forked from espressif/esptool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
espsecure.py
executable file
·735 lines (598 loc) · 32.1 KB
/
espsecure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
#!/usr/bin/env python
# ESP32 secure boot utility
# https://github.com/themadinventor/esptool
#
# Copyright (C) 2016 Espressif Systems (Shanghai) PTE LTD
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301 USA.
from __future__ import division, print_function
import argparse
import hashlib
import os
import struct
import sys
import zlib
import ecdsa
import esptool
from collections import namedtuple
try: # use pycrypto API if available
from Crypto.Cipher import AES
def ECB(key):
return AES.new(key, AES.MODE_ECB)
except ImportError:
import pyaes
def ECB(key):
return pyaes.AESModeOfOperationECB(key)
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding, rsa, utils
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.utils import int_to_bytes
from cryptography import exceptions
def get_chunks(source, chunk_len):
""" Returns an iterator over 'chunk_len' chunks of 'source' """
return (source[i: i + chunk_len] for i in range(0, len(source), chunk_len))
def endian_swap_words(source):
""" Endian-swap each word in 'source' bitstring """
assert len(source) % 4 == 0
words = "I" * (len(source) // 4)
return struct.pack("<" + words, *struct.unpack(">" + words, source))
def swap_word_order(source):
""" Swap the order of the words in 'source' bitstring """
assert len(source) % 4 == 0
words = "I" * (len(source) // 4)
return struct.pack(words, *reversed(struct.unpack(words, source)))
def _load_hardware_key(keyfile):
""" Load a 256-bit key, similar to stored in efuse, from a file
192-bit keys will be extended to 256-bit using the same algorithm used
by hardware if 3/4 Coding Scheme is set.
"""
key = keyfile.read()
if len(key) not in [24, 32]:
raise esptool.FatalError("Key file contains wrong length (%d bytes), 24 or 32 expected." % len(key))
if len(key) == 24:
key = key + key[8:16]
print("Using 192-bit key (extended)")
else:
print("Using 256-bit key")
assert len(key) == 32
return key
def digest_secure_bootloader(args):
""" Calculate the digest of a bootloader image, in the same way the hardware
secure boot engine would do so. Can be used with a pre-loaded key to update a
secure bootloader. """
if args.iv is not None:
print("WARNING: --iv argument is for TESTING PURPOSES ONLY")
iv = args.iv.read(128)
else:
iv = os.urandom(128)
plaintext_image = args.image.read()
args.image.seek(0)
# secure boot engine reads in 128 byte blocks (ie SHA512 block
# size), but also doesn't look for any appended SHA-256 digest
fw_image = esptool.ESP32FirmwareImage(args.image)
if fw_image.append_digest:
if len(plaintext_image) % 128 <= 32:
# ROM bootloader will read to the end of the 128 byte block, but not
# to the end of the SHA-256 digest at the end
new_len = len(plaintext_image) - (len(plaintext_image) % 128)
plaintext_image = plaintext_image[:new_len]
# if image isn't 128 byte multiple then pad with 0xFF (ie unwritten flash)
# as this is what the secure boot engine will see
if len(plaintext_image) % 128 != 0:
plaintext_image += b"\xFF" * (128 - (len(plaintext_image) % 128))
