forked from larsdehlwes/highspeed-raspiraw_rpi4
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimate_vel_vid.py
708 lines (500 loc) · 24.5 KB
/
estimate_vel_vid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#!/bin/env python3
# Copyright Jacob Dybvald Ludvigsen, 2022
# you may use this software for any purpose, as long as you include the above Copyright notice,
# and follow the conditions of the licence.
# This is free software, licenced under BSD-3-Clause
#install dependencies:
# python3 -m pip install numpy rawpy imageio matplotlib opencv-contrib-python h5py matplotlib
from scipy import interpolate
import h264decoder # to directly open .h264 files
import csv # for output of data
import h5py # to enable high-performance file handling
#from numba import jit, njit # to compile code for quicker execution
from multiprocessing import Pool # to run multiple instances of time-consuming processes
import subprocess # to execute c-program "double"
import linecache # to read long files line by line efficiently
import random # to choose a random image from image range
import numpy as np # to manipulate images as arrays
import argparse # to accept command-line input
import cv2 as cv # to use various image manipulations
import matplotlib.pyplot as plt # for plot functionality
from pathlib import Path # to handle directory paths properly
#from memory_profiler import profile # for memory benchmarking
# Take input, expand to range, convert to list with leading zeroes and return
#@profile
def retFileList():
numberList = []
firstFrame = ''
lastFrame = ''
parser = argparse.ArgumentParser()
parser.add_argument(type=int, nargs ='*', action='store', dest='fileIndex', \
default='False', help='index of first image to be read. If full is passed, the whole video is used')
parser.add_argument('-f', '--full', nargs ='?', action='store', dest='useWholeVideo', \
default='False', const='True', help='index of last image to be read. If full is passed, the whole video is used')
parser.add_argument('-p', '--path', nargs='?', type=Path, dest="srcDirectory", default='/dev/shm/', \
help='which directory to read images from. Specify with "-p <path-to-folder>" or "--path <path-to-folder". Leave empty for /dev/shm/')
parser.add_argument('-c', '--continue', nargs='?', action='store', dest='continuation', \
default='False', const='True', help='continue analysis of video from previous attempt')
parser.add_argument('-h264', nargs='?', action='store', dest='h264',
default='False', const='True', help='whether to read h264 file directly instead of mkv file.')
args = parser.parse_args()
srcDir = args.srcDirectory
imagePath = str(srcDir)
continuation = args.continuation
if args.fileIndex != None and args.useWholeVideo != 'True':
firstFrame, lastFrame = args.fileIndex
r = range(firstFrame, lastFrame)
numberList = list([*r])
numberList.append(lastFrame)
if args.useWholeVideo == "True":
lastFrame = -1
return firstFrame, lastFrame, numberList, imagePath, continuation, args.h264
firstFrame, lastFrame, numberList, imagePath, continuation, use_h264 = retFileList()
def get_meta():
for fileName in Path(imagePath).glob("*.mkv"):
vid_file = str(fileName)
break
cap = cv.VideoCapture(vid_file)
# get vcap property
width = int(cap.get(3)) # float `width`
height = int(cap.get(4)) # float `height`
totalFrames = int(cap.get(7)) # cv.CAP_PROP_FRAME_COUNT
cap.release()
return width, height, totalFrames
def get_meta_h264():
#incoming data
for fileName in Path(imagePath).glob("*.h264"):
vid = open(fileName, 'rb')
decoder = h264decoder.H264Decoder()
while (1):
data_in = vid.read(1024)
if not data_in:
break
framedata, nread = decoder.decode_frame(data_in)
data_in = data_in[nread:]
(frame, width, height, lineSize) = framedata
break
break
return width, height
if use_h264 != "True":
width, height, totalFrames = get_meta()
else:
width, height = get_meta_h264()
if lastFrame == -1:
firstFrame = 0
lastFrame = totalFrames
r = range(firstFrame, lastFrame)
numberList = list([*r])
numberList.append(lastFrame)
def read_vid_h264():
k = 0
#incoming data
for fileName in Path(imagePath).glob("*.h264"):
vid_file = str(fileName)
break
vid = open(vid_file, 'rb')
decoder = h264decoder.H264Decoder()
while (1):
data_in = vid.read(1024)
if not data_in:
break
framedata, nread = decoder.decode_frame(data_in)
data_in = data_in[nread:]
(frame, width, height, lineSize) = framedata
