-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobots_def.py
334 lines (275 loc) · 10.4 KB
/
robots_def.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
from general_robotics_toolbox import *
from general_robotics_toolbox import tesseract as rox_tesseract
from general_robotics_toolbox import robotraconteur as rr_rox
import numpy as np
import yaml, copy, time
import pickle
def Rx(theta):
return np.array([[1,0,0],[0,np.cos(theta),-np.sin(theta)],[0,np.sin(theta),np.cos(theta)]])
def Ry(theta):
return np.array([[np.cos(theta),0,np.sin(theta)],[0,1,0],[-np.sin(theta),0,np.cos(theta)]])
def Rz(theta):
return np.array([[np.cos(theta),-np.sin(theta),0],[np.sin(theta),np.cos(theta),0],[0,0,1]])
ex=np.array([[1.],[0.],[0.]])
ey=np.array([[0.],[1.],[0.]])
ez=np.array([[0.],[0.],[1.]])
class robot_obj(object):
###robot object class
def __init__(self,robot_name,def_path,tool_file_path='',base_transformation_file='',d=0,acc_dict_path='',pulse2deg_file_path=''):
#def_path: robot definition yaml file, name must include robot vendor
#tool_file_path: tool transformation to robot flange csv file
#base_transformation_file: base transformation to world frame csv file
#d: tool z extension
#acc_dict_path: accleration profile
self.robot_name=robot_name
with open(def_path, 'r') as f:
self.robot = rr_rox.load_robot_info_yaml_to_robot(f)
self.def_path=def_path
#define robot without tool
self.robot_def_nT=Robot(self.robot.H,self.robot.P,self.robot.joint_type)
if len(tool_file_path)>0:
tool_H=np.loadtxt(tool_file_path,delimiter=',')
self.robot.R_tool=tool_H[:3,:3]
self.robot.p_tool=tool_H[:3,-1]+np.dot(tool_H[:3,:3],np.array([0,0,d]))
self.p_tool=self.robot.p_tool
self.R_tool=self.robot.R_tool
if len(base_transformation_file)>0:
self.base_H=np.loadtxt(base_transformation_file,delimiter=',')
else:
self.base_H=np.eye(4)
if len(pulse2deg_file_path)>0:
self.pulse2deg=np.abs(np.loadtxt(pulse2deg_file_path,delimiter=',')) #negate joint 2, 4, 6
###set attributes
self.upper_limit=self.robot.joint_upper_limit
self.lower_limit=self.robot.joint_lower_limit
self.joint_vel_limit=self.robot.joint_vel_limit
self.joint_acc_limit=self.robot.joint_acc_limit
###acceleration table
if len(acc_dict_path)>0:
acc_dict= pickle.load(open(acc_dict_path,'rb'))
q2_config=[]
q3_config=[]
q1_acc_n=[]
q1_acc_p=[]
q2_acc_n=[]
q2_acc_p=[]
q3_acc_n=[]
q3_acc_p=[]
for key, value in acc_dict.items():
q2_config.append(key[0])
q3_config.append(key[1])
q1_acc_n.append(value[0%len(value)])
q1_acc_p.append(value[1%len(value)])
q2_acc_n.append(value[2%len(value)])
q2_acc_p.append(value[3%len(value)])
q3_acc_n.append(value[4%len(value)])
q3_acc_p.append(value[5%len(value)])
self.q2q3_config=np.array([q2_config,q3_config]).T
self.q1q2q3_acc=np.array([q1_acc_n,q1_acc_p,q2_acc_n,q2_acc_p,q3_acc_n,q3_acc_p]).T
