forked from BrainJS/brain.js
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeed-forward.ts
806 lines (738 loc) · 23.2 KB
/
feed-forward.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
import { IKernelFunctionThis, KernelOutput, Texture } from 'gpu.js';
import { MeanSquaredError } from './estimator/mean-squared-error';
import { ILayer, ILayerJSON } from './layer';
import { Model } from './layer/types';
import { InputOutputValue, INumberArray, INumberHash, lookup } from './lookup';
import * as praxis from './praxis';
import { IPraxis, IPraxisSettings } from './praxis/base-praxis';
import { flattenLayers } from './utilities/flatten-layers';
import { makeKernel, release } from './utilities/kernel';
import { layerFromJSON } from './utilities/layer-from-json';
import { LookupTable } from './utilities/lookup-table';
import { Thaw } from 'thaw.js';
export interface IFeedForwardTrainingData<
InputType extends InputOutputValue | KernelOutput = number[] | Float32Array,
OutputType extends InputOutputValue | KernelOutput = number[] | Float32Array
> {
input: InputType;
output: OutputType;
}
export interface IFeedForwardNormalizedTrainingData {
input: Float32Array;
output: Float32Array;
}
export interface IFeedForwardGPUTrainingData {
input: KernelOutput;
output: KernelOutput;
}
export interface ITrainingStatus {
iterations: number;
error: number;
}
export type Log = (status: string) => void;
export type FeedForwardCallback = (status: ITrainingStatus) => void;
export interface IFeedForwardTrainingOptions {
iterations?: number;
errorThresh?: number;
log?: boolean | Log;
logPeriod?: number;
learningRate?: number;
callback?: FeedForwardCallback;
callbackPeriod?: number;
errorCheckInterval?: number;
timeout?: number;
}
export interface IFeedForwardOptions {
learningRate?: number;
binaryThresh?: number;
hiddenLayers?: Array<(inputLayer: ILayer, layerIndex: number) => ILayer>;
inputLayer?: () => ILayer;
outputLayer?: (inputLayer: ILayer, index: number) => ILayer;
praxisOpts?: Partial<IPraxisSettings>;
initPraxis?: (
layerTemplate: ILayer,
settings: Partial<IPraxisSettings>
) => IPraxis;
praxis?: IPraxis;
// JSON
layers?: ILayer[];
inputLayerIndex?: number;
outputLayerIndex?: number;
sizes?: number[];
}
export interface IFeedForwardPreppedTrainingData {
status: ITrainingStatus;
preparedData: IFeedForwardGPUTrainingData[];
endTime: number;
}
export const defaults: IFeedForwardOptions = {
learningRate: 0.3,
binaryThresh: 0.5,
initPraxis: (
layerTemplate: ILayer,
settings: Partial<IPraxisSettings>
): IPraxis =>
praxis.momentumRootMeanSquaredPropagation(
layerTemplate,
layerTemplate.settings.praxisOpts ?? settings
),
};
export const trainDefaults: IFeedForwardTrainingOptions = {
iterations: 20000,
errorThresh: 0.005,
log: false,
logPeriod: 10,
learningRate: 0.3,
callbackPeriod: 10,
errorCheckInterval: 100,
timeout: Infinity,
};
export interface IFeedForwardJSON {
type: string;
sizes: number[];
layers: ILayerJSON[];
inputLayerIndex: number;
outputLayerIndex: number;
}
export class FeedForward<
InputType extends InputOutputValue | KernelOutput = number[] | Float32Array,
OutputType extends InputOutputValue | KernelOutput = number[] | Float32Array
> {
static _validateTrainingOptions(
options: Partial<IFeedForwardTrainingOptions>
): void {
const {
iterations,
errorThresh,
log,
logPeriod,
learningRate,
callback,
callbackPeriod,
timeout,
} = options;
interface IValidation {
[optionName: string]: () => boolean;
}
const validations: IValidation = {
iterations: () => typeof iterations === 'number' && iterations > 0,
errorThresh: () =>
typeof errorThresh === 'number' && errorThresh > 0 && errorThresh < 1,
log: () => typeof log === 'function' || typeof log === 'boolean',
logPeriod: () => typeof logPeriod === 'number' && logPeriod > 0,
learningRate: () =>
typeof learningRate === 'number' &&
learningRate > 0 &&
learningRate < 1,
callback: () => typeof callback === 'function' || callback === null,
callbackPeriod: () =>
typeof callbackPeriod === 'number' && callbackPeriod > 0,
timeout: () => typeof timeout === 'number' && timeout > 0,
};
Object.keys(trainDefaults).forEach((key: string): void => {
if (validations.hasOwnProperty(key) && !validations[key]()) {
const val = options[key as keyof IFeedForwardTrainingOptions];
throw new Error(
`[${key}, ${(
val ?? 'undefined'
