-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain1.py
157 lines (134 loc) · 7.09 KB
/
main1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import torch
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image
import cv2
import os
def sam2_fn(video_path, frames_dir, pts=[[500, 180], [580, 150]]):
video_name = video_path.split('/')[-1].split('.')[0]
frames_dir = os.path.join(frames_dir, video_name)
# use bfloat16 for the entire notebook
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from sam2.build_sam import build_sam2_video_predictor
sam2_checkpoint = "../checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
def show_mask(mask, ax, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=200):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
print('Converting video to frames...')
raw_images_dir = os.path.join(frames_dir, 'raw_images')
os.makedirs(raw_images_dir, exist_ok=True)
os.system(f"ffmpeg -i {video_path} -q:v 2 -start_number 0 {raw_images_dir}/'%05d.jpg'")
# scan all the JPEG frame names in this directory
frame_names = [
p for p in os.listdir(raw_images_dir)
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
print("Performing Inference...")
inference_state = predictor.init_state(video_path=raw_images_dir)
predictor.reset_state(inference_state)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
# Let's add a 2nd positive click at (x, y) = (250, 220) to refine the mask
# sending all clicks (and their labels) to `add_new_points`
points = np.array(pts, dtype=np.float32)
# for labels, `1` means positive click and `0` means negative click
labels = np.array([1]*len(pts), np.int32)
_, out_obj_ids, out_mask_logits = predictor.add_new_points(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
points=points,
labels=labels,
)
print("Propagating video....")
# run propagation throughout the video and collect the results in a dict
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
vis_frame_stride = 5
def format_mask(mask, obj_id=None,):
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w)# * color.reshape(1, 1, -1)
return mask_image
print("Saving final segmented frames for LLM....")
final_segmented_video_dir = os.path.join(frames_dir, 'final_segmented_video')
os.makedirs(final_segmented_video_dir, exist_ok=True)
output_file = os.path.join(final_segmented_video_dir, 'final_segmented_video.mp4')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
fps = 30 # Frames per second
frame_size = (360, 640) # Width and height of the frames
video_writer = cv2.VideoWriter(output_file, fourcc, fps, frame_size)
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
org_img = cv2.imread(os.path.join(raw_images_dir, frame_names[out_frame_idx]))
final_mask = np.zeros((org_img.shape[:-1]), dtype = bool)
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = format_mask(out_mask)
final_mask = final_mask | out_mask
# print("Org image shape:", org_img.shape)
# print("Final mask shape: ", final_mask.shape)
final_image = org_img * final_mask[:,:,np.newaxis]
# plt.imshow(final_image)
cv2.imwrite(os.path.join(final_segmented_video_dir, f'{out_frame_idx}.jpg'), final_image)
video_writer.write(final_image)
video_writer.release()
# print(f"Video saved as {output_file}")
def save_mask(img, mask, final_orange_video_dir, fnumber, obj_id=None, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
cmap = plt.get_cmap("tab10")
cmap_idx = 0 if obj_id is None else obj_id
color = np.array([*cmap(cmap_idx)[:3], 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
fig, ax = plt.subplots()
plt.imshow(img)
plt.imshow(mask_image)
plt.axis('off')
plt.savefig(os.path.join(final_orange_video_dir, f'{fnumber}.jpg'), bbox_inches='tight')
print("Saving final segmented frames for visualization....")
final_orange_video_dir = os.path.join(frames_dir, 'final_orange_video')
os.makedirs(final_orange_video_dir, exist_ok=True)
plt.close("all")
for out_frame_idx in range(0, len(frame_names), vis_frame_stride):
plt.figure(figsize=(6, 4))
# plt.title(f"frame {out_frame_idx}")
orig_img = Image.open(os.path.join(raw_images_dir, frame_names[out_frame_idx]))
final_mask = np.zeros((org_img.shape[:-1]), dtype = bool)
for out_obj_id, out_mask in video_segments[out_frame_idx].items():
out_mask = format_mask(out_mask)
final_mask = final_mask | out_mask
save_mask(orig_img, final_mask, final_orange_video_dir, out_frame_idx, obj_id=out_obj_id)
os.system(f"ffmpeg -framerate 10 -pattern_type glob -i '{final_segmented_video_dir}/*.jpg' -vf 'scale=iw/2*2:ih/2*2' -c:v libx264 -pix_fmt yuv420p {frames_dir}/final_video.mp4")
os.system(f"ffmpeg -framerate 10 -pattern_type glob -i '{final_orange_video_dir}/*.jpg' -vf 'scale=iw/2*2:ih/2*2' -c:v libx264 -pix_fmt yuv420p {frames_dir}/final_orange_video.mp4")
if __name__ == '__main__':
video_path = "./Flamingo.mp4"
frames_dir = './frames_dir'
pts = [[100, 140], [100, 120]]
sam2_fn(video_path, frames_dir, pts)