forked from ashukid/hed-edge-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeploy.prototxt
129 lines (116 loc) · 7.99 KB
/
deploy.prototxt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
name: "FCN"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 500
input_dim: 500
layer { bottom: 'data' top: 'conv1_1' name: 'conv1_1' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 64 pad: 35 kernel_size: 3 } }
layer { bottom: 'conv1_1' top: 'conv1_1' name: 'relu1_1' type: "ReLU" }
layer { bottom: 'conv1_1' top: 'conv1_2' name: 'conv1_2' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 64 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv1_2' top: 'conv1_2' name: 'relu1_2' type: "ReLU" }
layer { name: 'pool1' bottom: 'conv1_2' top: 'pool1' type: "Pooling"
pooling_param { pool: MAX kernel_size: 2 stride: 2 } }
layer { name: 'conv2_1' bottom: 'pool1' top: 'conv2_1' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 128 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv2_1' top: 'conv2_1' name: 'relu2_1' type: "ReLU" }
layer { bottom: 'conv2_1' top: 'conv2_2' name: 'conv2_2' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 128 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv2_2' top: 'conv2_2' name: 'relu2_2' type: "ReLU" }
layer { bottom: 'conv2_2' top: 'pool2' name: 'pool2' type: "Pooling"
pooling_param { pool: MAX kernel_size: 2 stride: 2 } }
layer { bottom: 'pool2' top: 'conv3_1' name: 'conv3_1' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 256 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv3_1' top: 'conv3_1' name: 'relu3_1' type: "ReLU" }
layer { bottom: 'conv3_1' top: 'conv3_2' name: 'conv3_2' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 256 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv3_2' top: 'conv3_2' name: 'relu3_2' type: "ReLU" }
layer { bottom: 'conv3_2' top: 'conv3_3' name: 'conv3_3' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 256 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv3_3' top: 'conv3_3' name: 'relu3_3' type: "ReLU" }
layer { bottom: 'conv3_3' top: 'pool3' name: 'pool3' type: "Pooling"
pooling_param { pool: MAX kernel_size: 2 stride: 2 } }
layer { bottom: 'pool3' top: 'conv4_1' name: 'conv4_1' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 512 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv4_1' top: 'conv4_1' name: 'relu4_1' type: "ReLU" }
layer { bottom: 'conv4_1' top: 'conv4_2' name: 'conv4_2' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 512 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv4_2' top: 'conv4_2' name: 'relu4_2' type: "ReLU" }
layer { bottom: 'conv4_2' top: 'conv4_3' name: 'conv4_3' type: "Convolution"
param { lr_mult: 1 decay_mult: 1 } param { lr_mult: 2 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 512 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv4_3' top: 'conv4_3' name: 'relu4_3' type: "ReLU" }
layer { bottom: 'conv4_3' top: 'pool4' name: 'pool4' type: "Pooling"
pooling_param { pool: MAX kernel_size: 2 stride: 2 } }
layer { bottom: 'pool4' top: 'conv5_1' name: 'conv5_1' type: "Convolution"
param { lr_mult: 100 decay_mult: 1 } param { lr_mult: 200 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 512 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv5_1' top: 'conv5_1' name: 'relu5_1' type: "ReLU" }
layer { bottom: 'conv5_1' top: 'conv5_2' name: 'conv5_2' type: "Convolution"
param { lr_mult: 100 decay_mult: 1 } param { lr_mult: 200 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 512 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv5_2' top: 'conv5_2' name: 'relu5_2' type: "ReLU" }
layer { bottom: 'conv5_2' top: 'conv5_3' name: 'conv5_3' type: "Convolution"