).toString()}] is out of normal training range, your network will probably not train.`
);
}
});
}
/**
* if a method is passed in method is used
* if false passed in nothing is logged
*/
_setLogMethod(log: Log | undefined | boolean): void {
if (typeof log === 'function') {
this.trainOpts.log = log;
} else if (log) {
// eslint-disable-next-line
this.trainOpts.log = console.log;
} else {
this.trainOpts.log = false;
}
}
_updateTrainingOptions(opts: Partial<IFeedForwardTrainingOptions>): void {
this.trainOpts = { ...trainDefaults, ...this.trainOpts, ...opts };
FeedForward._validateTrainingOptions(this.trainOpts);
this._setLogMethod(opts.log ?? this.trainOpts.log);
const { callback, callbackPeriod, errorCheckInterval } = this.trainOpts;
if (callback && callbackPeriod !== errorCheckInterval) {
console.warn(
`options.callbackPeriod with value of ${(
callbackPeriod ?? 'undefined'
).toString()} does not match options.errorCheckInterval with value of ${(
errorCheckInterval ?? 'undefined'
).toString()}, if logging error, it will repeat. These values may need to match`
);
}
}
trainOpts: Partial<IFeedForwardTrainingOptions> = {};
options: IFeedForwardOptions;
layers: ILayer[] | null = null;
_inputLayer: ILayer | null = null;
_hiddenLayers: ILayer[] | null = null;
_outputLayer: ILayer | null = null;
_model: ILayer[] | null = null;
meanSquaredError: MeanSquaredError | null = null;
inputLookup: INumberHash | null = null;
inputLookupLength: number | null = null;
outputLookup: INumberHash | null = null;
outputLookupLength: number | null = null;
constructor(options: IFeedForwardOptions = {}) {
this.options = { ...defaults, ...options };
this._updateTrainingOptions({
...trainDefaults,
...options,
});
}
_connectOptionsLayers(): ILayer[] {
const { inputLayerIndex, outputLayerIndex, layers } = this.options;
if (!layers) throw new Error('this.options.layers in unexpected state');
if (typeof inputLayerIndex !== 'number')
throw new Error('inputLayerIndex not a number');
if (typeof outputLayerIndex !== 'number')
throw new Error('inputLayerIndex not a number');
const inputLayer = layers[inputLayerIndex];
if (!inputLayer) {
throw new Error('inputLayer not found in this.options.layers');
}
const outputLayer = layers[outputLayerIndex];
if (!outputLayer) {
throw new Error('outputLayer not found in this.options.layers');
}
this._inputLayer = inputLayer;
this._hiddenLayers = layers.slice(
inputLayerIndex,
outputLayerIndex - inputLayerIndex
);
this._outputLayer = outputLayer;
return layers;
}
_connectNewLayers(): ILayer[] {
const { inputLayer, outputLayer } = this.options;
if (!inputLayer) throw new Error('inputLayer not defined');
const layers: ILayer[] = [];
this._inputLayer = inputLayer();
const hiddenLayers = this._connectHiddenLayers(this._inputLayer);
if (!outputLayer) throw new Error('outputLayer not defined');
this._outputLayer = outputLayer(
hiddenLayers[hiddenLayers.length - 1],
hiddenLayers.length
);
layers.push(this._inputLayer);
layers.push(...hiddenLayers);
layers.push(this._outputLayer);
return flattenLayers(layers);
}
_connectHiddenLayers(previousLayer: ILayer): ILayer[] {
this._hiddenLayers = [];
const result: ILayer[] = [];
const { hiddenLayers } = this.options;
if (!hiddenLayers) throw new Error('hiddenLayers not defined');
for (let i = 0; i < hiddenLayers.length; i++) {
const hiddenLayer = hiddenLayers[i](previousLayer, i);
result.push(hiddenLayer);
this._hiddenLayers.push(hiddenLayer);
previousLayer = hiddenLayer;
}
return result;
}
initialize(): void {
this.layers = this.options.layers
? this._connectOptionsLayers()
: this._connectNewLayers();
this.initializeLayers(this.layers);
this._model = this.layers.filter((l) => l instanceof Model);
}
initializeLayers(layers: ILayer[]): void {
for (let i = 0; i < layers.length; i++) {
const layer = layers[i];
// TODO: optimize for when training or just running
layer.setupKernels(true);
if (
layer instanceof Model &&
layer.praxis === null &&
typeof this.options.initPraxis === 'function'
) {
layer.praxis = this.options.initPraxis(
layer,
layer.settings.praxisOpts ?? this.options.praxisOpts ?? {}
);
layer.praxis.setupKernels();
}
}
const lastLayer = layers[layers.length - 1];
this.meanSquaredError = new MeanSquaredError({
width: lastLayer.width,
height: lastLayer.height,
});
}
run(input: InputType): OutputType {
let typeSafeInput: INumberArray | KernelOutput;
