x6NAhAB544AEyMzOxWq06uLnc483pNOr/sViM1tZW9u7dS0tLC83NzTptJBaLMTQ0xL59+8jMzCQQCBCJRPB6vaxbtw6Hw8GBAwc4fvw4x44do6SkhJqamotyaKPRqD4JnD17lt7eXnJzc6mtrSUUCumTwdjYGGfPnsXv9+u81rm9xslkkoGBAQ4fPszMzAz33XdfygXj3EkQKqAJhUKMjIywcOFCli9frlMHYrEYv/jFL8jPz2flypUXpRSo13v77bd5++23KS0tZePGjSxduhS73a4Do4MHD7J06VJyc3P1AgA9PT288847RCIR7rnnHrKzs3U96TNnzuiKBp/73OdSAm71Pmw2m+7RvB7C4TCPP/44bW1tLF68mC1btmCxWHjjjTf4x3/8R4qLi7FaraxatYpbb72VBQsWpPSi2mw2li9fztGjRxkdHdVlhNT7Mw/lb9y4kfHxcfr6+nQ9Vrh43XW1L8yT0ubm0EYiEbq6uviHf/gHduzYwRtvvIHNZmPFihU6aH2/+/TMmTPs3buXL33pS/ozU0HQyy+/TDwev+hYrrbf6XTS0NBwUcqJOb3lt7/9LR0dHfzlX/4lJSUl+iLgf/yP/8GOHTsum/4l3qMuts29rOoYFAwGKSoq0m3AHIhaLBY9gVsdV1W+ufqcLBaLzoft7+/n9OnT+kLF5/MxNTWF2+2mvLycvLw8PB4PmZmZTE5OcuLECfbu3YvD4WDZsmX6Qkw+1xvLZQPW0tJS9u/fz8zMjG5YU1NTHDhwgJGREb7whS/gcDiYmJhg/fr1LFmyRB/Q1IFf/Zudna3LSM29coLZhl5aWsq2bdsoLCzkxz/+MX/7t3/LV77yFYqLi7HZbNjtdvLy8igvL6e7u3vebXY6nXi9Xtxutx6iKCgoSJlYowKHzs7Oi/KwTp48yTPPPMPQ0BBlZWV6UQNAfwHUsMLKlSv5+c9/TmdnJ5mZmTqoHxkZYdeuXaxbt469e/eyc+dO3fMsPhrqM+vr66O9vR2r1UpTUxN5eXm6V+pqTU5O0tPTQzgcZtOmTRQUFADvVaS4VD60Yj5Rq9VbVK/AJz7xCRYvXkx+fr4+aPt8Pt58801GRkbw+/2sX7+e6upqcnJydLH3UCjEu+++i9Vqpbq6mqKiopSgRfVMwuxF3KlTp5iamqKgoIDW1lZ8Ph8jIyPA7HevrKyM2tpaCgoKdO+IeUQgFosxMDDA8PAwq1atoqio6KIAde7/Y7EYv/vd7/D7/WzYsIHq6mp9IXvixAmcTid1dXWUlJSk5Mmr/fTSSy9x7NgxcnJyWLt2rQ60Ozo6aGtrI5lMUldXR11dHRkZGfh8Ptrb2zlw++FQAAAAIABJREFU4ACJRILS0lI92TMYDDI2NkZfXx8A9957L4WFhbqX3NyrqIYmr9dQ97PPPktXVxef/vSnaWxsJCcnh4GBAaxWK9nZ2Xg8HpYuXUpbW5sO3ioqKlLa9Sc/+UlaW1uZmZlJCVjNn2sikaCoqIjs7GwmJycvKiWk3r+5bKE5pUvdpu43Pj7Ok08+SUtLC8uXL8fr9dLZ2Ulvb6++SFSPSSQSvP3222RmZhKLxQgEAkxPT9Pd3c3g4CDf/OY39WQ6AJ/Px7lz55iZmcHpdOqRh9OnTxONRvF6vfMeX1XnSXV1NeXl5Sm3qfd5+vRpenp6yM7Oprq6WncsqPNeRkaGLDpwFea2LRWkTk5OEgqFdJqfuaSU+hzNaS3mlBPzvAGLxUI4HKatrY3W1lbOnj3L0NAQU1NTJJNJ3G431dXVNDQ0UFFRoYPVZDLJ7373O9rb2ykuLsbj8ejbxY3lsgFrYWEhk5OTRKNRPfu/o6OD/fv3s2PHDqqrq/VJ1u12k5WVlbIcWiAQ4NChQ3R2dnLLLbdQUlJyyddSwwalpaW43W6mp6d55ZVXeOqpp9ixYwc1NTU4nU48Hg81NTUEAoF5n8dqteq8mcrKSkZGRlKGV2H2BF5YWMixY8cuerwabqivr08ZcguHw5w8eZL+/n5KS0t1/q3T6eTVV1+luLiY8vJyRkZGOHjwIKdOneLhhx9menqaF154gUAgcNVlasQHI5FI0NbWRiKRoLa2VvdMmScrXY3Ozk76+vr0AdEcGFzL88BsEOfz+WhtbaWsrIwlS5booEqtynPq1Cm6u7sZHh6mpaWFmpoaKioq9DBWPB5nfHycUCjEpk2bKC0tnTc9pru7m5GREaamphgcHNQToEZGRnA4HOTm5uLxePB4PFRVVVFcXJwyQccc1A8MDDA4OIjD4aCuri6l50PtB/O/8Xicrq4uWltbWbp0KXV1dXrJ0LGxMdra2igpKaGoqEgHIOb9mEwmOX/+POfPn2flypWMjo7i9/sJhUK6d3jBggUsXLiQnJwcnfJw6NAhBgYGqKqqora2VuesDw4O0tvbqys6LFq0KCUlZG7P3/WsM/rmm2+yZMkSWlpaKC0tJZlMEggEWLJkCWvXruXgwYO0tLTg9/sZHBzk/PnzeL1encZgs9moqqrCMAxGR0fx+XwUFxfr5zcP8btcLlwuFzMzM5w5c4bGxsaLJt11dnZy+vRpALZu3ZqygpY5HcDv99Pa2spDDz1EUVERxcXFjI2N6dxg1fuWSCQ4fPgwu3btYvPmzbpDISMjg6mpKXbu3ElPTw/19fU6gFFpaMePH2fTpk1YrVbC4TAHDhwgLy+PqqqqeXPJ1XF/vkmVqu2qYD4QCDA2NkZRUZGugrFx48aLSrWJSzNf8KiRRnXuy8jISDmmmPP0zX83Px7eSzWJRCL09fVx8OBBurq6GBsbIxQK6Xa/YMECbrnlFkpLS3XHRE5Ojh5RGRwcpKurC7fbjcvlorS0NK3zr8XFLhuwlpWV6cLLIyMjjIyMMDg4iMfj4a677tIHrcLCQgYHB9m/f7/ucbJYLIyPj7N//37cbjdVVVXzzgKee6IzDIPc3Fzuvfdepqam2L17N1lZWVgsFqqrqykoKGDFihWEQqF5t9ncY9vS0sKZM2d0zpt6PYfDwYIFC/D5fBcFGw6HQ5/QzBNthoeHOXLkCPF4nHXr1mEYBk6nkyVLlrBnzx5WrVpFKBSit7eXs2fPkpubS2lpKS0tLbzwwguMjIxQVVX1Pj4i8X6ok1xPT49uN+Yg7FoOVAMDA/h8Pp3WMTf309y7eDnqAN7V1UUgEGDLli06lQRme0V7e3s5ceIEsViMzMxM1q5dq4MRmA14+/r6GB4eZtmyZSxfvhyXy3XR+1G1iCcmJujo6CCZTFJUVERmZiYZGRl4vV6ampooKCggMzPzkkshqudVr5mbm6tzIucOL5sD3ZmZGQ4cOEAkEmHt2rX6Im9qaorOzk6Gh4dpbGzUqRXz1Z6NRqM4HA594Tw+Po7VaqWgoIC6ujpqamrIyMggFArR3t7Onj17OH/+PKWlpVRWVlJRUUEiMbsS1+nTp+nr68PlctHY2KgnYM4XmM69wP2odXd388ADD6SsUpWdnc2aNWvwer288847FBYWsnbtWvbs2UNHR4d+v+r9ZGZm4vF46O/vp6+vj4KCgpQJaYrNZtMjX/v372fJkiX6uK4usM+ePctrr72mh9ZramouKhWo8gUjkQjV1dV6kmltba0e7TJPqHnllVd0IFFXV6ePtdXV1Rw4cICOjg79+cLs6JbL5WLPnj1s3LhRB+Pnzp1j48aNFBUVXXNngPqcy8vLqaur4+jRo+zatYva2lrKy8sJBAJs3LgxpWqNuDzzAg3m3HeLxaKPU+Z9Obf2qrnOtToOqbzW8+fPc+TIEdrb24lGo/rYEQgEyMnJobm5mRUrVug8WdXOKysrWbp0Kbt27eLs2bPE43EqKyv1SJm4cVw2YK2trSUajRIMBjl9+jQjIyOUl5ezbdu2lOG7LVu2sGvXLvbu3UsymdS5UOFwmEWLFvHlL3+Z8vLylBPifMx/t9vtPPDAA0SjUd5880299nVtbe1lr3jVicZut7NixQp++tOf8uCDD+J2u1MmG9TU1Mwb9E5NTTE8PMytt95KX1+frk6gVuNqaGhgwYIF+rW++MUvcuDAAXbu3Mm+fftwuVwsWLCAlStXkpGRoWcgHz58+IolVcQHRx30VK9Nb28vgUAAu92O2+3G4XDoXsIrUQc/NdMVUpf9u9JzmCfGqEmB69evTxkmjUajDA4OcvjwYYaHh8nJyWHbtm26Z1XdZ2RkhFdffZWZmRluu+22i2bcmrd548aNrFy5kpmZGYqLi1mzZg1lZWV6m8w513Nnnqv7qP+rsjHZ2dk6mFQze829ITAbVJ8/f54DBw6wZs0aXQ0hHA4zPDzMyZMnKSgooKGhQacNzRcghkIhli9fzq233orVasXj8ZCdna1f02azEY1G6e7u5le/+hUdHR0UFRWxePFi1q1bh9Pp1D2HJ06cYGpqivr6epYuXZrSu2quO6p6sK8nwzD0JE2VvuRyuaiurtZ1VQ3DYPHixbS3t9PW1sbOnTtTqi9YrVbq6+s5d+4cXV1dNDY2pqQFqDatemNLS0s5fvw48F6gqu7j9/sJBAK4XC727dvHwoULiUQiOBwOnRKghvVV6pb6jGpqalKqG6jesj179vDoo4/q70A0GiUQCBCNRqmpqWFgYCAlsK6oqKCpqYlXX31Vr1zV2tqKx+OhoKAgZaLftexngKKiIrZu3Up2djY/+9nPyM3N5c4779QTe1U7F5c3MzNDOBxOmcAYCoWYnp4mmZyt3+7xeFKOOeqiUY18mSdcAfq4Ozw8zN69ezl69CiRSISSkhK8Xi/BYJC2tjaam5tZt26dnkyqntflclFcXMyqVat48cUXOXbsGMFgkBUrVlBTU3Pd9pV4fy4bsKrZ7+oDVjlF5skjANu2bWPDhg2Mjo5y/vx5uru7qampYenSpbon41I1Bed2/6uAd3x8nFdffVXXrlSNsra29qremMViYd26dTz++OP4/f6UWeEWi0UP7849SU5OTrJr1y7eeustDMPQj/vSl77EqlWrLlpzOz8/n89+9rO8+OKL9PT0sGnTJu655x7KyspIJBK4XC7uvvtunnnmGRYuXCjFqz9CNpuNDRs2sG/fPp599lkmJycpLS2lrq6OpqYmPZSuAthLUZOhfD4fwWBQ593NnXR1qcBVnUj9fj+nT58mmUzS2NiI3W4nFosRj8cZHh6mra2Nrq4uFi5cyObNm/F6vTpoicfjjI2NcejQIQ4dOsT27dvJzc29bK1ONXnIXGBfBekqIDFv39zg2xyElpWV6Ylb58+f1+k9yWRSP6c6SU1MTPDcc8+Rm5vL7bffrvNzx8bG6OrqIpFIsGXLFn1sUI+d+16i0ShbtmyhtLRU31fVWVRVBvbt28fTTz9Nb28vd9xxB5/5zGeoqKjAZrMxMzPDrl276OjoIBaL4Xa7yc/Pp6ioSF9UqxEXc6CqJnqqGqYftXg8rmtHq+1KJmeX01W9VapXfPv27bqk4Jo1a1i6dKl+H7fffju9vb2MjIykrCSknldNhqmvr2dsbIyf/OQnTE5O4vF49MVeMpnU9S0LCws5d+6c3mfqPKDSwvx+v96n6rM057yqduf3+/H7/ZSUlBCJRBgZGWF4eJijR49y4MABJicn+fa3v50S2FRUVLB27Vp+9atf0dbWxqJFi/jVr37FAw88oIPia61bq/aBw+HA6/Vy9913c+utt3LmzBm++93vEg6H+eY3v0lDQ8N1v4i5ERw7doxz587pY6SaS6KOmzMzM3i9Xt0mzOd8VeVCtU01shsKhRgaGuKll17S8wjKy8tZtWoVNTU1WK1WNmzYwOLFi/Xo11yq/rSqCdvf38/AwEBKpSNxY7hswGq1WsnLy+PEiROUlpZSW1ubUsdMsdvteqiwrq7usi9oPgmqk2NbWxtHjx7Vk0wGBweZmZnB4XCwfPlyPv/5z1NWVqaHrq5EnQBdLherV6/m6NGj5Obm6pOsCkSfeOKJix67fft2Nm7cqHO/ampqLurFmtsTfN9993HHHXfoPNy5CyR89rOf5dChQ+zevZv29vareg/i96NmmVZUVFBRUcGnPvUp+vv7OXbsGPv27eOtt95ienqaO++8k9tuu+2yvd9Lliyhu7ub8+fP4/P5cDqdOjcSuKg+4HxUDvjExISulBEKhUgkEkxMTPDmm29y9OhR6urq2LFjh84HVz0Pqvd137591NTUcN9996X0CqrhN/MohppN73Q6GRsbo7+/X190qgO7+p6Z8xLns2jRIvx+P2+88QZPPPEE0WiUoqIiXC4XDQ0NNDc3U1paytTUFHv27GFwcJA///M/Jzs7WwdLqsblzMwMRUVFuqi3edKTOehQpcJU2SrDMIhEIoyOjjI4OEg8HufVV1/F5/PpYMPr9eog6/nnn8disfDQQw+xc+dOXWnB3GNmLo1kHjJPJpPXbaKNy+UiEAhgsVj0sTYejzMyMsLPf/5zvvzlL+NwOPQkrJaWFgKBAG+99RYNDQ26d0ktNdvf3097ezstLS2Ew2G9z5PJJE888YQ+HqoAf8OGDbr9+Xw+xsbGdJWNf/3Xf9W9pHMXnVCTctUFlsrLhvd660OhEN/73vcYHR3ln/7pn3RgYrFYKC4u5rbbbtOVHeauKFhQUMC2bdv4m7/5G77zne9w8uTJlF67WCx2TbWuzRdsqiPB4/HQ0tLCD3/4Q77//e/zT//0T3zlK1+RlICrcPDgQc6dO6eDw5KSEsrKyhgdHSUSiZCXl4fT6Uz5/iUSCb1CleqBVz/qAvf06dN0dnYyPT1Nbm4ua9asobm5mYKCgpS8aJXWFIlEUgJRp9PJokWLdE71zMwM7e3tNDc3S1mrG8wVA9aSkhLa29tZuXIl9fX1v/fQiLqKMlu6dClLlixJmaVqruk4d5Wqq+VwOPja177G3r17CYfDKSf0S1EnATW0drnXVUGKygObL5dRPf4v/uIvePnll+ed6CU+eOaLBlWXcuHChdTU1HDrrbfS1dXFU089dVXlxnJzcyksLOT06dO8+eabPPjgg7pdqoPr3GFxM9X7qtpxW1sbAIODg7pQ/fDwMNXV1ezYsQOPx6MDqGQyycmTJ/VELK/Xy6OPPorb7dYlWcy9lPNtu9vtZmBggPz8fGpqanQP3tDQEK+88grbtm3D6/Xq79x8J32Hw8Hq1atpaWnRwY7qSVM/FouF4eFhzp49y7333qvzVtX3eWhoCJ/Px+LFi1O+1/OVllG57L/4xS8Ih8MUFRXp3FiLxUJVVRWbNm3C5/ORm5vL6tWrqaysJBgMMjAwwL59+4DZC9CMjAwmJyeprq6mvr5ev646yc1NCYD36o9eD9u3b+f//J//Q1FREVVVVYyNjXH06FGOHj3Kww8/rAv8x2IxJicn6ejo0Au8BAKBlLbR3NzM4cOHeffdd3Wvvvn9NTY2smfPHvbs2UN/fz///M//zNNPP63bQkFBAU6nk/Ly8pQ0gLnlr5xOp65U0dfXx6JFiy7qWY3H4/qY/M4779Dc3MyWLVuoqqoiKytLr0RkDtQVwzAoLCzkzjvv5JlnnuFHP/qRvmAy1/y8Fuq7q/aHeh3184UvfIFgMMjJkyc5efLk+/koP1ZycnL0apeBQIBQKMTk5KReETM7O1unfqiLEXOvqnmUY3BwkKNHj3L8+HFGR0cZHR2luLiYzs5OfaEPqbXPo9Eo4XA45W/J5OxiLYsWLeLrX/86P/3pT3X+K8jKkzeaK16O7tixg6effpqpqSkgtXblB8VcPPj3NTddobS0lK1bt5KVlXVNr3E170990a5UAsdqtZKZmclnPvMZent72b1791Vvh3h/5rZR85C9Wuhi+/btNDY2XnFZVpvNRlNTE8FgkD179hAMBqmsrKSyspLp6Wn8fj/FxcXU1dWl5KWaWSwW8vLyWLFihQ421Mx8t9vNoUOHOHPmDDt37qSpqUkvZ9jb20skEtHBQklJid5eFXyYJ7SYRSIR7HY7mzdv5pVXXmHPnj2cPn2a4uJivWzhtm3byM3Nnbegu+p5UsHo5RZHUNxuN4sWLaKlpUUHReZ8SYDp6Wn6+/txuVxkZWXNO+xutVp56KGHOHv2LB0dHYRCIcrLy1mwYAEFBQW4XC496QJmU3lULc2JiQmcTif333+/Dv5dLpcO3lVvrc1mIxKJpBQ6N7/365W3eMcdd/Dtb39bD5HPzMxQXl7OQw89RHl5ud6uoaEhXn/9dU6ePEkgEKCzs5O///u/57HHHtMVMRoaGjh79iw9PT2EQqGUC7lEIkFLSwtVVVWcOXOGl19+maNHj/K5z32O4uJi8vLycDgcJBIJDhw4wPPPP097ezvLli276ALNZrORl5fHsmXL+Od//mf++q//muLi4pT9qnrQc3Nzeeyxx/jhD3/Ihg0byMnJITs7W18A2u12fVGlqIA0Ozub5uZmWltbWb9+vS4z+H4myXV3d1NcXKx7ilUbVaMTeXl5bN26ld/85jcXLTogLvbJT34Sr9fLwYMH6evr00Hr+Pg4MJtauHv3bkpKSigtLaWkpIT8/PyLJl2OjY1x+PBhjh07xsjICIlEAq/XS3V1Nbm5uSk1deem2KlREdUW1OhNXl4eTU1NlJeX6xHciYmJi5aXF+ntigGryrucmZm5bjld18p84LLZbJcMIj6o17rSgdKc3D+3UoL4cJjzMtWBMBwO09nZybFjx1i0aBHNzc1XzAOF2eCpqKiIlpYWbDYbfr9fH4Tz8/MpKSkhLy/vksOR6vO32WwUFBSwbNkyPVTv8Xj0rFa11KiqXVpWVqZzLtVwuioT43K5dPBhngA23+uWlZWxYcMGiouLdb3NrKwsFixYQGVlZcpqRnMnHl1r0JaTk8OaNWt0wGR+jkWLFuk8MzWRSE1qmdtDbLFYKC8vx+l0UlFRQSQSIScnR1c1gNmAvKCggO7ubl5//XU9tLxw4UJWrlypc5RVT6KqHWvuzbnc5Lnr1cPq9Xq588479SINapZzYWEh8N5M7CNHjtDW1sbg4CDFxcVs2rSJUCjEiy++yG233UZVVRWFhYVkZ2dz7Ngx9u/fz6233poSRKq6rm63W68IZLFYaGlp0TP91QS36elpnn76aUZGRli7dq3uEYXZtpaXl8fdd9/Nrl27+P73v09ZWZm+yFDly3Jyckgmk6xYsYK3336bt956i+7ubpqammhoaNCjHWr1OHN1DJW+ceedd3L06FGqqqpSKilcq56eHs6fP099fX3KYiLqIs0wDGpra8nIyJCVrq6Cyk/NyclhbGyM8fFxurq69CIeIyMjepJkXl4eXq+X8vJyiouLyc/P1xeT7e3ttLe361J8JSUluq6vmnClAlPzBC9Af24qRcQ8ClRYWEh9fT0TExP4fD6Gh4d1R5y4MVwxYM3LyyORSOiSJapmohDpzNyLpGY69/T0cPz4cex2O2vWrEnJab4cFVypAGB4eFiXWCorKyM3N1ef3C+1LSogy8jIoLy8XPcmqQCqurpap6IMDQ3pgLK2tpbCwkJ8Ph8ul4vx8XHGx8f1ZBG1ffMFq2rmtOohrqys1PVMs7KyqL5QJF3N9J7v4utae67Ufpov37u8vJyCggI9m3zuqMfc4FiV31L1EtU+VDmSFotFV1sIBAI4HA5KS0tpamrSlQDU/ZcsWaJz3MxldMxpI3Pf9/XicDjYvn07MzMzDA4O6pXW+vv7dYdBPB7nwIED9Pb26jJ9W7duZWpqitdee413330XwzAoLS2ltLSUnJwcDh8+zObNm3WuoDqZqxzWxsZGHA4Hhw4d4lOf+hTw3n6pqKhg69atPPfcc4yMjHDixAlyc3PJycmhsLBQD+mvWbMGp9PJ7t27mZqa0j3bqp15PB7i8TjZ2dls376d/fv3c/78efx+PwMDA7p2pqprrXpAVZqAzWZj3bp13HrrrTQ3N+ue2bkja1fD5XJx8OBBJiYmqK+v199LNQlItZMPcgTwZqZS4xYvXkwgENALk7S2thKNRvF4POTk5DA+Pq4Dxr6+PgoLC6mtrdXHY1XvPBwOU1hYSHNzM6tXr9YVAMwF/83pI+pCWH13zRfM6nGNjY2cO3eOsbExfD4f09PTH+UuEr+nywashmHoFZymp6f1DFIp8SHSnblMis/n0/Vxp6enueeee8jPz9c1g68UnKghY7vdjsvl0j1dV8t8lW9et17lvqohfa/XS0lJie4BNOemulwufbD3+/0pw6CXCjbNAbTadq/Xe9H2XctElatxqZO7ClKvlIKhmPPM5gbAKhi/6667WL9+PTCbjqB66MzvyTAMPRlL/a72r3m4Ol04HA6Kiop4+OGHOXXqFAcPHmT//v2EQiGdXhGLxcjLyyMnJ0eXfAIoLi7mgQce4Ac/+AFtbW0633f58uXs27ePcDisJw2a94HdbqesrIyamhr27dunJ7jAe/u/pqaGb3zjG/T09HDo0CE8Ho9ebEJdfOTl5bF582Y2bNjAxMQEwWBQt391waAu3LZs2UJTUxNHjx7lxIkT7N+/n6mpKUpKSlixYgUZGRnk5+frhWBUekJmZiZ/9md/pkdHzL1q16KxsZH29naOHDnC4OAgLS0tuic4HA7jcrno7OwkHA5fMRVGvLfqmRrVUMG/0+nE6XSyevVqvF4vZ86cYXh4mHA4zMTEBGNjYwSDQUZGRjAMg/b2diYnJ/VF9YoVK/SSruaLa/PomfkYC+/1vKpjqEo1aWhooKuri46ODqxW6yXruYv0dMWAFWZ7Rjo7Ozl+/DiVlZUfyYYJ8ftQM0WHhoY4dOgQPp+P2tpa7r33Xj3UqIZWP+yh30sFQ+rgejUBo81m0yfwj4ur2S8OhyNlffubgTruulwuVqxYQUtLC7FYjFgsRiQS0WWDVI+Tuk2t/pednc1/+A//gV//+te0t7dTU1NDcXExAwMDnDlzhubm5pReatX+c3Nz+ff//t/zh3/4h4yMjOj8Qkid/NrQ0EBjY6PeXhUwmi9UrFbrJetlm9PKsrOzWbhwIffdd99V7RcVlHwQq08ZhsFdd91FZWUlR44c4ZlnniEUCrF06VKdY/76669TU1NDTU0NR44c+b1f82ZmvvhXFxeqN9Xj8bB69WqKiopobm7WHWBq9Smn08nAwADnzp1jcnISi2V2Jcn6+vqUtBNz5Q6V96pK3amLIRWgmidzqkooqhJFfX090WhUUgJuMFc8I9jtdu6//35+/OMf097ezrZt22RdZXFDOHLkCN3d3SxevJj6+npdP3Vuj1069a4JAegUE5XSospYqV4mlVM5txddnbjj8Th33303b7/9Nl1dXXrC3jPPPENLS4t+rLmXym63U1NTQ0FBAU899RR/8id/ovOAzRPwzL2ZN3q5p6ysLNatW8eqVavw+/309vbyzjvvEIvFeOONN3jggQdYvHixXmJbXJoKFNXoUSgU0hdRzc3Nuqa56pEvLS1lyZIleiTs9OnTtLe3k0wm9UiMYRhMT0/riaIqRWNu9R6r1UosFtM9u+oizlwOTy0RaxgGZWVlWK1Wzp49e712l3gfrmossKysjMzMTCKRyA1/gBIfDz/72c9Yu3Ytzc3NKUPLamjSXNJI2rRIN6rCgwoqFRUQmHtXVRCp6lmqkQOXy8WqVat47bXXOHbsGOvWreMHP/gBU1NTuN3ulOF09RqZmZk8/PDDPPfcc7r+LaCHepX3OykvnZhTU9QESK/Xy8qVK4HUZUOvVPpOvHcBpAJXlQuclZXFqlWrdMqOuY3C7IVSKBSiuLhY14xWQ/+q2L/f79cXbUBKSpSiFhRR823C4bB+nUgkwqlTpxgcHGR6elqX1pK66DeWqwpYVUMJBoOMjo7q5R2FSFff+ta39GpAV3Ijn3TFh+v06dMf+WuqXn9z76fqPVJ1SlXunbmnSc2MjsfjepJTVlYWCxcupLu7m1deeQWbzcapU6dYunSprtgwt6bl3Xffzc9//nN+/etf8+lPfzplEp1ys35nzKkNMtHq2qhFPlRFh0AgoAPW8vLylNq9c1cHVPnP1dXVDA8PMzo6yv79++nu7qaxsZG8vDzy8vKYmZlJWV1Nrf4Gs2Xe1GfW29tLX1+froridrsZHx9nYmICh8NBMBikoqIiZQKXSH9XFbBarVZqa2vp6Ohg37593HPPPfJlFmltaGjoem+CEO+LuZg6vFeizTyhxDz8b56Ipkp7qUknNpuN+vp6XVaop6eHX/7ylyxatEjnGZpXGFOl12prazl48CDr16+noqIiZWKf6kWTajHCTAWi8XicYDDI2NgYgUCAhoYGsrOzU5b7NZeTMy/WsXTpUvr7++nu7tasG9T4AAAgAElEQVTlp6amppienqa8vJxQKKRfIxwOEwqF9N9gtid1amqKyclJXQdW1WHOzMyksrKSoqIiMjIyqKiooLW19brtL3HtrjpgXbx4MePj45w9e1ZWhxBCiA/R3IDQHCyaF2GYG0gCKSXTLBYL2dnZLF68mFtuuQW/309ra2tKDqy6n7ks0J133snLL7+sh3bn2xbz70KopXHNCwHk5+ezZs0aPB5PSr1neC/n1XxxtXDhQlavXo3D4aCzs5PJyUkGBgaIRqP09PToJYvj8bhe1letZqVqZE9NTWGxWMjMzMTpdGK328nPz6e+vj5l4RGPx0NfX9913mviWlx1PZvq6mrOnDnDiRMn5l1KUQghxO/PnLM6d4KTuZyPedlbc51aeC9VQN03JyeH9evXEw6H+bd/+zeGhobIzc3VS2Say3sZhsGnPvUpgsGgXm51buqBEHOZRwJsNpteOnfZsmW43W4sFou+UDIHrqot2+12CgoKdMCanZ1Nf38/IyMjBAIB/H6/7k1Vga7dbsfpdOqeVZX7XVRUpFfScrvdeL1eGhoayM/P14uVADKB/AZzVQGrKgjsdrsJhUJMTU1ddS1FIYQQV0+VmzIvLKEmj2RkZOilfeG9vFVVSUDlYJonE6og1u12s3nzZp599ll2795NTU1NynHcnLtpt9v5whe+8FG+bXGDM/egZmdn09jYiMVi0cGq+T7meqqqtrBa7CQ3N5c1a9awaNEienp6OHHiBL29vQwODup61NFoVC8HnJOTw9TUFOPj4xQWFlJWVsayZcvwer24XC6cTidut5toNIrb7QbQueAfdA1q8eG6qk9LNaqGhgbi8Tjnzp2TiVdCCPEhUEOl5hnRKs80GAySkZGRMtNa1alUeX3qZKweo4IItQTwI488wk9+8hM+97nPfazq+ooPlzk1xWazkZ2drQNV1fuqRgXmjgiYqUUisrOzKSkpoaGhgWAwiN/v10taO51O3VOaSCTo6+tjaGiIhQsX6p5du92uX0NVJ1CTF+dOahQ3BkM+MCGEEEIIkc5uztokQgghhBDipiEBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLQmAasQQgghhEhrErAKIYQQQoi0JgGrEEIIIYRIaxKwCiGEEEKItCYBqxBCCCGESGsSsAohhBBCiLT2sQtYDcP4oWEY37nw/02GYZx+n8/zfcMw/uqD3bp5X+c/GYbxkw/7dcSN5UZrx0JcjrRnke6kjV5/aRmwGobRZRhG0DAMv2EYQxcaStYH/TrJZPLtZDK5+Cq25w8Mw9gz57F/nEwm/+6D3qZrdWFfbb3e2yEuJu1Y3EykPYt0J2305paWAesF9ySTySxgJbAa+PbcOxiGYfvIt0qIayPtWNxMpD2LdCdt9CaVzgErAMlksg94GVgKYBhG0jCMrxqGcQY4c+FvdxuGccQwDJ9hGO8YhrFMPd4wjBWGYRwyDGPaMIyfAU7TbVsMw+g1/V5pGMbzhmGMGIYxZhjG/zIMYwnwfWD9has234X76uGBC79/2TCMDsMwxg3D+KVhGGWm25KGYfyxYRhnLmzjvxiGYVzDbnAahvGzC+/hkGEYyy8874+BKuBXF7btLy78fd2F/eAzDKPVMIwt1/Ba4kPwcW/HhmFkGIbxuGEY/Rd+HjcMI8O8/YZh/N+GYQwbhjFgGMYfvp/9LD4aH/f2LNLfx72N3ozH3LQPWA3DqAR2AIdNf/4MsBZoNAxjBfAD4P8CCoAngV9e+LAcwIvAj4F84Fngs5d4HSvwa+A8UA2UA/87mUyeBP4Y2JtMJrOSyWTuPI+9DfivwINA6YXn+N9z7nY3sAZYduF+d1x4bNWFhlh1md3w6Qvbng88BbxoGIY9mUw+CnRz4YoymUx+1zCMcuAl4DsX7v8fgecMwyi6zPOLD5m0Y74FrANagOXAJ0jt+fACORe290vAvxiGkXeJ5xLXmbRnke6kjd6Ex9xkMpl2P0AX4Ad8zH6ATwCZF25LAreZ7vuvwN/NefxpYDNwC9APGKbb3gG+c+H/W4DeC/9fD4wAtnm25w+APXP+9kPT8/x/wHdNt2UBUaDatM2fNN3+DPD/XOW++E/A70y/W4ABYJNpX2013f6XwI/nPMcrwBev9+f6cfuRdpzyOmeBHabf7wC6TNsfNG8zMAysu96fofxIe5afG+dH2mjK69x0x9x0zuP4TDKZfP0St/WY/r8A+KJhGF8z/c0BlDH7YfclL3waF5y/xHNWAueTyWTsfWxrGXBI/ZJMJv2GYYwxe+XSdeHPg6b7B5htmFdLv99kMpm4MBRRdon7LgAeMAzjHtPf7MDOa3g98cGRdvzec5u3+TypbXhszjZf63dEfDSkPYt0J230vee+qY65aZ8ScAnmRtQD/JdkMplr+nElk8mnme2JLJ+T83Gp7vMeoMqYPxk7Oc/fzPqZbfwAGIbhZnaIoe9Kb+QqVZqe2wJUXHjN+bath9keVvP+cCeTyX/4gLZFfHA+Tu045bmZ3f7+S9xX3Jg+Tu1Z3Jg+Tm30pjvm3qgBq9n/C/yxYRhrjVluwzDuMgzDA+wFYsDXDcOwG4ZxP7N5HPPZx2wj/YcLz+E0DGPjhduGgIoLeS3zeRr4Q8MwWi4kNf898G4ymez6gN7jKsMw7r/whfhTIAz8zrRttab7/gS4xzCMOwzDsF54H1sMw6j4gLZFfDhu9nb8NPBtwzCKDMMoBP6a2bYqbk43dXu+cEy9UjAi0ttN3Ua5CY+5N3zAmkwmDwBfBv4XMAF0MJs3QjKZjAD3X/h9HHgIeP4SzxMH7gHqmJ3I1Hvh/gBvAieAQcMwRud57OvAXwHPMdtwFwIPX832X0ic9l8huf8XF7ZlAngUuD+ZTEYv3PZfmW2UPsMw/mMymexhdpLWN5nNq+kB/pyb4LO+mX0M2vF3gAPAUeAYs8Ng37nEfcUN7mPQniuZzWkUN6iPQRu96Y65RmqKhhBCCCEuxzCMfwOeTSaTr1zvbRHi40ICViGEEEIIkdZkmFgIIYQQQqQ1CViFEEIIIURak4BVCCGEEEKktSstHPB7J7jGYjHmy5NNJBJYLBai0Shf/OIXsdvtfO5zn2PHjh1YrVZisdl6tgUFBQSDwd93M8R1lEwmr8f63JKc/RFLJpOMjY1x/PhxwuEwbW1t/NEf/RGZmZnXe9PeN5vN9pG33Wg0mtJ2LRYLFouFUChEX18fra2t7N+/n0AgQGZmJoWFhZSXl1NVVUVVVRX5+fk4nU6SySSPPvooP/vZzz7qtyDSwEd93J2enk4mk0kMwyCZTJJIJEgkEsBsG7bZbNhssyFHOBwmHo/rv8NsrGC1WolGo/o5VOxgsViIxWLEYjGmp6fp6upieHiYsbExBgYGqKioYGhoiCVLltDQ0EBhYSEulwubzYYqpZpIJMjLS++VRwUAl2y3lw1YI5EIFotFNxrDMHRDUrcbhsGPfvQjurq6WL9+Pffee++lt+JCwzE36mAwyNjYGE6nk0gkohup1WpNeYwQIr3F43FGR0d59913qaysxO128+qrr3L77beTlZXWC6ikFXWSV8dZ9XskEmFiYoKBgQEmJycJBoMEg0Gi0SjhcJhAIEAgEKCuro6ioiIcjkuVfhTig6cCTXVut1qt2Gw2AoGAbovqHG8YBna7XZ/f4/E4gH6cOViNx+PMzMxw9OhR2tramJqaYnh4WHdqhUIhent7yc3NxeFwcP78ebKyssjKysIwDCwWC4lEQgfG4sZ1xU9QNZq5vaSqYU1MTLBz5056enooLy+/5HOYr7oslvcyEQKBAPF4nEWLFlFRUUEymSQej2MYhg5ahRA3hnA4zODgIAUFBaxbt459+/bpE4u4eolEIuWYm0gkdA+TClDNP4FAgOnpaQKBABkZGTgcDnJzc+cd3RLiw2Cz2YjH4/ocn0wmicViZGRk6HO5xWIhHo/rc7zFYtHn+lgspm+LxWKEQiEmJiY4e/YsHR0djI2N0dnZCcwGqR6Ph9LSUvLy8sjIyKCxsZHq6mrsdjs5OTkYhpESCIsb32UDVnPvpvn/qiFarVbeffddurq6sNvtuFyuq34eFcT29/cTiUSoq6ujsrIy5TYhxI3DMAwcDgd5eXk4nU7Ky8upq6uTnr73ydzTqk64TqcTj8eD3W4nEAgQiUQIhUIEg0ECgQDRaJT8/HxycnJwOp36OYT4sKlAVQWj6kd1UKlOLnW7+pu5J3V6eprx8XFGRkYYGRlheHiY7u5u+vv7cTgcOBwOvF4vxcXFFBcXU1RURFZWFna7nbKyMp0GYO5NVa8hQeuN76p6WOdrXNFolFgsxssvv8zExASbNm1i4cKF8z7H3ODTPNR17NgxYrEYxcXF5Obm6vube2GFEDcGh8NBfn6+Pnk1NDSQkZFxvTfrhmI+0ScSCX38tFgseDwevF4vBQUF+hiselnVkGxPTw+FhYXk5uZK77b4yJhHT1XcYBiGbsPmQNb8mGQySSQSYXR0lK6uLnp7exkcHGR0dJTp6WmSyST5+fl4vV7y8/OprKyksrKS/Px8HA6HzoO1Wq0pKQnqO6TiFrl4u/FdMWBNJBJYrdaLhqji8TiTk5Ps3r2bcDjM6tWraWpqmvc5zDmw6nc14eq3v/0tiURCDxuoCQbSwyrEjUd9b7u7u5mZmaGoqOiGSe0JBoMkEgmcTud13WZzwGoOAACys7OpqqpifHwcmD0+q2HUSCRCIBBgYGCAoqIiSkpKiEajl3wdIT5IamKUChLNw/F2u123VRVQxmIxIpEIMzMzTExM0NrayvHjx3XbVkP7FRUVLF26lKqqKjwejw5SzfFERkZGSmA6NzA2b4+4cV0xYFUHbpUInUgkiEQiADrxubq6mtLS0kumBKiGZB4mUFf+HR0d+sCsZg2q15KgVYgbTyQS4cyZMym5azeCI0eOMDMzQ0tLC4WFhddtOy6VigWzJ/G8vDwWL16cEqiGQiESiQShUAifz6eHU8Ph8Ee9+eJjSnVuqe+86uSy2Ww6aI1EIrrqj9/vp7u7m9bWVk6fPo1hGExNTeF2u2lqaqKpqYmKigqysrJ0D6qayKVGH2KxmO69VX+be5FnDpg/jswdjeb0iPlSJOaOppvzjM0T5FSno/n+c59H3fZBxnFXlcOqNl4l/asE6SNHjgDw2GOPsW7dukvmqpmH99Ubs1qthMNhhoeH2bRpE8XFxbpL39z4hBA3BsMwKCwsZP369bz11lt0dnbi8XhuiNm58Xic1tZWfD4fdXV11zVgnXuCmfs3h8NBcXExk5OTjI6OMjIyQjKZJBqN6sorPp+P/v5+AoHAR7794uNJna/n9m6qSVTJZBK/309nZ6eeSNXb20s8HsdqteL1etm+fTtLlizB4/FcNOJq/l0FTSpmUL275jQAtS0wO0nrZkszVBeo4XBYv081Gm4Yhk4ZikajhEIhpqam8Pv99Pf309nZyfT0NNFoVE+Uy8jIICsri3g8js/nY3h4mPLycpYsWUJFRQX19fUYhsELL7zA4OAgGzduJC8vD7/fz+TkJFNTUxiGgc1mo7Kykry8PPLy8sjMzLxoxEjFimqinQqO4/E4Xq/3ku/5qlICzDtD7RCA733ve1RWVlJXV4fL5Zo3wFS9qebeU5htxBMTEyQSCZqamigoKNBlLlQvruS+ifdrvuGfZDLJxMQE/+2//Tempqb4u7/7O3Jzcy95IEskEnrmtRp2Ugn+6qA4tzfsZjsoXgvzpCuHw0FbWxvNzc3Xe7OuysTEhO75UT1C12uEx9z7MbcepbnSisvlwu1243A4UoY8VRmgoaEhCVjFRyYjIyOl5qn6Uef/kydPsnfvXrq6unRwk5ubS01NDdXV1SxdupScnJx5h/wBHRuo76ZKMTAHtEBKWgLMfp8zMjL0yLCyb98+Dhw4QEZGBmvXriUrKwuLxYLP50sJAg3DoKioiKqqqo9kP14LtX/NZUBV5+LQ0BAjIyMMDAxw7tw5pqamSCaTTE5OEgqFiEQiOli02Wzk5OToygujo6NEo1E6Ojro6+ujoKCA4uJi1q9fz/79+5mZmWFkZIRIJKID30gkQiKRwOVyUVBQgNVqJTc3l6qqKhYuXEhDQwPZ2dkpNXpVzzm8Nynvci4bsKpuX/Pv8Xgcv9/P66+/TigU4qtf/aruHZ3vZK0OrnNvUw0DoLKyEo/Ho++jTnzSwyrer/mGOyKRiP4Ce71eHA5HSl3h+fzmN79hdHRUX7g5nU4yMzNZvnw5FRUVZGdn66v8+Zhzv1Uv2OjoKOfOnePMmTO6RJHNZtOBh8VioaamhpaWFt3T8FEHT9casKkTiEr1KSsrY3Jy8n3PzP2oA0bzySwYDF7XdCTVS6GYZ1ED+rbs7Gxyc3PJzs4mMzOTcDisj6GJREL3uArxUTAHlNFolEQiQSAQoL29nX379tHX10cwGCQej1NVVcWiRYuor6+noKBAt2E13G/Og507vGyezAXoDi7z8VON0JqHtueOAI+OjtLR0UFGRoYOftXIhGK1WvF4PCxatIhHHnkEmE1lgPe+h+o11HdP5Y2bOzDMlRHi8bieIKm23zyvR3XyRSIR/a/P58PtdhOJRBgeHiaRSOB2u/F6vZSUlOjXnZmZYWZmhs7OTjo7OxkcHGRiYgK/309mZqbuFCwtLaW8vJz8/HyysrJwu91kZmbqKgt1dXWMj49z+vRpzpw5Q29vLyMjI0xNTTE+Ps709DSjo6PAbG+pqnsbDodJJBL09/cTi8Ww2+10dXVx6tQpzp49yyc/+UlKSkr056z2XyKR0B1Bl3NVVQLMJ1w15PTss8/idDppbGzUBXovZW7ys/rQzp49C0BRURF2u/3/b+9MY9s6s/P/kBLFnbwUKS6iKEoUtdqS5UWOk3EycZymcaZ1MijQTAdt2mmLfmmAaT8F6JeigwJFB2jRb20xBQoMBkg6SZOgycx4MhnYSRTFcSxrtyVTohaKIinu+3ZJ/j/4f95cyrLsLONkkvcHCLYlmcvlve897znPeQ7bKUgDVw7n86JQKMDn80GhUODIkSN33c3JZDIcPnwYiUQChUKBWQetrq7C7/fD5XLhyJEj8Hq9MBgM+56vdDHG43EEAgEEg0GEQiEkk0l2kZvNZmasT8/l9/uxtLQEp9OJEydOwG63f6LSOi2KKpXqkx2kPa/9k1AqlVAoFKBSqaBUKhEIBD5Ro0M2m0UkEkEwGMT6+jo8Hg8efPDBpmk190q1WkU2m0UoFEKtVoMgCDCZTNBqtfsuiuRdmkwmEQ6H0d/f/4me7/NEapwuveFKtf0ymYxlWOlGBHyccSGrK95owrlfUNm/0WigVCphd3cXN2/exNzcHCKRCGq1GtxuN9xuN2w2G+v6b2trY4FUtVplldi9kkQ6l6U/kzoDSBvEKfCT6mn3Qq8xn88jkUiwAFGhUEClUqG9vZ19ud3upv9L5XZ6XaStBT4OTikQlXooZ7NZlMtlhEIhlskVRRGZTAZqtRq1Wo1lhKUDQyKRCBvCkEqlWIVlbGyMZYfj8ThmZ2eRTCYRi8VQLBZRLpehUCgwPDwMl8sFQRBQq9Wg1+uh1WrZWt3W1ta0vrS1tcFoNDIHh5WVFRb4lstlppk3Go0YGBjAxMQEG/4kTQxtb2+zADeZTGJ3dxejo6M4fPgwzGYzq2ZRpvxufGJxWblcRjAYxMLCAp566in2pHe6oewNVqUB65UrV6BUKqHVapl+QRpE8ICV83lBG61AIIBqtYqhoaF7aggaGBhggVi5XEYul4NWq0UoFEIul8P8/DxEUWSZgv2ed2NjAz6fD1tbW8hms1Cr1XC5XHC73TAYDDAYDNBoNBBFEalUCrlcDplMBjdv3mRNiZTRvdtrrtfryOfz8Pl8yGaz6O3tZdnkT3vMSA5xp4CZSul0s1GpVDCbzVhfX2dB892u5UKhgBs3bmB2dhbb29vY2NhgAa/FYkFnZycMBgMLzPajWq0imUxiZ2cHiUQCmUwGyWQShUIBJpMJdrsdFosFRqMRNputKZhXqVTM23R3d/cLlQRQdkg62hK4XXKiUCjYzZ5uNtImrEKhwG2tOPcNyqwmk0lsb2/D7/djfX0doVAIJpMJXV1d8Hq96OnpYd3+0mZuaZBHGce9DUJ0Xe61rZKOc5fKZvZu+va+3lKpxIK7rq4uuN1u2O12qNVqmEwmtLe3Q6/XN63t+1lkURmevl+tVlEsFlnGM5fLoVAoIJ1Oo1AoIBaLseREpVJBLpeDTqdjcgalUskC4nq9jkwmg3K5zI6xXC6HTqdDZ2cnywoHg0HMzs6iVCrBZDLB5XJBo9FAo9Ggs7MTVqsVer0ewK3s8F43hUajgXw+j2KxiFgshkgkgkgkglwuxyQEtLZLs8xWqxXHjh2DTqdjutp0Oo1oNIrNzU0Eg0EkEgnE43FMT08jHo+jWCzi6NGjsNvtbLMizZrfibtKAoBmHVUqlcLly5chiiK+973vQaPR3HVhl54s9PdKpYKpqSlYrVYolcrbLFzuVqrlcD4JVJ4Kh8PIZrOw2+33FJCQWbXBYABw69wcHBxELpeD3+/H1atXcePGDajV6n0D1nQ6jY8++girq6tQKBTo6enB6OgoXC4X1Gr1bbtKu93OFqqRkRH