-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathhelper.py
107 lines (105 loc) · 5.04 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
def grace_from_params(params):
import horovod.tensorflow as hvd
world_size = hvd.size()
comp = params.get('compressor', 'none')
mem = params.get('memory', 'none')
comm = params.get('communicator', 'allreduce')
if comp == 'adaq':
from grace_dl.tensorflow.compressor.adaq import AdaqCompressor
compress_ratio = params.get('compress_ratio', 0.3)
compressor = AdaqCompressor(compress_ratio)
elif comp == 'dgc':
from grace_dl.tensorflow.compressor.dgc import DgcCompressor
compress_ratio = params.get('compress_ratio', 0.3)
compressor = DgcCompressor(compress_ratio)
elif comp == 'efsignsgd':
from grace_dl.tensorflow.compressor.efsignsgd import EFSignSGDCompressor
lr = params.get('lr', 0.1)
compressor = EFSignSGDCompressor(lr)
elif comp == 'fp16':
from grace_dl.tensorflow.compressor.fp16 import FP16Compressor
compressor = FP16Compressor()
elif comp == 'inceptionn':
from grace_dl.tensorflow.compressor.inceptionn import INCEPTIONNCompressor
error_bound = params.get('error_bound', 2e-10)
compressor = INCEPTIONNCompressor(error_bound)
elif comp == 'natural':
from grace_dl.tensorflow.compressor.natural import NaturalCompressor
compressor = NaturalCompressor()
elif comp == 'none':
from grace_dl.tensorflow.compressor.none import NoneCompressor
compressor = NoneCompressor()
elif comp == 'onebit':
from grace_dl.tensorflow.compressor.onebit import OneBitCompressor
compressor = OneBitCompressor()
elif comp == 'powersgd':
from grace_dl.tensorflow.compressor.powersgd import PowerSGDCompressor
momentum_factor = params.get('momentum_factor', 0.9)
compressor = PowerSGDCompressor(momentum_factor, world_size)
elif comp == 'qsgd':
from grace_dl.tensorflow.compressor.qsgd import QSGDCompressor
quantum_num = params.get('quantum_num', 127)
compressor = QSGDCompressor(quantum_num)
elif comp == 'randomk':
from grace_dl.tensorflow.compressor.randomk import RandomKCompressor
compress_ratio = params.get('compress_ratio', 0.3)
compressor = RandomKCompressor(compress_ratio)
elif comp == 'signsgd':
from grace_dl.tensorflow.compressor.signsgd import SignSGDCompressor
compressor = SignSGDCompressor()
elif comp == 'signum':
from grace_dl.tensorflow.compressor.signum import SignumCompressor
momentum = params.get('momentum', 0.9)
compressor = SignumCompressor(momentum)
elif comp == 'sketch':
from grace_dl.tensorflow.compressor.sketch import SketchCompressor
quantiles = params.get('quantiles', 64)
compressor = SketchCompressor(quantiles)
elif comp == 'terngrad':
from grace_dl.tensorflow.compressor.terngrad import TernGradCompressor
compressor = TernGradCompressor()
elif comp == 'threshold':
from grace_dl.tensorflow.compressor.threshold import ThresholdCompressor
threshold = params.get('threshold', 0.01)
compressor = ThresholdCompressor(threshold)
elif comp == 'topk':
from grace_dl.tensorflow.compressor.topk import TopKCompressor
compress_ratio = params.get('compress_ratio', 0.3)
compressor = TopKCompressor(compress_ratio)
elif comp == 'u8bit':
from grace_dl.tensorflow.compressor.u8bit import U8bitCompressor
compressor = U8bitCompressor()
else:
raise NotImplementedError(comp)
if mem == 'dgc':
from grace_dl.tensorflow.memory.dgc import DgcMemory
momentum = params.get('momentum', 0.9)
gradient_clipping = params.get('gradient_clipping', False)
memory = DgcMemory(momentum, gradient_clipping, world_size)
elif mem == 'none':
from grace_dl.tensorflow.memory.none import NoneMemory
memory = NoneMemory()
elif mem == 'powersgd':
from grace_dl.tensorflow.memory.powersgd import PowerSGDMemory
compress_rank = params.get('compress_rank', 1)
memory = PowerSGDMemory(compressor.q_memory, compress_rank)
elif mem == 'residual':
from grace_dl.tensorflow.memory.residual import ResidualMemory
memory = ResidualMemory()
elif mem == 'efsignsgd':
from grace_dl.tensorflow.memory.efsignsgd import EFSignSGDMemory
lr = params.get('lr', 0.1)
memory = EFSignSGDMemory(lr)
else:
raise NotImplementedError(mem)
if comm == 'allreduce':
from grace_dl.tensorflow.communicator.allreduce import Allreduce
return Allreduce(compressor, memory, world_size)
elif comm == 'allgather':
from grace_dl.tensorflow.communicator.allgather import Allgather
return Allgather(compressor, memory, world_size)
elif comm == 'broadcast':
from grace_dl.tensorflow.communicator.broadcast import Broadcast
return Broadcast(compressor, memory, world_size)
else:
raise NotImplementedError(comm)