if frame is not None:
frame = np.frombuffer(frame, dtype=np.ubyte, count=len(frame))
frame = frame.reshape((height, lineSize//3, 3))
frame = frame[:,:width,:]
grayframe = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
grayframe = grayframe[np.newaxis, ... ].astype(np.uint8)
if k == 0:
noisy_arrs = np.asarray(grayframe)
else:
noisy_arrs = np.append(noisy_arrs, grayframe, axis=0)
k += 1
#print(noisy_arrs)
if k == len(numberList):
break
return noisy_arrs
# read relevant video frames
def read_vid_mkv():
# incoming data
cap = cv.VideoCapture(imagePath + "/video.mkv")
k = 0
while cap.isOpened():
frame_no = cap.set(cv.CAP_PROP_POS_FRAMES, k)
ret, frame = cap.read()
if ret != 1:
break
grayframe = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
grayframe = grayframe[np.newaxis, ... ].astype(np.uint8)
# first file; create the dummy dataset with no max shape
if k == 0:
noisy_arrs = np.asarray(grayframe)
else:
noisy_arrs = np.append(noisy_arrs, grayframe, axis=0)
k += 1
#print(noisy_arrs)
if k == len(numberList):
break
return noisy_arrs
### Increase contrast by equalisizing histogram, without increasing noise
def adaptive_histogram_equalization(noisy_arrs):
k = 0
clahe = cv.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
for z in noisy_arrs:
equalized = clahe.apply(z)
equalized = equalized[np.newaxis, ...].astype(np.uint8)
print(equalized)
if k == 0:
eq_arrs = np.asarray(equalized)
# layer the current array on top of previous array, write to file. Slow.
# Ideally, number of write processes should be minimized.
else:
eq_arrs = np.append(eq_arrs, equalized, axis=0)
k += 1
return eq_arrs
### Blur image to reduce noise. We don't really need sharp edges to estimate motion with findTransformECC()
def blurring(sharpImage):
blurredImage = cv.GaussianBlur(sharpImage, (3, 3), sigmaX=0)
return blurredImage
### Denoise image numberIndex by comparing with other images in num_frames_window
def denoising(arrays, numberIndex, num_frames_window):
cleanImageArray = cv.fastNlMeansDenoisingMulti(srcImgs=arrays,
imgToDenoiseIndex=numberIndex, temporalWindowSize=num_frames_window,
h=15, templateWindowSize=19, searchWindowSize=41) # h is filter strength. h=10 is default
return cleanImageArray
hf5_params = dict(maxshape=(len(numberList)+10, height, width),
chunks = (10, height, width),
dtype = 'uint8',
compression="gzip",
compression_opts=7,
shuffle=True)
## Main function for denoising and contrast enhancing of image arrays
def denoise_hf5(eq_arrs):
k = 0
with h5py.File(imagePath + '/images.h5', 'w') as f:
for z in eq_arrs:
try: # Try, to enable error handling
# denoise image
if (k <= 1) or (k >= (len(numberList) - 3)):
# denoise two first and last images individually
cleanImageArray = cv.fastNlMeansDenoising(src=z,
h=15, templateWindowSize=19, searchWindowSize=41)
elif (k <= 4) or (k >= (len(numberList) - 5)):
# denoise using some neighbouring images as template
cleanImageArray = denoising(eq_arrs, k, 5)
else: #(numberIndex <= 7) or (numberIndex >= (len(numberList) - 7)):
# denoise using more neighbouring images as template
cleanImageArray = denoising(eq_arrs, k, 9)
except:
print('something went wrong with denoising')
break
# else:
# denoise using more neighbouring images as template
# cleanImageArray = denoising(noisy_slice, numberIndex, 13)
# blurredImageArray = blurring(cleanImageArray) # blur to further reduce noise
blurredImageArray = cleanImageArray[np.newaxis, ...].astype(np.uint8) # add axis to enable appending
if k == 0:
# make the first array
blurred_arrs = np.asarray(blurredImageArray)
if k != 0:
# layer the current array on top of previous array
blurred_arrs = np.append(blurred_arrs, blurredImageArray, axis=0)
k += 1
print(f'Frame {k} of {len(numberList)} Denoised')
# create dataset with dimensions matching however many arrays were successfully processed. Avoids issues with broadcasting arrays to dataset
clean_dataset = f.create_dataset("clean_images", shape=(blurred_arrs.shape), **hf5_params)
#set attributes for image dataset
clean_dataset.attrs['CLASS'] = 'IMAGE'
clean_dataset.attrs['IMAGE_VERSION'] = '1.2'
clean_dataset.attrs['IMAGE_SUBCLASS'] = 'IMAGE_GRAYSCALE'
clean_dataset.attrs['IMAGE_MINMAXRANGE'] = np.array([0,255], dtype=np.uint8)
clean_dataset.attrs['IMAGE_WHITE_IS_ZERO'] = 0
f['clean_images'].write_direct(blurred_arrs) #write all arrays at once. fast.
