forked from aimacode/aima-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprobability4e.py
776 lines (620 loc) · 25.5 KB
/
probability4e.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
"""Probability models (Chapter 12-13)"""
import copy
import random
from collections import defaultdict
from functools import reduce
import numpy as np
from utils4e import product, probability, extend
# ______________________________________________________________________________
# Chapter 12 Qualifying Uncertainty
# 12.1 Acting Under Uncertainty
def DTAgentProgram(belief_state):
"""A decision-theoretic agent. [Figure 12.1]"""
def program(percept):
belief_state.observe(program.action, percept)
program.action = max(belief_state.actions(), key=belief_state.expected_outcome_utility)
return program.action
program.action = None
return program
# ______________________________________________________________________________
# 12.2 Basic Probability Notation
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> P['lo'], P['med'], P['hi']
(0.125, 0.375, 0.5)
"""
def __init__(self, varname='?', freqs=None):
"""If freqs is given, it is a dictionary of values - frequency pairs,
then ProbDist is normalized."""
self.prob = {}
self.varname = varname
self.values = []
if freqs:
for (v, p) in freqs.items():
self[v] = p
self.normalize()
def __getitem__(self, val):
"""Given a value, return P(value)."""
try:
return self.prob[val]
except KeyError:
return 0
def __setitem__(self, val, p):
"""Set P(val) = p."""
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0."""
total = sum(self.prob.values())
if not np.isclose(total, 1.0):
for val in self.prob:
self.prob[val] /= total
return self
def show_approx(self, numfmt='{:.3g}'):
"""Show the probabilities rounded and sorted by key, for the
sake of portable doctests."""
return ', '.join([('{}: ' + numfmt).format(v, p)
for (v, p) in sorted(self.prob.items())])
def __repr__(self):
return "P({})".format(self.varname)
# ______________________________________________________________________________
# 12.3 Inference Using Full Joint Distributions
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
>>> P[dict(X=0, Y=1)] = 0.5
>>> P[dict(X=0, Y=1)]
0.5"""
def __init__(self, variables):
self.prob = {}
self.variables = variables
self.vals = defaultdict(list)
def __getitem__(self, values):
"""Given a tuple or dict of values, return P(values)."""
values = event_values(values, self.variables)
return ProbDist.__getitem__(self, values)
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
values = event_values(values, self.variables)
self.prob[values] = p
for var, val in zip(self.variables, values):
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"""Return the set of possible values for a variable."""
return self.vals[var]
def __repr__(self):
return "P({})".format(self.variables)
def event_values(event, variables):
"""Return a tuple of the values of variables in event.
>>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
(8, 10)
>>> event_values ((1, 2), ['C', 'A'])
(1, 2)
"""
if isinstance(event, tuple) and len(event) == len(variables):
return event
else:
return tuple([event[var] for var in variables])
def enumerate_joint_ask(X, e, P):
"""Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P. [Section 12.3]
>>> P = JointProbDist(['X', 'Y'])
>>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125
>>> enumerate_joint_ask('X', dict(Y=1), P).show_approx()
'0: 0.667, 1: 0.167, 2: 0.167'
"""
assert X not in e, "Query variable must be distinct from evidence"
Q = ProbDist(X) # probability distribution for X, initially empty
Y = [v for v in P.variables if v != X and v not in e] # hidden variables.
for xi in P.values(X):
Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
return Q.normalize()
def enumerate_joint(variables, e, P):
"""Return the sum of those entries in P consistent with e,
provided variables is P's remaining variables (the ones not in e)."""
if not variables:
return P[e]
Y, rest = variables[0], variables[1:]
return sum([enumerate_joint(rest, extend(e, Y, y), P)
for y in P.values(Y)])
# ______________________________________________________________________________
# 12.4 Independence
def is_independent(variables, P):
"""
Return whether a list of variables are independent given their distribution P
P is an instance of JoinProbDist
>>> P = JointProbDist(['X', 'Y'])
>>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[1,0] = 0.125
>>> is_independent(['X', 'Y'], P)
False
"""
for var in variables:
event_vars = variables[:]
event_vars.remove(var)
event = {}
distribution = enumerate_joint_ask(var, event, P)
events = gen_possible_events(event_vars, P)
for e in events:
conditional_distr = enumerate_joint_ask(var, e, P)
if conditional_distr.prob != distribution.prob:
return False
return True
def gen_possible_events(vars, P):
"""Generate all possible events of a collection of vars according to distribution of P"""
events = []
def backtrack(vars, P, temp):
if not vars:
events.append(temp)
return
var = vars[0]
for val in P.values(var):
temp[var] = val
backtrack([v for v in vars if v != var], P, copy.copy(temp))
backtrack(vars, P, {})
return events
# ______________________________________________________________________________
# Chapter 13 Probabilistic Reasoning
# 13.1 Representing Knowledge in an Uncertain Domain
class BayesNet:
"""Bayesian network containing only boolean-variable nodes."""