plaintext = iv + plaintext_image
# Secure Boot digest algorithm in hardware uses AES256 ECB to
# produce a ciphertext, then feeds output through SHA-512 to
# produce the digest. Each block in/out of ECB is reordered
# (due to hardware quirks not for security.)
key = _load_hardware_key(args.keyfile)
aes = ECB(key)
digest = hashlib.sha512()
for block in get_chunks(plaintext, 16):
block = block[::-1] # reverse each input block
cipher_block = aes.encrypt(block)
# reverse and then byte swap each word in the output block
cipher_block = cipher_block[::-1]
for block in get_chunks(cipher_block, 4):
# Python hashlib can build each SHA block internally
digest.update(block[::-1])
if args.output is None:
args.output = os.path.splitext(args.image.name)[0] + "-digest-0x0000.bin"
with open(args.output, "wb") as f:
f.write(iv)
digest = digest.digest()
for word in get_chunks(digest, 4):
f.write(word[::-1]) # swap word order in the result
f.write(b'\xFF' * (0x1000 - f.tell())) # pad to 0x1000
f.write(plaintext_image)
print("digest+image written to %s" % args.output)
def generate_signing_key(args):
if os.path.exists(args.keyfile):
raise esptool.FatalError("ERROR: Key file %s already exists" % args.keyfile)
if args.version == "1":
""" Generate an ECDSA signing key for signing secure boot images (post-bootloader) """
sk = ecdsa.SigningKey.generate(curve=ecdsa.NIST256p)
with open(args.keyfile, "wb") as f:
f.write(sk.to_pem())
print("ECDSA NIST256p private key in PEM format written to %s" % args.keyfile)
elif args.version == "2":
""" Generate a RSA 3072 signing key for signing secure boot images """
private_key = rsa.generate_private_key(
public_exponent=65537,
key_size=3072,
backend=default_backend()
).private_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PrivateFormat.TraditionalOpenSSL,
encryption_algorithm=serialization.NoEncryption()
).decode()
with open(args.keyfile, "wb") as f:
f.write(private_key)
print("RSA 3072 private key in PEM format written to %s" % args.keyfile)
def _load_ecdsa_signing_key(keyfile):
sk = ecdsa.SigningKey.from_pem(keyfile.read())
if sk.curve != ecdsa.NIST256p:
raise esptool.FatalError("Signing key uses incorrect curve. ESP32 Secure Boot only supports NIST256p (openssl calls this curve 'prime256v1")
return sk
def _load_sbv2_rsa_signing_key(keydata):
sk = serialization.load_pem_private_key(keydata, password=None, backend=default_backend())
if not isinstance(sk, rsa.RSAPrivateKey):
raise esptool.FatalError("Incorrect RSA Signing key.")
if sk.key_size != 3072:
raise esptool.FatalError("Key file has length %d bits. Secure boot v2 only supports RSA-3072." % sk.key_size)
return sk
def _load_sbv2_rsa_pub_key(keydata):
vk = serialization.load_pem_public_key(keydata, backend=default_backend())
if not isinstance(vk, rsa.RSAPublicKey):
raise esptool.FatalError("Public key incorrect. Secure boot v2 requires RSA 3072 public key")
if vk.key_size != 3072:
raise esptool.FatalError("Key file has length %d bits. Secure boot v2 only supports RSA-3072." % vk.key_size)
return vk
def _get_sbv2_rsa_pub_key(keyfile):
key_data = keyfile.read()
if b"-BEGIN RSA PRIVATE KEY" in key_data:
vk = _load_sbv2_rsa_signing_key(key_data).public_key()
elif b"-BEGIN PUBLIC KEY" in key_data:
vk = _load_sbv2_rsa_pub_key(key_data)
else:
raise esptool.FatalError("Verification key does not appear to be an RSA Private or Public key in PEM format. Unsupported")
return vk
def _get_sbv2_rsa_primitives(public_key):
primitives = namedtuple('primitives', ['n', 'e', 'm', 'rinv'])
numbers = public_key.public_numbers()
primitives.n = numbers.n #
primitives.e = numbers.e # two public key components
# Note: this cheats and calls a private 'rsa' method to get the modular
# inverse calculation.
primitives.m = - rsa._modinv(primitives.n, 1 << 32)
rr = 1 << (public_key.key_size * 2)
primitives.rinv = rr % primitives.n
return primitives
def sign_data(args):
if args.version == '1':
return sign_secure_boot_v1(args)
else:
return sign_secure_boot_v2(args)
def sign_secure_boot_v1(args):
""" Sign a data file with a ECDSA private key, append binary signature to file contents """
if len(args.keyfile) > 1:
raise esptool.FatalError("Secure Boot V1 only supports one signing key")
sk = _load_ecdsa_signing_key(args.keyfile[0])
# calculate signature of binary data
binary_content = args.datafile.read()
signature = sk.sign_deterministic(binary_content, hashlib.sha256)
# back-verify signature
vk = sk.get_verifying_key()
vk.verify(signature, binary_content, hashlib.sha256) # throws exception on failure
if args.output is None or os.path.abspath(args.output) == os.path.abspath(args.datafile.name): # append signature to input file
args.datafile.close()
outfile = open(args.datafile.name, "ab")
else: # write file & signature to new file
outfile = open(args.output, "wb")
outfile.write(binary_content)
outfile.write(struct.pack("I", 0)) # Version indicator, allow for different curves/formats later
outfile.write(signature)
outfile.close()
print("Signed %d bytes of data from %s with key %s" % (len(binary_content), args.datafile.name, args.keyfile[0].name))
def sign_secure_boot_v2(args):
""" Sign a firmware app image with an RSA private key using RSA-PSS, write output file with a
Secure Boot V2 header appended.