if (Array.isArray(input) || (input as Float32Array).buffer) {
typeSafeInput = input as INumberArray;
} else {
if (this.inputLookup) {
typeSafeInput = lookup.toArray(
this.inputLookup,
input as INumberHash,
this.inputLookupLength as number
);
} else {
throw new Error('input is incompatible with net');
}
}
let output = this.runInput(typeSafeInput as KernelOutput);
if (output instanceof Texture) {
output = output.toArray();
}
if (this.outputLookup) {
return lookup.toObject(
this.outputLookup,
output as number[]
) as OutputType;
}
return output as OutputType;
}
runInput(input: KernelOutput): KernelOutput {
if (!this.layers) throw new Error('not initialized');
this.layers[0].predict(input);
for (let i = 1; i < this.layers.length; i++) {
this.layers[i].predict();
}
return this.layers[this.layers.length - 1].weights as KernelOutput;
}
train(
data: Array<IFeedForwardTrainingData<InputType, OutputType>>,
options: Partial<IFeedForwardTrainingOptions> = {}
): ITrainingStatus {
const { preparedData, status, endTime } = this._prepTraining(data, options);
let continueTicking = true;
const calculateError = (): number =>
this._calculateTrainingError(preparedData);
const trainPatterns = (): void => this._trainPatterns(preparedData);
while (continueTicking) {
continueTicking = this._trainingTick(
status,
endTime,
calculateError,
trainPatterns
);
}
return status;
}
async trainAsync(
data: Array<IFeedForwardTrainingData<InputType, OutputType>>,
options: Partial<IFeedForwardTrainingOptions> = {}
): Promise<ITrainingStatus> {
const { preparedData, status, endTime } = this._prepTraining(data, options);
return await new Promise((resolve, reject) => {
try {
const calculateError = (): number =>
this._calculateTrainingError(preparedData);
const trainPatterns = (): void => this._trainPatterns(preparedData);
const thawedTrain: Thaw = new Thaw(
new Array(this.trainOpts.iterations),
{
delay: true,
each: () =>
this._trainingTick(
status,
endTime,
calculateError,
trainPatterns
) || thawedTrain.stop(),
done: () => resolve(status),
}
);
thawedTrain.tick();
} catch (trainError) {
reject(trainError);
}
});
}
_trainingTick(
status: ITrainingStatus,
endTime: number,
calculateError: () => number,
trainPatterns: () => void
): boolean {
const { trainOpts } = this;
if (
status.iterations >= (trainOpts.iterations as number) ||
status.error <= (trainOpts.errorThresh as number) ||
Date.now() >= endTime
) {
return false;
}
if (
typeof trainOpts.log === 'function' &&
status.iterations % (trainOpts.logPeriod as number) === 0
) {
status.error = calculateError();
trainOpts.log(
`iterations: ${status.iterations}, training error: ${status.error}`
);
} else if (
status.iterations % (trainOpts.errorCheckInterval as number) ===
0
) {
status.error = calculateError();
} else {
trainPatterns();
}
if (
trainOpts.callback &&
status.iterations % (trainOpts.callbackPeriod as number) === 0
) {
trainOpts.callback(Object.assign(status));
}
status.iterations++;
return true;
}
_prepTraining(
data: Array<IFeedForwardTrainingData<InputType, OutputType>>,
options: Partial<IFeedForwardTrainingOptions>
): IFeedForwardPreppedTrainingData {
this._updateTrainingOptions(options);
const formattedData = this.formatData(data);
const endTime = this.trainOpts.timeout
? Date.now() + this.trainOpts.timeout
: 0;
const status = {
error: 1,
iterations: 0,
};
this.verifyIsInitialized();
return {
preparedData: this.transferData(formattedData),
status,
endTime,
};
}
verifyIsInitialized(): void {
if (!this._model) {
this.initialize();
}
}
_calculateTrainingError(preparedData: IFeedForwardGPUTrainingData[]): number {
let sum: Float32Array | KernelOutput = new Float32Array([0]);
const meanSquaredError = this.meanSquaredError as MeanSquaredError;
for (let i = 0; i < preparedData.length; ++i) {
const prevSum = sum;
const error = this._trainPattern(
preparedData[i].input,
preparedData[i].output,
true
) as number;
sum = meanSquaredError.add(sum, error);
release(error);
release(prevSum);
}
const result = meanSquaredError.divide(preparedData.length, sum);
release(sum);
if (result instanceof Texture) {
const resultArray: number[] = result.toArray() as number[];
release(result);
return resultArray[0];
}
return (result as number[])[0];
}
/**
* @param data
* @private
*/
_trainPatterns(data: IFeedForwardGPUTrainingData[]): void {
for (let i = 0; i < data.length; ++i) {
