forked from facebookresearch/faiss
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexIVF.cpp
669 lines (546 loc) · 18 KB
/
IndexIVF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
/**
* Copyright (c) 2015-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the CC-by-NC license found in the
* LICENSE file in the root directory of this source tree.
*/
/* Copyright 2004-present Facebook. All Rights Reserved.
Inverted list structure.
*/
#include "IndexIVF.h"
#include <cstdio>
#include "utils.h"
#include "hamming.h"
#include "FaissAssert.h"
#include "IndexFlat.h"
#include "AuxIndexStructures.h"
namespace faiss {
/*****************************************
* IndexIVF implementation
******************************************/
IndexIVF::IndexIVF (Index * quantizer, size_t d, size_t nlist,
MetricType metric):
Index (d, metric),
nlist (nlist),
nprobe (1),
quantizer (quantizer),
quantizer_trains_alone (false),
own_fields (false),
ids (nlist),
maintain_direct_map (false)
{
FAISS_ASSERT (d == quantizer->d);
is_trained = quantizer->is_trained && (quantizer->ntotal == nlist);
// Spherical by default if the metric is inner_product
if (metric_type == METRIC_INNER_PRODUCT) {
cp.spherical = true;
}
// here we set a low # iterations because this is typically used
// for large clusterings (nb this is not used for the MultiIndex,
// for which quantizer_trains_alone = true)
cp.niter = 10;
cp.verbose = verbose;
}
IndexIVF::IndexIVF ():
nlist (0), nprobe (1), quantizer (nullptr),
quantizer_trains_alone (false), own_fields (false),
maintain_direct_map (false)
{}
void IndexIVF::add (idx_t n, const float * x)
{
add_with_ids (n, x, nullptr);
}
void IndexIVF::make_direct_map ()
{
if (maintain_direct_map) return;
direct_map.resize (ntotal, -1);
for (size_t key = 0; key < nlist; key++) {
const std::vector<long> & idlist = ids[key];
for (long ofs = 0; ofs < idlist.size(); ofs++) {
direct_map [idlist [ofs]] =
key << 32 | ofs;
}
}
maintain_direct_map = true;
}
void IndexIVF::reset ()
{
ntotal = 0;
direct_map.clear();
for (size_t i = 0; i < ids.size(); i++)
ids[i].clear();
}
void IndexIVF::train (idx_t n, const float *x)
{
if (quantizer->is_trained && (quantizer->ntotal == nlist)) {
if (verbose)
printf ("IVF quantizer does not need training.\n");
} else if (quantizer_trains_alone) {
if (verbose)
printf ("IVF quantizer trains alone...\n");
quantizer->train (n, x);
FAISS_ASSERT (quantizer->ntotal == nlist ||
!"nlist not consistent with quantizer size");
} else {
if (verbose)
printf ("Training IVF quantizer on %ld vectors in %dD\n",
n, d);
Clustering clus (d, nlist, cp);
quantizer->reset();
clus.train (n, x, *quantizer);
quantizer->is_trained = true;
}
if (verbose)
printf ("Training IVF residual\n");
train_residual (n, x);
is_trained = true;
}
void IndexIVF::train_residual (idx_t n, const float *x)
{
if (verbose)
printf ("IndexIVF: no residual training\n");
// does nothing by default
}
double IndexIVF::imbalance_factor () const
{
std::vector<int> hist (nlist);
for (int i = 0; i < nlist; i++) {
hist[i] = ids[i].size();
}
return faiss::imbalance_factor (nlist, hist.data());
}
void IndexIVF::print_stats () const
{
std::vector<int> sizes(40);
for (int i = 0; i < nlist; i++) {
for (int j = 0; j < sizes.size(); j++) {
if ((ids[i].size() >> j) == 0) {
sizes[j]++;
break;
}
}
}
for (int i = 0; i < sizes.size(); i++) {
if (sizes[i]) {
printf ("list size in < %d: %d instances\n",
1 << i, sizes[i]);
}
}
}
void IndexIVF::merge_from (IndexIVF &other, idx_t add_id)
{
// minimal sanity checks
FAISS_ASSERT (other.d == d);
