forked from iamyuanchung/VQ-APC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vqapc.py
228 lines (190 loc) · 9.67 KB
/
train_vqapc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import os
import logging
import argparse
import numpy as np
import torch
from torch.autograd import Variable
from torch import nn, optim
from torch.utils import data
import tensorboard_logger
from tensorboard_logger import log_value
from tqdm import tqdm
from vqapc_model import GumbelAPCModel
from datasets import LibriSpeech
def main():
parser = argparse.ArgumentParser()
# RNN architecture config.
parser.add_argument("--rnn_num_layers", default=3, type=int,
help="Number of layers for RNN.")
parser.add_argument("--rnn_hidden_size", default=512, type=int,
help="Hidden size of RNN.")
parser.add_argument("--rnn_dropout", default=0., type=float,
help="RNN dropout rate.")
parser.add_argument("--rnn_residual", action="store_true",
help="Apply residual connections if true.")
# VQ layer config.
parser.add_argument("--codebook_size", required=True, type=int,
help="Codebook size; all VQ layers will use the same \
value.")
parser.add_argument("--code_dim", default=512, type=int,
help="Size of each code.")
parser.add_argument("--gumbel_temperature", default=0.5, type=float,
help="Gumbel-Softmax temperature.")
parser.add_argument("--vq_hidden_size", default=-1, type=int,
help="Hidden size for the VQ layer.")
parser.add_argument("--apply_VQ", required=True, nargs="+",
help="Quantize layer output if 1. E.g., [1, 0, 1] will \
apply VQ to the output of the first and third layers.")
# Optimization config.
parser.add_argument("--optimizer", default="adam", choices=["adam"],
help="Just use adam.")
parser.add_argument("--batch_size", default=32, type=int,
help="Mini-batch size.")
parser.add_argument("--learning_rate", default=0.0001, type=float,
help="Learning rate.")
parser.add_argument("--epochs", default=100, type=int,
help="Number of training epochs.")
parser.add_argument("--n_future", required=True, type=int,
help="Given x_1, ..., x_t, predict x_{t + n_future}.")
parser.add_argument("--clip_thresh", default=1., type=float,
help="Threshold for gradient clipping.")
# Data config.
parser.add_argument("--librispeech_home",
default="./librispeech_data/preprocessed", type=str,
help="Path to the LibriSpeech home directory.")
parser.add_argument("--train_partition", nargs="+", required=True,
help="Partition(s) to be used for training.")
parser.add_argument("--train_sampling", default=1., type=float,
help="Ratio to sample for actual training.")
parser.add_argument("--val_partition", nargs="+", required=True,
help="Partition(s) to be used for validation.")
parser.add_argument("--val_sampling", default=1., type=float,
help="Ratio to sample for actual validation.")
# Misc config.
parser.add_argument("--feature_dim", default=80, type=int,
help="Dimension of input feature.")
parser.add_argument("--load_data_workers", default=8, type=int,
help="Number of parallel data loaders.")
parser.add_argument("--exp_name", default="foo", type=str,
help="Name of the experiment.")
parser.add_argument("--store_path", type=str,
default="./logs",
help="Where to save the trained models and logs.")
config = parser.parse_args()
# Create the directory to dump exp logs and models.
model_dir = os.path.join(config.store_path, config.exp_name + '.dir')
os.makedirs(config.store_path, exist_ok=True)
os.makedirs(model_dir, exist_ok=True)
logging.basicConfig(
level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s',
filename=os.path.join(model_dir, config.exp_name), filemode='w')
