forked from 1999vasu/git-basic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNotes _ AcadView.html
674 lines (573 loc) · 37.9 KB
/
Notes _ AcadView.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
<!DOCTYPE html>
<!-- saved from url=(0049)https://notes.acadview.com/?program=ml&class=13#/ -->
<html class=" js no-mobile desktop no-ie chrome chrome72 root-section gradient rgba opacity textshadow multiplebgs boxshadow borderimage borderradius cssreflections csstransforms csstransitions no-touch no-retina fontface domloaded w-1853 gt-240 gt-320 gt-480 gt-640 gt-768 gt-800 gt-1024 gt-1280 gt-1440 gt-1680 lt-1920 no-portrait landscape" id="index-page"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no">
<title>Notes | AcadView</title>
<!-- Takes care of dynamically loading the template -->
<!--<script src="js/csi.min.js"></script>-->
<link rel="stylesheet" href="./Notes _ AcadView_files/reveal.css">
<link rel="stylesheet" href="./Notes _ AcadView_files/acadview.css">
<link rel="stylesheet" href="./Notes _ AcadView_files/black.css">
<!--Custom css-->
<link rel="stylesheet" href="./Notes _ AcadView_files/custom.css">
<!-- <link href="https://afeld.github.io/emoji-css/emoji.css" rel="stylesheet"> -->
<!-- Theme used for syntax highlighting of code -->
<link rel="stylesheet" href="./Notes _ AcadView_files/zenburn.css"><script type="text/javascript" src="./Notes _ AcadView_files/external.js"></script><script type="text/javascript" src="./Notes _ AcadView_files/notes.js"></script><script type="text/javascript" src="./Notes _ AcadView_files/highlight.js"></script>
</head>
<body>
<div class="reveal slide center ready" role="application" data-transition-speed="default" data-background-transition="fade">
<div class="slides" data-external="ml/13.html" style="width: 960px; height: 700px; zoom: 1.27817;"><section class="present" style="top: 260.5px; display: block;">
<h3> The Titanic : Case Study</h3>
<i>Gaussian Naive Bayes</i>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 275.5px; display: block;">
<div>In the last class we learnt about the K Nearest Neighbours algorithm.</div>
<br>
<div>We also learnt a very important concept in mathematics i.e. the Bayes' Theorem.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 257.5px; display: block;">
<div>We discussed how Bayes' Theorem forms the basics of our next Classification algorithm.</div>
<br>
<div class="fragment" data-fragment-index="0">Would anybody like to guess which algorithm is this?</div>
</section>
<section hidden="" aria-hidden="true" class="future" style="top: 350px; display: none;">
<div class="gold-font">Naive Bayes Classifier</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Let's try to understand the algorithm with the help of an example.</div>
<br>
<div class="fragment" data-fragment-index="0">You're given a dataset for a group of people as follows :
<br>
<ul class="space-ul">
<li><span class="blue-font">Features</span> : Age, Salary</li>
<li><span class="red-font">Labels</span> : Walks, Drives</li>
</ul>
</div>
<br>
<div class="fragment" data-fragment-index="1">This set of data gives us the information about the mode of travel i.e. if the person walks or drives to work based on their Age and Salary.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Consider the given plot of the data with <span class="red-font">Red Markers</span> representing that the person walks to work and <span class="green-font">Green Markers</span> representing that the person drives to work.
<br>
<img src="./Notes _ AcadView_files/8Db50on.png" style="width: 700px">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>We're given a new data point represented by the <span style="color: lightgray">Gray Marker</span>.
<br>
<img src="./Notes _ AcadView_files/TGIbbZY.png" style="width: 700px">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Now your task it to classify this new data point into either the group who walks to work or the group who drives to work using the Bayes' Theorem.</div>
<br>
<div class="fragment" data-fragment-index="0">Do you guys know how to do this?</div>
<br>
<div class="fragment" data-fragment-index="1">Let's see how we can do this.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>To solve this problem, we need a plan of attack.</div>
<br>
<div class="fragment" data-fragment-index="0">And here it is.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>We're going to take the Bayes' Theorem:
<br>
<img src="./Notes _ AcadView_files/oxI2XVZ.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>And we're going to apply it twice.
</div>
<br>
<div><h2>Step 1</h2></div>
<br>
<div class="fragment" data-fragment-index="0">In the first application, we will try to find the Probability that this person walks given his features X.
