forked from hMRI-group/hMRI-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhmri_run_proc_pipeline.m
182 lines (157 loc) · 6.37 KB
/
hmri_run_proc_pipeline.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
function out = hmri_run_proc_pipeline(job)
% Deal with the preprocessing pipelines. There are 2 options
% 1/ US+Smooth
% 2/ US+Dartel+Smooth
%
% Input include only some parametric maps, the structural maps (for
% segmentation), the required smoothing and which pipeline to use. All
% other options are hard-coded!
% By default, these pipelines focus only on the first 2 tissue classes,
% i.e. GM and WM only.
%
% For more flexibility, individual modules can be combined. :-)
%
%_______________________________________________________________________
% Copyright (C) 2017 Cyclotron Research Centre
% Written by Christophe Phillips
% 1/ Setup the smoothing and execute hmri_run_proc_US
%----------------------------------------------------
% Get the proc_US job structure, with all the defaults
proc_us = tbx_scfg_hmri_proc_US;
[~, job_US] = harvest(proc_us, proc_us, false, false);
% Fill in the data now: parametric maps & structurals for segmentation
if job.pipe_c==1 % US+smooth -> warp the parametric maps here.
job_US.many_sdatas.vols_pm = job.vols_pm;
end
job_US.many_sdatas.channel.vols = job.s_vols;
% Set voxel sizes & BB
job_US.many_sdatas.vox = job.vox;
job_US.many_sdatas.bb = job.bb;
% Only spit out CSF in native space (no Dartel imported) & warped (no modulation)
job_US.tissue(3).native = [1 0];
job_US.tissue(3).warped = [0 0];
% Get the output direcotry across
job_US.many_sdatas.output = job.output;
% Run the *_proc_US
fprintf('\nhMRI-pipeline: running the US module.\n')
out_US = hmri_run_proc_US(job_US);
% where the output structure 'out_US'
% .tiss : struct-array with subfields
% .c and .rc, for the native and Dartel imported
% .wc and .mwc, for the warped and modulated
% tissue class images
% .maps : struct-array with subfields 'wvols_pm' for the warped parametric
% maps
% .def : cell-array with the deformations for each subject.
% 2/ Proceed with dartel (only if requested)
%-------------------------------------------
% including template create and warping into MNI space
if job.pipe_c == 2
if str2double(spm('Ver','spm_dartel_norm_fun'))>=7182
% Knows how to handle output specification
use_spm_output_handling = true;
else
use_spm_output_handling = false;
end
% DARTEL processing:
proc_Dartel = tbx_scfg_hmri_proc_Dartel;
% a) warping with template creation
proc_Dwarp = proc_Dartel.values{1};
[~, job_Dwarp] = harvest(proc_Dwarp, proc_Dwarp, false, false);
% Fill in the filenames for rc1 and rc2, i.e. *only* GM and WM
for ii=1:2
job_Dwarp.images{ii} = spm_file(out_US.tiss(ii).rc,'number',1);
end
job_Dwarp.output = job.output;
% Run the Dartel-warp job
fprintf('\nhMRI-pipeline: running the Dartel-warp module.\n')
out_Dwarp = hmri_run_proc_dartel_template(job_Dwarp);
% out_Dwarp = spm_dartel_template(job_Dwarp);
if ~use_spm_output_handling
% Move if using specific per-subject subdirectory -> 'dart_files'
% This should also include the flow fields!
if isfield(job.output,'outdir_ps')
dn_dartel = fullfile(job.output.outdir_ps{1},'Dartel_Templates');
if ~exist(dn_dartel,'dir')
mkdir(dn_dartel)
end
current_path = spm_file(out_Dwarp.template{1},'path');
f2move = spm_select('FPList',current_path,'^Template_[\d]\.nii$');
for ii=1:size(f2move,1)
movefile(deblank(f2move(ii,:)),dn_dartel);
end
out_Dwarp.template = spm_file(out_Dwarp.template,'path',dn_dartel);
end
end
% b) normalize to MNI
proc_Dnorm = proc_Dartel.values{3};
[~, job_Dnorm] = harvest(proc_Dnorm, proc_Dnorm, false, false);
% get last tempalte
job_Dnorm.template = out_Dwarp.template(end);
% get GM and WM tissue class
for ii=1:2
job_Dnorm.multsdata.vols_tc{ii} = ...
spm_file(out_US.tiss(ii).c,'number',1);
end
% get the parametric maps
job_Dnorm.multsdata.vols_pm = job.vols_pm;
% get the warps
job_Dnorm.multsdata.vols_field = out_Dwarp.files;
% Set voxel sizes
job_Dnorm.vox = job.vox;
job_Dnorm.bb = job.bb;
% get the output directory
job_Dnorm.output = job.output;
% Run the Dartel-Normalize-to-MNI job
fprintf('\nhMRI-pipeline: running the Darte-normalize-to-MNI module.\n')
out_Dnorm = hmri_run_proc_dartel_norm(job_Dnorm);
end
% 3/ Deal with smoothing, with hmri_run_proc_smooth
%--------------------------------------------------
proc_smooth = tbx_scfg_hmri_proc_smooth;
[~, job_smooth] = harvest(proc_smooth, proc_smooth, false, false);
% Get the image data, working *only* with mwc1 and mwc2 (GM and WM)
switch job.pipe_c
case 1 % US+smooth
job_smooth = fill_fn_from_US(job_smooth,out_US);
case 2 % US+Dartel+smooth
% Fit in DARTEL data
job_smooth.vols_pm = out_Dnorm.vols_wpm;
job_smooth.vols_mwc = out_Dnorm.vols_mwc;
otherwise
error('hmri:pipeline', 'Wrong hmri-pipeline option.');
end
% Get the smoothing kernel
job_smooth.fwhm = job.fwhm;
% Run the *_proc_smooth
fprintf('\nhMRI-pipeline: running the weighted-average (smoothing) module.\n')
out_wa = hmri_run_proc_smooth(job_smooth);
% where the 'out_wa' is organized as a structure out_wa.tc where
% - tc is a cell-array of size {n_TCs x n_pams}
% - each element tc{ii,jj} is a cell array {n_subj x 1} with each subject's
% smoothed data for the ii^th TC and jj^th MPM
% 4/ Collect output and as needed
out = out_wa; % -> good enouh for the moment!
end
%% ________________________________________________________________________
%
% SUBFUNCTION
%__________________________________________________________________________
function job_smooth = fill_fn_from_US(job_smooth,out_US)
% Fill in the filenames of images (parametric maps and tissue classes) for
% the US+smooth pipeline.
% Parametric maps -> use all of them
N_pm = numel(out_US.maps);
for ii=1:N_pm
job_smooth.vols_pm{ii} = out_US.maps(ii).wvols_pm;
end
% Tissue classes -> use GM and WM, i.e. #1 and #2
for ii=1:2
job_smooth.vols_mwc{ii} = spm_file(out_US.tiss(ii).mwc,'number',1);
end
% NOTE:
% Not sure it's necessary to add the ',1' to specify the volume for the
% tissue class maps but that's how it looks when using the module with the
% batch GUI -> stay on the safe side and apply.
end
%_______________________________________________________________________