FAISS_ASSERT (other.nlist == nlist);
FAISS_ASSERT ((!maintain_direct_map && !other.maintain_direct_map) ||
!"direct map copy not implemented");
FAISS_ASSERT (typeid (*this) == typeid (other) ||
!"can only merge indexes of the same type");
for (long i = 0; i < nlist; i++) {
std::vector<idx_t> & src = other.ids[i];
std::vector<idx_t> & dest = ids[i];
for (long j = 0; j < src.size(); j++)
dest.push_back (src[j] + add_id);
src.clear();
}
merge_from_residuals (other);
ntotal += other.ntotal;
other.ntotal = 0;
}
IndexIVF::~IndexIVF()
{
if (own_fields) delete quantizer;
}
/*****************************************
* IndexIVFFlat implementation
******************************************/
IndexIVFFlat::IndexIVFFlat (Index * quantizer,
size_t d, size_t nlist, MetricType metric):
IndexIVF (quantizer, d, nlist, metric)
{
vecs.resize (nlist);
set_typename();
}
void IndexIVFFlat::set_typename ()
{
std::stringstream s;
if (metric_type == METRIC_INNER_PRODUCT)
s << "IvfIP";
else if (metric_type == METRIC_L2)
s << "IvfL2";
else s << "??";
s << "[" << nlist << ":" << quantizer->index_typename << "]";
index_typename = s.str();
}
void IndexIVFFlat::add_with_ids (idx_t n, const float * x, const long *xids)
{
add_core (n, x, xids, nullptr);
}
void IndexIVFFlat::add_core (idx_t n, const float * x, const long *xids,
const long *precomputed_idx)
{
FAISS_ASSERT (is_trained);
const long * idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
long * idx0 = new long [n];
quantizer->assign (n, x, idx0);
idx = idx0;
}
long n_add = 0;
for (size_t i = 0; i < n; i++) {
long id = xids ? xids[i] : ntotal + i;
long list_no = idx [i];
if (list_no < 0)
continue;
FAISS_ASSERT (list_no < nlist);
ids[list_no].push_back (id);
const float *xi = x + i * d;
/* store the vectors */
for (size_t j = 0 ; j < d ; j++)
vecs[list_no].push_back (xi [j]);
if (maintain_direct_map)
direct_map.push_back (list_no << 32 | (ids[list_no].size() - 1));
n_add++;
}
if (verbose) {
printf("IndexIVFFlat::add_core: added %ld / %ld vectors\n",
n_add, n);
}
if (!precomputed_idx)
delete [] idx;
ntotal += n_add;
}
void IndexIVFFlatStats::reset()
{
memset ((void*)this, 0, sizeof (*this));
}
IndexIVFFlatStats indexIVFFlat_stats;
void IndexIVFFlat::search_knn_inner_product (
size_t nx,
const float * x,
const long * __restrict keys,
float_minheap_array_t * res) const
{
const size_t k = res->k;
size_t nlistv = 0, ndis = 0;
#pragma omp parallel for reduction(+: nlistv, ndis)
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
float * __restrict simi = res->get_val (i);
long * __restrict idxi = res->get_ids (i);
minheap_heapify (k, simi, idxi);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
if (key >= (long) nlist) {
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
throw;
}
nlistv++;
const size_t list_size = ids[key].size();
const float * list_vecs = vecs[key].data();
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float ip = fvec_inner_product (xi, yj, d);
if (ip > simi[0]) {
minheap_pop (k, simi, idxi);
minheap_push (k, simi, idxi, ip, ids[key][j]);
}
}
ndis += list_size;
}
minheap_reorder (k, simi, idxi);
}
indexIVFFlat_stats.nq += nx;
indexIVFFlat_stats.nlist += nlistv;
indexIVFFlat_stats.ndis += ndis;
}
void IndexIVFFlat::search_knn_L2sqr (
size_t nx,
const float * x,
const long * __restrict keys,
float_maxheap_array_t * res) const
{
const size_t k = res->k;
size_t nlistv = 0, ndis = 0;
#pragma omp parallel for reduction(+: nlistv, ndis)
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
