forked from KrishnaswamyLab/SAUCIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
executable file
·613 lines (439 loc) · 22.4 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from .utils import *
import sklearn.metrics
import os
def nameop(op, name):
"""
Give a name to a tensorflow op.
:param op: a tensorflow op
:param name: a string name for the op
"""
op = tf.identity(op, name=name)
return op
class SAUCIE(object):
"""The SAUCIE model."""
def __init__(self, input_dim,
lambda_b=0,
lambda_c=0,
layer_c=0,
lambda_d=0,
layers=[512,256,128,2],
activation=lrelu,
learning_rate=.001,
restore_folder='',
save_folder='',
limit_gpu_fraction=.3,
no_gpu=False):
"""
The SAUCIE model.
:param input_dim: the dimensionality of the data
:param lambda_b: the coefficient for the MMD regularization
:param lambda_c: the coefficient for the ID regularization
:param layer_c: the index of layer_dimensions that ID regularization should be applied to (usually len(layer_dimensions)-2)
:param lambda_d: the coefficient for the intracluster distance regularization
:param activation: the nonlinearity to use in the hidden layers
:param loss: the loss function to use, one of 'mse' or 'bce'
:param learning_rate: the learning_rate to use while training
:param restore_folder: string of the directory where a previous model is saved, if present will return a new Python object
with the old SAUCIE tensorflow graph
:param save_folder: string of the directory to save SAUCIE to by default when save() is called
"""
if restore_folder:
self._restore(restore_folder)
return
self.input_dim = input_dim
self.lambda_b = lambda_b
self.lambda_c = lambda_c
self.layer_c = layer_c
self.lambda_d = lambda_d
self.activation = activation
self.learning_rate = learning_rate
self.save_folder = save_folder
self.iteration = 0
self.layers = layers
self.x = tf.placeholder(tf.float32, shape=[None, input_dim], name='x')
self.y = tf.placeholder(tf.float32, shape=[None, input_dim], name='y')
self.batches = tf.placeholder(tf.int32, shape=[None], name='batches')
self.is_training = tf.placeholder(tf.bool, shape=[], name='is_training')
self.learning_rate_tensor = tf.placeholder(tf.float32, shape=[], name='learning_rate_tensor')
self._build()
self.init_session(limit_gpu_fraction, no_gpu)
self.graph_init(self.sess)
def init_session(self, limit_gpu_fraction=.1, no_gpu=False):
"""
Initialize a tensorflow session for SAUCIE.
:param limit_gpu_fraction: float percentage of the avaiable gpu to use
:param no_gpu: bool for whether or not to use the gpu if available
"""
if no_gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
config = tf.ConfigProto(device_count={'GPU': 0})
self.sess = tf.Session(config=config)
elif limit_gpu_fraction:
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=limit_gpu_fraction)
config = tf.ConfigProto(gpu_options=gpu_options)
self.sess = tf.Session(config=config)
else:
self.sess = tf.Session()
def _restore(self, restore_folder):
"""
Restore the tensorflow graph stored in restore_folder.
:param restore_folder: the location of the directory where the saved SAUCIE model resides.
"""
tf.reset_default_graph()
self.init_session()
ckpt = tf.train.get_checkpoint_state(restore_folder)
self.saver = tf.train.import_meta_graph('{}.meta'.format(ckpt.model_checkpoint_path))
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
print("Model restored from {}".format(restore_folder))
def _build(self):
"""Coordinate the building of each part of SAUCIE."""
self._build_layers()
self._build_losses()
self._build_optimization()
def _build_layers(self):
"""Construct the layers of SAUCIE."""