return blurred_arrs
Transform_ECC_params = dict(motionType = cv.MOTION_TRANSLATION, # only motion in x- and y- axes
criteria = (cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT, 10000, 0.0001)) # max iteration count and desired epsilon. Terminates when either is reached.
# Get total shift in x- and y- direction between two image frames / arrays
def calc_ECC_transform(prevFrame, curFrame):
# Construct scale pyramid to speed up and improve accuracy of transform estimation
nol = 4 # number of layers
init_warp = np.eye(2, 3, dtype=np.float32) # identity matrix
ECCTransform = init_warp * np.array([[1, 1, 2], [1, 1, 2]], dtype=np.float32)**(1-nol) # adjust warp according to scale of array
prevFrame = [prevFrame]
curFrame = [curFrame]
for level in range(nol): # add resized layers to original array, to get 3 dimensions.
prevFrame.insert(0, cv.resize(prevFrame[0], None, fx=1/2, fy=1/2,
interpolation=cv.INTER_AREA))
curFrame.insert(0, cv.resize(curFrame[0], None, fx=1/2, fy=1/2,
interpolation=cv.INTER_AREA))
# run pyramid ECC
for level in range(nol):
# Calculate the transform matrix which must be applied to prevFrame in order to match curFrame
try:
# breakpoint()
computedECC, ECCTransform = cv.findTransformECC(prevFrame[level], curFrame[level], ECCTransform, **Transform_ECC_params)
measurement_flag = 1
except:
print(f'\nECCTransform could not be found for layer {level+1} of {nol}')
#ECCTransform = # np.eye(2, 3, dtype=np.float32)
#computedECC = 0
measurement_flag = 0
if level != nol-1: # scale up for the next pyramid level, unless the next layer is the original image
ECCTransform = ECCTransform * np.array([[1, 1, 2], [1, 1, 2]], dtype=np.float32)
#if level == nol-1 and ECCTransform == None:
# Extract second element of first and second row, which is translation in their respective directions
try:
pdx, pdy = ECCTransform[0,2], ECCTransform[1,2]
except:
print(f'no transform found for images')
pdx = 0
pdy = 0
# I think computedECC is the confidence that the transform matrix fits.
#print(f'\n\nECC confidence of transform: {computedECC}') #, \npixel delta x-axis: {pdx} \npixel delta y-axis: {pdy}')
return pdx, pdy, measurement_flag
FB_opt_flow_params=dict(pyr_scale=.5,
levels=3,
winsize= 16,
iterations=15,
poly_n=5,
poly_sigma=1.2,
flags= 1)
def calculate_dense_flow(prevFrame, curFrame):
flow = cv.calcOpticalFlowFarneback(prevFrame, curFrame, None, **FB_opt_flow_params)
pdx, pdy = flow[..., 0], flow[..., 1]
pdx_average, pdy_average = np.mean(pdx), np.mean(pdy)
return pdx_average, pdy_average
# These two variables anchor motion estimates to real-world values
max_filament_speed = 140 # mm/min
max_filament_speed_sec = max_filament_speed / 60 # mm/s
pixels_per_mm = 611 # estimated by counting pixels between edges of known object.