float * __restrict disi = res->get_val (i);
long * __restrict idxi = res->get_ids (i);
maxheap_heapify (k, disi, idxi);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
if (key >= (long) nlist) {
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
throw;
}
nlistv++;
const size_t list_size = ids[key].size();
const float * list_vecs = vecs[key].data();
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float disij = fvec_L2sqr (xi, yj, d);
if (disij < disi[0]) {
maxheap_pop (k, disi, idxi);
maxheap_push (k, disi, idxi, disij, ids[key][j]);
}
}
ndis += list_size;
}
maxheap_reorder (k, disi, idxi);
}
indexIVFFlat_stats.nq += nx;
indexIVFFlat_stats.nlist += nlistv;
indexIVFFlat_stats.ndis += ndis;
}
void IndexIVFFlat::search (idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
idx_t * idx = new idx_t [n * nprobe];
quantizer->assign (n, x, idx, nprobe);
if (metric_type == METRIC_INNER_PRODUCT) {
float_minheap_array_t res = {
size_t(n), size_t(k), labels, distances};
search_knn_inner_product (n, x, idx, &res);
} else if (metric_type == METRIC_L2) {
float_maxheap_array_t res = {
size_t(n), size_t(k), labels, distances};
search_knn_L2sqr (n, x, idx, &res);
}
delete [] idx;
}
void IndexIVFFlat::range_search (idx_t nx, const float *x, float radius,
RangeSearchResult *result) const
{
idx_t * keys = new idx_t [nx * nprobe];
quantizer->assign (nx, x, keys, nprobe);
assert (metric_type == METRIC_L2 || !"Only L2 implemented");
#pragma omp parallel
{
RangeSearchPartialResult pres(result);
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
RangeSearchPartialResult::QueryResult & qres =
pres.new_result (i);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0 || key >= (long) nlist) {
fprintf (stderr, "Invalid key=%ld at ik=%ld nlist=%ld\n",
key, ik, nlist);
throw;
}
const size_t list_size = ids[key].size();
const float * list_vecs = vecs[key].data();
for (size_t j = 0; j < list_size; j++) {
const float * yj = list_vecs + d * j;
float disij = fvec_L2sqr (xi, yj, d);
if (disij < radius) {
qres.add (disij, ids[key][j]);
}
}
}
}
pres.finalize ();
}
delete[] keys;
}
void IndexIVFFlat::merge_from_residuals (IndexIVF &other_in)
{
IndexIVFFlat &other = dynamic_cast<IndexIVFFlat &> (other_in);
for (int i = 0; i < nlist; i++) {
std::vector<float> & src = other.vecs[i];
std::vector<float> & dest = vecs[i];
for (int j = 0; j < src.size(); j++)
dest.push_back (src[j]);
src.clear();
}
}
void IndexIVFFlat::copy_subset_to (IndexIVFFlat & other, int subset_type,
long a1, long a2) const
{
FAISS_ASSERT (nlist == other.nlist);
FAISS_ASSERT (!other.maintain_direct_map);
for (long list_no = 0; list_no < nlist; list_no++) {
const std::vector<idx_t> & ids_in = ids[list_no];
std::vector<idx_t> & ids_out = other.ids[list_no];
const std::vector<float> & vecs_in = vecs[list_no];
std::vector<float> & vecs_out = other.vecs[list_no];
for (long i = 0; i < ids_in.size(); i++) {
idx_t id = ids_in[i];
if (subset_type == 0 && a1 <= id && id < a2) {
ids_out.push_back (id);
vecs_out.insert (vecs_out.end(),
vecs_in.begin() + i * d,
vecs_in.begin() + (i + 1) * d);
other.ntotal++;
}
}
}
}
void IndexIVFFlat::reset()
{
IndexIVF::reset();
for (size_t key = 0; key < nlist; key++) {
vecs[key].clear();
}
}
long IndexIVFFlat::remove_ids (const IDSelector & sel)
{
FAISS_ASSERT (!maintain_direct_map ||
!"direct map remove not implemented");
long nremove = 0;
#pragma omp parallel for reduction(+: nremove)
for (long i = 0; i < nlist; i++) {
std::vector<idx_t> & idsi = ids[i];
float *vecsi = vecs[i].data();
long l = idsi.size(), j = 0;