param { lr_mult: 100 decay_mult: 1 } param { lr_mult: 200 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 512 pad: 1 kernel_size: 3 } }
layer { bottom: 'conv5_3' top: 'conv5_3' name: 'relu5_3' type: "ReLU" }
## DSN conv 1 ###
layer { name: 'score-dsn1' type: "Convolution" bottom: 'conv1_2' top: 'score-dsn1-up'
param { lr_mult: 0.01 decay_mult: 1 } param { lr_mult: 0.02 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 1 kernel_size: 1 } }
layer { type: "Crop" name: 'crop' bottom: 'score-dsn1-up' bottom: 'data' top: 'upscore-dsn1' }
layer { type: "Sigmoid" name: "sigmoid-dsn1" bottom: "upscore-dsn1" top:"sigmoid-dsn1"}
### DSN conv 2 ###
layer { name: 'score-dsn2' type: "Convolution" bottom: 'conv2_2' top: 'score-dsn2'
param { lr_mult: 0.01 decay_mult: 1 } param { lr_mult: 0.02 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 1 kernel_size: 1 } }
layer { type: "Deconvolution" name: 'upsample_2' bottom: 'score-dsn2' top: 'score-dsn2-up'
param { lr_mult: 0 decay_mult: 1 } param { lr_mult: 0 decay_mult: 0}
convolution_param { kernel_size: 4 stride: 2 num_output: 1 } }
layer { type: "Crop" name: 'crop' bottom: 'score-dsn2-up' bottom: 'data' top: 'upscore-dsn2' }
layer { type: "Sigmoid" name: "sigmoid-dsn2" bottom: "upscore-dsn2" top:"sigmoid-dsn2"}
### DSN conv 3 ###
layer { name: 'score-dsn3' type: "Convolution" bottom: 'conv3_3' top: 'score-dsn3'
param { lr_mult: 0.01 decay_mult: 1 } param { lr_mult: 0.02 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 1 kernel_size: 1 } }
layer { type: "Deconvolution" name: 'upsample_4' bottom: 'score-dsn3' top: 'score-dsn3-up'
param { lr_mult: 0 decay_mult: 1 } param { lr_mult: 0 decay_mult: 0}
convolution_param { kernel_size: 8 stride: 4 num_output: 1 } }
layer { type: "Crop" name: 'crop' bottom: 'score-dsn3-up' bottom: 'data' top: 'upscore-dsn3' }
layer { type: "Sigmoid" name: "sigmoid-dsn3" bottom: "upscore-dsn3" top:"sigmoid-dsn3"}
###DSN conv 4###
layer { name: 'score-dsn4' type: "Convolution" bottom: 'conv4_3' top: 'score-dsn4'
param { lr_mult: 0.01 decay_mult: 1 } param { lr_mult: 0.02 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 1 kernel_size: 1 } }
layer { type: "Deconvolution" name: 'upsample_8' bottom: 'score-dsn4' top: 'score-dsn4-up'
param { lr_mult: 0 decay_mult: 1 } param { lr_mult: 0 decay_mult: 0}
convolution_param { kernel_size: 16 stride: 8 num_output: 1 } }
layer { type: "Crop" name: 'crop' bottom: 'score-dsn4-up' bottom: 'data' top: 'upscore-dsn4' }
layer { type: "Sigmoid" name: "sigmoid-dsn4" bottom: "upscore-dsn4" top:"sigmoid-dsn4"}
###DSN conv 5###
layer { name: 'score-dsn5' type: "Convolution" bottom: 'conv5_3' top: 'score-dsn5'
param { lr_mult: 0.01 decay_mult: 1 } param { lr_mult: 0.02 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 1 kernel_size: 1 } }
layer { type: "Deconvolution" name: 'upsample_16' bottom: 'score-dsn5' top: 'score-dsn5-up'
param { lr_mult: 0 decay_mult: 1 } param { lr_mult: 0 decay_mult: 0}
convolution_param { kernel_size: 32 stride: 16 num_output: 1 } }
layer { type: "Crop" name: 'crop' bottom: 'score-dsn5-up' bottom: 'data' top: 'upscore-dsn5' }
layer { type: "Sigmoid" name: "sigmoid-dsn5" bottom: "upscore-dsn5" top:"sigmoid-dsn5"}
### Concat and multiscale weight layer ###
layer { name: "concat" bottom: "upscore-dsn1" bottom: "upscore-dsn2" bottom: "upscore-dsn3"
bottom: "upscore-dsn4" bottom: "upscore-dsn5" top: "concat-upscore" type: "Concat"
concat_param { concat_dim: 1} }
layer { name: 'new-score-weighting' type: "Convolution" bottom: 'concat-upscore' top: 'upscore-fuse'
param { lr_mult: 0.01 decay_mult: 1 } param { lr_mult: 0.02 decay_mult: 0}
convolution_param { engine: CAFFE num_output: 1 kernel_size: 1 weight_filler {type: "constant" value: 0.2} } }
layer { type: "Sigmoid" name: "sigmoid-fuse" bottom: "upscore-fuse" top:"sigmoid-fuse"}