this._trainPattern(data[i].input, data[i].output, false);
}
}
_trainPattern(
input: KernelOutput,
target: KernelOutput,
logErrorRate: boolean
): KernelOutput | null {
// forward propagate
this.runInput(input);
// back propagate
this._calculateDeltas(target);
this.adjustWeights();
if (logErrorRate) {
if (!this._outputLayer?.errors) {
throw new Error('outputLayer.errors not defined');
}
return (this.meanSquaredError as MeanSquaredError).calculate(
this._outputLayer.errors
);
}
return null;
}
_calculateDeltas(target: KernelOutput): void {
const layers = this.layers as ILayer[];
for (let i = layers.length - 1; i > -1; i--) {
layers[i].compare(target);
}
}
/**
*
*/
adjustWeights(): void {
const _model = this._model as ILayer[];
for (let i = 0; i < _model.length; i++) {
_model[i].learn(this.trainOpts.learningRate as number);
}
}
/**
*
* @param data
* @returns {*}
*/
formatData(
data:
| Array<IFeedForwardTrainingData<InputType, OutputType>>
| IFeedForwardTrainingData<InputType, OutputType>
): IFeedForwardNormalizedTrainingData[] {
if (!Array.isArray(data)) {
// turn stream datum into array
const tmp = [];
tmp.push(data);
data = tmp;
}
// turn sparse hash input into arrays with 0s as filler
const inputDatumCheck = data[0].input;
let formattedData: Array<Partial<IFeedForwardNormalizedTrainingData>>;
if (
Array.isArray(data) &&
!Array.isArray(inputDatumCheck) &&
!(inputDatumCheck instanceof Float32Array)
) {
if (!this.inputLookup) {
const lookupTable = new LookupTable(data, 'input');
this.inputLookup = lookupTable.table;
this.inputLookupLength = lookupTable.length;
}
formattedData = data.map((datumParam): Partial<
IFeedForwardNormalizedTrainingData
> => {
const array = lookup.toArray(
this.inputLookup as INumberHash,
datumParam.input as INumberHash,
this.inputLookupLength as number
);
return { input: array };
}, this);
} else {
formattedData = data as typeof formattedData;
}
const outputDatumCheck = data[0].output;
if (
!Array.isArray(outputDatumCheck) &&
!(outputDatumCheck instanceof Float32Array)
) {
if (!this.outputLookup) {
const lookupTable = new LookupTable(data, 'output');
this.outputLookup = lookupTable.table;
this.outputLookupLength = lookupTable.length;
}
formattedData = data.map(
(datumParam, index): IFeedForwardNormalizedTrainingData => {
const array = lookup.toArray(
this.outputLookup as INumberHash,
datumParam.output as INumberHash,
this.inputLookupLength as number
);
return {
input: formattedData[index].input as Float32Array,
output: array,
};
},
this
);
}
return formattedData as IFeedForwardNormalizedTrainingData[];
}
transferData(
formattedData: IFeedForwardNormalizedTrainingData[]
): IFeedForwardGPUTrainingData[] {
const transferredData = new Array(formattedData.length);
const transferInput = makeKernel(
function (value: number[]): number {
return value[this.thread.x];
},
{
output: [formattedData[0].input.length],
immutable: true,
}
);
const transferOutput = makeKernel(
function (this: IKernelFunctionThis, value: number[]): number {
return value[this.thread.x];
},
{
output: [formattedData[0].output.length],
immutable: true,
}
);
for (let i = 0; i < formattedData.length; i++) {
const formattedDatum = formattedData[i];
transferredData[i] = {
input: transferInput(formattedDatum.input),
output: transferOutput(formattedDatum.output),
};
}
return transferredData;
}
/**
*
* @param data
* @returns {
* {
* error: number,
* misclasses: Array
* }
* }
*/
test(): void {
throw new Error(`${this.constructor.name}-test is not yet implemented`);
}
/**
*
*/
toJSON(): IFeedForwardJSON {
if (!this.layers) {
this.initialize();
}
if (
!this._model ||
!this.layers ||
!this._inputLayer ||
!this._hiddenLayers ||
!this._outputLayer
) {
throw new Error('network is not initialized');
}
const jsonLayers = [];
for (let i = 0; i < this.layers.length; i++) {
const layer = this.layers[i];
const jsonLayer = layer.toJSON();
if (layer.hasOwnProperty('inputLayer')) {
jsonLayer.inputLayerIndex = this.layers.indexOf(
layer.inputLayer as ILayer
);
} else if (
layer.hasOwnProperty('inputLayer1') &&
layer.hasOwnProperty('inputLayer2')
) {
jsonLayer.inputLayer1Index = this.layers.indexOf(
layer.inputLayer1 as ILayer
);
jsonLayer.inputLayer2Index = this.layers.indexOf(
layer.inputLayer2 as ILayer
);
}
jsonLayers.push(jsonLayer);
}
return {
type: this.constructor.name,
sizes:
this.options.sizes ??
[this._inputLayer.height]
.concat(this._hiddenLayers.map((l) => l.height))
.concat([this._outputLayer.height]),
outputLayerIndex: this.layers.indexOf(this._outputLayer),
layers: jsonLayers as ILayerJSON[],
inputLayerIndex: this.layers.indexOf(this._inputLayer),
};
}
static fromJSON(
json: IFeedForwardJSON,
getLayer?: (
layerJson: ILayerJSON,
inputLayer1?: ILayer,
inputLayer2?: ILayer
) => ILayer
): FeedForward {
const jsonLayers = json.layers;
const layers: ILayer[] = [];
const inputLayer = getLayer
? layerFromJSON(jsonLayers[0]) ?? getLayer(jsonLayers[0])
: layerFromJSON(jsonLayers[0]);
if (!inputLayer) throw new Error('unable to find layer');
layers.push(inputLayer);
for (let i = 1; i < jsonLayers.length; i++) {
const jsonLayer = jsonLayers[i];
if (
typeof jsonLayer.inputLayerIndex === 'undefined' &&
typeof jsonLayer.inputLayer1Index === 'undefined' &&
typeof jsonLayer.inputLayer2Index === 'undefined'
) {
const layer = getLayer
? layerFromJSON(jsonLayer) ?? getLayer(jsonLayer)
: layerFromJSON(jsonLayer);
if (!layer) throw new Error('unable to find layer');
layers.push(layer);
} else if (typeof jsonLayer.inputLayerIndex === 'number') {
const inputLayer = layers[jsonLayer.inputLayerIndex];
if (!inputLayer) {
throw new Error('inputLayer1 not found');
}
const layer = getLayer
? layerFromJSON(jsonLayer, inputLayer) ??
getLayer(jsonLayer, inputLayer)
: layerFromJSON(jsonLayer, inputLayer);
if (!layer) throw new Error('unable to find layer');
layers.push(layer);
} else {
if (typeof jsonLayer.inputLayer1Index !== 'number') {
throw new Error(
'Cannot create network from provided JSON. inputLayer1Index not defined.'
);
}
if (typeof jsonLayer.inputLayer2Index !== 'number') {
throw new Error(
'Cannot create network from provided JSON. inputLayer2Index not defined.'
);
}
const inputLayer1 = layers[jsonLayer.inputLayer1Index];
const inputLayer2 = layers[jsonLayer.inputLayer2Index];
if (inputLayer1 === undefined)
throw new Error(
`Cannot create network from provided JSON. layer of index ${jsonLayer.inputLayer1Index} not found.`
);
if (inputLayer2 === undefined)
throw new Error(
`Cannot create network from provided JSON. layer of index ${jsonLayer.inputLayer2Index} not found.`
);
const layer = getLayer
? layerFromJSON(jsonLayer, inputLayer1, inputLayer2) ??
getLayer(jsonLayer, inputLayer1, inputLayer2)
: layerFromJSON(jsonLayer, inputLayer1, inputLayer2);
if (!layer) throw new Error('unable to find layer');
layers.push(layer);
}
}
return new this({ ...json, layers });
}
/**
*
* @returns {Function}
*/
toFunction(): void {
throw new Error(
`${this.constructor.name}-toFunction is not yet implemented`
);
}
/**
* This will create a TrainStream (WriteStream) for us to send the training data to.
* @param opts training options
* @returns {TrainStream|*}
*/
createTrainStream(): void {
throw new Error(
`${this.constructor.name}-createTrainStream is not yet implemented`
);
}
}