-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDataPipeline.py
428 lines (339 loc) · 14.9 KB
/
DataPipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
## DataPipeline fetches image and bounding box data from the source APIs in pixel format.
## Minimal processing is done.
import json
import os
import numpy as np
import zipfile, io
from ibmpairs import paw
from time import sleep
import overpy
import pickle
import math
import argparse
from PIL import Image
from Dataset import Dataset
class DataInfo:
def __init__(self, data_path, tile_size, overlap, pairs_query_path, classes_path):
# A Dataset object handling directory names and paths
# It will also create directories for the data if they don't exist.
self.ds = Dataset(data_path, classes_path=classes_path)
print(f"Your dataset's directory is {self.ds.data_path}")
print(f"The raw data is stored in {self.ds.raw_data_path}")
# Square tile size that the large image will be broken up into
self.tile_size = tile_size
# Number of overlapping pixels between adjacent tiles
assert overlap < tile_size, "Can't overlap pixels beyond actual tile_size"
self.overlap = overlap
# Path to the file where json PAIRS query is stored.
self.pairs_query_path = pairs_query_path
# Path to json file containing the OSM classes.
self.classes_path = classes_path
# Name of file where raw OSM data will be dumped as a dictionary.
self.osm_filename = 'OSM_bbox.pkl'
def create_dataset(data_info, source="IBM"):
"""
Initialises the query image coordinates, query source and image download path.
This is the main function to be called from this module.
[coords] is an array of 4 latitude and longitude coordinates in the following format
[[LAT_MIN, LON_MIN, LAT_MAX, LON_MAX]]
[source] is the source API of the data (eg. IBM, Google, etc.)
If [source=="IBM"], then [(user, password)] is also required.
"""
# Read the query file, exit if wrong format
query_path = data_info.pairs_query_path
query_path = query_path if query_path.endswith('.json') else query_path + '.json'
with open(f'{query_path}', 'r') as query_file:
try:
query = json.load(query_file)
except:
print("Your query file is not in proper json format (or is empty).")
return
# Extract coordinates from query [lat_min, lon_min, lat_max, lon_max]
try:
coords = query['spatial']['coordinates']
except:
print("Your .json query does not have coordinates specified in the right manner.")
# Extract dictionary of OSM label classes from file.
with open(data_info.classes_path, 'r') as classes_file:
try:
classes = json.load(classes_file)
except:
print("Your classes .json file is not in the right json format (or is empty)")
return
print("Querying raw image from PAIRS using coordinates given:\n")
images = query_PAIRS(query, data_info.ds.raw_data_path)
print("\nConverting raw image to numpy array.\nDeleting raw images, saving jpeg instead.")
im_arr = image_to_array(data_info.ds.raw_data_path, images)
print("Querying raw bounding box data from OpenStreetMap using coordinates given. ")
raw_OSM = query_OSM(coords, classes)
# Bounding box data in pixel format
im_size = im_arr.shape
label_coords = coords_to_pixels(raw_OSM, coords, im_size, data_info.ds.raw_data_path)
print("Tiling image and saving .jpeg files (for tile) and .json files (for bounding boxes)")
tile_image(label_coords, im_arr, im_size, data_info)
print("Success! Your raw dataset is now ready!")
def query_PAIRS(query_json, raw_data_path, path_to_credentials='./ibmpairspass.txt'):
"""
Sends a request to PAIRS server and downloads the images in the area specified
by coords. The raw images are saved in RAW_DATA_PATH
"""
with open(path_to_credentials, 'r') as creds:
creds = creds.read().split(':')
# PAIRS server, and authentication
pairs_server, user_name, password = creds
pairs_server = 'https://' + pairs_server
pairs_auth = (user_name, password)
# Make request to IBM server for images from area within coordinates
query = paw.PAIRSQuery(
query_json,
pairs_server,
pairs_auth,
baseURI='/',
downloadDir=raw_data_path
)
# Submit query and wait until downloaded
query.submit()
query.poll_till_finished()
query.download()
query.create_layers()
# Sort in reverse to get channels in R, G, B order.
data_keys = sorted(query.data.keys(), reverse=True)
images = [query.data[k] for k in data_keys]
# Delete the zip file.
zip_file_path = os.path.join(raw_data_path, query.zipFilePath)
os.remove(zip_file_path)
return images
def image_to_array(raw_data_path, images):
"""
Takes the list of raw image(s) downloaded from the query in RGB order, and converts
them to an np array. Stores the entire area's image in raw_data_path.
Returns:
A numpy array of the entire image.