###initialize tesseract robot
# self.initialize_tesseract_robot()
# def initialize_tesseract_robot(self):
# if len(self.robot.joint_names)>6: #redundant kinematic chain
# tesseract_robot = rox_tesseract.TesseractRobot(self.robot, "robot", invkin_solver="KDL")
# elif 'UR' in self.def_path: #UR
# tesseract_robot = rox_tesseract.TesseractRobot(self.robot, "robot", invkin_solver="URInvKin")
# else: #sepherical joint
# tesseract_robot = rox_tesseract.TesseractRobot(self.robot, "robot", invkin_solver="OPWInvKin")
# self.tesseract_robot=tesseract_robot
# def __getstate__(self):
# state = self.__dict__.copy()
# del state['tesseract_robot']
# return state
# def __setstate__(self, state):
# # Restore instance attributes (tesseract).
# self.__dict__.update(state)
# self.initialize_tesseract_robot()
def get_acc(self,q_all,direction=[]):
###get acceleration limit from q config, assume last 3 joints acc fixed direction is 3 length vector, 0 is -, 1 is +
#if a single point
if q_all.ndim==1:
###find closest q2q3 config, along with constant last 3 joints acc
idx=np.argmin(np.linalg.norm(self.q2q3_config-q_all[1:3],axis=1))
acc_lim=[]
if len(direction)==0:
raise AssertionError('direciton not provided')
return
for d in direction:
acc_lim.append(self.q1q2q3_acc[idx][2*len(acc_lim)+d])
return np.append(acc_lim,self.joint_acc_limit[-3:])
#if a list of points
else:
dq=np.gradient(q_all,axis=0)[:,:3]
direction=(np.sign(dq)+1)/2
direction=direction.astype(int)
acc_limit_all=[]
for i in range(len(q_all)):
idx=np.argmin(np.linalg.norm(self.q2q3_config-q_all[i][1:3],axis=1))
acc_lim=[]
for d in direction[i]:
acc_lim.append(self.q1q2q3_acc[idx][2*len(acc_lim)+d])
acc_limit_all.append(np.append(acc_lim,self.joint_acc_limit[-3:]))
return np.array(acc_limit_all)
def fwd(self,q_all,world=False,qlim_override=False):
###robot forworld kinematics with tesseract
#q_all: robot joint angles or list of robot joint angles
#world: bool, if want to get coordinate in world frame or robot base frame
# if q_all.ndim==1:
# q=q_all
# pose_temp=self.tesseract_robot.fwdkin(q)
# if world:
# pose_temp.p=self.base_H[:3,:3]@pose_temp.p+self.base_H[:3,-1]
# pose_temp.R=self.base_H[:3,:3]@pose_temp.R
# return pose_temp
# else:
# pose_p_all=[]
# pose_R_all=[]
# for q in q_all:
# pose_temp=self.tesseract_robot.fwdkin(q)
# if world:
# pose_temp.p=self.base_H[:3,:3]@pose_temp.p+self.base_H[:3,-1]
# pose_temp.R=self.base_H[:3,:3]@pose_temp.R
# pose_p_all.append(pose_temp.p)
# pose_R_all.append(pose_temp.R)
# return Transform_all(pose_p_all,pose_R_all)
if q_all.ndim==1:
q=q_all
pose_temp=fwdkin(self.robot,q)
if world:
pose_temp.p=self.base_H[:3,:3]@pose_temp.p+self.base_H[:3,-1]
pose_temp.R=self.base_H[:3,:3]@pose_temp.R
return pose_temp
else:
pose_p_all=[]
pose_R_all=[]
for q in q_all:
pose_temp=fwdkin(self.robot,q)
if world:
pose_temp.p=self.base_H[:3,:3]@pose_temp.p+self.base_H[:3,-1]
pose_temp.R=self.base_H[:3,:3]@pose_temp.R
pose_p_all.append(pose_temp.p)
pose_R_all.append(pose_temp.R)
return Transform_all(pose_p_all,pose_R_all)
def jacobian(self,q):
# return self.tesseract_robot.jacobian(q)
return robotjacobian(self.robot,q)
def inv(self,p,R,last_joints=None):
# if len(last_joints)==0:
# return self.tesseract_robot.invkin(Transform(R,p),np.zeros(len(self.joint_vel_limit)))
# else: ###sort solutions
# theta_v=self.tesseract_robot.invkin(Transform(R,p),last_joints)
# eq_theta_v=equivalent_configurations(self.robot, theta_v, last_joints)
# theta_v.extend(eq_theta_v)
# theta_dist = np.linalg.norm(np.subtract(theta_v,last_joints), axis=1)
# return [theta_v[i] for i in list(np.argsort(theta_dist))]
pose=Transform(R,p)
