forked from wangyirui/AD_Prediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AD_2DRandomSlicesData.py
145 lines (113 loc) · 4.59 KB
/
AD_2DRandomSlicesData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import nibabel as nib
import os
from torch.utils.data import Dataset
import numpy as np
import matplotlib.pyplot as plt
from skimage.transform import resize
from PIL import Image
import random
AX_F = 0.32
COR_F = 0.56
SAG_F = 0.56
NON_AX = (1, 2)
NON_COR = (0, 2)
NON_SAG = (0, 1)
AX_SCETION = "[slice_i, :, :]"
COR_SCETION = "[:, slice_i, :]"
SAG_SCETION = "[:, :, slice_i]"
class AD_2DRandomSlicesData(Dataset):
"""labeled Faces in the Wild dataset."""
def __init__(self, root_dir, data_file, transform=None, slice = slice):
"""
Args:
root_dir (string): Directory of all the images.
data_file (string): File name of the train/test split file.
transform (callable, optional): Optional transform to be applied on a sample.
data_augmentation (boolean): Optional data augmentation.
"""
self.root_dir = root_dir
self.data_file = data_file
self.transform = transform
def __len__(self):
return sum(1 for line in open(self.data_file))
def __getitem__(self, idx):
df = open(self.data_file)
lines = df.readlines()
lst = lines[idx].split()
img_name = lst[0]
img_label = lst[1]
image_path = os.path.join(self.root_dir, img_name)
image = nib.load(image_path)
samples = []
if img_label == 'Normal':
label = 0
elif img_label == 'AD':
label = 1
elif img_label == 'MCI':
label = 2
AXimageList = axRandomSlice(image)
CORimageList = corRandomSlice(image)
SAGimageList = sagRandomSlice(image)
for img2DList in (AXimageList, CORimageList, SAGimageList):
for image2D in img2DList:
image2D = Image.fromarray(image2D.astype(np.uint8), 'RGB')
if self.transform:
image2D = self.transform(image2D)
sample = {'image': image2D, 'label': label}
samples.append(sample)
random.shuffle(samples)
return samples
def getRandomSlice(image_array, mean_direc, fraction, section, step = 2):
mean_array = np.ndarray.mean(image_array, axis = mean_direc)
first_p = list(mean_array).index(filter(lambda x: x>0, mean_array)[0])
last_p = list(mean_array).index(filter(lambda x: x>0, mean_array)[-1])
slice_p = int(round(first_p + (last_p - first_p)*fraction))
slice_2Dimgs = []
slice_select_0 = None
slice_select_1 = None
slice_select_2 = None
randomShift = random.randint(-18, 18)
slice_p = slice_p + randomShift
i = 0
for slice_i in range(slice_p-step, slice_p+step+1, step):
slice_select = eval("image_array"+section)/1500.0*255
exec("slice_select_"+str(i)+"=slice_select")
i += 1
slice_2Dimg = np.stack((slice_select_0, slice_select_1, slice_select_2), axis = 2)
slice_2Dimgs.append(slice_2Dimg)
return slice_2Dimgs
def axRandomSlice(image):
image_array = np.array(image.get_data())
return getRandomSlice(image_array, NON_AX, AX_F, AX_SCETION)
def corRandomSlice(image):
image_array = np.array(image.get_data())
return getRandomSlice(image_array, NON_COR, COR_F, COR_SCETION)
def sagRandomSlice(image):
image_array = np.array(image.get_data())
return getRandomSlice(image_array, NON_SAG, SAG_F, SAG_SCETION)
def getRandom3Slices(image_array, mean_direc, fraction, section, step = 2):
mean_array = np.ndarray.mean(image_array, axis = mean_direc)
first_p = list(mean_array).index(filter(lambda x: x>0, mean_array)[0])
last_p = list(mean_array).index(filter(lambda x: x>0, mean_array)[-1])
slice_p = int(round(first_p + (last_p - first_p)*fraction))
slice_2Dimgs = []
randomShift = random.sample(xrange(-18,19), 3)
for j in range(len(randomShift)):
slice_sp = slice_p + randomShift[j]
i = 0
slice_select_0 = None
slice_select_1 = None
slice_select_2 = None
for slice_i in range(slice_sp-step, slice_sp+step+1, step):
slice_select = eval("image_array"+section)/1500.0*255
exec("slice_select_"+str(i)+"=slice_select")
i += 1
slice_2Dimg = np.stack((slice_select_0, slice_select_1, slice_select_2), axis = 2)
slice_2Dimgs.append(slice_2Dimg)
return slice_2Dimgs
def axRandom3Slices(image_array):
return getRandom3Slices(image_array, NON_AX, AX_F, AX_SCETION)
def corRandom3Slices(image_array):
return getRandom3Slices(image_array, NON_COR, COR_F, COR_SCETION)
def sagRandomeSlices(image_array):
return getRandom3Slices(image_array, NON_SAG, SAG_F, SAG_SCETION)