"""
contents = args.datafile.read()
SECTOR_SIZE = 4096
if len(contents) % SECTOR_SIZE != 0:
pad_by = SECTOR_SIZE - (len(contents) % SECTOR_SIZE)
print("Padding data contents by %d bytes so signature sector aligns at sector boundary" % pad_by)
contents += b'\xff' * pad_by
# Calculate digest of data file
digest = hashlib.sha256()
digest.update(contents)
digest = digest.digest()
signature_sector = b""
if len(args.keyfile) > 1:
print("WARNING: Only one signing key is supported for ESP32") # TODO: need to update for ESP32-S2
for keyfile in args.keyfile:
private_key = _load_sbv2_rsa_signing_key(keyfile.read())
# Sign
signature = private_key.sign(
digest,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=32,
),
utils.Prehashed(hashes.SHA256())
)
rsa_primitives = _get_sbv2_rsa_primitives(private_key.public_key())
# Encode in signature block format
#
# Note: the [::-1] is to byte swap all of the bignum
# values (signatures, coefficients) to little endian
# for use with the RSA peripheral, rather than big endian
# which is conventionally used for RSA.
signature_block = struct.pack("<BBxx32s384sI384sI384s",
0xe7, # magic byte
0x02, # version
digest,
int_to_bytes(rsa_primitives.n)[::-1],
rsa_primitives.e,
int_to_bytes(rsa_primitives.rinv)[::-1],
rsa_primitives.m & 0xFFFFFFFF,
signature[::-1])
signature_block += struct.pack("<I", zlib.crc32(signature_block) & 0xffffffff)
signature_block += b'\x00' * 16 # padding
assert len(signature_block) == 1216
signature_sector += signature_block
assert len(signature_sector) > 0
# Pad signature_sector to sector
signature_sector = signature_sector + \
(b'\xff' * (SECTOR_SIZE - len(signature_sector)))
assert len(signature_sector) == SECTOR_SIZE
# Write to output file, or append to existing file
if args.output is None:
args.datafile.close()
args.output = args.datafile.name
with open(args.output, "wb") as f:
f.write(contents + signature_sector)
def verify_signature(args):
if args.version == '1':
return verify_signature_v1(args)
else:
return verify_signature_v2(args)
def verify_signature_v1(args):
""" Verify a previously signed binary image, using the ECDSA public key """
key_data = args.keyfile.read()
if b"-BEGIN EC PRIVATE KEY" in key_data:
sk = ecdsa.SigningKey.from_pem(key_data)
vk = sk.get_verifying_key()
elif b"-BEGIN PUBLIC KEY" in key_data:
vk = ecdsa.VerifyingKey.from_pem(key_data)
elif len(key_data) == 64:
vk = ecdsa.VerifyingKey.from_string(key_data,
curve=ecdsa.NIST256p)
else:
raise esptool.FatalError("Verification key does not appear to be an EC key in PEM format or binary EC public key data. Unsupported")
if vk.curve != ecdsa.NIST256p:
raise esptool.FatalError("Public key uses incorrect curve. ESP32 Secure Boot only supports NIST256p (openssl calls this curve 'prime256v1")
binary_content = args.datafile.read()
data = binary_content[0:-68]
sig_version, signature = struct.unpack("I64s", binary_content[-68:])
if sig_version != 0:
raise esptool.FatalError("Signature block has version %d. This version of espsecure only supports version 0." % sig_version)
print("Verifying %d bytes of data" % len(data))
try:
if vk.verify(signature, data, hashlib.sha256):
print("Signature is valid")
else:
raise esptool.FatalError("Signature is not valid")
except ecdsa.keys.BadSignatureError:
raise esptool.FatalError("Signature is not valid")
def verify_signature_v2(args):
""" Verify a previously signed binary image, using the RSA public key """
SECTOR_SIZE = 4096
SIG_BLOCK_SIZE = 1216
vk = _get_sbv2_rsa_pub_key(args.keyfile)
binary_content = args.datafile.read()
assert(len(binary_content) % SECTOR_SIZE == 0)
digest = digest = hashlib.sha256()
digest.update(binary_content[:-SECTOR_SIZE])
digest = digest.digest()
for sig_blk_num in range(1):
offset = -SECTOR_SIZE + sig_blk_num * SIG_BLOCK_SIZE
sig_blk = binary_content[offset: offset + SIG_BLOCK_SIZE]
assert(len(sig_blk) == SIG_BLOCK_SIZE)
sig_data = struct.unpack("<BBxx32s384sI384sI384sI16x", sig_blk)
crc = zlib.crc32(sig_blk[:1196])
if sig_data[0] != 0xe7:
raise esptool.FatalError("Signature block has invalid magic byte %d. Expected 0xe7 (231)." % sig_data[0])
if sig_data[1] != 0x02:
raise esptool.FatalError("Signature block has invalid version %d. This version of espsecure only supports version 2." % sig_data[1])
if sig_data[-1] != crc & 0xffffffff:
raise esptool.FatalError("Signature block crc does not match %d. Expected %d. " % (sig_data[-1], crc))
if sig_data[2] != digest:
esptool.FatalError("Signature block image digest does not match the actual image digest %s. Expected %s." % (digest, sig_data[2]))
print("Verifying %d bytes of data" % len(sig_data[-2]))
try:
vk.verify(
sig_data[-2][::-1],
digest,
padding.PSS(
mgf=padding.MGF1(hashes.SHA256()),
salt_length=32
),
utils.Prehashed(hashes.SHA256())
)
print("Signature BLK%d verified" % sig_blk_num)
return
except exceptions.InvalidSignature:
print("Signature BLK %d is not signed by %s. Checking the next block" % (sig_blk_num, args.keyfile.name))
continue
raise esptool.FatalError("Checked all blocks. Signature is not valid.")
def extract_public_key(args):
if args.version == "1":
""" Load an ECDSA private key and extract the embedded public key as raw binary data. """
sk = _load_ecdsa_signing_key(args.keyfile)
vk = sk.get_verifying_key()
args.public_keyfile.write(vk.to_string())
elif args.version == "2":
""" Load an RSA private key and extract the public key as raw binary data. """
sk = _load_sbv2_rsa_signing_key(args.keyfile)
vk = sk.public_key().public_bytes(
encoding=serialization.Encoding.PEM,
format=serialization.PublicFormat.SubjectPublicKeyInfo
)
args.public_keyfile.write(vk)
print("%s public key extracted to %s" % (args.keyfile.name, args.public_keyfile.name))
def _digest_rsa_public_key(keyfile):
public_key = _get_sbv2_rsa_pub_key(keyfile)
rsa_primitives = _get_sbv2_rsa_primitives(public_key)
