-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_khatt_basic_distorted.py
516 lines (408 loc) · 15.6 KB
/
train_khatt_basic_distorted.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
import os
os.environ["PYTHONIOENCODING"] = "utf-8"
#1 geforce
#0 titan
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from tensorflow.keras import regularizers
from tensorflow.keras import metrics
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler
from tensorflow.keras import backend as K
from tensorflow.keras.callbacks import CSVLogger, TensorBoard, ModelCheckpoint
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
from tensorflow.keras.constraints import MaxNorm
from network.layers import FullGatedConv2D, GatedConv2D, OctConv2D
from tensorflow.keras.layers import Conv2D, Bidirectional, LSTM, GRU, Dense
from tensorflow.keras.layers import Dropout, BatchNormalization, LeakyReLU, PReLU
from tensorflow.keras.layers import Input, Add, Activation, Lambda, MaxPooling2D, Reshape
from tensorflow.keras.models import load_model
import tensorflow as tf
# config = tf.compat.v1.ConfigProto()
# config.gpu_options.allow_growth = True
# config.gpu_options.per_process_gpu_memory_fraction = 0.9
# session = tf.compat.v1.Session(config=config)
from PIL import Image
from tqdm import tqdm
import random
import sys
import codecs
import re
import cv2
import tqdm
from glob import glob
from tqdm import tqdm
from data import preproc as pp
#from computeMetric import computeMetrics
import string
################################modifiier ici le path des dossiers##################################################
##########################################################################################################
##########################################################################################################
rootPath='handwritten-text-recognition/'
DatabasePath='BaseKHATT/DatasetKHATT/'
##########################################################################################################
##########################################################################################################
##########################################################################################################
# define parameters
source = "khatt"
arch = "flor" ########ne pas modifier, nous utilisons architeture crnn de flor
batch_size=32
# define paths
source_path = os.path.join("..", "data", f"{source}.hdf5")
output_path = os.path.join("..", "output-KHATT-distorted" , source, arch)
target_path = os.path.join(output_path, "checkpoint_weights.hdf5")
os.makedirs(output_path, exist_ok=True)
# define input size, number max of chars per line and list of valid chars
max_text_length = 128 ####not change this value
img_width=1024 #########for crnn
img_height=128 #########for crnn
input_size_crnn = (1024,128, 1)
input_size = (128,1024, 1) #############for the GAN
##########################################################################################################
##########################################################################################################
##########################################################################################################
def get_callbacks(logdir, checkpoint, monitor="val_loss", verbose=1):
"""Setup the list of callbacks for the model"""
callbacks = [
CSVLogger(
filename=os.path.join(logdir, "epochs.log"),
separator=";",
append=True),
TensorBoard(
log_dir=logdir,
histogram_freq=10,
profile_batch=0,
write_graph=True,
write_images=False,
update_freq="epoch"),
ModelCheckpoint(
filepath=checkpoint,
monitor=monitor,
save_best_only=True,
save_weights_only=True,
verbose=verbose),
EarlyStopping(
monitor=monitor,
min_delta=1e-8,
patience=15,
restore_best_weights=True,
verbose=verbose),
ReduceLROnPlateau(
monitor=monitor,
min_delta=1e-8,
factor=0.2,
patience=20,
verbose=verbose)
]
return callbacks
def normalizeTranscription(text_line):
text_line = text_line.replace('sp', ' sp ')
text_line = text_line.replace('A', 'A ')
text_line = text_line.replace('B', 'B ')
text_line = text_line.replace('E', 'E ')
text_line = text_line.replace('M', 'M ')
text_line = text_line.replace(' ', ' ')
return text_line
def read_file_shuffle(list_file_path):
char_file = codecs.open(list_file_path, 'r', 'utf-8')
list0 = []
for l in char_file:
list0.append(l.strip())
random.shuffle(list0)
return list0
def read_file(list_file_path):
char_file = codecs.open(list_file_path, 'r', 'utf-8')
list0 = []
for l in char_file:
list0.append(l.strip())
return list0
def read_file_char(list_file_path):
char_file = codecs.open(list_file_path, 'r', 'utf-8')
list0 = []
for l in char_file:
list0.append(l.strip())
return list0
####################################
#charlatin =str(string.printable[:95])
#f=codecs.open(rootPath+ 'src/SetsKHATT/CHAR_LIST','w','utf-8')
#for s in charlatin:
#print(s)
#f.write(s +'\n')
#f.close()
####################################
charset_base=read_file_char(rootPath+ 'src/Sets/CHAR_LIST')
#print(charset_base)
#######################CRNN CTC Recognize##########################
def ctc_loss_lambda_func(y_true, y_pred):
"""Function for computing the CTC loss"""
if len(y_true.shape) > 2:
y_true = tf.squeeze(y_true)
# y_pred.shape = (batch_size, string_length, alphabet_size_1_hot_encoded)
# output of every model is softmax
# so sum across alphabet_size_1_hot_encoded give 1
# string_length give string length
input_length = tf.math.reduce_sum(y_pred, axis=-1, keepdims=False)
input_length = tf.math.reduce_sum(input_length, axis=-1, keepdims=True)
# y_true strings are padded with 0
# so sum of non-zero gives number of characters in this string
label_length = tf.math.count_nonzero(y_true, axis=-1, keepdims=True, dtype="int64")
loss = K.ctc_batch_cost(y_true, y_pred, input_length, label_length)
# average loss across all entries in the batch
loss = tf.reduce_mean(loss)
return loss
def build_crnn():
############################# Model Creation########################################
from network.model import flor
# create and compile HTRModel
inputs, outputs = flor(input_size_crnn, len(charset_base) + 1)
optimizer = tf.keras.optimizers.RMSprop(learning_rate=0.001)
# create and compile
model = Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=optimizer, loss=ctc_loss_lambda_func)
return model
def encode_txt(text):
encoded=[]
cc=text.split()
for item in cc:
index = charset_base.index(item)
encoded.append(index)
encoded=encoded[::-1] ############this is done only for arabic, otherwise remove this line
return encoded
def train_crnn( crnn ,ep_start=0, epochs=130, batch_size=32):
batch_train_gt_path=[]
list_image_train = read_file_shuffle(rootPath + 'src/Sets/list_train')
list_image_valid = read_file_shuffle(rootPath + 'src/Sets/list_valid')
list_lines = read_file(rootPath + 'src/Sets/lines.txt')
batch_txt = []
nb=0
x_train_rcnn=[] ############images in batch
y_train_rcnn=[] ##ground truth of this batch
for im in tqdm(list_image_train):
###########read Grund truth text
matched_lines = [s for s in list_lines if im in s]
#print(matched_lines)
l = matched_lines[0]
l1 = l.split()
text_line = l1[8]
line = normalizeTranscription(text_line)
len_trancription=len(line.split())
if len_trancription < max_text_length : ###########this conditioning the CRNN recognize
batch_train_gt_path = []
batch_train_gt_path.append('Hito-docs/DatasetKHATT1/' + im + '.tif')
#print(batch_train_gt_path)
imgx=pp.preprocess(batch_train_gt_path[0],input_size_crnn)
x_train_rcnn.append(imgx)
encoded_txt=encode_txt(line)
y_train_rcnn.append(encoded_txt)
del imgx
del encoded_txt
batch_train_gt_path=[]
batch_txt=[]
batch = 0
nb=nb+1
y_train_rcnn = [np.pad(y, (0, max_text_length - len(y))) for y in y_train_rcnn]
y_train_rcnn = np.asarray(y_train_rcnn, dtype=np.int16)
x_train_rcnn = np.asarray(x_train_rcnn)
x_train_rcnn = pp.normalization(x_train_rcnn)
#################################################################################################"
batch_txt = []
nb=0
x_valid_rcnn=[] ############images in batch
y_valid_rcnn=[] ##ground truth of this batch
batch_valid_gt_path=[]
for im in tqdm(list_image_valid):
###########read Grund truth text
matched_lines = [s for s in list_lines if im in s]
#print(matched_lines)
l = matched_lines[0]
l1 = l.split()
text_line = l1[8]
line = normalizeTranscription(text_line)
len_trancription=len(line.split())
if len_trancription < max_text_length : ###########this conditioning the CRNN recognize
batch_valid_gt_path = []
batch_valid_gt_path.append('Hito-docs/DatasetKHATT1/' + im + '.tif')
img=pp.preprocess(batch_valid_gt_path[0],input_size_crnn)
x_valid_rcnn.append(img)
encoded_txt=encode_txt(line)
y_valid_rcnn.append(encoded_txt)
del img
del encoded_txt
batch_valid_gt_path=[]
batch_txt=[]
batch = 0
nb=nb+1
y_valid_rcnn = [np.pad(y, (0, max_text_length - len(y))) for y in y_valid_rcnn]
y_valid_rcnn = np.asarray(y_valid_rcnn, dtype=np.int16)
x_valid_rcnn = pp.normalization(x_valid_rcnn)
validation_data=(x_valid_rcnn,y_valid_rcnn)
callbacks = get_callbacks(logdir=output_path, checkpoint=target_path, verbose=0)
crnn.fit(x_train_rcnn,y_train_rcnn, validation_data=validation_data,batch_size=batch_size,initial_epoch=ep_start, epochs=epochs, verbose=1,
callbacks=callbacks,shuffle=True,validation_freq=1)
return crnn
def train(nepochs,batch_size):
crnn = build_crnn()
crnn = train_crnn(crnn, ep_start=0, epochs=nepochs, batch_size=batch_size)
def ocr_crnn(filename,dtgen,model):
text = ''
input_size = (1024, 128, 1)
im=pp.preprocess(filename,input_size)
x_test = []
x_test.append(im)
x_test=pp.normalization(x_test)
# predict() function will return the predicts with the probabilities
predicts, _ = model.predict(x=x_test,
use_multiprocessing=False,
ctc_decode=True,
verbose=0)
# decode to string
predicts = [dtgen.tokenizer.decode(x[0]) for x in predicts]
text=predicts[0]
s=text.split()
s=s[::-1]
reco=' '.join(s)
reco=reco.strip()
print(reco)
return reco
def loadCRNNModel():
from data.generator import DataGenerator
input_size = (1024, 128, 1)
dtgen = DataGenerator(source=source_path,
batch_size=batch_size,
charset=charset_base,
max_text_length=max_text_length)
from network.model import HTRModel
# create and compile HTRModel
model = HTRModel(architecture=arch,
input_size=input_size,
vocab_size=dtgen.tokenizer.vocab_size,
beam_width=10,
stop_tolerance=20,
reduce_tolerance=15)
model.compile(learning_rate=0.001)
model.summary(output_path, "summary.txt")
# get default callbacks and load checkpoint weights file (HDF5) if exists
model.load_checkpoint(target='handwritten-text-recognition/output-KHATT-distorted/khatt/flor/checkpoint_weights.hdf5')
return dtgen,model
def recognition_hard():
path_test = 'Hito-docs/DatasetKHATT1_hard3/'
set='distorted_hard3'
list_lines = read_file(rootPath + 'src/Sets/lines.txt')
dtgen, model = loadCRNNModel()
list_image_valid = read_file(rootPath + 'src/Sets/list_test')
list_reco_c = []
list_reco_w = []
list_truth_c = []
list_truth_w = []
i=0
for im in list_image_valid:
matched_lines = [s for s in list_lines if im in s]
# print(matched_lines)
l = matched_lines[0]
l1 = l.split()
text_line = l1[8]
text_line = normalizeTranscription(text_line)
truth_char = text_line
li = text_line.split()
if len(li) < 128:
print('im : ' + str(i))
i=i+1
gen_txt = ocr_crnn(path_test + im + '.tif', dtgen, model)
list_reco_c.append(gen_txt + '\n')
list_truth_c.append(truth_char + '\n')
words = gen_txt
words = words.replace(' ', '')
words = words.replace(' ', '')
words = words.replace('sp', ' ')
list_reco_w.append(words + '\n')
twords = truth_char
twords = twords.replace(' ', '')
twords = twords.replace(' ', '')
twords = twords.replace('sp', ' ')
list_truth_w.append(twords + '\n')
path_result ='handwritten-text-recognition/output-KHATT-distorted/khatt/flor/hard3'
if not os.path.exists(path_result):
os.makedirs(path_result)
f = codecs.open(path_result + 'c_reco_' + set + '.txt', 'w', 'utf-8')
f.writelines(list_reco_c)
f.close()
f = codecs.open(path_result + 'c_truth_' + set + '.txt', 'w', 'utf-8')
f.writelines(list_truth_c)
f.close()
f1 = codecs.open(path_result + 'w_reco_' + set + '.txt', 'w', 'utf-8')
f1.writelines(list_reco_w)
f1.close()
f1 = codecs.open(path_result + 'w_truth_' + set + '.txt', 'w', 'utf-8')
f1.writelines(list_truth_w)
f1.close()
#####################compute result CER%
command3 = 'wer -a -e ' + path_result + 'c_truth_' + set + '.txt' + ' ' + path_result + 'c_reco_' + set + '.txt >' + path_result + '/evaluate' + set + '_CER.txt'
os.system(command3)
#####################compute result WER%
command2 = 'wer -a -e ' + path_result + 'w_truth_' + set + '.txt' + ' ' + path_result + 'w_reco_' + set + '.txt >' + path_result + '/evaluate' + set + '_WER.txt'
os.system(command2)
def recognition_easy():
path_test = 'Hito-docs/DatasetKHATT1/'
set='distorted_default_'
list_lines = read_file(rootPath + 'src/Sets/lines.txt')
dtgen, model = loadCRNNModel()
list_image_valid = read_file(rootPath + 'src/Sets/list_test')
list_reco_c = []
list_reco_w = []
list_truth_c = []
list_truth_w = []
i=0
for im in list_image_valid:
matched_lines = [s for s in list_lines if im in s]
# print(matched_lines)
l = matched_lines[0]
l1 = l.split()
text_line = l1[8]
text_line = normalizeTranscription(text_line)
truth_char = text_line
li = text_line.split()
if len(li) < 128:
print('im : ' + str(i))
i=i+1
gen_txt = ocr_crnn(path_test + im + '.tif', dtgen, model)
list_reco_c.append(gen_txt + '\n')
list_truth_c.append(truth_char + '\n')
words = gen_txt
words = words.replace(' ', '')
words = words.replace(' ', '')
words = words.replace('sp', ' ')
list_reco_w.append(words + '\n')
twords = truth_char
twords = twords.replace(' ', '')
twords = twords.replace(' ', '')
twords = twords.replace('sp', ' ')
list_truth_w.append(twords + '\n')
path_result ='handwritten-text-recognition/output-KHATT-distorted/khatt/flor/default'
if not os.path.exists(path_result):
os.makedirs(path_result)
f = codecs.open(path_result + 'c_reco_' + set + '.txt', 'w', 'utf-8')
f.writelines(list_reco_c)
f.close()
f = codecs.open(path_result + 'c_truth_' + set + '.txt', 'w', 'utf-8')
f.writelines(list_truth_c)
f.close()
f1 = codecs.open(path_result + 'w_reco_' + set + '.txt', 'w', 'utf-8')
f1.writelines(list_reco_w)
f1.close()
f1 = codecs.open(path_result + 'w_truth_' + set + '.txt', 'w', 'utf-8')
f1.writelines(list_truth_w)
f1.close()
#####################compute result CER%
command3 = 'wer -a -e ' + path_result + 'c_truth_' + set + '.txt' + ' ' + path_result + 'c_reco_' + set + '.txt >' + path_result + '/evaluate' + set + '_CER.txt'
os.system(command3)
#####################compute result WER%
command2 = 'wer -a -e ' + path_result + 'w_truth_' + set + '.txt' + ' ' + path_result + 'w_reco_' + set + '.txt >' + path_result + '/evaluate' + set + '_WER.txt'
os.system(command2)
if __name__ == '__main__':
train(150,32)
recognition_hard()