if self.lambda_b:
h1 = tf.layers.dense(self.x, self.layers[0], activation=lrelu, name='encoder0', use_bias=True)
h2 = tf.layers.dense(h1, self.layers[1], activation=lrelu, name='encoder1', use_bias=True)
h3 = tf.layers.dense(h2, self.layers[2], activation=lrelu, name='encoder2', use_bias=True)
self.embedded = tf.layers.dense(h3, 2, activation=tf.identity, name='embedding', use_bias=True)
self.embedded = nameop(self.embedded, 'embeddings')
h5 = tf.layers.dense(self.embedded, self.layers[2], activation=lrelu, name='decoder0', use_bias=True)
h6 = tf.layers.dense(h5, self.layers[1], activation=lrelu, name='decoder1', use_bias=True)
h7 = tf.layers.dense(h6, self.layers[0], activation=lrelu, name='decoder2', use_bias=True)
h7 = nameop(h7, 'layer_c')
self.reconstructed = tf.layers.dense(h7, self.input_dim, activation=tf.identity, name='recon', use_bias=True)
self.reconstructed = nameop(self.reconstructed, 'output')
elif self.lambda_c:
h1 = tf.layers.dense(self.x, self.layers[0], activation=lrelu, name='encoder0', use_bias=True)
h2 = tf.layers.dense(h1, self.layers[1], activation=lrelu, name='encoder1', use_bias=True)
h3 = tf.layers.dense(h2, self.layers[2], activation=lrelu, name='encoder2', use_bias=True)
self.embedded = tf.layers.dense(h3, self.layers[3], activation=tf.identity, name='embedding', use_bias=True)
self.embedded = nameop(self.embedded, 'embeddings')
h5 = tf.layers.dense(self.embedded, self.layers[2], activation=lrelu, name='decoder0', use_bias=True)
h6 = tf.layers.dense(h5, self.layers[1], activation=lrelu, name='decoder1', use_bias=True)
h7 = tf.layers.dense(h6, self.layers[0], activation=tf.nn.relu, name='decoder2', use_bias=True)
h7 = nameop(h7, 'layer_c')
self.reconstructed = tf.layers.dense(h7, self.input_dim, activation=tf.identity, name='recon', use_bias=True)
self.reconstructed = nameop(self.reconstructed, 'output')
else:
h1 = tf.layers.dense(self.x, self.layers[0], activation=lrelu, name='encoder0')
h2 = tf.layers.dense(h1, self.layers[1], activation=tf.nn.sigmoid, name='encoder1')
h3 = tf.layers.dense(h2, self.layers[2], activation=lrelu, name='encoder2')
self.embedded = tf.layers.dense(h3, self.layers[3], activation=tf.identity, name='embedding')
self.embedded = nameop(self.embedded, 'embeddings')
h5 = tf.layers.dense(self.embedded, self.layers[2], activation=lrelu, name='decoder0')
h6 = tf.layers.dense(h5, self.layers[1], activation=lrelu, name='decoder1')
h7 = tf.layers.dense(h6, self.layers[0], activation=lrelu, name='decoder2')
h7 = nameop(h7, 'layer_c')
self.reconstructed = tf.layers.dense(h7, self.input_dim, activation=tf.identity, name='recon')
self.reconstructed = nameop(self.reconstructed, 'output')
def _build_losses(self):
"""Build all the loss ops for the network."""
self.loss_recon = 0.
if self.lambda_b:
with tf.variable_scope('reconstruction_mmd'):
self._build_reconstruction_loss_mmd(self.reconstructed, self.x)
with tf.variable_scope('batchcorrection'):
self._build_reg_b()
else:
with tf.variable_scope('reconstruction'):
self._build_reconstruction_loss(self.reconstructed, self.x)
if self.lambda_c:
with tf.variable_scope('clustering'):
self.loss_c = 0
act = tbn('layer_c:0')
act = act / tf.reduce_max(act)
self._build_reg_c(act)
if self.lambda_d:
with tf.variable_scope('intracluster_distances'):
self._build_reg_d(act)
self._build_total_loss()
def _build_optimization(self, norm_clip=5.):
"""Build all the optimization ops for the network."""
opt = tf.train.AdamOptimizer(self.learning_rate)
self.train_op = opt.minimize(self.loss, name='train_op')
def _build_reconstruction_loss(self, reconstructed, y):
"""
Build the reconstruction loss part of the network if batch correction isn't being performed.
:param reconstructed: the tensorflow op that was output by the decoder
:param y: the tensorflow op for the target
"""
self.loss_recon = tf.reduce_mean((self.reconstructed - y)**2)
self.loss_recon = nameop(self.loss_recon, 'loss_recon')
tf.add_to_collection('losses', self.loss_recon)
def _build_reconstruction_loss_mmd(self, reconstructed, y):
"""
Build the reconstruction loss part of the network if batch correction is being performed.