# Encode in the same way it is represented in the signature block
#
# Note: the [::-1] is to byte swap all of the bignum
# values (signatures, coefficients) to little endian
# for use with the RSA peripheral, rather than big endian
# which is conventionally used for RSA.
binary_format = struct.pack("<384sI384sI",
int_to_bytes(rsa_primitives.n)[::-1],
rsa_primitives.e,
int_to_bytes(rsa_primitives.rinv)[::-1],
rsa_primitives.m & 0xFFFFFFFF)
return hashlib.sha256(binary_format).digest()
def digest_rsa_public_key(args):
public_key_digest = _digest_rsa_public_key(args.keyfile)
with open(args.output, "wb") as f:
print("Writing the public key digest of %s to %s." % (args.keyfile.name, args.output))
f.write(public_key_digest[::-1]) # Reversing the byte order as burn key will reverse the byte order
def digest_private_key(args):
sk = _load_ecdsa_signing_key(args.keyfile)
repr(sk.to_string())
digest = hashlib.sha256()
digest.update(sk.to_string())
result = digest.digest()
if args.keylen == 192:
result = result[0:24]
args.digest_file.write(result)
print("SHA-256 digest of private key %s%s written to %s" % (args.keyfile.name,
"" if args.keylen == 256
else " (truncated to 192 bits)",
args.digest_file.name))
# flash encryption key tweaking pattern: the nth bit of the key is
# flipped if the kth bit in the flash offset is set, where mapping
# from n to k is provided by this list of 'n' bit offsets (range k)
_FLASH_ENCRYPTION_TWEAK_PATTERN = [
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5,
8, 7, 6, 5
]
assert len(_FLASH_ENCRYPTION_TWEAK_PATTERN) == 256
def _flash_encryption_tweak_range(flash_crypt_config=0xF):
""" Return a list of the bit indexes that the "key tweak" applies to,
as determined by the FLASH_CRYPT_CONFIG 4 bit efuse value.
"""
tweak_range = []
if (flash_crypt_config & 1) != 0:
tweak_range += range(67)
if (flash_crypt_config & 2) != 0:
tweak_range += range(67, 132)
if (flash_crypt_config & 4) != 0:
tweak_range += range(132, 195)
if (flash_crypt_config & 8) != 0:
tweak_range += range(195, 256)
return tweak_range
def _flash_encryption_tweak_range_bits(flash_crypt_config=0xF):
""" Return bits (in reverse order) that the "key tweak" applies to,
as determined by the FLASH_CRYPT_CONFIG 4 bit efuse value.
"""
tweak_range = 0
if (flash_crypt_config & 1) != 0:
tweak_range |= 0xFFFFFFFFFFFFFFFFE00000000000000000000000000000000000000000000000
if (flash_crypt_config & 2) != 0:
tweak_range |= 0x00000000000000001FFFFFFFFFFFFFFFF0000000000000000000000000000000
if (flash_crypt_config & 4) != 0:
tweak_range |= 0x000000000000000000000000000000000FFFFFFFFFFFFFFFE000000000000000
if (flash_crypt_config & 8) != 0:
tweak_range |= 0x0000000000000000000000000000000000000000000000001FFFFFFFFFFFFFFF
return tweak_range
# Forward bit order masks
mul1 = 0x0000200004000080000004000080001000000200004000080000040000800010
mul2 = 0x0000000000000000200000000000000010000000000000002000000000000001
mul1_mask = 0xffffffffffffff801ffffffffffffff00ffffffffffffff81ffffffffffffff0
mul2_mask = 0x000000000000007fe00000000000000ff000000000000007e00000000000000f
def _flash_encryption_tweak_key(key, offset, tweak_range):
"""Apply XOR "tweak" values to the key, derived from flash offset
'offset'. This matches the ESP32 hardware flash encryption.
tweak_range is a list of bit indexes to apply the tweak to, as
generated by _flash_encryption_tweak_range() from the
FLASH_CRYPT_CONFIG efuse value.
Return tweaked key
"""
if esptool.PYTHON2:
key = [ord(k) for k in key]
assert len(key) == 32
offset_bits = [(offset & (1 << x)) != 0 for x in range(24)]
for bit in tweak_range:
if offset_bits[_FLASH_ENCRYPTION_TWEAK_PATTERN[bit]]:
# note that each byte has a backwards bit order, compared
# to how it is looked up in the tweak pattern table
key[bit // 8] ^= 1 << (7 - (bit % 8))
key = b"".join(chr(k) for k in key)
return key
else:
addr = offset >> 5
key ^= ((mul1 * addr) | ((mul2 * addr) & mul2_mask)) & tweak_range
return int.to_bytes(key, length=32, byteorder='big', signed=False)
def generate_flash_encryption_key(args):
print("Writing %d random bits to key file %s" % (args.keylen, args.key_file.name))
args.key_file.write(os.urandom(args.keylen // 8))
def _flash_encryption_operation(output_file, input_file, flash_address, keyfile, flash_crypt_conf, do_decrypt):
key = _load_hardware_key(keyfile)
if flash_address % 16 != 0:
raise esptool.FatalError("Starting flash address 0x%x must be a multiple of 16" % flash_address)
if flash_crypt_conf == 0:
print("WARNING: Setting FLASH_CRYPT_CONF to zero is not recommended")
if esptool.PYTHON2:
tweak_range = _flash_encryption_tweak_range(flash_crypt_conf)
else:
tweak_range = _flash_encryption_tweak_range_bits(flash_crypt_conf)
key = int.from_bytes(key, byteorder='big', signed=False)
aes = None
block_offs = flash_address
while True:
block = input_file.read(16)
if len(block) == 0:
break
elif len(block) < 16:
if do_decrypt:
raise esptool.FatalError("Data length is not a multiple of 16 bytes")
pad = 16 - len(block)
block = block + os.urandom(pad)
print("Note: Padding with %d bytes of random data (encrypted data must be multiple of 16 bytes long)" % pad)
if (block_offs % 32 == 0) or aes is None:
# each bit of the flash encryption key is XORed with tweak bits derived from the offset of 32 byte block of flash
block_key = _flash_encryption_tweak_key(key, block_offs, tweak_range)
aes = ECB(block_key)