"""
# If query doesn't return list of images, then extract images from download folder.
if images is None or images == []:
images = []
file_names = sorted(os.listdir(raw_data_path), reverse=True)
# Import gdal for .tiff images.
from osgeo import gdal
for filename in file_names:
# Remove output.info
if filename.endswith(".info"):
path_to_file = os.path.join(raw_data_path, filename)
os.remove(path_to_file)
if filename.endswith(".tiff"):
path_to_file = os.path.join(raw_data_path, filename)
dataset = gdal.Open(path_to_file)
raw_array = np.array(dataset.GetRasterBand(1).ReadAsArray())
images.append(raw_array)
# Remove the raw .tiff image
os.remove(path_to_file)
os.remove(path_to_file + '.json')
# Return rgb image in np array format
im_arr = np.dstack(images)
# Clean the image of invalid values.
# We use Red channel (0 index) to find -128 values (shouldn't matter which channel)
im_arr[np.isnan(im_arr)] = -128
row_mask = (im_arr[..., 0] > -128).any(axis=1)
clean_arr = im_arr[row_mask, :, :]
col_mask = (clean_arr[..., 0] > -128).any(axis=0)
clean_arr = clean_arr[:, col_mask, :]
# Add 128 to make all values positive.
im_arr = (clean_arr + 128).astype(np.uint8)
filename = os.path.join(raw_data_path, 'Entire_Area.jpg')
im = Image.fromarray(im_arr)
im.save(filename)
return im_arr
def query_OSM(coords, classes):
"""
Sends a request to OSM server and returns a dictionary of all the buildings
and roads nodes along with their sub classes in the area specified by [coords].
Those buildings and roads not in specified sub-classes are of sub-class "other".
Returns:
{building:
building_class1: [[building_class1_way1_node1, ...], [way2_node1, ...], ...],
...,
road:
road_class_1: [[road_class1_way1_node1, ...], [way2_node1, ...], ...],
...}
where each node is in (lat,lon) format.
"""
api = overpy.Overpass()
coords_string = f"{coords[0]}, {coords[1]}, {coords[2]}, {coords[3]}"
# The dictionary of queried OSM labels for all classes
query_data = {}
for super_class, sub_classes in classes.items():
query_data[super_class] = {}
for sub_class in sub_classes + ["other"]:
query_data[super_class][sub_class] = []
# Query each super class, and then process data.
for super_class, sub_classes in classes.items():
sub_classes = set(sub_classes)
query_string =\
f"""
way({coords_string})["{super_class}"];
(._;>;);
out body;
"""
super_class_query_result = api.query(query_string)
# Go through each way and append nodes to corresponding subclass list of points.
for way in super_class_query_result.ways:
points = [(float(str(n.lat)), float(str(n.lon))) for n in way.nodes]
# "amenity" is current building status (eg: building that is hospital now vs was in past)
sub_class_key = "amenity" if super_class == "building" else super_class
# subclass is "other" if it doesn't exist in defined set of subclasses
sub_class_tag = way.tags.get(sub_class_key, "other")
sub_class = sub_class_tag if sub_class_tag in sub_classes else "other"
query_data[super_class][sub_class].append(points)
return query_data
def coords_to_pixels(raw_OSM, coords, im_size, raw_data_path, out_file="annotations"):
"""
Converts the OSM coordinates to pixels relative to the image data.
Also stores the returned list of buildings in a pickle file called 'annotations.pkl'
Requires:
`coords` is is in [LAT_MIN, LON_MIN, LAT_MAX, LON_MAX] format \n
`im_size` is the shape of the entire image numpy array as (h, w, ...) \n
`out_f` is the name of the file in `data_path/raw_data/[out_f].pkl` \n
Returns:
{building:
building_class1: [[building_class1_way1_node1, ...], [way2_node1, ...], ...], ...,
road:
road_class_1: [[road_class1_way1_node1, ...], [way2_node1, ...], ...], ...}
where each node is in (pixel_x, pixel_y) format.
"""
label_coords = raw_OSM
lat_min, lon_min, lat_max, lon_max = coords
width = lon_max - lon_min # width in longitude of image
height = lat_max - lat_min # height in latitude of image
# Replaces lat,lon label coordinates with x,y coordinates relative to image array
for super_class, sub_class_ways in label_coords.items():
for sub_class, ways in sub_class_ways.items():
for w_index, way in enumerate(ways):
for n_index, (lat, lon) in enumerate(way):
nodeX = math.floor(((lon-lon_min)/width)*im_size[1])
nodeY = math.floor(((lat_max-lat)/height)*im_size[0])
label_coords[super_class][sub_class][w_index][n_index] = (nodeX, nodeY)
with open(os.path.join(raw_data_path, f"{out_file}.pkl"), "wb") as filename:
pickle.dump(label_coords, filename)
# Reutrn the pixel building coords
return label_coords
def save_tile_and_bboxes(tile, label_coords, file_index, data_info):
"""
Saves the tile as an indexed .jpeg image and the label_coords as an indexed .json file.