<br>
<img src="./Notes _ AcadView_files/gUZElgo.png">
</div>
<br>
<div class="fragment" data-fragment-index="1">Here X represents the features of the new data point i.e. the Age and Salary corresponding to the new data point.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>The above expression can be broken down into 4 probabilistic expressions, each having a different name:
<br>
<img src="./Notes _ AcadView_files/1qK1gSW.png">
</div>
<br>
<div class="fragment" data-fragment-index="0">The numbers corresponding to each of these probabilities is the order in which we are going to calculate them.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Here's a formal definition of all the 4 kinds of probabilities:
<br>
<ul class="space-ul">
<li><span class="red-font">Prior Probability</span> : It is the Probability that a certain event or outcome will occur.</li>
<li class="fragment" data-fragment-index="0"><span class="blue-font">Marginal Likelihood</span> : It is just the normalizing constant of the Bayes' theorem.</li>
<li class="fragment" data-fragment-index="1"><span class="green-font">Likelihood</span> : It is the probability of an event or situation taking place.</li>
<li class="fragment" data-fragment-index="2"><span class="gold-font">Posterior Probability</span> : It is the probability an event will happen after all evidence or background information has been taken into account.</li>
</ul>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div><h2>Step 2</h2></div>
<br>
<div class="fragment" data-fragment-index="0">In the second application, we will try to find the Probability that this person drives given his features X.
<br>
<img src="./Notes _ AcadView_files/gsLeWUE.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Just like we did in Step 1, the above expression can also be broken down into 4 probabilistic expressions, each having a different name:
<br>
<img src="./Notes _ AcadView_files/1qK1gSW.png">
</div>
<br>
<div class="fragment" data-fragment-index="0">Similarly, the numbers corresponding to each of these probabilities is the order in which we are going to calculate them.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div><h2>Step 3</h2></div>
<br>
<div class="fragment" data-fragment-index="0">Finally we're going to compare <span class="blue-font">P(Walks|X)</span> v.s. <span class="red-font">P(Drives|X)</span>.</div>
<br>
<div class="fragment" data-fragment-index="1">According to this, we will then classify the new data point into one of these classes.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Let's start with Step 1.
</div>
<br>
<div class="fragment" data-fragment-index="0">For this, we need to calculate all the 4 probabilities mentioned below one by one.
<br>
<img src="./Notes _ AcadView_files/1qK1gSW.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="red-font">#1. P(Walks) : The prior probability</div>
<br>
<div class="fragment" data-fragment-index="0">By definition we know that it is the Probability that a certain event or outcome will occur.</div>
<br>
<div class="fragment" data-fragment-index="1">Therefore probability that a persons walks is simply given by:
<pre><code class="hljs javascript">P(Walks) = <span class="hljs-built_in">Number</span> <span class="hljs-keyword">of</span> People Who Walk/ Total <span class="hljs-built_in">Number</span> <span class="hljs-keyword">of</span> People</code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="2">We have collected the following data for you from the graph:
<br>
<ul class="space-ul">
<li>No. of people who walk to work : 10</li>
<li>No. of people who drive to work : 20</li>
</ul>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Using the above data, it should be easy to calculate P(Walks).</div>
<br>
<div class="fragment" data-fragment-index="0">Let's do that:
<br>
<pre><code class="hljs stylus"><span class="hljs-function"><span class="hljs-title">P</span><span class="hljs-params">(Walks)</span></span> = <span class="hljs-number">10</span>/(<span class="hljs-number">10</span>+<span class="hljs-number">20</span>)
= <span class="hljs-number">1</span>/<span class="hljs-number">3</span> </code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="1">Let's calculate the next probability on our list.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="red-font">#2. P(X) : The marginal likelihood</div>
<br>
<div class="fragment" data-fragment-index="0">By definition we know that it is just the normalizing constant of the Bayes' theorem.</div>
<div class="fragment" data-fragment-index="1">To find this we need to look back at the plot of our data set.
<br>
<img src="./Notes _ AcadView_files/TGIbbZY.png" style="width: 700px">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Next we're going to draw a circle around our new data point.</div>
<br>
<div class="fragment" data-fragment-index="0">Something like this:
<br>
<img src="./Notes _ AcadView_files/xE9D83m.png">
</div>
<br>
<div class="fragment" data-fragment-index="1">The radius of this circle is selected randomly. There is no specified set of rules that define the length of the radius of this circle.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Let's remove the new data point from this circle for a while to avoid any confusion.
