-
Notifications
You must be signed in to change notification settings - Fork 40
/
gated_anneal.py
271 lines (239 loc) · 11.3 KB
/
gated_anneal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
Implements the training scheme for a gated SAE described in https://arxiv.org/abs/2404.16014
"""
import torch as t
from ..trainers.trainer import SAETrainer
from ..config import DEBUG
from ..dictionary import GatedAutoEncoder
from collections import namedtuple
class ConstrainedAdam(t.optim.Adam):
"""
A variant of Adam where some of the parameters are constrained to have unit norm.
"""
def __init__(self, params, constrained_params, lr):
super().__init__(params, lr=lr, betas=(0, 0.999))
self.constrained_params = list(constrained_params)
def step(self, closure=None):
with t.no_grad():
for p in self.constrained_params:
normed_p = p / p.norm(dim=0, keepdim=True)
# project away the parallel component of the gradient
p.grad -= (p.grad * normed_p).sum(dim=0, keepdim=True) * normed_p
super().step(closure=closure)
with t.no_grad():
for p in self.constrained_params:
# renormalize the constrained parameters
p /= p.norm(dim=0, keepdim=True)
class GatedAnnealTrainer(SAETrainer):
"""
Gated SAE training scheme with p-annealing.
"""
def __init__(self,
dict_class=GatedAutoEncoder,
activation_dim=512,
dict_size=64*512,
lr=3e-4,
warmup_steps=1000, # lr warmup period at start of training and after each resample
sparsity_function='Lp^p', # Lp or Lp^p
initial_sparsity_penalty=1e-1, # equal to l1 penalty in standard trainer
anneal_start=15000, # step at which to start annealing p
anneal_end=None, # step at which to stop annealing, defaults to steps-1
p_start=1, # starting value of p (constant throughout warmup)
p_end=0, # annealing p_start to p_end linearly after warmup_steps, exact endpoint excluded
n_sparsity_updates = 10, # number of times to update the sparsity penalty, at most steps-anneal_start times
sparsity_queue_length = 10, # number of recent sparsity loss terms, onle needed for adaptive_sparsity_penalty
resample_steps=None, # number of steps after which to resample dead neurons
steps=None, # total number of steps to train for
device=None,
seed=42,
layer=None,
lm_name=None,
wandb_name='GatedAnnealTrainer',
):
super().__init__(seed)
assert layer is not None and lm_name is not None
self.layer = layer
self.lm_name = lm_name
if seed is not None:
t.manual_seed(seed)
t.cuda.manual_seed_all(seed)
# initialize dictionary
# initialize dictionary
self.activation_dim = activation_dim
self.dict_size = dict_size
self.ae = dict_class(activation_dim, dict_size)
if device is None:
self.device = 'cuda' if t.cuda.is_available() else 'cpu'
else:
self.device = device
self.ae.to(self.device)
self.lr = lr
self.sparsity_function = sparsity_function
self.anneal_start = anneal_start
self.anneal_end = anneal_end if anneal_end is not None else steps
self.p_start = p_start
self.p_end = p_end
self.p = p_start # p is set in self.loss()
self.next_p = None # set in self.loss()
self.lp_loss = None # set in self.loss()
self.scaled_lp_loss = None # set in self.loss()
if n_sparsity_updates == "continuous":
self.n_sparsity_updates = self.anneal_end - anneal_start +1
else:
self.n_sparsity_updates = n_sparsity_updates
self.sparsity_update_steps = t.linspace(anneal_start, self.anneal_end, self.n_sparsity_updates, dtype=int)
self.p_values = t.linspace(p_start, p_end, self.n_sparsity_updates)
self.p_step_count = 0
self.sparsity_coeff = initial_sparsity_penalty # alpha
self.sparsity_queue_length = sparsity_queue_length
self.sparsity_queue = []
self.warmup_steps = warmup_steps
self.steps = steps
self.logging_parameters = ['p', 'next_p', 'lp_loss', 'scaled_lp_loss', 'sparsity_coeff']
self.seed = seed
self.wandb_name = wandb_name
self.resample_steps = resample_steps
if self.resample_steps is not None:
# how many steps since each neuron was last activated?
self.steps_since_active = t.zeros(self.dict_size, dtype=int).to(self.device)
else:
self.steps_since_active = None
self.optimizer = ConstrainedAdam(self.ae.parameters(), self.ae.decoder.parameters(), lr=lr)
if resample_steps is None:
def warmup_fn(step):
return min(step / warmup_steps, 1.)
else:
def warmup_fn(step):
return min((step % resample_steps) / warmup_steps, 1.)
self.scheduler = t.optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=warmup_fn)
def resample_neurons(self, deads, activations):
with t.no_grad():
if deads.sum() == 0: return
print(f"resampling {deads.sum().item()} neurons")
# compute loss for each activation
losses = (activations - self.ae(activations)).norm(dim=-1)
# sample input to create encoder/decoder weights from
n_resample = min([deads.sum(), losses.shape[0]])
indices = t.multinomial(losses, num_samples=n_resample, replacement=False)
sampled_vecs = activations[indices]
# reset encoder/decoder weights for dead neurons
alive_norm = self.ae.encoder.weight[~deads].norm(dim=-1).mean()
self.ae.encoder.weight[deads][:n_resample] = sampled_vecs * alive_norm * 0.2
self.ae.decoder.weight[:,deads][:,:n_resample] = (sampled_vecs / sampled_vecs.norm(dim=-1, keepdim=True)).T
self.ae.encoder.bias[deads][:n_resample] = 0.