def __init__(self, node_specs=None):
"""
Nodes must be ordered with parents before children.
:param node_specs: an nested iterable object, each element contains (variable name, parents name, cpt)
for each node
"""
self.nodes = []
self.variables = []
node_specs = node_specs or []
for node_spec in node_specs:
self.add(node_spec)
def add(self, node_spec):
"""
Add a node to the net. Its parents must already be in the
net, and its variable must not.
Initialize Bayes nodes by detecting the length of input node specs
"""
if len(node_spec) >= 5:
node = ContinuousBayesNode(*node_spec)
else:
node = BayesNode(*node_spec)
assert node.variable not in self.variables
assert all((parent in self.variables) for parent in node.parents)
self.nodes.append(node)
self.variables.append(node.variable)
for parent in node.parents:
self.variable_node(parent).children.append(node)
def variable_node(self, var):
"""
Return the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
'Burglary'
"""
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: {}".format(var))
def variable_values(self, var):
"""Return the domain of var."""
return [True, False]
def __repr__(self):
return 'BayesNet({0!r})'.format(self.nodes)
class BayesNode:
"""
A conditional probability distribution for a boolean variable,
P(X | parents). Part of a BayesNet.
"""
def __init__(self, X, parents, cpt):
"""
:param X: variable name,
:param parents: a sequence of variable names or a space-separated string. Representing the names of parent nodes
:param cpt: the conditional probability table, takes one of these forms:
* A number, the unconditional probability P(X=true). You can
use this form when there are no parents.
* A dict {v: p, ...}, the conditional probability distribution
P(X=true | parent=v) = p. When there's just one parent.
* A dict {(v1, v2, ...): p, ...}, the distribution P(X=true |
parent1=v1, parent2=v2, ...) = p. Each key must have as many
values as there are parents. You can use this form always;
the first two are just conveniences.
In all cases the probability of X being false is left implicit,
since it follows from P(X=true).
>>> X = BayesNode('X', '', 0.2)
>>> Y = BayesNode('Y', 'P', {T: 0.2, F: 0.7})
>>> Z = BayesNode('Z', 'P Q',
... {(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
"""
if isinstance(parents, str):
parents = parents.split()
# We store the table always in the third form above.
if isinstance(cpt, (float, int)): # no parents, 0-tuple
cpt = {(): cpt}
elif isinstance(cpt, dict):
# one parent, 1-tuple
if cpt and isinstance(list(cpt.keys())[0], bool):
cpt = {(v,): p for v, p in cpt.items()}
assert isinstance(cpt, dict)
for vs, p in cpt.items():
assert isinstance(vs, tuple) and len(vs) == len(parents)
assert all(isinstance(v, bool) for v in vs)
assert 0 <= p <= 1
self.variable = X
self.parents = parents
self.cpt = cpt
self.children = []
def p(self, value, event):
"""
Return the conditional probability
P(X=value | parents=parent_values), where parent_values
are the values of parents in event. (event must assign each
parent a value.)
>>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625})
>>> bn.p(False, {'Burglary': False, 'Earthquake': True})
0.375
"""
assert isinstance(value, bool)
ptrue = self.cpt[event_values(event, self.parents)]
return ptrue if value else 1 - ptrue
def sample(self, event):
"""
Sample from the distribution for this variable conditioned
on event's values for parent_variables. That is, return True/False
at random according with the conditional probability given the
parents.
