-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgain_calibration.py
89 lines (56 loc) · 2.31 KB
/
gain_calibration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#!/bin/env python3
# script for auto-calibration of analog gain in raspberry pi image sensors using raspiraw.
# It checks multiple gain settings, and prints the gain with the best (most centered/widest) histogram distribution.
import rawpy
import numpy as np
import argparse
import subprocess
from PIL import ImageStat
# input is: exposure in microseconds, height and width
def getArgs():
exposure = ''
width = ''
height = ''
parser = argparse.ArgumentParser()
parser.add_argument(type=int, nargs = 4, action='store', dest='arguments', \
default=False, help='mode (integer), exposure in microseconds, height and width in pixels')
args = parser.parse_args()
exposure, width, height = args.arguments
return mode, exposure, width, height
mode, exposure, width, height = getArgs()
def check_histogram_distribution(image_matrix, bins=256):
image_flattened = image_matrix.flatten()
image_hist = np.zeros(bins)
# frequency count of each pixel
for pix in image_matrix:
image_hist[pix] += 1
# cumulative sum
cum_sum = np.cumsum(image_hist)
norm = (cum_sum - cum_sum.min()) * 255
return cum_sum, norm
print(norm)
def signalToNoise(image, axis=0, ddof=0):
a = np.asanyarray(image)
m = a.mean(axis)
sd = a.std(axis=axis, ddof=ddof)
return np.where(sd == 0, 0, m/sd)
register_values = range(0,232, 5)
def capture_images(mode, exposure, width, height):
hexed_gains = [hex(x) for x in register_values]
for x,y in zip(hexed_gains, register_values):
subprocess.Popen("raspiraw --mode ", mode,
"--expus ", exposure,
"--width ", width,
"--height ", height,
"--fps 1 --timeout 1000 --i2c 10 --regs ", x,
"--header --tstamps tstamps.csv --output gain_", y, ".raw")
filenames = ["gain_" + y + ".raw" for y in register_values]
return filenames
def raw_conversion(raw_images):
for y in rawfiles:
with rawpy.imread(y) as raw:
rgb = raw.postprocess(
fbdd_noise_reduction=rawpy.FBDDNoiseReductionMode.Full,
no_auto_bright=False, output_bps=8)
grayframe = cv.cvtColor(rgb, cv.COLOR_BGR2GRAY)
rawfiles = capture_images(mode, exposure, width, height)