<br>
<img src="./Notes _ AcadView_files/GXgbLG8.png">
</div>
<br>
<div class="fragment" data-fragment-index="0">Now we say that the points in the circle as similar in terms of the features to the new data point.</div>
<br>
<div class="fragment" data-fragment-index="1">We're not saying that they are exactly the same, but they're very similar to the new point and differ only by marginal values.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Now let's understand what P(X) means.</div>
<br>
<div class="fragment" data-fragment-index="0">P(X) is the probability of a new point (not the one represented by grey marker) added to our data set being similar to the point that we actually are adding to our data set i.e the point represented by the grey marker.</div>
<br>
<div class="fragment" data-fragment-index="1">In simple words, it is the probability of any random point that we add to fall into this circle.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Now P(X) is calulcated as:
<br>
<img src="./Notes _ AcadView_files/BA90Oru.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>We already know that the number of total observations is 30.</div>
<br>
<div class="fragment" data-fragment-index="0">Number of similar observations can easily be counted from the graph, which turns out to be 4.</div>
<br>
<div class="fragment" data-fragment-index="1">Therefore, P(X) is given by:
<br>
<pre><code class="hljs stylus"><span class="hljs-function"><span class="hljs-title">P</span><span class="hljs-params">(X)</span></span> = <span class="hljs-number">4</span>/<span class="hljs-number">30</span></code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="2">Before we proceed to find the next parameter, let's try to understand the marginal likelihood a little better.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>All of you must be wondering about how to draw that circle in particular?</div>
<br>
<div class="fragment" data-fragment-index="0">How to decide the radius for that circle?</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Well, you don't have to do that.</div>
<br>
<div class="fragment" data-fragment-index="0">We used the circle only for understanding the intuition of marginal likelihood.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>The circle signifies that marginal likelihood is calculated with reference to the number of the data points in the proximity of the new point that we are trying to classify.</div>
<br>
<div class="fragment" data-fragment-index="0">In practise, the algorithm finds out the data points which are immediate neighbours to the new data point.</div>
<br>
<div class="fragment" data-fragment-index="1"><i>This can be related to finding out the nearest neighbours in KNN</i></div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="red-font">#3. P(X|Walks) : The likelihood</div>
<br>
<div class="fragment" data-fragment-index="0">By definition we know that it is
the probability of an event or situation taking place.</div>
<br>
<div class="fragment" data-fragment-index="1">Now P(X|Walks) is the probability of a
randomly selected point being similar to X given that
the person walks.
Since we're given that the person walks,
we can ignore the data points for the driving class.
</div>
<br>
<div class="fragment" data-fragment-index="2">
<img src="./Notes _ AcadView_files/pBSKalI.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>It is simple to calculate the likelihood.</div>
<br>
<div class="fragment" data-fragment-index="0">Since it calculates the probability of a randomly selected point being similar to the data point given that the person walks, we can calculate it as:
<br>
<pre><code class="hljs stylus"><span class="hljs-function"><span class="hljs-title">P</span><span class="hljs-params">(X|Walks)</span></span> = Number of similar observation among those who walk / Total no. of walkers</code></pre>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>From the graph we can clearly see that the number of similar observations in this case is 3 and we already know that the count of total number of walkers is 10.</div>
<br>
<div class="fragment" data-fragment-index="0">Therefore, P(X|Walks) is given by:
<br>
<pre><code class="hljs stylus"><span class="hljs-function"><span class="hljs-title">P</span><span class="hljs-params">(X|Walks)</span></span> = <span class="hljs-number">3</span>/<span class="hljs-number">10</span></code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="1">Let's calculate the next parameter.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="red-font">#4. P(Walks|X)</div>
<br>
<div class="fragment" data-fragment-index="0">By definition we know that it is the probability an event will happen after all evidence or background information has been taken into account.</div>
<br>
<div class="fragment" data-fragment-index="1">P(Walks|X) is the probability of a person walking to work given his features X.</div>
<br>
<div class="fragment" data-fragment-index="2">Calculating this should be easy! We just need to plug all the values calculated (background information) above into this formula:
<br>
<img src="./Notes _ AcadView_files/gUZElgo.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Let's do that:
<br>
<pre><code class="hljs lisp">P(<span class="hljs-name">Walks</span>|X) = (<span class="hljs-number">3/10</span>) * (<span class="hljs-number">10/30</span>) / (<span class="hljs-number">4/30</span>)
= <span class="hljs-number">0.75</span></code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="0">Therefore, the probability of the new data point represented by the grey marker falling into the class <i>Walks to work</i> is 0.75.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Now we need to follow the whole process again to calculate P(Drives|X) i.e. our step 2.</div>
<br>
<div class="fragment" data-fragment-index="0">To save some time, here are all the values needed to calculate the above probability:
<br>
<ul class="space-ul">
<li>P(Drives) = 2/3</li>
<li>P(X) = 4/30</li>
<li>P(X|Drives) = 1/20</li>
</ul>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Let's substitute all these values into the following formula to find the value of P(Drives|X).