q_all=robot6_sphericalwrist_invkin(self.robot,pose,last_joints)
return q_all
class Transform_all(object):
def __init__(self, p_all, R_all):
self.R_all=np.array(R_all)
self.p_all=np.array(p_all)
def HomogTrans(q,h,p,jt):
if jt==0:
H=np.vstack((np.hstack((rot(h,q), p.reshape((3,1)))),np.array([0, 0, 0, 1,])))
else:
H=np.vstack((np.hstack((np.eye(3), p + np.dot(q, h))),np.array([0, 0, 0, 1,])))
return H
def Hvec(h,jtype):
if jtype>0:
H=np.vstack((np.zeros((3,1)),h))
else:
H=np.vstack((h.reshape((3,1)),np.zeros((3,1))))
return H
def phi(R,p):
Phi=np.vstack((np.hstack((R,np.zeros((3,3)))),np.hstack((-np.dot(R,hat(p)),R))))
return Phi
def jdot(q,qdot):
zv=np.zeros((3,1))
H=np.eye(4)
J=[]
Jdot=[]
n=6
Jmat=[]
Jdotmat=[]
for i in range(n+1):
if i<n:
hi=self.robot_def.H[:,i]
qi=q[i]
qdi=qdot[i]
ji=self.robot_def.joint_type[i]
else:
qi=0
qdi=0
di=0
ji=0
Pi=self.robot_def.P[:,i]
Hi=HomogTrans(qi,hi,Pi,ji)
Hn=np.dot(H,Hi)
H=Hn
PHI=phi(Hi[:3,:3].T,Hi[:3,-1])
Hveci=Hvec(hi,ji)
###Partial Jacobian progagation
if(len(J)>0):
Jn=np.hstack((np.dot(PHI,J), Hveci))
temp=np.vstack((np.hstack((hat(hi), np.zeros((3,3)))),np.hstack((np.zeros((3,3)),hat(hi)))))
Jdotn=-np.dot(qdi,np.dot(temp,Jn)) + np.dot(PHI,np.hstack((Jdot, np.zeros(Hveci.shape))))
else:
Jn=Hveci
Jdotn=np.zeros(Jn.shape)
Jmat.append(Jn)
Jdotmat.append(Jdotn)
J=Jn
Jdot=Jdotn
Jmat[-1]=Jmat[-1][:,:n]
Jdotmat[-1]=Jdotmat[-1][:,:n]
return Jdotmat[-1]
def main():
robot=abb6640(d=50)
p=np.array([1445.00688987, -248.17799722, 1037.37341832])
R=np.array([[-0.83395293, -0.1490643, -0.53132131],
[ 0.17227772, 0.84437554, -0.50729709],
[ 0.52425461, -0.51459672, -0.678489 ]])
q = np.array([0.1, 0.11, 0.12, 0.13, 0.14, 0.15])
now=time.time()
for i in range(100):
# print(robot.fwd(q))
robot.fwd(q)
print(time.time()-now)
now=time.time()
for i in range(100):
# print(robot.inv(p,R,last_joints=[ 0.0859182, 0.09685281, 0.28419715, 2.56388261, -1.34470404, -3.0320356 ]))
robot.inv(p,R,last_joints=[ 0.0859182, 0.09685281, 0.28419715, 2.56388261, -1.34470404, -3.0320356 ])
print(time.time()-now)
return
def invtest():
# robot=abb6640(d=50)
# last_joints=[-0.84190536, 0.61401203, 0.2305977, -2.70622154, -0.74584949, -2.21577141]
# pose=robot.fwd(last_joints)
# print('correct: ',robot.inv(pose.p,pose.R,last_joints))
# robot2=robot_obj('../config/abb_6640_180_255_robot_default_config.yml',tool_file_path='../config/paintgun.csv',d=50,acc_dict_path='')
# theta_v=robot2.inv(pose.p,pose.R)
# print('passed to tes:',theta_v[0])
# print('equivalent_configurations: ',robot2.tesseract_robot.redundant_solutions(theta_v[0]))
robot=abb6640(d=50)
last_joints=[-0.84190536, 0.61401203, 0.2305977, -2.70622154, -0.74584949, -2.21577141]
pose=robot.fwd(last_joints)
print('correct: ',robot.inv(pose.p,pose.R,last_joints))
theta_v=robot.inv(pose.p,pose.R)
print('inv solutions: ',theta_v)
print('equivalent_configurations: ',equivalent_configurations(robot.robot_def, theta_v, last_joints))
def invdebug():
from utils import car2js
dataset='curve_1/'
data_dir="../data/"+dataset
solution_dir=data_dir+'dual_arm/'+'diffevo_pose3/'
robot2=robot_obj('ABB_1200_5_90','../config/abb_1200_5_90_robot_default_config.yml',tool_file_path=solution_dir+'tcp.csv',base_transformation_file=solution_dir+'base.csv',acc_dict_path='')
q=np.array([-0.103733, -0.49750235, -3.14216517, 0.61162475, 0.45628173, 0.57089247])
pose=robot2.fwd(q)
print(robot2.upper_limit)
print(robot2.lower_limit)
print(robot2.tesseract_robot.invkin(Transform(pose.R,pose.p),np.zeros(len(robot2.joint_vel_limit))))
print(robot6_sphericalwrist_invkin(robot2.robot,pose))
# car2js(robot2,q,pose.p,pose.R)[0]
if __name__ == '__main__':
invdebug()