84he/wOzsLAsabTbbga+bSkbvvPMOW3jOnDmD9vb2T3jEbr12v9+PSqUCu92Ojo4OaLXapt/J5/MIBALQ6/UwGAxQqVQoFotwu93Y2NhAoVCAVqs9MNCu1WpYX1/H1NQUlpaWYDQaYbVaUS6XcfHiRRiNRoyPj2N4eBg2m23fxyqVSgiHw7hx4wYWFhZYBttoNCKbzTLrHK1WC0EQ4PF40NXVBZPJxDIxLS0tKJVKSCQSX7hLyZ26eaU3aMrqSPsCKCPCA1bO/UYmk6FYLGJ5eRlzc3MIh8MAbsmDhoaGMDIywqZSSfsASOO6V89IwZP0HKaMqiiKLBPZ2toKtVoN4Nb6R9eGVFKwH1qtFnq9HsFgEPl8HsPDwzh9+jQsFgsrWZNUS7pZl1YtSD9LiYJSqYRSqYRsNotUKoV4PI5YLIZkMolsNsuyrQqFgjWjUSAqiiLy+TwLfCmYpcC8UqnAYrEw1wRBEKBWqxGJRLC4uIhYLIZKpQKr1YrDhw+jr68PBoOh6bjS50SBMK0XlJChJk6/34/NzU0WKFcqFdhsNvT390OpVCISiaBUKqFaraJaraKtrQ1qtRotLS3sXujxeDA6OopoNIqNjQ0sLi7i5s2bWFlZYRaCR44cYRuElpaWu9rw3VPTldRCIhQK4dVXX4XVaoXX62Uf2t2CS2nwS5mkra0t/NEf/RH0ej1UKtU9PQ6H82moVqtMk9No3DKi/jQNUqQvFAQBR48ehdVqxYcffohcLgdRFG/LZM7MzGBtbQ1KpRInTpxoKnHfaSGlxbG9vR0dHR0IBAKYmZkBAJw7d+7AbGm9XkcymUStVoPH48Hs7CyOHTv2iQJWWswuX76MX//61ygWixgZGcHp06cxNjbGfqdQKOD69eu4efMmjh8/Dr1ej0wmg3w+D0EQkMvlEIvFIAjCvkEmXevFYhHvvLFNNBAAACAASURBVPMOFhcX0dvbi+eeew4GgwH5fB7vvvsu3n//fUSjUZTLZTz00ENswAghiiK2t7dx6dIlrKysQKfTYXh4GGfOnIHZbGaLfTKZRCgUgs/nw09+8hM88MADeOKJJ6DVaqFQKFhWI5lM7vtZ3i+k2VVpllU6SIDOQ/qiLmm6QVcqFaYn43DuB1SduHbtGgKBANra2uB2u3HixAkMDQ2xjaE0YJJ+Ty6XMx1qNpvF5uYmVlZWkEqloNFokEwmWYawUqnAYDDAbrfDZDKho6OD2ejt9VGWZm6l9PX14dChQ1hcXGTNoh0dHSyRIO1sl94rpJlAqf/x7u4uk0FkMhkUi0XkcjkUi0UW9La1tcFisUCj0aCtrQ3VahXpdBqRSAQymQzlchnFYpE1RNGmVKvVwmQywePxoL+/HxqNBgaDAfF4HDMzM/D7/TCbzThy5AgeeOABCIJwm/ct2eAVCgUWdGezWZYNj8VizLWBJEVSL9xTp07B4/EgnU5jcnISxWIRpVIJ+XyeSRsIknhqtVqW4R0ZGcG1a9fw85//HNFoFL/85S8Ri8Vw6tQpVvG8W/x3zxpWsqQIBoPIZrP4t3/7N7S2trJs0J2aruhASW/QlUoFfr8f1WoVTz/9NARBuE06wDOsnM8T2oXSDGqpX9+nhWycOjs7AdwS8dPficuXLyOTyeCRRx7BxMREU0n7oCweLdqTk5Noa2tDLBbDwsICJiYm4HA47qiXpabIVCoFmUyGfD7fdHO4l6whXXdTU1NQKBSseYquZeDWQvfSSy9BqVTi3LlzsFqtmJmZwcWLF1EqlWCxWNDS0oK5uTk4nU7W+SuFFv1AIIC1tTVoNBqMjo4ynVUul8Pu7i4AsJ27tIxPrymRSODll1/G+vo6hoeH8Xu/93tsM03vl0aaulwujIyMoL+/H2+++Sa2t7fx7LPPQhAE2Gw2CILAOpgpi3O/oazF3tKjtIGV9HoajQaCIECn07EsDf2cKlcczv2gXC7jf//3f5FOp9Ha2oq+vj6cPn0anZ2dTGdNwZDUr1XqIlSpVNBoNLC1tYUrV65gbm4OhUKBlbClzUhqtRrt7e0QBAHVahV2ux0nT56EyWRio4lpQ0cNs1J0Oh1MJhNaW1tRqVTw3nvv4cyZM016cbrOpOsmWUGVy2Wmu5+ZmcH169eRSqWQzWabnk8mk2FwcBADAwMoFApIJBJYW1tDKpVCsVhktlONRgOCIDDdaWdnJ7xeL4aGhuB0OqFSqVivhCiKiMViLEg2mUw4deoUxsbGmB++VF5BxyydTuPKlStYXV1FPB5HoVBg1ZhisYjW1lbodDpYrVYMDg7C6/XCZrPBYDAwi0JqOp6amkK9XkexWMTKygqzNqXPkvSpAFiW9/jx49DpdHj33Xfh8/kwOTmJSqUCnU4Hu91+V839XVdjaZfb7OwsXnvtNQiCgMOHD6PRaDSJ/fez9ZHaYtEJkE6n8eMf/xgKhQIOh4MJpaXNVnTz5UEr57NSrVaxu7uL1dVViKKIgYGBfW2pPilUpm9paUGxWGRaTinxeBydnZ1wOBxMqyP9/9Lze+9rkcvlUKvVsFgsrOT9wQcf4Omnn77NeomurdbWVthsNqTTaaytreEv/uIvYDab7ylYlTY3JJNJtLW1YXZ2FgMDAzh69Ch6e3tRKBQQDAZx4cIFdHV14fTp02zDSSUwm82G69evw2AwYG1tDblcrklSIf2zWq1iZmYG0WgUFosFiUQCP/3pT7G4uIhcLofDhw/jz//8z9Hb28scE6SUSiW88sor2NnZwWOPPYbHH38c7e3t+75XOgZ6vR7j4+NQKpX4v//7P7z99ts4e/Ysy2iTzsxoNB54vH5TSLufaQGX2vxIp1vRDYTsrSjLsVcuwOH8pvnZz37GGqYOHTqEY8eOwel0smYqOjeVSiU7f+maVKvVqNfrbNAF6bLJvaO3t5dJdsjdhXyIU6kUnE4nrly5gmvXrkEul+PkyZM4cuQI3G432tvbWYAppa2tDYIgwG63o1AoYHt7G7lcjgWaUg/YYrHIGmMrlQp2dnawuLiI+fl5Jn2Sy+UolUqw2WxM40mZ1UAggM3NTRb/UM8CbSxJUnXixAn09PTAbDZDq9WyTSc1SpF+lbxTqbFUJpMxSRbwcfNluVxGPB7H8vIyJicn2X2Eegv0ej37MhgMOHnyJPr6+iAIAnMMoGNAjbxyuRyHDh2Cz+djTapTU1OYmJho8tCn+JAqPnK5HBaLBWq1Guvr61CpVNja2sJHH32EUqmE733ve7dJzvZyYMAqfWIAzHD2G9/4BvNIld4Y7nSToANI/67ValheXkZ3d3eTd5tUNgDgU3UHczh7iUajCIfD7KKnCW2fV8mXNEX7PR55YpZKJVbiuRcXjHq9DrVaje7ubmxtbSEYDLKMKZWJpdcNyWx8Ph8uXbqE5eVlKJVKdHV1MX3XQdTrdeRyOYTDYaysrODChQuoVCrIZDLY2dnB3Nwc1tfXsbW1hVwuh2eeeQYDAwPQaDTsPXV2dsJut2NpaQnnz5/Hz3/+c5YBpQUQ+Nh+JRQKMe1qOBxGLpdDS0sLBgYG8N3vfhcOhwN6vZ51se6XLVxYWMDS0hIOHTqEsbGxA311CZlMBqVSieHhYWxtbWFycpJ1rbpcLqTTaQQCgS8sYN27CQFwWwWLzgG6cVGTyn6NJRzO/YDWikajAbPZDJvNxrSqUguovR3hFIBRdUAmk8Fut+Oxxx7D+Pg4AMBsNrPznDKeUjP8Wq0Gv9+PyclJqFQqrK2tIRaLwel0YmxsDD09PbcFQ3K5HB0dHRgeHsYHH3wAURRx8eJFnDlzBkajkQXNAJo2fsFgEBcvXsT6+jrK5TKzlpLJZAiHw0ilUmyzSCV4er8mkwlOpxN2ux1OpxMmk4llTqn0L21wpceh4yad2KXVatFoNJBIJFCtVvHyyy/jr//6r5mfLAXVS0tLiMfjTFoxODgIs9kMu90Ou90OQRCabK1IHgWADR6gNZMkF3TMotEo08r7/X5W2pdahVEihCadaTQaPPXUU3jllVdgMBhYED03N4eJiYkDz7G7Nl3RgVpfX8fq6iq0Wi3OnTvXlNKvVCq3ZY8IqfUDdZAFAgFEo1H87d/+LSt/0Ycj7QDkcD4rtVoNwWAQsVgMFosFer2eXcRHjx5tWkiBT+ZMQb9L2cj9ApyHH34YS0tLuHnzJhOi0+u6U/ZLWsZxOp24evUqEokEayAqFossg1atVvHRRx9hY2ODdV+aTCZ861vfwtTUFBYWFiAIAjNy3ptprVQqiMfjmJubw40bNxCNRtHa2orTp0/D7Xbj6tWrWFhYgM/ng0ajgU6nw9mzZ+H1eqHX65ser7u7G9/85jehVCqxvr6ORqOBYDCIX/ziF/B4PNDpdMjn89jZ2UE6nWavYWxsDKIoIpFIQKlUYmhoCL29vWwRv1N2uNFoYHJyEuVymZXNpMf0bpKLtrY2jI+PIxqNQqlUsgaJRCKBqakpjIyM3O0U+I1AWSrKrtL7l3qsUjKhXC4jn8+zm4ZUTkVrLodzP2hpaUEmk2Ed8nTuSZufqtXqbdfoXmcAWqeMRiMLnNRqNfNmpyBIq9XCaDSy+KGrqwsOhwPLy8sIBoPY2tpCJBLB9vY2XC4XxsbGYLFY2HXU0tKCjo4OjI2N4fLly1AoFJifn8exY8dgMBjY7+3VsPp8PoTDYbS2tsLtdmNwcBAdHR0AbkmlqBmJAnEaQqBWq6HX66HRaKBSqZoyqHQfkslkUCgUzMeWgnjgVjWJAsFqtQqFQsFst4LBIBQKBS5cuACdTgeXywWfz4eNjQ3UajWMjIywbDK5rVCQKm2CAz7eDO91a5C6IGi1WgwNDSEcDiOdTqNer2NmZgYDAwNMskDvh44hea0Ct6xMR0dHsbu7i1QqBZ1Ohw8//JBtUO7EPWlY6/U6pqencf36dZjNZuZReC+Z0KtXryIQCLCpK+RBRg0b6XQadrsdjz76KJskQQeKl7M4n5VwOIydnR2oVCqcPHkSlUoFi4uLeO+999DR0QGr1couVulm6V43TrVaDdlslnVs7uXEiRMoFAqIRCJMz9rR0cEM3+k5yPy6Wq0ik8mwjvfd3V3YbDaUy2VkMhmsrKzg9ddfZ5ZGlUoFwWAQoihCp9PB7XbD4/Ew/VY4HMalS5fgcDiYrkuv1yOVSiGRSLAOWdopU1B9/PhxmM1mtLe3w+PxsM5WQRAwMjLCFnRpoK/VauHxeCCXyxEIBJBKpbCxsYGrV68ilUrBZrMxKxur1Qqz2QyNRgO32w29Xo+ZmRn2HsvlMsbGxmAymZpKc1IqlQq2trZYNlomk7GpZNLO1b3ZR1p8qaSYTqfZDau1tRVOp5M1H3wRSLM60gzpXt01TZkh3ZxUDtDW1sZKehzO/UAQBOZQkU6nkc1moVKpWCOV1PJJen+n9U+6KaMsnTTGoJ4Z2sxJh60AYL6iGo0GRqMRq6urCIVCiEajCAQC2N3dxenTp5sCUa1Wi87OTlgsFraebGxswGw2s7VqLxRIUvJAq9U2SR/26s5J/kCNVvutZQqFoilABD4O9AuFAtsEUCAM3JJWeL1enDp1CtPT0yiVSpienoZSqcTy8jKrJLpcLrhcLnR3dzOtu7Q5k6p/lAChz4o2FxRsSr3GG40Gent74fP52Doql8uxvr6Ovr6+25xNpJtu+gy7u7thNpsRiUSYnePm5ibrP9iPu65m9KaWlpaQTCZx5swZpuVgD3LAovjGG29gaWkJkUiEmefGYjHIZDLMz89jfn4eo6OjzGdSahPBswOcz0KpVMLKygoKhQJcLhfGx8eRy+UwOjqK5eVlTE1NobOzk02voqYA0grRjljqdbl3oYlGowDAbDn20tXVhfHxcSwsLCAUCuHKlStwOBzo6elBR0cHK23lcjmWKYtGo8wKxGQy4eTJk3A4HPD5fKzcVa/X2dxns9mMzs5O9PT0wOVywWAwsAWISuZUHVGpVDAajUgmk4jH48hkMjCbzbBYLDh8+DB6enrQ09MDjUaDWq2G/v5+eL3epsBUehz2SoK0Wi36+/tZttPv9yMajUIURej1enR3d7POXurgl8vlMBgMUCqVmJ2dxdLSEvx+PwqFAssIUPBJx7lUKmFzc5PpTZeXl5mRtUqlgiiKrHOYmqeq1SoKhQIymQzi8Th2dnawtbWFRCKBUqkEt9uN/v5+dHd3M2eCL2ocI7kAAM1aZ6m+lQzPydCbAlqFQgG9Xo+Ojo7PNDiCw/kkuFwullWMRCLw+XzI5/NwOBxNwScAtrmSJrukAQ1lWimrKs3+UTWXrgtpRrCtrY3p0GkjT8EzNaBKaW1thcFgwPDwMMvMLiwswGq1sglOe+MQanqNRCLM7slqtTJ5lHSIAD1fpVJh3xNFkWUhqRlKGkPR0JNyucwq0OQcQH7RKpUKnZ2dcDqdaG1thUqlgt/vZ0Nq1tbWIIoijEYjWyeoikRrBx0zGqtKGwEKaMklgHqMLBZLU8BNCQyVSsWqVLOzs+jr62P/hz5TiumkwbggCHC73QgEAtje3obVasXc3BzOnj17x3PsnrbfOzs7iMfj6O3txeOPP85OonvptF5YWEClUoHX64XFYkEmk8HFixdhNptx/vx5FAoFdkOW2lzQB8c1WJxPSywWw82bN9HT04OBgQFWAvmzP/sz/OhHP8KlS5fYTl+n00GtVqNUKqGnpwfRaJQFL2TuT+MDqbmlUqng+vXrrMN8v3NVLpdjZGQEbrcbPp8P77//PtbX1xGNRmEymaBQKNgErGw2C+DW4tbT04PHH38cx48fh1qtxvb2Nh544AF0d3cjmUwikUigvb2dzWumsYa0+Le0tKCnpwdWqxUymYyN18tms8x02mKx4IknnsDY2BiMRmPTWERpKedeoYWdFtWzZ89CFEVMT0+jv78fx44dg8fjYdkE2rkDYJ6oXq8XU1NTWFlZwauvvop6vQ6PxwO9Xg+73Q6HwwGdTodEIoHJyUnm1/jqq68yBwCPx8PKbpSVKRaLiMfj2NzcZKWycrkMvV6PU6dO4ciRI3A4HFCpVAiFQrh+/Tqmp6e/kICVSvlS3b80+0S6Mtp0JBIJ5PN5AGCm42Qcvje5wOH8pujr64PD4UChUMD6+jrS6TRMJhOOHz8Om80GvV4PhULBNp1S6RMh9RKmoJW+T0EPZTEp4KLv5fN5pFIp3LhxA/Pz86y5SKlUQqVSsQSBFFoLH3roISwsLDBnE71eD7VaDa/Xe1ulo7u7mznN7O7uYm5uDi0tLXA6ndBqtWxcN5XaG40GcxQAbiVSZDIZc3PJZrNMJyqTyRCPx1mpnJJ85MdKa6vRaMTv/u7vYmBgAA6HA2azGWNjY0ilUrhy5QpmZ2fZVCq/34/d3V1m3aXX6xGNRtkmlzLGAJjVFnmiSjPbGo2G6WsbjQbzT3W73VhZWUFLSwt2dnZY0L5fEz3wcQVJo9Ggv78fm5ub2NraQktLCxYWFg48x2QHBYTVarUhiiL+67/+C6+99hrGx8fxwgsvQK/XN/mUEftZWyWTSfaC0+k03n77bfzLv/wL/u7v/g7f+ta3WJdco9FgB4col8uw2Wz7dl9zfntoNBr3XZCcy+Uar7/+OvL5PB566CEMDg6y3Tt5iIZCISQSCUQiEbYLT6VSrDFLLpczayWar3zy5EkMDg6yDIJKpcKpU6fYFKq95z9dpNJsQLFYxLVr19hCFI/HoVQq2XxnhUIBq9XaZF8kbb4h9mtW3OtCQH/STp02mdQgRtnSvSW5OzVC3ul7excl+lmtVsPOzg50Oh3LQEiv8b1NmXR8tre3sbCwgKtXr2J3dxcKhQI6nQ56vR6CIMDlcsFoNEKr1eKDDz7A5uYmC8bJ1iabzeLIkSPIZrPMxqVUKkGn0+HMmTM4fvw4XC4Xm8RFr6VcLmNrawsvv/wy/v7v//6+n7vFYrGxnxyBMiDlchmpVArT09OYnZ1lmrpSqYTW1lbY7XYcO3YMDz74IH74wx/iV7/61f1+C5wvAfd73Q2FQo2VlRW8+eabrGqRSqXQaDTY1Kiuri709vaip6eHWUpJG4pqtRpUKlXTOkJyKamNJvmEUrUkmUwyZxFqwqpWq9BoNGzd9nq9GB0dZdd5NptFLpeDTCZDJpPBf/zHf2BnZ4c1XJ4/fx5nz56FIAhNPQpbW1vY2dnBhQsX4Pf7IQgCbt68yaZ20oCVwcFBOBwOFItFBINBpNNppNNpZDIZ1jBGwSu9V1EUoVKpmsrx5BajUChgt9uZ3RUlU/7/Z816hCqVCsLhMObn57GwsNAkb5I6O1H2VOp/S8G5VAJG46y1Wi1bu5VKJTo6OtgAnkAgwJxavF4va6yTDnqgvg3S7ZbLZZZ4eP3115HNZmGxWPDaa6/d8bw9MMMqiiIKhQImJyeRTCbR3