<br>
<img src="./Notes _ AcadView_files/gsLeWUE.png">
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Therefore the probability that the person drives given the features X is :
<br>
<pre><code class="hljs lisp">P(<span class="hljs-name">Drives</span>|X) = (<span class="hljs-number">1/20</span>)*(<span class="hljs-number">2/3</span>) / (<span class="hljs-number">4/30</span>)
= <span class="hljs-number">0.25</span></code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="0">This gives us the probability of the data point marked by grey marker falling into class <i>Drives to work</i> as 0.25.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div><h1>NOTE</h1></div>
<br>
<div class="fragment" data-fragment-index="0">Please note that P(Drives|X) is not equal to 1 - P(Walks|X). It is just that in this case they turned out to be so.</div>
<br>
<div class="fragment" data-fragment-index="1">1 - P(Walks|X) is the probability that the person DOES NOT WALK given features X. That does not mean that the person DRIVES.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Now that we have step 1 and 2 completed, let's move to Step 3.</div>
<br>
<div class="fragment" data-fragment-index="0">Step 3 asks us to compare the two probabilities and whichever is greater, the new data point belongs to that class.</div>
<br>
<div class="fragment" data-fragment-index="1">Clearly, P(Walks|X) > P(Drives|X).</div>
<br>
<div class="fragment" data-fragment-index="2">Therefore the new data point with features X belongs to class <span class="blue-font">Walks to work</span>.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>This is exactly how the Naive Bayes' classifier works.</div>
<br>
<div class="fragment" data-fragment-index="0">Now that we have an understanding of the working of this algorithm, let's write the code to implement it to our Titanic Dataset.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>To start with, we import the classifier from sklearn as follows:
<pre><code class="hljs xl">from sklearn.naive_bayes <span class="hljs-keyword">import</span> GaussianNB
</code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="0">Like every other time, next we proceed to create an instance of the classifier:
<pre><code class="hljs ini"><span class="hljs-attr">clf</span> = GaussianNB()
</code></pre>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>Now we train the classifier to be able to learn from the data set as follows:
<pre><code class="hljs css"><span class="hljs-selector-tag">clf</span><span class="hljs-selector-class">.fit</span>(<span class="hljs-selector-tag">X_train</span>, <span class="hljs-selector-tag">y_train</span><span class="hljs-selector-class">.ravel</span>())
</code></pre>
</div>
<br>
<div class="fragment" data-fragment-index="0">And now that the classifier has been trained, the next step is to predict the class of our testing data.
