-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathutils.py
34 lines (30 loc) · 1.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from torchvision import transforms
from skimage import color
import numpy as np
from PIL import Image
def convertLAB2RGB( lab ):
lab[:, :, 0:1] = lab[:, :, 0:1] * 100 # [0, 1] -> [0, 100]
lab[:, :, 1:3] = np.clip(lab[:, :, 1:3] * 255 - 128, -100, 100) # [0, 1] -> [-128, 128]
rgb = color.lab2rgb( lab.astype(np.float64) )
return rgb
def convertRGB2LABTensor( rgb ):
lab = color.rgb2lab( np.asarray( rgb ) ) # RGB -> LAB L[0, 100] a[-127, 128] b[-128, 127]
ab = np.clip(lab[:, :, 1:3] + 128, 0, 255) # AB --> [0, 255]
ab = transforms.ToTensor()( ab ) / 255.
L = lab[:, :, 0] * 2.55 # L --> [0, 255]
L = Image.fromarray( np.uint8( L ) )
L = transforms.ToTensor()( L ) # tensor [C, H, W]
return L, ab.float()
def addMergin(img, target_w, target_h, background_color=(0,0,0)):
width, height = img.size
if width==target_w and height==target_h:
return img
scale = max(target_w,target_h)/max(width, height)
width = int(width*scale/16.)*16
height = int(height*scale/16.)*16
img = transforms.Resize( (height,width), interpolation=Image.BICUBIC )( img )
xp = (target_w-width)//2
yp = (target_h-height)//2
result = Image.new(img.mode, (target_w, target_h), background_color)
result.paste(img, (xp, yp))
return result