:param reconstructed: the tensorflow op that was output by the decoder
:param y: the tensorflow op for the target
"""
refrecon = tf.boolean_mask(reconstructed, tf.equal(self.batches, 0))
refy = tf.boolean_mask(y, tf.equal(self.batches, 0))
l = (refy - refrecon)**2
self.loss_recon += tf.reduce_mean(l)
nonrefrecon = tf.boolean_mask(reconstructed, tf.equal(self.batches, 1))
nonrefy = tf.boolean_mask(y, tf.equal(self.batches, 1))
mean1, var1 = tf.nn.moments(nonrefrecon, 0)
mean2, var2 = tf.nn.moments(nonrefy, 0)
l = ( ((nonrefrecon - mean1) / (tf.sqrt(var1+1e-6)+1e-6)) - ((nonrefy - mean2) / (tf.sqrt(var2+1e-6)+1e-6)) )**2
self.loss_recon += .01*tf.reduce_mean(l)
self.loss_recon = nameop(self.loss_recon, 'loss_recon')
tf.add_to_collection('losses', self.loss_recon)
def _build_reg_d(self, act):
"""
Calculate the intracluster distances in the original data given binary-like codes.
:param act: the codes that will be binarized and used to determine cluster assignment
"""
out = self._pairwise_dists(act, act)
same_cluster = self._gaussian_kernel_matrix(out)
same_cluster = same_cluster - tf.reduce_min(same_cluster)
same_cluster = same_cluster / tf.reduce_max(same_cluster)
dists = self._pairwise_dists(self.x, self.x)
dists = tf.sqrt(dists + 1e-3)
intracluster_distances = dists * same_cluster
intracluster_distances = tf.reduce_mean(intracluster_distances)
self.loss_d = self.lambda_d * intracluster_distances
self.loss_d = nameop(self.loss_d, 'loss_d')
tf.add_to_collection('losses', self.loss_d)
def _build_reg_c(self, act):
"""Build the tensorflow graph for the ID regularization."""
# sum down neurons
p = tf.reduce_sum(act, axis=0, keep_dims=True)
# normalize neuron sums
normalized = p / tf.reduce_sum(p)
self.loss_c += self.lambda_c * tf.reduce_sum(-normalized * tf.log(normalized + 1e-9))
self.loss_c = nameop(self.loss_c, 'loss_c')
tf.add_to_collection('losses', self.loss_c)
def _build_reg_b(self):
"""Build the tensorflow graph for the MMD regularization."""
var_within = {}
batch_sizes = {}
self.loss_b = tf.constant(0.)
if not self.lambda_b:
return
e = self.embedded / tf.reduce_mean(self.embedded)
K = self._pairwise_dists(e, e)
K = K / tf.reduce_max(K)
K = self._gaussian_kernel_matrix(K)
# reference batch
i = 0
batch1_rows = tf.boolean_mask(K, tf.equal(self.batches, i))
batch1_rowscols = tf.boolean_mask(tf.transpose(batch1_rows), tf.equal(self.batches, i))
K_b1 = batch1_rowscols
n_rows_b1 = tf.cast(tf.reduce_sum(tf.boolean_mask(tf.ones_like(self.batches), tf.equal(self.batches, i))), tf.float32)
K_b1 = tf.reduce_sum(K_b1) / (n_rows_b1**2)
var_within[i] = K_b1
batch_sizes[i] = n_rows_b1
# nonreference batches
j = 1
batch2_rows = tf.boolean_mask(K, tf.equal(self.batches, j))
batch2_rowscols = tf.boolean_mask(tf.transpose(batch2_rows), tf.equal(self.batches, j))
K_b2 = batch2_rowscols
n_rows_b2 = tf.cast(tf.reduce_sum(tf.boolean_mask(tf.ones_like(self.batches), tf.equal(self.batches, j))), tf.float32)
K_b2 = tf.reduce_sum(K_b2) / (n_rows_b2**2)
var_within[j] = K_b2
batch_sizes[j] = n_rows_b2
K_12 = tf.boolean_mask(K, tf.equal(self.batches, i))
K_12 = tf.boolean_mask(tf.transpose(K_12), tf.equal(self.batches, j))
K_12_ = tf.reduce_sum(tf.transpose(K_12))
mmd_pair = var_within[i] + var_within[j] - 2 * K_12_ / (batch_sizes[i] * batch_sizes[j])
self.loss_b += tf.abs(mmd_pair)
self.loss_b = self.lambda_b * (self.loss_b)
self.loss_b = nameop(self.loss_b, 'loss_b')
tf.add_to_collection('losses', self.loss_b)
def _build_total_loss(self):
"""Collect all of the losses together."""