# reset Adam parameters for dead neurons
state_dict = self.optimizer.state_dict()['state']
## encoder weight
state_dict[1]['exp_avg'][deads] = 0.
state_dict[1]['exp_avg_sq'][deads] = 0.
## encoder bias
state_dict[2]['exp_avg'][deads] = 0.
state_dict[2]['exp_avg_sq'][deads] = 0.
## decoder weight
state_dict[3]['exp_avg'][:,deads] = 0.
state_dict[3]['exp_avg_sq'][:,deads] = 0.
def lp_norm(self, f, p):
norm_sq = f.pow(p).sum(dim=-1)
if self.sparsity_function == 'Lp^p':
return norm_sq.mean()
elif self.sparsity_function == 'Lp':
return norm_sq.pow(1/p).mean()
else:
raise ValueError("Sparsity function must be 'Lp' or 'Lp^p'")
def loss(self, x, step, logging=False, **kwargs):
f, f_gate = self.ae.encode(x, return_gate=True)
x_hat = self.ae.decode(f)
x_hat_gate = f_gate @ self.ae.decoder.weight.detach().T + self.ae.decoder_bias.detach()
L_recon = (x - x_hat).pow(2).sum(dim=-1).mean()
L_aux = (x - x_hat_gate).pow(2).sum(dim=-1).mean()
fs = f_gate # feature activation that we use for sparsity term
lp_loss = self.lp_norm(fs, self.p)
scaled_lp_loss = lp_loss * self.sparsity_coeff
self.lp_loss = lp_loss
self.scaled_lp_loss = scaled_lp_loss
if self.next_p is not None:
lp_loss_next = self.lp_norm(fs, self.next_p)
self.sparsity_queue.append([self.lp_loss.item(), lp_loss_next.item()])
self.sparsity_queue = self.sparsity_queue[-self.sparsity_queue_length:]
if step in self.sparsity_update_steps:
# check to make sure we don't update on repeat step:
if step >= self.sparsity_update_steps[self.p_step_count]:
# Adapt sparsity penalty alpha
if self.next_p is not None:
local_sparsity_new = t.tensor([i[0] for i in self.sparsity_queue]).mean()
local_sparsity_old = t.tensor([i[1] for i in self.sparsity_queue]).mean()
self.sparsity_coeff = self.sparsity_coeff * (local_sparsity_new / local_sparsity_old).item()
# Update p
self.p = self.p_values[self.p_step_count].item()
if self.p_step_count < self.n_sparsity_updates-1:
self.next_p = self.p_values[self.p_step_count+1].item()
else:
self.next_p = self.p_end
self.p_step_count += 1
# Update dead feature count
if self.steps_since_active is not None:
# update steps_since_active
deads = (f == 0).all(dim=0)
self.steps_since_active[deads] += 1
self.steps_since_active[~deads] = 0
loss = L_recon + scaled_lp_loss + L_aux
if not logging:
return loss
else:
return namedtuple('LossLog', ['x', 'x_hat', 'f', 'losses'])(
x, x_hat, f,
{
'mse_loss' : L_recon.item(),
'aux_loss' : L_aux.item(),
'loss' : loss.item(),
'p' : self.p,
'next_p' : self.next_p,
'lp_loss' : lp_loss.item(),
'sparsity_loss' : scaled_lp_loss.item(),
'sparsity_coeff' : self.sparsity_coeff,
}
)
def update(self, step, activations):
activations = activations.to(self.device)
self.optimizer.zero_grad()
loss = self.loss(activations, step, logging=False)
loss.backward()
self.optimizer.step()
self.scheduler.step()
if self.resample_steps is not None and step % self.resample_steps == self.resample_steps - 1:
self.resample_neurons(self.steps_since_active > self.resample_steps / 2, activations)
# @property
# def config(self):
# return {
# 'trainer_class' : 'GatedSAETrainer',
# 'activation_dim' : self.ae.activation_dim,
# 'dict_size' : self.ae.dict_size,
# 'lr' : self.lr,
# 'l1_penalty' : self.l1_penalty,
# 'warmup_steps' : self.warmup_steps,
# 'device' : self.device,
# 'wandb_name': self.wandb_name,
# }
@property
def config(self):
return {
'trainer_class' : "GatedAnnealTrainer",
'dict_class' : "GatedAutoEncoder",
'activation_dim' : self.activation_dim,
'dict_size' : self.dict_size,
'lr' : self.lr,
'sparsity_function' : self.sparsity_function,
'sparsity_penalty' : self.sparsity_coeff,
'p_start' : self.p_start,
'p_end' : self.p_end,
'anneal_start' : self.anneal_start,
'sparsity_queue_length' : self.sparsity_queue_length,
'n_sparsity_updates' : self.n_sparsity_updates,
'warmup_steps' : self.warmup_steps,
'resample_steps' : self.resample_steps,
'steps' : self.steps,
'seed' : self.seed,
'layer' : self.layer,
'lm_name' : self.lm_name,
'wandb_name' : self.wandb_name,
}