"""
return probability(self.p(True, event))
def __repr__(self):
return repr((self.variable, ' '.join(self.parents)))
# Burglary example [Figure 13 .2]
T, F = True, False
burglary = BayesNet([
('Burglary', '', 0.001),
('Earthquake', '', 0.002),
('Alarm', 'Burglary Earthquake',
{(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001}),
('JohnCalls', 'Alarm', {T: 0.90, F: 0.05}),
('MaryCalls', 'Alarm', {T: 0.70, F: 0.01})
])
# ______________________________________________________________________________
# Section 13.2. The Semantics of Bayesian Networks
# Bayesian nets with continuous variables
def gaussian_probability(param, event, value):
"""
Gaussian probability of a continuous Bayesian network node on condition of
certain event and the parameters determined by the event
:param param: parameters determined by discrete parent events of current node
:param event: a dict, continuous event of current node, the values are used
as parameters in calculating distribution
:param value: float, the value of current continuous node
:return: float, the calculated probability
>>> param = {'sigma':0.5, 'b':1, 'a':{'h1':0.5, 'h2': 1.5}}
>>> event = {'h1':0.6, 'h2': 0.3}
>>> gaussian_probability(param, event, 1)
0.2590351913317835
"""
assert isinstance(event, dict)
assert isinstance(param, dict)
buff = 0
for k, v in event.items():
# buffer varianle to calculate h1*a_h1 + h2*a_h2
buff += param['a'][k] * v
res = 1 / (param['sigma'] * np.sqrt(2 * np.pi)) * np.exp(-0.5 * ((value - buff - param['b']) / param['sigma']) ** 2)
return res
def logistic_probability(param, event, value):
"""
Logistic probability of a discrete node in Bayesian network with continuous parents,
:param param: a dict, parameters determined by discrete parents of current node
:param event: a dict, names and values of continuous parent variables of current node
:param value: boolean, True or False
:return: int, probability
"""
buff = 1
for _, v in event.items():
# buffer variable to calculate (value-mu)/sigma
buff *= (v - param['mu']) / param['sigma']
p = 1 - 1 / (1 + np.exp(-4 / np.sqrt(2 * np.pi) * buff))
return p if value else 1 - p
class ContinuousBayesNode:
""" A Bayesian network node with continuous distribution or with continuous distributed parents """
def __init__(self, name, d_parents, c_parents, parameters, type):
"""
A continuous Bayesian node has two types of parents: discrete and continuous.
:param d_parents: str, name of discrete parents, value of which determines distribution parameters
:param c_parents: str, name of continuous parents, value of which is used to calculate distribution
:param parameters: a dict, parameters for distribution of current node, keys corresponds to discrete parents
:param type: str, type of current node's value, either 'd' (discrete) or 'c'(continuous)
"""
self.parameters = parameters
self.type = type
self.d_parents = d_parents.split()
self.c_parents = c_parents.split()
self.parents = self.d_parents + self.c_parents
self.variable = name
self.children = []
def continuous_p(self, value, c_event, d_event):
"""
Probability given the value of current node and its parents
:param c_event: event of continuous nodes
:param d_event: event of discrete nodes
"""
assert isinstance(c_event, dict)
assert isinstance(d_event, dict)
d_event_vals = event_values(d_event, self.d_parents)
if len(d_event_vals) == 1:
d_event_vals = d_event_vals[0]
param = self.parameters[d_event_vals]
if self.type == "c":
p = gaussian_probability(param, c_event, value)
if self.type == "d":
p = logistic_probability(param, c_event, value)
return p
# harvest-buy example. Figure 13.5
harvest_buy = BayesNet([
('Subsidy', '', 0.001),
('Harvest', '', 0.002),
('Cost', 'Subsidy', 'Harvest',
{True: {'sigma': 0.5, 'b': 1, 'a': {'Harvest': 0.5}},
False: {'sigma': 0.6, 'b': 1, 'a': {'Harvest': 0.5}}}, 'c'),
('Buys', '', 'Cost', {T: {'mu': 0.5, 'sigma': 0.5}, F: {'mu': 0.6, 'sigma': 0.6}}, 'd')])
# ______________________________________________________________________________
# 13.3 Exact Inference in Bayesian Networks
# 13.3.1 Inference by enumeration
def enumeration_ask(X, e, bn):
"""
Return the conditional probability distribution of variable X
given evidence e, from BayesNet bn. [Figure 13.10]
>>> enumeration_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
'False: 0.716, True: 0.284'
"""
assert X not in e, "Query variable must be distinct from evidence"
Q = ProbDist(X)
for xi in bn.variable_values(X):
Q[xi] = enumerate_all(bn.variables, extend(e, X, xi), bn)
return Q.normalize()
def enumerate_all(variables, e, bn):
"""
Return the sum of those entries in P(variables | e{others})
consistent with e, where P is the joint distribution represented
by bn, and e{others} means e restricted to bn's other variables
(the ones other than variables). Parents must precede children in variables.