Requires:
[tile] is a numpy array,
[label_coords] is a dictionary of label coordinates (in pixel value) associated with tile.
[file_index] is an integer.
"""
img_name = str(file_index) + '.jpg'
bbox_name = str(file_index) + '.json'
# save jpeg
filename = os.path.join(data_info.ds.images_path, img_name)
im = Image.fromarray(tile)
im.save(filename)
# save json
with open(os.path.join(data_info.ds.annotations_path, bbox_name), 'w') as filename:
json.dump(label_coords, filename, indent=2)
def boxes_in_tile(label_coords, tile_range):
"""
Helper function that returns the dictionary of boxes that are in the tile specified by
col_start..col_end (the x range) and row_start..row_end (the y range).
Requires:
`label_coords` are in pixels not in lat,lon \n
`tile_range` is a list in the format `[col_start, col_end, row_start, row_end]`\n
Returns:
{building:
building_class1: [label1_nodes, label2_nodes, ...], ...}
of the labels inside given tile range, with coords of label_nodes converted relative to tile.
"""
col_start, col_end, row_start, row_end = tile_range
# Output buildings that are in the tile
labels_in_tile = {super_class: {} for super_class in label_coords}
for super_class, sub_class_labels in label_coords.items():
for sub_class, labels in sub_class_labels.items():
labels_in_tile[super_class][sub_class] = []
for label in labels:
label = np.array(label)
# Check for label (x,y) coordinates that fall inside tile
x_in_tile = (col_start <= label[:, 0]) & (label[:, 0] < col_end)
y_in_tile = (row_start <= label[:, 1]) & (label[:, 1] < row_end)
# Only add label to tile if it has nodes that lie inside the tile
if (x_in_tile & y_in_tile).any():
if super_class == "highway":
# Only keep nodes of road that fully lie in the tile.
label = label[x_in_tile & y_in_tile]
else:
# Clip the out of bounds x,y coordinates of buildings to tile edge
label[:, 0] = np.clip(label[:, 0], col_start, col_end)
label[:, 1] = np.clip(label[:, 1], row_start, row_end)
# Convert coords relative to entire image to coords relative to tile
label[:, 0] = label[:, 0] - col_start
label[:, 1] = label[:, 1] - row_start
# Flatten the label to a list and append
labels_in_tile[super_class][sub_class].append(label.tolist())
return labels_in_tile
def tile_image(label_coords, im_arr, im_size, data_info):
"""
Tiles image array [im_arr] and saves tiles of size [tile_size x tile_size]
and corresponding bounding boxes in [DATA_PATH] as individual .jpeg and .json files
Requires:
[tile_size] is a positive integer
[label_coords] is
{building:
building_class1: [label_nodes_1, ...], ...
roads: ...}
where each label_nodes_i = [label_node1, ...] and label_node is (pixel_x, pixel_y)
[im_arr] is a numpy array of the entire queried image
[im_size] is the shape of the numpy array
"""
tile_size = data_info.tile_size
step = tile_size-data_info.overlap
height, width, _ = im_size
# total_rows, total_cols = height//step, width//step
index = 0
for row_start in range(0, height-step, step):
for col_start in range(0, width-step, step):
# row_start,row_end, col_start, col_end in pixels relative to entire img
row_end, col_end = row_start+tile_size, col_start+tile_size
tile = im_arr[row_start:row_end, col_start:col_end, :]
# All the building bounding boxes in the tile range
tile_range = [col_start, col_end, row_start, row_end]
labels_in_tile = boxes_in_tile(label_coords, tile_range)
save_tile_and_bboxes(tile, labels_in_tile, index, data_info)
index += 1
def passed_arguments():
parser = argparse.ArgumentParser(
description="Script to extract raw data from PAIRS and Open Street Map.")
parser.add_argument("-d", "--data_path",
type=str,
required=True,
help="Path to directory where extracted data will be stored.")
parser.add_argument("-t", "--tile_size",
type=int,
default=224,
help="Size of square tile (in pixels) into which to break large image.")
parser.add_argument("-o", "--overlap",
type=int,
default=0,
help="Amount of overlapping pixels between adjacent tiles.")
parser.add_argument("-q", "--query_path",
type=str,
default=os.path.join(".", "PAIRS_Queries", "Query_WhitePlains.json"),
help="Path to file containing json query for PAIRS data.")
parser.add_argument("-c", "--classes",
type=str,
default=os.path.join(".", "classes.json"),
help="Path to json file determining OSM classes. Should not be changed.")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = passed_arguments()
data_info = DataInfo(
args.data_path,
args.tile_size,
args.overlap,
args.query_path,
args.classes
)
# For now only IBM.
create_dataset(data_info, source="IBM")