block = block[::-1] # reverse input block byte order
# note AES is used inverted for flash encryption, so
# "decrypting" flash uses AES encrypt algorithm and vice
# versa. (This does not weaken AES.)
if do_decrypt:
block = aes.encrypt(block)
else:
block = aes.decrypt(block)
block = block[::-1] # reverse output block byte order
output_file.write(block)
block_offs += len(block)
def decrypt_flash_data(args):
return _flash_encryption_operation(args.output, args.encrypted_file, args.address, args.keyfile, args.flash_crypt_conf, True)
def encrypt_flash_data(args):
return _flash_encryption_operation(args.output, args.plaintext_file, args.address, args.keyfile, args.flash_crypt_conf, False)
def main():
parser = argparse.ArgumentParser(description='espsecure.py v%s - ESP32 Secure Boot & Flash Encryption tool' % esptool.__version__, prog='espsecure')
subparsers = parser.add_subparsers(
dest='operation',
help='Run espsecure.py {command} -h for additional help')
p = subparsers.add_parser('digest_secure_bootloader',
help='Take a bootloader binary image and a secure boot key, and output a combined digest+binary ' +
'suitable for flashing along with the precalculated secure boot key.')
p.add_argument('--keyfile', '-k', help="256 bit key for secure boot digest.", type=argparse.FileType('rb'), required=True)
p.add_argument('--output', '-o', help="Output file for signed digest image.")
p.add_argument('--iv', help="128 byte IV file. Supply a file for testing purposes only, if not supplied an IV will be randomly generated.",
type=argparse.FileType('rb'))
p.add_argument('image', help="Bootloader image file to calculate digest from", type=argparse.FileType('rb'))
p = subparsers.add_parser('generate_signing_key',
help='Generate a private key for signing secure boot images as per the secure boot version. ' +
'Key file is generated in PEM format, ' +
'Secure Boot V1 - ECDSA NIST256p private key, Secure Boot V2 - RSA 3072 private key .')
p.add_argument('--version', '-v', help="Version of the secure boot signing scheme to use.", choices=["1", "2"], default="1")
p.add_argument('keyfile', help="Filename for private key file (embedded public key)")
p = subparsers.add_parser('sign_data',
help='Sign a data file for use with secure boot. Signing algorithm is determinsitic ECDSA w/ SHA-512 (V1) ' +
'or RSA-PSS w/ SHA-256 (V2).')
p.add_argument('--version', '-v', help="Version of the secure boot signing scheme to use.", choices=["1", "2"], required=True)
p.add_argument('--keyfile', '-k', help="Private key file for signing. Key is in PEM format.", type=argparse.FileType('rb'), required=True, nargs='+')
p.add_argument('--output', '-o', help="Output file for signed digest image. Default is to sign the input file.")
p.add_argument('datafile', help="File to sign. For version 1, this can be any file. For version 2, this must be a valid app image.",
type=argparse.FileType('rb'))
p = subparsers.add_parser('verify_signature',
help='Verify a data file previously signed by "sign_data", using the public key.')
