-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
134 lines (114 loc) · 3.26 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
__author__ = 'mohammadreza'
from main import *
import random
#rn = RNG.RandomNumberGenerator()
class c(Creator):
def action(self,e):
e.atts["total"] = 90
return e
crt = c(Entity,"creator1")
crt.setBusyTime(0)
dsp = Disposer("dsp1")
class p1(Process):
def action(self,ent):
day = self.env.enVars["day"]
rnd = random.randrange(0,100)
tmp = None
if day == "good":
if 0<rnd<10 :
tmp = 60
elif 10<rnd<50 :
tmp = 70
else:
tmp = 100
elif day == "fair":
if 0<rnd<10 :
tmp = 40
elif 10<rnd<50 :
tmp = 50
else:
tmp = 60
else:
if 0<rnd<10 :
tmp = 20
elif 10<rnd<50 :
tmp = 30
else:
tmp = 40
ent.atts["demand"] = tmp
ent.atts["day"] = day
return ent
seller = p1("seller")
seller.setBusyTime(0)
class p2(Process):
def action(self,ent):
ent.atts["scraped"] = ent.atts["total"]-ent.atts["demand"]
ent.atts["shortage"] = 0
return ent
scraper = p2("scraper")
scraper.setBusyTime(0)
class p3(Process):
def action(self,ent):
ent.atts["scraped"] = 0
ent.atts["shortage"] = ent.atts["demand"] - ent.atts["total"]
return ent
lostchecker = p3("lostchecker")
lostchecker.setBusyTime(0)
class dc(Decide):
def condition(self,t):
return (t.atts["total"] - t.atts["demand"] < 0)
decider = dc()
RESULTS = []
TRES = []
class enviro(Environment):
def setEnv(self):
crt.sendTo(seller)
seller.sendTo(decider)
seller.env = self
decider.sendtoF(scraper)
decider.sendtoT(lostchecker)
scraper.sendTo(dsp)
lostchecker.sendTo(dsp)
self.addProcess([seller,scraper,lostchecker,decider,crt,dsp])
def action(self):
rnd = random.randrange(1,100)
if 1<rnd<35 :
self.addVar("day","good")
elif 35<rnd<80 :
self.addVar("day","fair")
else :
self.addVar("day","poor")
def getStat(self):
n = 0
total_salary = 0
total_lost = 0
total_scrape = 0
for i in self.PQ :
if isinstance(i,Disposer):
for j in i.innerQ :
RESULTS.append(j.atts)
for d in RESULTS :
n += 1
if d["total"] - d["demand"] > 0 :
d["revenue"] =( d["demand"] ) * 0.17
d["lostprofit"] = 0
else:
d["revenue"] = d["total"] * 0.17
d["lostprofit"] = (d["demand"] - d["total"]) * 0.17
if d["scraped"] != 0 :
d["salvage"] = d["scraped"] * 0.05
else:
d["salvage"] = 0
d["profit"] = d["revenue"] + d["salvage"] - d["lostprofit"]
total_salary += d["revenue"]/n
total_lost += d["lostprofit"]/n
total_scrape += d["salvage"]/n
d["AVG REV"] = total_salary
d["AVG LOSS"] = total_lost
d["AVG SLVG"] = total_scrape
myEnnviro = enviro()
myEnnviro.setNumberOfTrials(10)
myEnnviro.start()
myEnnviro.getStat()
print(len(RESULTS))
print()