<pre><code class="hljs ini"><span class="hljs-attr">y_pred_gnb</span> = clf.predict(X_test)
</code></pre>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>And here we are! We've successfully implemented the Naive Bayes Classifier on our data set.</div>
<br>
<div class="fragment" data-fragment-index="0">Let's proceed to calculate it's accuracy and see how this algorithm has performed:
<pre><code class="hljs processing">from sklearn.metrics <span class="hljs-keyword">import</span> accuracy_score
acc_gnb = <span class="hljs-built_in">round</span>(accuracy_score(y_pred_gnb, y_test) * <span class="hljs-number">100</span>, <span class="hljs-number">2</span>)
<span class="hljs-built_in">print</span> (<span class="hljs-built_in">str</span>(acc_gnb) + <span class="hljs-string">' percent'</span>)</code></pre>
</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>The accuracy score for Naive Bayes is <br>
<h2>78.36 percent</h2>
</div>
<br>
<div class="fragment" data-fragment-index="0">WOW! That's a really good accuracy.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>What next?</div>
<br>
<div class="fragment" data-fragment-index="0">Before we end today's class, here are a few extras about Naive Bayes classifier which might help you in Job Interviews.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="blue-font">Why Naive?</div>
<br>
<div class="fragment" data-fragment-index="0">This is because the Bayes Theorem requires some independence assumption. And since the Bayes Theorem is the underlying principle of the Naive Bayes classifier, we take these assumptions to be true for the features.</div>
<br>
<div class="fragment" data-fragment-index="1">Since these assumptions are not always Ideally true, it is kind of Naive (<i>def : having or showing a lack of experience or knowledge </i>) to assume these to be true. Hence the name.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>To understand this better, let's consider our example.</div>
<br>
<div class="fragment" data-fragment-index="0">The two features are <b>Age</b> ane <b>Salary</b>. For the application of Naive Bayes classifier, we assumed that these two features were totally independent of each other. That is, change in Age does not reflect any change in Salary and vice versa.</div>
<br>
<div class="fragment" data-fragment-index="1">But we know that in real world that is not very true. In most of the cases, as your Age increases your Salary also increase with it. This is because with Age the amount of experience you have also increases.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>But ideally they should be independent because a 35 year old Post Office worker will possibly be earning less than a 25 year old Software Engineer.</div>
<br>
<div class="fragment" data-fragment-index="0">And since we assume the Ideal case to be true, the algorithm is considered to be Naive.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="blue-font">We can actually skip calculating P(X).</div>
<br>
<div class="fragment" data-fragment-index="0">Have a look at this:
<br>
<img src="./Notes _ AcadView_files/QrROr1Z.png">
</div>
<br>
<div class="fragment" data-fragment-index="1">Since P(X) is a common denominator, it gets cancelled out. We know that P(X) will always be greater than 0 because the circle we draw will atleast have one point inside it, hence we can easily cancel that out and there is no need to calculate it.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="blue-font">Industry Applications</div>
<br>
<div class="fragment" data-fragment-index="0"><ul class="space-ul">
<li>To mark an email as spam, or not spam.</li>
<li>Classify a news article about technology, politics, or sports.</li>
<li>Check a piece of text expressing positive emotions, or negative emotions</li></ul> </div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div>This was all about the extras for Naive Bayes Classifier.</div>
<br>
<div class="fragment" data-fragment-index="0">With this we end our today's class.</div>
</section>
<section class="medium-font future" hidden="" aria-hidden="true" style="top: 350px; display: none;">
<div class="gold-font">Homework</div>
<ul class="space-ul">
<li>
This is the code we have written today:
<a target="_blank" href="https://gist.github.com/avmain/76db264e2d2b7a72e4a8b32257432c4e">
Code Snippet</a> <br><br>
</li><li>
Read more about Naive Bayes Classifier algorithm from sklearn <a href="http://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html" target="_blank">here</a>.
</li>
</ul>
</section>
<section hidden="" aria-hidden="true" class="future" style="top: 350px; display: none;">
Until next time!<br>
<img src="./Notes _ AcadView_files/yDWHTmc.png" style="width: 400px">
</section>
</div>
