Skip to content

Latest commit

 

History

History
34 lines (18 loc) · 1.16 KB

README.md

File metadata and controls

34 lines (18 loc) · 1.16 KB

Generative Adversarial Networks Cheat Sheet

Table of Contents

Introduction

Generative Models vs. Discriminative Models

Discriminative Models Generative Models
Features ➡️ Class Random Noise, Class ➡️ Features

Generative Models

Variational Autoencoders (VAEs) Generative Adversarial Networks (GANs)
1 2

GANs Applications

StyleGAN2 CycleGAN GauGAN
Generate realistic images Image-to-image translation Image synthesis
Adobe Google IBM SnapChat Disney
Next-gen Photoshop Text Generation Data Augmentation Image Filters Super-resolution