p.add_argument('--version', '-v', help="Version of the secure boot scheme to use.", choices=["1", "2"], required=True)
p.add_argument('--keyfile', '-k', help="Public key file for verification. Can be private or public key in PEM format.",
type=argparse.FileType('rb'), required=True)
p.add_argument('datafile', help="Signed data file to verify signature.", type=argparse.FileType('rb'))
p = subparsers.add_parser('extract_public_key',
help='Extract the public verification key for signatures, save it as a raw binary file.')
p.add_argument('--version', '-v', help="Version of the secure boot signing scheme to use.", choices=["1", "2"], default="1")
p.add_argument('--keyfile', '-k', help="Private key file (PEM format) to extract the public verification key from.", type=argparse.FileType('rb'),
required=True)
p.add_argument('public_keyfile', help="File to save new public key into", type=argparse.FileType('wb'))
p = subparsers.add_parser('digest_rsa_public_key', help='Generate an SHA-256 digest of the public key. ' +
'This digest is burned into the eFuse and asserts the legitimacy of the public key for Secure boot v2.')
p.add_argument('--keyfile', '-k', help="Public key file for verification. Can be private or public key in PEM format.", type=argparse.FileType('rb'),
required=True)
p.add_argument('--output', '-o', help="Output file for the digest.", required=True)
p = subparsers.add_parser('digest_private_key', help='Generate an SHA-256 digest of the private signing key. ' +
'This can be used as a reproducible secure bootloader or flash encryption key.')
p.add_argument('--keyfile', '-k', help="Private key file (PEM format) to generate a digest from.", type=argparse.FileType('rb'),
required=True)
p.add_argument('--keylen', '-l', help="Length of private key digest file to generate (in bits). 3/4 Coding Scheme requires 192 bit key.",
choices=[192, 256], default=256, type=int)
p.add_argument('digest_file', help="File to write 32 byte digest into", type=argparse.FileType('wb'))
p = subparsers.add_parser('generate_flash_encryption_key', help='Generate a development-use 32 byte flash encryption key with random data.')
p.add_argument('--keylen', '-l', help="Length of private key digest file to generate (in bits). 3/4 Coding Scheme requires 192 bit key.",
choices=[192, 256], default=256, type=int)
p.add_argument('key_file', help="File to write 24 or 32 byte digest into", type=argparse.FileType('wb'))
p = subparsers.add_parser('decrypt_flash_data', help='Decrypt some data read from encrypted flash (using known key)')
p.add_argument('encrypted_file', help="File with encrypted flash contents", type=argparse.FileType('rb'))
p.add_argument('--keyfile', '-k', help="File with flash encryption key", type=argparse.FileType('rb'),
required=True)
p.add_argument('--output', '-o', help="Output file for plaintext data.", type=argparse.FileType('wb'),
required=True)
p.add_argument('--address', '-a', help="Address offset in flash that file was read from.", required=True, type=esptool.arg_auto_int)
p.add_argument('--flash_crypt_conf', help="Override FLASH_CRYPT_CONF efuse value (default is 0XF).", required=False, default=0xF, type=esptool.arg_auto_int)
p = subparsers.add_parser('encrypt_flash_data', help='Encrypt some data suitable for encrypted flash (using known key)')
p.add_argument('--keyfile', '-k', help="File with flash encryption key", type=argparse.FileType('rb'),
required=True)
p.add_argument('--output', '-o', help="Output file for encrypted data.", type=argparse.FileType('wb'),
required=True)
p.add_argument('--address', '-a', help="Address offset in flash where file will be flashed.", required=True, type=esptool.arg_auto_int)
p.add_argument('--flash_crypt_conf', help="Override FLASH_CRYPT_CONF efuse value (default is 0XF).", required=False, default=0xF, type=esptool.arg_auto_int)
p.add_argument('plaintext_file', help="File with plaintext content for encrypting", type=argparse.FileType('rb'))
args = parser.parse_args()
print('espsecure.py v%s' % esptool.__version__)
if args.operation is None:
parser.print_help()
parser.exit(1)
# each 'operation' is a module-level function of the same name
operation_func = globals()[args.operation]
operation_func(args)
def _main():
try:
main()
except esptool.FatalError as e:
print('\nA fatal error occurred: %s' % e)
sys.exit(2)
if __name__ == '__main__':
_main()