<div class="backgrounds"><div class="slide-background present" data-loaded="true" style="display: block;"></div><div class="slide-background medium-font future" data-loaded="true" style="display: block;"></div><div class="slide-background medium-font future" data-loaded="true" style="display: block;"></div><div class="slide-background future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background medium-font future" style="display: none;"></div><div class="slide-background future" style="display: none;"></div></div><div class="progress" style="display: block;"><span style="width: 0px;"></span></div><aside class="controls" style="display: block;"><button class="navigate-left" aria-label="previous slide" disabled="disabled"></button><button class="navigate-right enabled" aria-label="next slide"></button><button class="navigate-up" aria-label="above slide" disabled="disabled"></button><button class="navigate-down" aria-label="below slide" disabled="disabled"></button></aside><div class="slide-number" style="display: block;"><span class="slide-number-a">1</span><span class="slide-number-delimiter">/</span><span class="slide-number-b">52</span></div><div class="speaker-notes" data-prevent-swipe="" tabindex="0"></div><div class="pause-overlay"></div><div id="aria-status-div" aria-live="polite" aria-atomic="true" style="position: absolute; height: 1px; width: 1px; overflow: hidden; clip: rect(1px, 1px, 1px, 1px);">
The Titanic : Case Study
Gaussian Naive Bayes
</div></div>
<script src="./Notes _ AcadView_files/head.min.js"></script>
<script src="./Notes _ AcadView_files/reveal.js"></script>
<script src="./Notes _ AcadView_files/jquery.js"></script>
<script>
console.log("Hello") ;
var slidePath = getParameterByName('program') + "/" + getParameterByName('class') + ".html";
document.getElementsByClassName("slides")[0].setAttribute("data-external", slidePath);
// Timeout because DOM needs to be already loaded before Reveal initializatin
// Otherwise slides will not show up
Reveal.initialize({
history: true,
slideNumber: 'c/t',
// More info https://github.com/hakimel/reveal.js#dependencies
dependencies: [
{src: 'plugin/notes/notes.js', async: true},
{
src: 'plugin/highlight/highlight.js', async: true, callback: function () {
hljs.initHighlightingOnLoad();
}
},
{
src: 'plugin/external/external.js', condition: function () {
return !!document.querySelector('[data-external]');
}
},
]
});
function roundTime(timeStamp) {
return Math.round(timeStamp);
}
(function () {
var prevSlideTime = 0;
var lastTabChanged = 0 ;
var slideVisited = [];
var sessionId = getParameterByName('s');
var payload = {
notes_url: window.location.href,
batch_id: parseInt(getParameterByName('b'), 10),
slides_data: []
};
Reveal.addEventListener('slidechanged', function (event) {
slideVisited.push({
time_spent_in_msecs: roundTime(event.timeStamp - prevSlideTime),
slide_number: event.indexh
});
prevSlideTime = event.timeStamp;
//console.log(slideVisited) ;
});
document.addEventListener('visibilitychange', function(event){
var currentSlide = parseInt(window.location.hash.split('/')[1]) ;
if (document.visibilityState === 'hidden') {
slideVisited.push({
time_spent_in_msecs: roundTime(event.timeStamp - prevSlideTime),
// Because this is not a slide change event and we are
// taking the slide number from the url. The url is 0 indexed
// Converting it to 1-indexed
slide_number: isNaN(currentSlide) ? 1 : currentSlide + 1
});
}
// This runs in both conditions of hidden or visible
// Thus the prevSlideTime is keeping a track of
// when the slide was last visible or invisible
//console.log(slideVisited, event.timeStamp, prevSlideTime);
prevSlideTime = event.timeStamp;
});
function poll() {
if (slideVisited.length && sessionId !== null) {
payload.slides_data = Object.assign([], slideVisited);
slideVisited = [];
try {
var xhr = new XMLHttpRequest();
// xhr.withCredentials = true;
var host = window.location.hostname.includes('localhost') ?
'acadstaging.com/py' :
'acadprojects.com/track';
xhr.open("POST", "https://" + host + "/notes/track", true);
xhr.setRequestHeader("content-type", "application/json");
// xhr.setRequestHeader("cache-control", "no-cache");
xhr.setRequestHeader("sessionId", sessionId);
xhr.send(JSON.stringify(payload));
} catch (error) {
// console.log(error);
}
}
setTimeout(arguments.callee, 10000);
}
poll();
// Link hijacking
try {
Reveal.addEventListener('ready', function() {
var anchors = document.querySelectorAll('a');
anchors.forEach(function(anchor) {
anchor.addEventListener('click', function(e) {
var xhr = new XMLHttpRequest();
var host = window.location.hostname.includes('localhost') ?
'acadstaging.com/py' :
'acadprojects.com/track';
xhr.open("POST", "https://" + host + "/notes/link/track", true);
xhr.setRequestHeader("content-type", "application/json");
xhr.setRequestHeader("sessionId", sessionId);
xhr.send(JSON.stringify({
url: anchor.href,
notes_url: window.location.href
}));
})
})
})
} catch(error){
// console.log(error);
}
})();
function getParameterByName(name, url) {
if (!url) url = window.location.href;
name = name.replace(/[\[\]]/g, "\\$&");
var regex = new RegExp("[?&]" + name + "(=([^&#]*)|&|#|$)"),
results = regex.exec(url);
if (!results) return null;
if (!results[2]) return '';
return decodeURIComponent(results[2].replace(/\+/g, " "));
}
</script>
</body></html>