-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
120 lines (92 loc) · 5.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import math
from einops import rearrange
import torch
from torch import nn
import transformer
class Classify_transformer(nn.Module):
def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, dim_feedforward,
max_seq_length, pos_dropout):
super().__init__()
self.d_model = d_model
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_enc = PositionalEncoding(d_model, pos_dropout, max_seq_length)
# self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, trans_dropout)
self.transformer = transformer.Classifier(d_model, nhead, num_encoder_layers,
dim_feedforward)
self.classify_0 = nn.Linear(d_model, 128)
self.classify_1 = nn.Linear(128, 2)
# self.classify_0 = nn.Linear(d_model, 2)
def forward(self, src):
# Reverse the shape of the batches from (num_sentences, num_tokens_in_each_sentence)
src = src.permute(1, 0)
# Embed the batches, scale by sqrt(d_model), and add the positional encoding
src = self.pos_enc(self.embedding(src) * math.sqrt(self.d_model))
# Send the batches to the model
output = self.transformer(src)
# Rearrange to batch-first
# output = output.permute(1,0,2)
output = rearrange(output, 't n e -> n t e')
# print("in model, output size", output.size())
output = output.mean(dim=1)
# print("in model, output size", output.size())
output = self.classify_0(output)
output = self.classify_1(output)
# print("in model, output size", output.size())
# print("in model, attention weight size", attention_weight.size())
# Run the output through an fc layer to return values for each token in the vocab
return output
class ScoreTransformer(nn.Module):
def __init__(self, vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, max_seq_length, pos_dropout, trans_dropout):
"""
Initializes the model
Parameters:
vocab_size (int): The amount of tokens in both vocabularies (including start, end, etc tokens)
d_model (int): Expected number of features in the encoder/decoder inputs, also used in embeddings
nhead (int): Number of heads in the transformer
num_encoder_layers (int): Number of sub-encoder layers in the transformer
num_decoder_layers (int): Number of sub-decoder layers in the transformer
dim_feedforward (int): Dimension of the feedforward network in the transformer
max_seq_length (int): Maximum length of each tokenized sentence
pos_dropout (float): Dropout value in the positional encoding
trans_dropout (float): Dropout value in the transformer
"""
super().__init__()
self.d_model = d_model
self.embedding = nn.Embedding(vocab_size, d_model)
self.pos_enc = PositionalEncoding(d_model, pos_dropout, max_seq_length)
# self.transformer = nn.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, trans_dropout)
self.transformer = transformer.Transformer(d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, trans_dropout)
self.fc = nn.Linear(d_model, vocab_size)
def forward(self, src, tgt, src_key_padding_mask, tgt_key_padding_mask, memory_key_padding_mask, tgt_mask):
# Reverse the shape of the batches from (num_sentences, num_tokens_in_each_sentence)
src = src.permute(1,0)
tgt = tgt.permute(1,0)
# Embed the batches, scale by sqrt(d_model), and add the positional encoding
src = self.pos_enc(self.embedding(src) * math.sqrt(self.d_model))
tgt = self.pos_enc(self.embedding(tgt) * math.sqrt(self.d_model))
# Send the batches to the model
output, attention_weight = self.transformer(src, tgt, tgt_mask=tgt_mask[0], src_key_padding_mask=src_key_padding_mask,
tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask)
# Rearrange to batch-first
# output = output.permute(1,0,2)
output = rearrange(output, 't n e -> n t e')
attention_weight = attention_weight.permute(1,0,2,3)
# print("in model, output size", output.size())
# print("in model, attention weight size", attention_weight.size())
# Run the output through an fc layer to return values for each token in the vocab
return self.fc(output), attention_weight
# Source: https://pytorch.org/tutorials/beginner/transformer_tutorial.html
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=100):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)