self.loss = 0
for l in tf.get_collection('losses'):
self.loss += l
self.loss = nameop(self.loss, 'loss')
def _gaussian_kernel_matrix(self, dist):
"""Multi-scale RBF kernel."""
sigmas = [1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 5, 10, 15, 20, 25, 30, 35, 100, 1e3, 1e4, 1e5, 1e6]
beta = 1. / (2. * (tf.expand_dims(sigmas, 1)))
s = tf.matmul(beta, tf.reshape(dist, (1, -1)))
return tf.reshape(tf.reduce_sum(tf.exp(-s), 0), tf.shape(dist)) / len(sigmas)
def _pairwise_dists(self, x1, x2):
"""Helper function to calculate pairwise distances between tensors x1 and x2."""
r1 = tf.reduce_sum(x1 * x1, 1, keep_dims=True)
r2 = tf.reduce_sum(x2 * x2, 1, keep_dims=True)
D = r1 - 2 * tf.matmul(x1, tf.transpose(x2)) + tf.transpose(r2)
return D
def graph_init(self, sess=None):
"""
Initialize the tensorflow graph that's been created.
:param sess: the session to use while initializing, if different from SAUCIE's sess member
"""
if not sess: sess = self.sess
self.saver = tf.train.Saver(tf.global_variables(), max_to_keep=1)
sess.run(tf.global_variables_initializer())
def save(self, iteration=None, saver=None, sess=None, folder=None):
"""
Save the current state of SAUCIE.
:param iteration: the number of training steps SAUCIE has taken, which distinguishes the saved states
throughout training
:param saver: the saver instance to use
:param sess: the session to save
:param folder: the location to save SAUCIE's state to
"""
if not iteration: iteration = self.iteration
if not saver: saver = self.saver
if not sess: sess = self.sess
if not folder: folder = self.save_folder
savefile = os.path.join(folder, 'SAUCIE')
saver.save(sess, savefile, write_meta_graph=True)
print("Model saved to {}".format(savefile))
def get_loss_names(self):
"""Return the strings of the loss names in the order they're printed during training."""
losses = [tns.name[:-2].replace('loss_', '').split('/')[-1] for tns in tf.get_collection('losses')]
return "Losses: {}".format(' '.join(losses))
def train(self, load, steps, batch_size=256):
"""
Train SAUCIE.
:param load: the loader object to yield batches from
:param steps: the number of steps to train for
:param batch_size: the number of points to train on in each step
"""
start = self.iteration
while (self.iteration - start) < steps:
self.iteration += 1
batch = load.next_batch(batch_size=batch_size)
feed = {tbn('x:0'): batch[0],
tbn('y:0'): batch[0],
tbn('is_training:0'): True,
tbn('learning_rate_tensor:0'): self.learning_rate}
if len(batch) == 2:
feed[tbn('batches:0')] = batch[1]
# if using batch-correction, must have labels
if (self.lambda_b and len(batch) < 2):
raise Exception("If using lambda_b (batch correction), you must provide each point's batch as a label")
ops = [obn('train_op')]
self.sess.run(ops, feed_dict=feed)
def get_loss(self, load, batch_size=256):
"""
Get the current losses over the dataset.
:param load: the loader object to iterate over
"""
losses = None
for i, batch in enumerate(load.iter_batches(batch_size=batch_size)):
feed = {tbn('x:0'): batch[0],
tbn('y:0'): batch[0],
tbn('is_training:0'): False}
if len(batch) == 2:
feed[tbn('batches:0')] = batch[1]
batch_losses = self.sess.run(tf.get_collection('losses'), feed_dict=feed)
if not losses:
losses = batch_losses
else:
losses = [loss + batch_loss for loss, batch_loss in zip(losses, batch_losses)]
losses = [loss / float(i + 1) for loss in losses]
lstring = ' '.join(['{:.3f}'.format(loss) for loss in losses])
return lstring
def get_layer(self, load, name):
"""
Get the actual values in array_like form from an abstract tensor.