t7OxqiShY70prg3gKWDQoTDYSwvL0On0+Hhhx9m/meUEpeemBzOZ2FychKzs7P40z/9U/T19TVpoRqNBnQ6HdNik2hfWuqmHSdZmNDou+npaXz44YfY3d3FuXPn8Mgjj7AN3H7sJxNQKpV47LHHPvf3fBAHjTT9vKCgfO8mmKQ++/0u8HEpkBZMvV6P4eFhDA0N4ZlnnmG+hPT70lF+MpkMExMT7LOZm5tDKBTC5uYmRFFEOBzG+fPnMTw8DKvVio6ODuY8QM+9F5VKhf7+fvzVX/3Vb+IwfWoo25LJZLC1tYW1tTXs7OywCTp0MyADdMqaczj3g0ajgaGhIdjtdqysrLCxnLOzswiHw/D7/VheXmYZQrJhojWZZtcbjUZmfE/VEfIKlcvliMVi7N+lUgmiKCKXy7GSuVwuR3d3N8bGxjAyMsKCKrLDIuh6AW5l+5577jm8+OKLbPNbKpVYBlI6gamtrQ12ux1/+Id/iJ2dHayursLpdOLNN99kMqO2tjZcu3aNddxTgiCVSjG7LmnsQ7K0er0Ou90OjUYDl8uFrq4u1ixM1RO9Xn+b0wKV6Ok9aTQaeDwePP300xBFkelU0+l003sh6RF5XNNaTNlVksNRzEeZV9L30ho8NjbGAlQKiqWWqACa5AXkCkFZ7JMnT2J2dhbPPvvsgefYXW2taKzYt7/9bfzBH/xBUwcrHYAf/OAHePTRR/HYY49BEISmRZLKp/V6HfPz8/j1r38Nm83GSpjSEiRlgpLJJN577z2k0+kvrPGB89tNMBjEd77zHbjd7tvspqSyE2D/oJJmU+v1egwMDMDr9bJdIonGaTQgd7S4hVR3SXzWQJlKiAcdY4VCgb6+Prjdbjz99NO3rRlS3dV+DQ93wm63f6bX/mmhxV7qw0plRWpku3LlClZWVpgdGGmWBUGA1+uF1+tljSMczv2Agju1Wo2RkREMDAxAFEV8+9vfRiwWw/z8PG7cuIFwOIxgMIhAIADgYx0rxRb0b2k1hsaXtra2suAL+Lj7HLjVeX748GGMjo6is7MTJpOJNcLul1Cg0jU1RNntdvzJn/wJjh49inQ6jeHhYQiC0GQzRa+XpARkrl+pVPDII48gFovh+vXrWF1dZTKvfD7PdKc9PT0YGRlhDa4klSC9Lr1HChRJVkAJQnqvVJWmiVd7Pbn3Ik0sSn++t0q2l3tdKz/tPbDRaMDlcuHBBx9ErVa763p1YMBar9fx0UcfoVAoMPsEqbat0WjgP//zP/HBBx/A5/Mhk8ngO9/5TpNuioJQmuWt0+nw5JNPQqlUMmsG+hB2d3cxNTWFl19+GeFwuElbweF8Ev7xH/8ROp2O7bg/DXfSaN/p+zxw/epx+fLl+/6c0psw/b1arSKVSmFzc5PN5CbnFQCsmc7r9WJgYACdnZ1sMg2Hcz+QVlxpvGm9XofZbEZHRwe6urrwwAMPIJ1OI5FIsObSeDyOcrnMTPar1SpyuRyq1SoLVKlMTtZ6BoMBVqsVNpuNNVoaDAaYTCaWuZVWbfZLStDzSa3gyCeVpAl75UIAmMML0Cxp6urqgiiKmJiYYE1SUh06ld41Gg0LQGkzvZ9LjfRrb0AqjcP2vr7fpvsQHZd7XacO/K1arYZ3330X+XyeNZtIfdNqtRqWlpag1WoRDoextrbGNGLSx6jX61hcXMTKygoEQWByAHrB9Xoda2truHTpEt566y0sLi6iXq/j0KFDn+FQcL7ObGxsfNEvgcP51Eizq6IoIp/PIxwOY3V1FTdv3kQoFGJdzzSxp6urC0NDQ2y6D8/+c+4nL7zwAoDb/Y/JOUDakU4a1Fwux2bbU1a1VquhUqncZjpPOle5XM7sq/R6PZMVSDWZewM4SjDcyxAVzhfLv//7v9/xZwcGrOVyGTdu3EBXVxesVuttFhQA4PF4MDIygnfeeQeRSATBYBAWi4U9BpUJ5ufnsb6+DofDga6uLrbzEUURq6ureOutt/D2229jdXUVBoMBmUwGTz75JC5dusTtrTgcztcG6fQq0p8lk0lsbGxgdXUVgUAAmUwG9XodbW1t0Ov1cDgc6O/vR39/P+x2O7Ra7b42bBzOb4of//jHX/RL4HwFOChgPbBWSh1tjzzyCPPW2vv1zDPP4Nlnn0V3dzd2dnawtLR02+PQ2K5cLger1do0NSEej+NnP/sZXn/9dYTDYfT09MDpdMLpdOL3f//3+fAADofztYICVvJfjMfj2Nrags/nYyMnyUBcp9PBarWit7eX2adRHwEPVjkczleJAwPWQCCAcrmM3t5eCILAUvXSaQ5DQ0NMNExmvVJoIkShUIDT6cTx48fZTFpRFDE5OYlXX30V+XweTz75JJ566ilEIhE8//zzMJvNfNHlcDhfO6T2VRsbG6xhZXd3l3k26nQ62O12eDweDA0Nob+//zarIO5jzeFwviocKAn47//+b1SrVWZMTtlOKlORDpVGGhoMBthstqbHkMvluHz5MsLhMMbHx/Hoo49CFEWUy2WUSiX8wz/8A1paWvD9738fm5ubePHFF/HEE0/g7NmzfEoLh8P52kH2frFYDH6/HwsLC1hcXEQkEmmawEYNVl6vFz09PSxxINX+cTgczleFAwPW999/H11dXczIt1wus6CVjF+z2SyWl5cRCoWwuLiIt956C8899xx7DFEUce3aNWaOrlaroVQqUSqV8JOf/ASlUgkvvPACfvWrX+HGjRs4deoUvv/970MQhNu63zgcDuerTrVaRTqdxubmJhYWFnD9+nUEg0HU63UIggC73Q6n04mhoSF4PB44HA7mW0nwtZPD4XzVODBgLRaLbEQZ+Z+Fw2HMzMzg8uXL2NzcRCwWQ7FYRCqVQnd3N06ePNn0GKIoYnt7Gx0dHXA6nU1zav/nf/4HMpkMP/rRj1Cv13H+/Hn88R//MQuQpTYZHA6H83WA1lm/34+1tTWEw2EAgNFohMvlwvDwMAYHB+F0OmEymaDRaJgpOgWtdxrkwuFwOL+t3NX8ymKxQC6Xo1gs4r333sNPf/pTRCIRpFIpeDweHDt2DBcvXoRKpcKJEyfw6KOPNv1/Gi7gdDrR2dnJxmOKooh4PA5RFNHR0YHf+Z3fwTe/+U10dnbe0diWw+FwvupkMhlsbGxgY2MDyWQScrkcFosF3d3dGBoawvDwMJxOJzM1l/o4ElIPRw6Hw/kqcGDAqtPpUCgUmN50Y2MDCwsLOHToECYmJtDf34/Z2VkAwMmTJ3HmzBm4XK6mxyDzXzLbzefzCIVCePfdd1ngOjY2hm984xvo7e1lo7totjmHw+F8ndjc3GQjV2nUqsPhgNfrhcfjgcvlQnt7e9NQjL2VKB6scjicrxoHBqxjY2MIBALIZrMwm82o1+vQ6/U4ffo0RkdHEY1GceXKFdhsNpw7dw4nTpy4zYaKRriWSiVsbW1hd3cXi4uLeOONNzA8PIz19XUAt0ZparVaCIKAfD6PVCoFg8HAPVg5HM7Xio2NDWQyGajVahiNT+74wQAAAcpJREFURjgcDng8HnR1dcFsNsNoNDKZFg1ekY5e5MEqh8P5KnJgwPqXf/mX+MEPfoBSqcQ8/9RqNTY2NrCysoILFy5Ao9Hg+eefx8TExL4zvxUKBfR6PWZmZrC8vIxKpYJ0Oo2hoSE8//zz+Nd//Ve88cYbeP/99/Hwww9jZGQEPp8P09PTbBYxh8PhfF0oFoswGo2wWCxsVGRXV1dTVpXmmVOgKh3owgNWDofzVUR2UFOTKIqNQqHA5gKHQiFcuHAB//RP/4R6vQ63240f/vCHzEmgpaUFCoUCGo2GPUYsFsMrr7yCV155BYFAAOPj4/ibv/kbuN1uKJVKpFIp/PKXv8SLL74In8/H/AVHR0fxz//8zxgbG0OpVLofx4LzG6LRaNz3u6dMJuPdepzPzBdx7r700ksNg8EAQRAgCAL0ej00Gg3zr5bJZGhrawOAJvkUVbekwep3v/tdvPTSS/f7LXC+BNzvc5evuZzPg4PO2wMDVg6Hw+FwOBwO54uGe55wOBwOh8PhcL7U8ICVw+FwOBwOh/OlhgesHA6Hw+FwOJwvNTxg5XA4HA6Hw+F8qeEBK4fD4XA4HA7nSw0PWDkcDofD4XA4X2r+H83XM6APHJjuAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ]