This repository has been archived by the owner on May 24, 2020. It is now read-only.
forked from pololu/lps-arduino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLPS.cpp
235 lines (195 loc) · 5.92 KB
/
LPS.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include <LPS.h>
#include <Wire.h>
// Defines ///////////////////////////////////////////////////////////
// The Arduino two-wire interface uses a 7-bit number for the address,
// and sets the last bit correctly based on reads and writes
#define SA0_LOW_ADDRESS 0b1011100
#define SA0_HIGH_ADDRESS 0b1011101
#define TEST_REG_NACK -1
#define LPS331AP_WHO_ID 0xBB
#define LPS25H_WHO_ID 0xBD
// Constructors //////////////////////////////////////////////////////
LPS::LPS(void)
{
_device = device_auto;
// Pololu board pulls SA0 high, so default assumption is that it is
// high
address = SA0_HIGH_ADDRESS;
}
// Public Methods ////////////////////////////////////////////////////
// sets or detects device type and slave address; returns bool indicating success
bool LPS::init(deviceType device, byte sa0)
{
if (!detectDeviceAndAddress(device, (sa0State)sa0))
return false;
switch (_device)
{
case device_25H:
translated_regs[-INTERRUPT_CFG] = LPS25H_INTERRUPT_CFG;
translated_regs[-INT_SOURCE] = LPS25H_INT_SOURCE;
translated_regs[-THS_P_L] = LPS25H_THS_P_L;
translated_regs[-THS_P_H] = LPS25H_THS_P_H;
return true;
break;
case device_331AP:
translated_regs[-INTERRUPT_CFG] = LPS331AP_INTERRUPT_CFG;
translated_regs[-INT_SOURCE] = LPS331AP_INT_SOURCE;
translated_regs[-THS_P_L] = LPS331AP_THS_P_L;
translated_regs[-THS_P_H] = LPS331AP_THS_P_H;
return true;
break;
}
}
// turns on sensor and enables continuous output
void LPS::enableDefault(void)
{
if (_device == device_25H)
{
// 0xB0 = 0b10110000
// PD = 1 (active mode); ODR = 011 (12.5 Hz pressure & temperature output data rate)
writeReg(CTRL_REG1, 0xB0);
}
else if (_device == device_331AP)
{
// 0xE0 = 0b11100000
// PD = 1 (active mode); ODR = 110 (12.5 Hz pressure & temperature output data rate)
writeReg(CTRL_REG1, 0xE0);
}
}
// writes register
void LPS::writeReg(int reg, byte value)
{
// if dummy register address, look up actual translated address (based on device type)
if (reg < 0)
{
reg = translated_regs[-reg];
}
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write(value);
Wire.endTransmission();
}
// reads register
byte LPS::readReg(int reg)
{
byte value;
// if dummy register address, look up actual translated address (based on device type)
if (reg < 0)
{
reg = translated_regs[-reg];
}
Wire.beginTransmission(address);
Wire.write(reg);
Wire.endTransmission(false); // restart
Wire.requestFrom(address, (byte)1);
value = Wire.read();
Wire.endTransmission();
return value;
}
// reads pressure in millibars (mbar)/hectopascals (hPa)
float LPS::readPressureMillibars(void)
{
return (float)readPressureRaw() / 4096;
}
// reads pressure in inches of mercury (inHg)
float LPS::readPressureInchesHg(void)
{
return (float)readPressureRaw() / 138706.5;
}
// reads pressure and returns raw 24-bit sensor output
int32_t LPS::readPressureRaw(void)
{
Wire.beginTransmission(address);
// assert MSB to enable register address auto-increment
Wire.write(PRESS_OUT_XL | (1 << 7));
Wire.endTransmission();
Wire.requestFrom(address, (byte)3);
while (Wire.available() < 3);
uint8_t pxl = Wire.read();
uint8_t pl = Wire.read();
uint8_t ph = Wire.read();
// combine bytes
return (int32_t)(int8_t)ph << 16 | (uint16_t)pl << 8 | pxl;
}
// reads temperature in degrees C
float LPS::readTemperatureC(void)
{
return 42.5 + (float)readTemperatureRaw() / 480;
}
// reads temperature in degrees F
float LPS::readTemperatureF(void)
{
return 108.5 + (float)readTemperatureRaw() / 480 * 1.8;
}
// reads temperature and returns raw 16-bit sensor output
int16_t LPS::readTemperatureRaw(void)
{
Wire.beginTransmission(address);
// assert MSB to enable register address auto-increment
Wire.write(TEMP_OUT_L | (1 << 7));
Wire.endTransmission();
Wire.requestFrom(address, (byte)2);
while (Wire.available() < 2);
uint8_t tl = Wire.read();
uint8_t th = Wire.read();
// combine bytes
return (int16_t)(th << 8 | tl);
}
// converts pressure in mbar to altitude in meters, using 1976 US
// Standard Atmosphere model (note that this formula only applies to a
// height of 11 km, or about 36000 ft)
// If altimeter setting (QNH, barometric pressure adjusted to sea
// level) is given, this function returns an indicated altitude
// compensated for actual regional pressure; otherwise, it returns
// the pressure altitude above the standard pressure level of 1013.25
// mbar or 29.9213 inHg
float LPS::pressureToAltitudeMeters(float pressure_mbar, float altimeter_setting_mbar)
{
return (1 - pow(pressure_mbar / altimeter_setting_mbar, 0.190263)) * 44330.8;
}
// converts pressure in inHg to altitude in feet; see notes above
float LPS::pressureToAltitudeFeet(float pressure_inHg, float altimeter_setting_inHg)
{
return (1 - pow(pressure_inHg / altimeter_setting_inHg, 0.190263)) * 145442;
}
// Private Methods ///////////////////////////////////////////////////
bool LPS::detectDeviceAndAddress(deviceType device, sa0State sa0)
{
if (sa0 == sa0_auto || sa0 == sa0_high)
{
address = SA0_HIGH_ADDRESS;
if (detectDevice(device)) return true;
}
if (sa0 == sa0_auto || sa0 == sa0_low)
{
address = SA0_LOW_ADDRESS;
if (detectDevice(device)) return true;
}
return false;
}
bool LPS::detectDevice(deviceType device)
{
int id = testWhoAmI(address);
if ((device == device_auto || device == device_25H) && id == LPS25H_WHO_ID)
{
_device = device_25H;
return true;
}
if ((device == device_auto || device == device_331AP) && id == LPS331AP_WHO_ID)
{
_device = device_331AP;
return true;
}
return false;
}
int LPS::testWhoAmI(byte address)
{
Wire.beginTransmission(address);
Wire.write(WHO_AM_I);
Wire.endTransmission();
Wire.requestFrom(address, (byte)1);
if (Wire.available())
return Wire.read();
else
return TEST_REG_NACK;
}