while (j < l) {
if (sel.is_member (idsi[j])) {
l--;
idsi [j] = idsi [l];
memmove (vecsi + j * d,
vecsi + l * d, d * sizeof (float));
} else {
j++;
}
}
if (l < idsi.size()) {
nremove += idsi.size() - l;
idsi.resize (l);
vecs[i].resize (l * d);
}
}
ntotal -= nremove;
return nremove;
}
void IndexIVFFlat::reconstruct (idx_t key, float * recons) const
{
assert (direct_map.size() == ntotal);
int list_no = direct_map[key] >> 32;
int ofs = direct_map[key] & 0xffffffff;
memcpy (recons, &vecs[list_no][ofs * d], d * sizeof(recons[0]));
}
/*****************************************
* IndexIVFFlatIPBounds implementation
******************************************/
IndexIVFFlatIPBounds::IndexIVFFlatIPBounds (
Index * quantizer, size_t d, size_t nlist,
size_t fsize):
IndexIVFFlat(quantizer, d, nlist, METRIC_INNER_PRODUCT), fsize(fsize)
{
part_norms.resize(nlist);
}
void IndexIVFFlatIPBounds::add_core (idx_t n, const float * x, const long *xids,
const long *precomputed_idx) {
FAISS_ASSERT (is_trained);
const long * idx;
if (precomputed_idx) {
idx = precomputed_idx;
} else {
long * idx0 = new long [n];
quantizer->assign (n, x, idx0);
idx = idx0;
}
IndexIVFFlat::add_core(n, x, xids, idx);
// compute
const float * xi = x + fsize;
for (size_t i = 0; i < n; i++) {
float norm = std::sqrt (fvec_norm_L2sqr (xi, d - fsize));
part_norms[idx[i]].push_back(norm);
xi += d;
}
if (idx != precomputed_idx) {
delete [] idx;
}
}
namespace {
void search_bounds_knn_inner_product (
const IndexIVFFlatIPBounds & ivf,
const float *x,
const long *keys,
float_minheap_array_t *res,
const float *qnorms)
{
size_t k = res->k, nx = res->nh, nprobe = ivf.nprobe;
size_t d = ivf.d;
int fsize = ivf.fsize;
size_t nlistv = 0, ndis = 0, npartial = 0;
#pragma omp parallel for reduction(+: nlistv, ndis, npartial)
for (size_t i = 0; i < nx; i++) {
const float * xi = x + i * d;
const long * keysi = keys + i * nprobe;
float qnorm = qnorms[i];
float * __restrict simi = res->get_val (i);
long * __restrict idxi = res->get_ids (i);
minheap_heapify (k, simi, idxi);
for (size_t ik = 0; ik < nprobe; ik++) {
long key = keysi[ik]; /* select the list */
if (key < 0) {
// not enough centroids for multiprobe
continue;
}
assert (key < (long) ivf.nlist);
nlistv++;
const size_t list_size = ivf.ids[key].size();
const float * yj = ivf.vecs[key].data();
const float * bnorms = ivf.part_norms[key].data();
for (size_t j = 0; j < list_size; j++) {
float ip_part = fvec_inner_product (xi, yj, fsize);
float bound = ip_part + bnorms[j] * qnorm;
if (bound > simi[0]) {
float ip = ip_part + fvec_inner_product (
xi + fsize, yj + fsize, d - fsize);
if (ip > simi[0]) {
minheap_pop (k, simi, idxi);
minheap_push (k, simi, idxi, ip, ivf.ids[key][j]);
}
ndis ++;
}
yj += d;
}
npartial += list_size;
}
minheap_reorder (k, simi, idxi);
}
indexIVFFlat_stats.nq += nx;
indexIVFFlat_stats.nlist += nlistv;
indexIVFFlat_stats.ndis += ndis;
indexIVFFlat_stats.npartial += npartial;
}
}
void IndexIVFFlatIPBounds::search (
idx_t n, const float *x, idx_t k,
float *distances, idx_t *labels) const
{
// compute query remainder norms and distances
idx_t * idx = new idx_t [n * nprobe];
quantizer->assign (n, x, idx, nprobe);
float * qnorms = new float [n];
#pragma omp parallel for
for (size_t i = 0; i < n; i++) {
qnorms[i] = std::sqrt (fvec_norm_L2sqr (
x + i * d + fsize, d - fsize));
}
float_minheap_array_t res = {
size_t(n), size_t(k), labels, distances};
search_bounds_knn_inner_product (*this, x, idx, &res, qnorms);
delete [] qnorms;
delete [] idx;
}
} // namespace faiss