# Define a new Handler to log to console as well.
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
logging.info('Model Parameters:')
logging.info('RNN Depth: %d' % (config.rnn_num_layers))
logging.info('RNN Hidden Dim: %d' % (config.rnn_hidden_size))
logging.info('RNN Dropout: %f' % (config.rnn_dropout))
logging.info('RNN Residual Connections: %s' % (config.rnn_residual))
logging.info('VQ Codebook Size: %d' % (config.codebook_size))
logging.info('VQ Codebook Dim: %d' % (config.code_dim))
logging.info('VQ Gumbel Temperature: %f' % (config.gumbel_temperature))
logging.info('VQ Hidden Dim: %d' % (config.vq_hidden_size))
apply_VQ = [int(q) > 0 for q in config.apply_VQ]
logging.info('VQ Apply: %s' % (apply_VQ))
logging.info('Optimizer: %s' % (config.optimizer))
logging.info('Batch Size: %d' % (config.batch_size))
logging.info('Learning Rate: %f' % (config.learning_rate))
logging.info('Future (n): %d' % (config.n_future))
logging.info('Gradient Clip Threshold: %f' % (config.clip_thresh))
logging.info('Training Data: %s' % (config.train_partition))
logging.info('Training Ratio: %f' % (config.train_sampling))
logging.info('Validation Data: %s' % (config.val_partition))
logging.info('Validation Ratio: %f' % (config.val_sampling))
logging.info('Number of GPUs Used: %d' % (torch.cuda.device_count()))
model = GumbelAPCModel(input_size=config.feature_dim,
hidden_size=config.rnn_hidden_size,
num_layers=config.rnn_num_layers,
dropout=config.rnn_dropout,
residual=config.rnn_residual,
codebook_size=config.codebook_size,
code_dim=config.code_dim,
gumbel_temperature=config.gumbel_temperature,
vq_hidden_size=config.vq_hidden_size,
apply_VQ=apply_VQ).cuda()
model = nn.DataParallel(model)
criterion = nn.L1Loss()
optimizer = optim.Adam(model.parameters(), lr=config.learning_rate)
# Setup tensorboard logger.
tensorboard_logger.configure(
os.path.join(model_dir, config.exp_name + '.tb_log'))
# Define data loaders.
train_set = LibriSpeech(home=config.librispeech_home,
partition=config.train_partition,
sampling=config.train_sampling)
# Set drop_last to True to avoid the gather issue when using nn.DataParallel
train_data_loader = data.DataLoader(train_set, batch_size=config.batch_size,
num_workers=config.load_data_workers,
shuffle=True, drop_last=True)
val_set = LibriSpeech(home=config.librispeech_home,
partition=config.val_partition,
sampling=config.val_sampling)
val_data_loader = data.DataLoader(val_set, batch_size=config.batch_size,
num_workers=config.load_data_workers,
shuffle=False, drop_last=True)
# Need prefix `module` before state_dict() when using nn.DataParallel.
torch.save(model.module.state_dict(),
open(os.path.join(model_dir, config.exp_name + '__epoch_0.model'), 'wb'))
global_step = 0
for epoch_i in range(config.epochs):
####################
##### Training #####
####################
model.train()
train_losses = []
for frames_BxLxM, lengths_B in train_data_loader:
_, indices_B = torch.sort(lengths_B, descending=True)
frames_BxLxM = Variable(frames_BxLxM[indices_B]).cuda()
lengths_B = Variable(lengths_B[indices_B]).cuda()
predicted_BxLxM, _, _ = model(frames_BxLxM[:, :-config.n_future, :],
lengths_B - config.n_future, testing=False)
optimizer.zero_grad()
train_loss = criterion(predicted_BxLxM,
frames_BxLxM[:, config.n_future:, :])
train_losses.append(train_loss.item())
train_loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
config.clip_thresh)
optimizer.step()
log_value("training loss (step-wise)", float(train_loss.item()),
global_step)
log_value("gradient norm", grad_norm, global_step)
global_step += 1
######################
##### Validation #####
######################
model.eval()
val_losses = []
with torch.set_grad_enabled(False):
for val_frames_BxLxM, val_lengths_B in val_data_loader:
_, val_indices_B = torch.sort(val_lengths_B, descending=True)
val_frames_BxLxM = Variable(val_frames_BxLxM[val_indices_B]).cuda()
val_lengths_B = Variable(val_lengths_B[val_indices_B]).cuda()
val_predicted_BxLxM, _, _ = model(
val_frames_BxLxM[:, :-config.n_future, :],
val_lengths_B - config.n_future, testing=True)
val_loss = criterion(val_predicted_BxLxM,
val_frames_BxLxM[:, config.n_future:, :])
val_losses.append(val_loss.item())
logging.info('Epoch: %d Training Loss: %.5f Validation Loss: %.5f' % (
epoch_i + 1, np.mean(train_losses), np.mean(val_losses)))
log_value("training loss (epoch-wise)", np.mean(train_losses), epoch_i)
log_value("validation loss (epoch-wise)", np.mean(val_losses), epoch_i)
torch.save(model.module.state_dict(),
open(os.path.join(model_dir, config.exp_name + '__epoch_%d' %
(epoch_i + 1) + '.model'), 'wb'))
if __name__ == '__main__':
main()