"""
if not variables:
return 1.0
Y, rest = variables[0], variables[1:]
Ynode = bn.variable_node(Y)
if Y in e:
return Ynode.p(e[Y], e) * enumerate_all(rest, e, bn)
else:
return sum(Ynode.p(y, e) * enumerate_all(rest, extend(e, Y, y), bn)
for y in bn.variable_values(Y))
# ______________________________________________________________________________
# 13.3.2 The variable elimination algorithm
def elimination_ask(X, e, bn):
"""
Compute bn's P(X|e) by variable elimination. [Figure 13.12]
>>> elimination_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
'False: 0.716, True: 0.284'
"""
assert X not in e, "Query variable must be distinct from evidence"
factors = []
for var in reversed(bn.variables):
factors.append(make_factor(var, e, bn))
if is_hidden(var, X, e):
factors = sum_out(var, factors, bn)
return pointwise_product(factors, bn).normalize()
def is_hidden(var, X, e):
"""Is var a hidden variable when querying P(X|e)?"""
return var != X and var not in e
def make_factor(var, e, bn):
"""
Return the factor for var in bn's joint distribution given e.
That is, bn's full joint distribution, projected to accord with e,
is the pointwise product of these factors for bn's variables.
"""
node = bn.variable_node(var)
variables = [X for X in [var] + node.parents if X not in e]
cpt = {event_values(e1, variables): node.p(e1[var], e1)
for e1 in all_events(variables, bn, e)}
return Factor(variables, cpt)
def pointwise_product(factors, bn):
return reduce(lambda f, g: f.pointwise_product(g, bn), factors)
def sum_out(var, factors, bn):
"""Eliminate var from all factors by summing over its values."""
result, var_factors = [], []
for f in factors:
(var_factors if var in f.variables else result).append(f)
result.append(pointwise_product(var_factors, bn).sum_out(var, bn))
return result
class Factor:
"""A factor in a joint distribution."""
def __init__(self, variables, cpt):
self.variables = variables
self.cpt = cpt
def pointwise_product(self, other, bn):
"""Multiply two factors, combining their variables."""
variables = list(set(self.variables) | set(other.variables))
cpt = {event_values(e, variables): self.p(e) * other.p(e)
for e in all_events(variables, bn, {})}
return Factor(variables, cpt)
def sum_out(self, var, bn):
"""Make a factor eliminating var by summing over its values."""
variables = [X for X in self.variables if X != var]
cpt = {event_values(e, variables): sum(self.p(extend(e, var, val))
for val in bn.variable_values(var))
for e in all_events(variables, bn, {})}
return Factor(variables, cpt)
def normalize(self):
"""Return my probabilities; must be down to one variable."""
assert len(self.variables) == 1
return ProbDist(self.variables[0],
{k: v for ((k,), v) in self.cpt.items()})
def p(self, e):
"""Look up my value tabulated for e."""
return self.cpt[event_values(e, self.variables)]
def all_events(variables, bn, e):
"""Yield every way of extending e with values for all variables."""
if not variables:
yield e
else:
X, rest = variables[0], variables[1:]
for e1 in all_events(rest, bn, e):
for x in bn.variable_values(X):
yield extend(e1, X, x)
# ______________________________________________________________________________
# 13.3.4 Clustering algorithms
# [Figure 13.14a]: sprinkler network
sprinkler = BayesNet([
('Cloudy', '', 0.5),
('Sprinkler', 'Cloudy', {T: 0.10, F: 0.50}),
('Rain', 'Cloudy', {T: 0.80, F: 0.20}),
('WetGrass', 'Sprinkler Rain',
{(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00})])
# ______________________________________________________________________________
# 13.4 Approximate Inference for Bayesian Networks
# 13.4.1 Direct sampling methods
def prior_sample(bn):
"""
Randomly sample from bn's full joint distribution. The result
is a {variable: value} dict. [Figure 13.15]
"""
event = {}
for node in bn.nodes:
event[node.variable] = node.sample(event)
return event
# _________________________________________________________________________
def rejection_sampling(X, e, bn, N=10000):
"""
[Figure 13.16]
Estimate the probability distribution of variable X given
evidence e in BayesNet bn, using N samples.