max_filament_speed = pixels_per_mm * max_filament_speed # pixels/second
# Instantiating stores for values
encoder_out_info_list = []
enc_pos_list = []
enc_ts_list = []
velocity_list_x = []
velocity_list_y = []
motion_list_opt = []
out_information = []
csv_field_names = ['Timestamp [s]', 'mm/min X-axis optical', 'mm/min Y-axis optical']
tsList = [] # timestamps indexed per-frame
total_timestamp_list = [] # cumulative timestamps
def encoder_velocity():
k = 2
camera_triggered = 0
filament_motion = 0
total_timestamp_enc = 0
firstRunFlag = 1
# get camera timestamp file
for fileName in Path(imagePath).glob("*tstamps.txt"):
tstamp_fileName = str(fileName)
break
# fetch specific line from cached file,an efficient method.
line = linecache.getline(tstamp_fileName, lastFrame)
total_timestamp_opt = float(line.split("\n")[0]) / 1000
for fileName in Path(imagePath).glob("*encoder.csv"):
encoder_log = str(fileName)
break
while camera_triggered == 0:
line = linecache.getline(encoder_log, k)
camera_triggered = int(line.split(",")[8].split("\n")[0][0])
k += 1
if camera_triggered == 1:
k -= 2
break
while (total_timestamp_enc <= total_timestamp_opt):
line = linecache.getline(encoder_log, k)
if line == "":
break
encoder_timestamp = float(line.split(",")[0]) #
filament_position = float(line.split(",")[2]) # mm
if firstRunFlag == 1:
encoder_timestamp_second = encoder_timestamp / 1000
old_ts = encoder_timestamp_second
old_pos = filament_position
k += 1
firstRunFlag = 0
continue
encoder_timestamp_second = encoder_timestamp / 1000 # millisecond to second
timestamp_gap_enc = encoder_timestamp_second - old_ts
total_timestamp_enc = total_timestamp_enc + timestamp_gap_enc
filament_motion = filament_position - old_pos
velocity_encoder = (filament_motion / (timestamp_gap_enc/60)) # mm/min
print(f'\n\nencoder timestamp: {total_timestamp_enc}, \nposition: {filament_position}, \nvelocity: {velocity_encoder}')
encoder_out_info = (total_timestamp_enc, filament_position, velocity_encoder)
encoder_out_info_list.append(encoder_out_info)
enc_pos_list.append(filament_position)
enc_ts_list.append(total_timestamp_enc)
old_ts = encoder_timestamp_second
old_pos = filament_position
k += 1
return enc_pos_list, enc_ts_list
def end_process(clean_arrs):
k = 0
failed_estimates = 0
total_motion_optical_flow = 0
opt_flow_list = []
timestamp_k = firstFrame + 2 # skip lines with metadata and first (0.0 sec) timestamp
old_vx = 0
old_ts = 0
total_timestamp = 0
timestamp_gap = 0
opt_lateral_position = 0
# iterate over slice's first axis
for z,x in zip(clean_arrs, numberList):
if k == 0:
prevFrame = z
k += 1
timestamp_k += 1
continue # nothing to do with just the first image array
else:
# get timestamp file
for fileName in Path(imagePath).glob("*tstamps.txt"):
tstamp_fileName = str(fileName)
break
pdx, pdy, measurement_flag = calc_ECC_transform(prevFrame, z) # get pixel-relative motion between frames
pdx_optical_flow, pdy_optical_flow = calculate_dense_flow(prevFrame, z)
total_motion_optical_flow += pdx_optical_flow
opt_flow_list.append(total_motion_optical_flow)
#print(f'Optical flow pdx: {pdx_optical_flow} \nOptical flow pdy: {pdy_optical_flow}')
if (pdx < 2 and measurement_flag == 1):
k += 1
timestamp_k += 1
continue
if measurement_flag == 0:
failed_estimates += 1
# fetch specific line from cached file,an efficient method.
line = linecache.getline(tstamp_fileName, timestamp_k)
total_timestamp = float(line.split("\n")[0]) # store the specific portion of the line as timestamp. microsecond format
if total_timestamp == '':
total_timestamp = 1E-10
timestamp_second = total_timestamp / (1000) # convert from millisecond to second
timestamp_gap_s = timestamp_second - old_ts
timestamp_gap_m = timestamp_gap_s / 60 # convert from second to minute
tsList.append(timestamp_second) # append to list of timestamps
#total_timestamp = total_timestamp + int(timestamp)
#total_timestamp_list.append(total_timestamp)
old_ts = timestamp_second
mm_dx, mm_dy = pdx / pixels_per_mm, pdy / pixels_per_mm # convert to millimeter-relative motion
#converting from non-timebound relative motion to timebound (seconds) relative motion
vxs, vys = mm_dx / timestamp_gap_s, mm_dy / timestamp_gap_s
vxm, vym = mm_dx / timestamp_gap_m, mm_dy / timestamp_gap_m
opt_lateral_position += mm_dx
xmax = max_filament_speed * timestamp_gap_m # px/interval
print(f'\n\nxmax = {xmax} pixels for this image interval. \npdx = {pdx} \npdy = {pdy}')
velocity_list_x.append(vxm)
velocity_list_y.append(vym)
motion_list_opt.append(opt_lateral_position)
out_info = (vxm, vym, timestamp_second)
out_information.append(out_info)
prevFrame = z # store current array as different variable to use next iteration
k += 1
timestamp_k += 1
print(f'\nfailed motion estimates: {failed_estimates} of {len(numberList)}')
print(f'final position according to findTransformECC: {opt_lateral_position}')
print(f'final position according to Dense optical flow: {total_motion_optical_flow/pixels_per_mm}\n\n')
return out_information, velocity_list_x, velocity_list_y, tsList, motion_list_opt
def dataset_correlation(optical_pos, optical_ts, encoder_pos, encoder_ts):
#breakpoint()
k = 0
interpolated_vel_list_opt = []
interpolated_vel_list_enc = []
# interpolate data, hitting all original datapoints
f_interpolated_opt_pos = interpolate.Akima1DInterpolator(optical_ts, optical_pos)
f_interpolated_enc_pos = interpolate.Akima1DInterpolator(encoder_ts, encoder_pos)
# make new timestamp list, with equally spaced intervals and equal number of points as camera frames
tsList_new = np.linspace(0, optical_ts[-1], len(optical_ts))
# resample datasets to new timestamp list
interpolated_opt_pos = f_interpolated_opt_pos(tsList_new)
interpolated_enc_pos = f_interpolated_enc_pos(tsList_new)
for mm_dx_opt, mm_dx_enc, ts in zip(interpolated_opt_pos, interpolated_enc_pos, tsList_new):
if k == 0:
old_ts = ts
k += 1
continue
timestamp_gap = ts - old_ts
v_opt = (mm_dx_opt / timestamp_gap) * 60
v_enc = (mm_dx_enc / timestamp_gap) * 60
interpolated_vel_list_opt.append(v_opt)
interpolated_vel_list_enc.append(v_enc)
k += 1
return interpolated_opt_pos, interpolated_enc_pos, tsList_new, interpolated_vel_list_enc, interpolated_vel_list_opt
correlated_position_csv_headers = ['timestamp [s]', 'position optical', 'position encoder']
def presentData(out_information, velocity_list_x, velocity_list_y, tsList, interpolated_opt_pos, interpolated_enc_pos, interpolated_tsList, interpolated_vel_list_enc, interpolated_vel_list_opt):
### write comma separated value file, for reuse in other software or analysis
with open(imagePath + '/velocity_estimates.csv', 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(csv_field_names)
