Articles:
- Analyze Bank Transaction Data using Graph (Part 1/2)
- Analyze Bank Transaction Data using Graph (Part 2/2)
Bank transaction simulation dataset for graph analytics.
Sample dataset is under /data/scale-100/
directory.
$ ls /data/scale-100/*.csv
account.csv customer.csv transaction.csv
Copy the 3 CSV files under /data/
for loading.
$ cp ./data/scale-100/*.csv ./data/
For creating a graph with larger number of accounts (e.g. 10000), run this script.
$ pip3 install networkx
$ cd script/
$ python3 create-graph.py 10000
This script creates 3 CSV files.
$ ls *.csv
account.csv customer.csv transaction.csv
Locate the CSV files under /data/
directory.
$ mv *.csv ../data/
Check the service name of the PDB. <connect-string>
below is <ip-address>:1521/<service-name>
.
$ lsnrctl status
Move to script/
directory.
$ cd script/
Create tables, account
, customer
, and transaction
.
$ sqlplus graphuser/<password>@<connect-string> @create-table.sql
Load the data from the CSV file.
$ sqlldr graphuser/<password>@<connect-string> sqlldr_acc.ctl direct=true
$ sqlldr graphuser/<password>@<connect-string> sqlldr_cst.ctl direct=true
$ sqlldr graphuser/<password>@<connect-string> sqlldr_txn.ctl direct=true