:param load: the loader object to iterate over
:param name: the name of the tensor to evaluate for each point
"""
tensor_name = "{}:0".format(name)
tensor = tbn(tensor_name)
layer = []
labels = []
for batch in load.iter_batches():
feed = {tbn('x:0'): batch[0],
tbn('y:0'): batch[0],
tbn('is_training:0'): False}
if len(batch) == 2:
feed[tbn('batches:0')] = batch[1]
labels.append(batch[1])
[act] = self.sess.run([tensor], feed_dict=feed)
layer.append(act)
layer = np.concatenate(layer, axis=0)
if labels:
labels = np.concatenate(labels, axis=0)
return layer, labels
else:
return layer
def get_cluster_merging(self, embedding, clusters):
if len(np.unique(clusters))==1: return clusters
clusters = clusters - clusters.min()
clusts_to_use = np.unique(clusters)
mmdclusts = np.zeros((len(clusts_to_use), len(clusts_to_use)))
for i1, clust1 in enumerate(clusts_to_use):
for i2, clust2 in enumerate(clusts_to_use[i1 + 1:]):
ei = embedding[clusters == clust1]
ej = embedding[clusters == clust2]
ri = list(range(ei.shape[0])); np.random.shuffle(ri); ri = ri[:1000];
rj = list(range(ej.shape[0])); np.random.shuffle(rj); rj = rj[:1000];
ei = ei[ri, :]
ej = ej[rj, :]
k1 = sklearn.metrics.pairwise.pairwise_distances(ei, ei)
k2 = sklearn.metrics.pairwise.pairwise_distances(ej, ej)
k12 = sklearn.metrics.pairwise.pairwise_distances(ei, ej)
mmd = 0
for sigma in [.01, .1, 1., 10.]:
k1_ = np.exp(- k1 / (sigma**2))
k2_ = np.exp(- k2 / (sigma**2))
k12_ = np.exp(- k12 / (sigma**2))
mmd += calculate_mmd(k1_, k2_, k12_)
mmdclusts[i1, i1 + i2 + 1] = mmd
mmdclusts[i1 + i2 + 1, i1] = mmd
clust_to = {}
for i1 in range(mmdclusts.shape[0]):
for i2 in range(mmdclusts.shape[1]):
argmin1 = np.argsort(mmdclusts[i1, :])[1]
argmin2 = np.argsort(mmdclusts[i2, :])[1]
if argmin1 == (i1 + i2) and argmin2 == i1 and i2 > i1:
clust_to[i2] = i1
for c in clust_to:
mask = clusters == c
clusters[mask.tolist()] = clust_to[c]
clusts_to_use_map = [c for c in clusts_to_use.tolist() if c not in clust_to]
clusts_to_use_map = {c:i for i,c in enumerate(clusts_to_use_map)}
for c in clusts_to_use_map:
mask = clusters==c
clusters[mask.tolist()] = clusts_to_use_map[c]
return clusters
def get_clusters(self, load, binmin=100, max_clusters=1000, verbose=True):
"""
Get cluster assignments from the ID regularization layer.
:param load: the loader object to iterate over
:param binmin: points in a cluster of less than this many points will be assigned the unclustered "-1" label
:param max_clusters: going through the clusters can take a long time, so optionally abort any attempt to go
through more than a certain number of clusters
:param verbose: whether or not to print the results of the clustering
"""
acts = self.get_layer(load, 'layer_c')
if isinstance(acts, list) or isinstance(acts, tuple):
acts = acts[0]
acts = acts / acts.max()
binarized = np.where(acts > .000001, 1, 0)
unique_rows, counts = np.unique(binarized, axis=0, return_counts=True)
unique_rows = unique_rows[counts > binmin]
num_clusters = unique_rows.shape[0]
if num_clusters > max_clusters:
print("Too many clusters ({}) to go through...".format(num_clusters))
return num_clusters, np.zeros(acts.shape[0])
num_clusters = 0
rows_clustered = 0
clusters = -1 * np.ones(acts.shape[0])
for i, row in enumerate(unique_rows):
rows_equal_to_this_code = np.where(np.all(binarized == row, axis=1))[0]
clusters[rows_equal_to_this_code] = num_clusters
num_clusters += 1
rows_clustered += rows_equal_to_this_code.shape[0]
embedding = self.get_embedding(load)
#clusters = self.get_cluster_merging(embedding, clusters)
num_clusters = len(np.unique(clusters))
if verbose:
print("---- Num clusters: {} ---- Percent clustered: {:.3f} ----".format(num_clusters, 1. * rows_clustered / clusters.shape[0]))
return num_clusters, clusters
def get_embedding(self, load):
"""Return the embedding layer."""
embedding = self.get_layer(load, 'embeddings')
return embedding
def get_reconstruction(self, load):
"""Return the reconstruction layer."""
reconstruction = self.get_layer(load, 'output')
return reconstruction