forked from GajuuzZ/Human-Falling-Detect-Tracks
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathApp.py
191 lines (153 loc) · 6.9 KB
/
App.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import os
import cv2
import time
import torch
import screeninfo
import numpy as np
import tkinter as tk
import matplotlib.pyplot as plt
from PIL import Image, ImageTk
from Detection.Utils import ResizePadding
from CameraLoader import CamLoader, CamLoader_Q
from DetectorLoader import TinyYOLOv3_onecls
from PoseEstimateLoader import SPPE_FastPose
from fn import draw_single
from Track.Tracker import Detection, Tracker
from ActionsEstLoader import TSSTG
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
def get_monitor_from_coord(x, y): # multiple monitor dealing.
monitors = screeninfo.get_monitors()
for m in reversed(monitors):
if m.x <= x <= m.width + m.x and m.y <= y <= m.height + m.y:
return m
return monitors[0]
class Models:
def __init__(self):
self.inp_dets = 416
self.inp_pose = (256, 192)
self.pose_backbone = 'resnet50'
self.show_detected = True
self.show_skeleton = True
self.device = 'cuda'
self.load_models()
def load_models(self):
self.detect_model = TinyYOLOv3_onecls(self.inp_dets, device=self.device)
self.pose_model = SPPE_FastPose(self.pose_backbone, self.inp_pose[0], self.inp_pose[1],
device=self.device)
self.tracker = Tracker(30, n_init=3)
self.action_model = TSSTG(device=self.device)
def kpt2bbox(self, kpt, ex=20):
return np.array((kpt[:, 0].min() - ex, kpt[:, 1].min() - ex,
kpt[:, 0].max() + ex, kpt[:, 1].max() + ex))
def process_frame(self, frame):
detected = self.detect_model.detect(frame, need_resize=False, expand_bb=10)
self.tracker.predict()
for track in self.tracker.tracks:
det = torch.tensor([track.to_tlbr().tolist() + [1.0, 1.0, 0.0]], dtype=torch.float32)
detected = torch.cat([detected, det], dim=0) if detected is not None else det
detections = []
if detected is not None:
poses = self.pose_model.predict(frame, detected[:, 0:4], detected[:, 4])
detections = [Detection(self.kpt2bbox(ps['keypoints'].numpy()),
np.concatenate((ps['keypoints'].numpy(),
ps['kp_score'].numpy()), axis=1),
ps['kp_score'].mean().numpy()) for ps in poses]
if self.show_detected:
for bb in detected[:, 0:5]:
frame = cv2.rectangle(frame, (bb[0], bb[1]), (bb[2], bb[3]), (0, 0, 255), 1)
self.tracker.update(detections)
for i, track in enumerate(self.tracker.tracks):
if not track.is_confirmed():
continue
track_id = track.track_id
bbox = track.to_tlbr().astype(int)
center = track.get_center().astype(int)
action = 'pending..'
clr = (0, 255, 0)
if len(track.keypoints_list) == 30:
pts = np.array(track.keypoints_list, dtype=np.float32)
out = self.action_model.predict(pts, frame.shape[:2])
action_name = self.action_model.class_names[out[0].argmax()]
action = '{}: {:.2f}%'.format(action_name, out[0].max() * 100)
if action_name == 'Fall Down':
clr = (255, 0, 0)
elif action_name == 'Lying Down':
clr = (255, 200, 0)
track.actions = out
if track.time_since_update == 0:
if self.show_skeleton:
frame = draw_single(frame, track.keypoints_list[-1])
frame = cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 1)
frame = cv2.putText(frame, str(track_id), (center[0], center[1]), cv2.FONT_HERSHEY_DUPLEX,
0.4, (255, 0, 0), 2)
frame = cv2.putText(frame, action, (bbox[0] + 5, bbox[1] + 15), cv2.FONT_HERSHEY_COMPLEX,
0.4, clr, 1)
return frame
class main:
def __init__(self, master: tk.Tk):
self.master = master
self.master.title('Human Falling Detection')
self.master.protocol('WM_DELETE_WINDOW', self._on_closing)
self.main_screen = get_monitor_from_coord(master.winfo_x(), master.winfo_y())
self.width = int(self.main_screen.width * .85)
self.height = int(self.main_screen.height * .85)
self.master.geometry('{}x{}'.format(self.width, self.height + 15))
self.cam = None
self.canvas = tk.Canvas(master, width=int(self.width * .65), height=self.height)
self.canvas.grid(row=0, column=0, padx=5, pady=5, sticky=tk.NSEW)
fig = plt.Figure(figsize=(6, 8), dpi=100)
fig.suptitle('Actions')
self.ax = fig.add_subplot(111)
self.fig_canvas = FigureCanvasTkAgg(fig, self.master)
self.fig_canvas.get_tk_widget().grid(row=0, column=1, padx=5, pady=5, sticky=tk.NSEW)
# Load Models
self.resize_fn = ResizePadding(416, 416)
self.models = Models()
self.actions_graph()
self.delay = 15
self.load_cam('../Data/falldata/Home/Videos/video (1).avi')
self.update()
def preproc(self, image):
image = self.resize_fn(image)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
def load_cam(self, source):
if self.cam:
self.cam.__del__()
if type(source) is str and os.path.isfile(source):
self.cam = CamLoader_Q(source, queue_size=1000, preprocess=self.preproc).start()
else:
self.cam = CamLoader(source, preprocess=self.preproc).start()
def actions_graph(self):
if len(self.models.tracker.tracks) == 0:
return
track = self.models.tracker.tracks[0]
if hasattr(track, 'actions'):
y_labels = self.models.action_model.class_names
self.ax.barh(np.arange(len(y_labels)), track.actions)
self.fig_canvas.draw()
def update(self):
if self.cam is None:
return
if self.cam.grabbed():
frame = self.cam.getitem()
frame = self.models.process_frame(frame)
frame = cv2.resize(frame, (self.canvas.winfo_width(), self.canvas.winfo_height()),
interpolation=cv2.INTER_CUBIC)
self.photo = ImageTk.PhotoImage(image=Image.fromarray(frame))
self.canvas.create_image(0, 0, image=self.photo, anchor=tk.NW)
else:
self.cam.stop()
self._cam = self.master.after(self.delay, self.update)
def _on_closing(self):
self.master.after_cancel(self._cam)
if self.cam:
self.cam.stop()
self.cam.__del__()
self.master.destroy()
root = tk.Tk()
app = main(root)
root.mainloop()