csvwriter.writerows(out_information)
with open(imagePath + '/correlated_positions.csv', 'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerow(correlated_position_csv_headers)
for value in zip(interpolated_tsList, interpolated_opt_pos, interpolated_enc_pos):
csvwriter.writerow(value)
# # plot velocity along x-axis (lateral)
# fig1 = plt.figure(figsize=(100,40))
# plt.plot(tsList, velocity_list_x, c = 'red', marker = 'o', linewidth='4')
# plt.grid(color='green', linestyle='-')
# plt.xlabel('timestamp seconds', fontsize=32)
# plt.ylabel('lateral velocity [mm/min]', fontsize=32)
# plt.xticks(fontsize=24)
# plt.yticks(fontsize=24)
# fig1.savefig(fname = (f'{imagePath}/lateral_velocity_frames{firstFrame}-{lastFrame}.png'), dpi =100)
# plt.show()
#
#
# # plot velocity along y-axis (perpendicular)
# fig2 = plt.figure(figsize=(100,20))
# plt.plot(tsList, velocity_list_y, c = 'green', marker = 'o', linewidth='4')
# plt.grid(color='r', linestyle='-')
# plt.xlabel('timestamp seconds', fontsize=32)
# plt.ylabel('perpendicular velocity [mm/min]', fontsize=32)
# plt.xticks(fontsize=24)
# plt.yticks(fontsize=24)
# fig2.savefig(fname = (f'{imagePath}/perpendicular_velocity_frames{firstFrame}-{lastFrame}.png'), dpi = 100)
# plt.show()
fig1 = plt.figure(figsize=(100,40))
plt.plot(interpolated_tsList, interpolated_enc_pos, c = 'red', marker = 'o', linewidth='4')
plt.plot(interpolated_tsList, interpolated_opt_pos, c = 'blue', marker = 'o', linewidth='4')
plt.grid(color='green', linestyle='-')
plt.xlabel('timestamp seconds. Blue is optical, red is encoder', fontsize=32)
plt.ylabel('lateral position [mm]', fontsize=32)
plt.xticks(fontsize=24)
plt.yticks(fontsize=24)
fig1.savefig(fname = (f'{imagePath}/enc+opt_lateral_position_frames{firstFrame}-{lastFrame}.png'), dpi =100)
plt.show()
fig1 = plt.figure(figsize=(100,40))
plt.plot(interpolated_tsList[1:], interpolated_vel_list_enc, c = 'red', marker = 'o', linewidth='4')
plt.plot(interpolated_tsList[1:], interpolated_vel_list_opt, c = 'blue', marker = 'o', linewidth='4')
plt.grid(color='green', linestyle='-')
plt.xlabel('timestamp seconds. Blue is optical, red is encoder', fontsize=32)
plt.ylabel('perpendicular velocity [mm/min]', fontsize=32)
plt.xticks(fontsize=24)
plt.yticks(fontsize=24)
fig1.savefig(fname = (f'{imagePath}/enc+opt_vel_frames{firstFrame}-{lastFrame}.png'), dpi =100)
plt.show()
def main():
if continuation != 'True':
# get input
if use_h264 == "True":
noisy_arrs = read_vid_h264()
else:
noisy_arrs = read_vid_mkv()
# enhance contrast
eq_arrs = adaptive_histogram_equalization(noisy_arrs)
# denoise images
clean_arrs = denoise_hf5(eq_arrs)
else:
with h5py.File(imagePath + '/images.h5', 'r') as f:
clean_arrs = f['clean_images'][()]
# read encoder motion and timestamps from csv file
enc_pos_list, enc_ts_list = encoder_velocity()
# find velocity
out_information, velocity_list_x, velocity_list_y, tsList, motion_list_opt = end_process(clean_arrs)
interpolated_opt_pos, interpolated_enc_pos, interpolated_tsList, interpolated_vel_list_enc, interpolated_vel_list_opt = dataset_correlation(motion_list_opt, tsList, enc_pos_list, enc_ts_list)
# present data
presentData(out_information, velocity_list_x, velocity_list_y, tsList, interpolated_opt_pos, interpolated_enc_pos, interpolated_tsList, interpolated_vel_list_enc, interpolated_vel_list_opt)
if __name__ == "__main__":
main()