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> random.seed(47)
>>> rejection_sampling('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
'False: 0.7, True: 0.3'
"""
counts = {x: 0 for x in bn.variable_values(X)} # bold N in [Figure 13.16]
for j in range(N):
sample = prior_sample(bn) # boldface x in [Figure 13.16]
if consistent_with(sample, e):
counts[sample[X]] += 1
return ProbDist(X, counts)
def consistent_with(event, evidence):
"""Is event consistent with the given evidence?"""
return all(evidence.get(k, v) == v
for k, v in event.items())
# _________________________________________________________________________
def likelihood_weighting(X, e, bn, N=10000):
"""
[Figure 13.17]
Estimate the probability distribution of variable X given
evidence e in BayesNet bn.
>>> random.seed(1017)
>>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
'False: 0.702, True: 0.298'
"""
W = {x: 0 for x in bn.variable_values(X)}
for j in range(N):
sample, weight = weighted_sample(bn, e) # boldface x, w in [Figure 14.15]
W[sample[X]] += weight
return ProbDist(X, W)
def weighted_sample(bn, e):
"""
Sample an event from bn that's consistent with the evidence e;
return the event and its weight, the likelihood that the event
accords to the evidence.
"""
w = 1
event = dict(e) # boldface x in [Figure 13.17]
for node in bn.nodes:
Xi = node.variable
if Xi in e:
w *= node.p(e[Xi], event)
else:
event[Xi] = node.sample(event)
return event, w
# _________________________________________________________________________
# 13.4.2 Inference by Markov chain simulation
def gibbs_ask(X, e, bn, N=1000):
"""[Figure 13.19]"""
assert X not in e, "Query variable must be distinct from evidence"
counts = {x: 0 for x in bn.variable_values(X)} # bold N in [Figure 14.16]
Z = [var for var in bn.variables if var not in e]
state = dict(e) # boldface x in [Figure 14.16]
for Zi in Z:
state[Zi] = random.choice(bn.variable_values(Zi))
for j in range(N):
for Zi in Z:
state[Zi] = markov_blanket_sample(Zi, state, bn)
counts[state[X]] += 1
return ProbDist(X, counts)
def markov_blanket_sample(X, e, bn):
"""
Return a sample from P(X | mb) where mb denotes that the
variables in the Markov blanket of X take their values from event
e (which must assign a value to each). The Markov blanket of X is
X's parents, children, and children's parents.
"""
Xnode = bn.variable_node(X)
Q = ProbDist(X)
for xi in bn.variable_values(X):
ei = extend(e, X, xi)
# [Equation 13.12:]
Q[xi] = Xnode.p(xi, e) * product(Yj.p(ei[Yj.variable], ei)
for Yj in Xnode.children)
# (assuming a Boolean variable here)
return probability(Q.normalize()[True])
# _________________________________________________________________________
# 13.4.3 Compiling approximate inference
class complied_burglary:
"""compiled version of burglary network"""
def Burglary(self, sample):
if sample['Alarm']:
if sample['Earthquake']:
return probability(0.00327)
else:
return probability(0.485)
else:
if sample['Earthquake']:
return probability(7.05e-05)
else:
return probability(6.01e-05)
def Earthquake(self, sample):
if sample['Alarm']:
if sample['Burglary']:
return probability(0.0020212)
else:
return probability(0.36755)
else:
if sample['Burglary']:
return probability(0.0016672)
else:
return probability(0.0014222)
def MaryCalls(self, sample):
if sample['Alarm']:
return probability(0.7)
else:
return probability(0.01)
def JongCalls(self, sample):
if sample['Alarm']:
return probability(0.9)
else:
return probability(0.05)
def Alarm(self, sample):
raise NotImplementedError