-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcapture_acc.py
280 lines (212 loc) · 11 KB
/
capture_acc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import abb_motion_program_exec as abb
import dx200_motion_program_exec_client as motoman
from pandas import *
import json, pickle, copy, argparse
from scipy.interpolate import interp1d
from robots_def import *
from tes_env import *
import matplotlib.pyplot as plt
#########################################################robot specific control functions##################################################
def movej_abb(q,v,z,args):
###abb moveabsj function
#q: joint angle in radians
#v: tcp speed
#z: blending zone
#args: (motionprogram,)
(mp,)=args
mp.MoveAbsJ(abb.jointtarget(np.degrees(q),[0]*6),abb.speeddata(v,9999999,9999999,999999),abb.zonedata(False,z,1.5*z,1.5*z,0.15*z,1.5*z,0.15*z))
return mp
def movej_motoman(q,v,z,args):
###abb moveabsj function
#q: joint angle in radians
#v: tcp speed
#z: blending zone
#args: (client,)
(mp,)=args
mp.MoveJ(np.degrees(q),min(v,100),z)
return mp
def execute_abb(args):
###execute function
#args:(client,motionprogram)
(client,mp)=args
log_results = client.execute_motion_program(mp)
return log_results.data[:,0],np.radians(log_results.data[:,2:8]), log_results.data[:,1]
def execute_motoman(args):
###execute function
#args:(client,motionprogram)
(client,mp)=args
timestamp, curve_exe_js,job_line,_ = client.execute_motion_program(mp)
return timestamp-timestamp[0], curve_exe_js[:,name_map[mp.ROBOT_CHOICE][0]:name_map[mp.ROBOT_CHOICE][1]], job_line
######################################################acceleration capture functions######################################################
def linear_interp(x,y):
###avoid divided by 0 problem
x,unique_indices=np.unique(x,return_index=True)
if (len(unique_indices)<len(y)-2):
print('Duplicate in interpolate, check timestamp')
y=y[unique_indices]
f=interp1d(x,y.T)
x_new=np.linspace(x[0],x[-1],len(x))
return x_new, f(x_new).T
def moving_average(a, n=11, padding=False):
#n needs to be odd for padding
if padding:
a=np.hstack(([np.mean(a[:int(n/2)])]*int(n/2),a,[np.mean(a[-int(n/2):])]*int(n/2)))
ret = np.cumsum(a, axis=0)
ret[n:] = ret[n:] - ret[:-n]
return ret[n - 1:] / n
def lfilter(x, y):
x,y=linear_interp(x,y)
n=10
y1=moving_average(y,n)
y2=moving_average(np.flip(y,axis=0),n)
return x[int(n/2):-int(n/2)+1], (y1+np.flip(y2,axis=0))/2
def get_acc(timestamp,curve_exe_js,joint):
###filter
timestamp, curve_exe_js=lfilter(timestamp, curve_exe_js)
###get qdot, qddot
qdot_all=np.gradient(curve_exe_js,axis=0)/np.tile([np.gradient(timestamp)],(6,1)).T
qddot_all=np.gradient(qdot_all,axis=0)/np.tile([np.gradient(timestamp)],(6,1)).T
qddot_sorted=np.sort(qddot_all[:,joint])
qddot_max_p=np.average(qddot_sorted[-5:])
qddot_max_n=-np.average(qddot_sorted[:5])
return qddot_max_p, qddot_max_n
def exec_motion_abb(q_d,joint,displacement,robot,robot_client,zone=10):
###move joint at q_d configuration
q_init=copy.deepcopy(q_d)
q_end=copy.deepcopy(q_d)
q_init[joint]+=displacement
q_end[joint]-=displacement
mp = abb.MotionProgram()
mp=movej[robot.robot_name](q_d,200,0,(mp,))
execute[robot.robot_name]((robot_client,mp))
mp = abb.MotionProgram()
for i in range(4):
mp=movej[robot.robot_name](q_init,999999,zone,(mp,))
mp=movej[robot.robot_name](q_end,999999,zone,(mp,))
timestamp,curve_exe_js,cmd_num=execute[robot.robot_name]((robot_client,mp))
return get_acc(timestamp,curve_exe_js,joint)
def exec_motion_motoman(q_d,joint,displacement,robot,robot_client,zone=None):
###move joint at q_d configuration
q_init=copy.deepcopy(q_d)
q_end=copy.deepcopy(q_d)
q_init[joint]+=displacement
q_end[joint]-=displacement
mp = motoman.MotionProgram(pulse2deg=robot.pulse2deg,ROBOT_CHOICE=robot_choice[robot.robot_name])
mp=movej[robot.robot_name](q_d,5,None,(mp,))
execute[robot.robot_name]((robot_client,mp))
mp = motoman.MotionProgram(pulse2deg=robot.pulse2deg,ROBOT_CHOICE=robot_choice[robot.robot_name])
for i in range(4):
mp=movej[robot.robot_name](q_init,999999,zone,(mp,))
mp=movej[robot.robot_name](q_end,999999,zone,(mp,))
timestamp,curve_exe_js,job_line=execute[robot.robot_name]((robot_client,mp))
return get_acc(timestamp,curve_exe_js,joint)
def robot_client_map(robot,robot_ip):
if 'MA' in robot.robot_name:
return motoman.MotionProgramExecClient(IP=robot_ip)
if 'ABB' in robot.robot_name:
return abb.MotionProgramExecClient(base_url="http://"+robot_ip+":80")
def capture_acc(robot,robot_client,zone,displacement,resolution,q0_default=0):
###JOINT 456 FIRST
acc_456=[]
for q in range(3,6):
qddot_max_p,qddot_max_n=exec_motion[robot.robot_name]([q0_default]+[0]*5,q,2*displacement,robot,robot_client,zone)
acc_456.append(qddot_max_p)
dict_table={}
directions=[-1,1]
#####################first & second joint acc both depends on second and third joint#####################################
for q2 in np.arange(robot.lower_limit[1]+displacement+0.01,robot.upper_limit[1]-displacement-0.01,resolution):
for q3 in np.arange(robot.lower_limit[2]+displacement+0.01,robot.upper_limit[2]-displacement-0.01,resolution):
###initialize keys, and desired pose
dict_table[(q2,q3)]=[0]*6 ###[+j1,-j1,+j2,-j2,+j3,-j3]
q_d=[q0_default,q2,q3,0,0,0]
#measure first joint first
qddot_max,_=exec_motion[robot.robot_name](q_d,0,displacement,robot,robot_client,zone)
###update dict
dict_table[(q2,q3)][0]=qddot_max
dict_table[(q2,q3)][1]=qddot_max
for joint in range(1,3):
###move first q2 and q3
qddot_max_p,qddot_max_n=exec_motion[robot.robot_name](q_d,joint,displacement,robot,robot_client,zone)
###update dict
dict_table[(q2,q3)][2*joint]=qddot_max_p
dict_table[(q2,q3)][2*joint+1]=qddot_max_n
return dict_table
def capture_acc_456(robot,robot_client,zone,displacement,resolution,q_d=np.zeros(6)):
acc=[]
for q in range(3,6):
qddot_max_p,qddot_max_n=exec_motion[robot.robot_name](q_d,q,displacement,robot,robot_client,zone)
print(qddot_max_p,qddot_max_n)
acc.append((qddot_max_p+qddot_max_n)/2)
np.savetxt('test456.txt',acc,delimiter=',')
return acc
def capture_acc_collision(robot,robot_client,zone,displacement,resolution,tesseract_environment,q0_default=0):
dict_table={}
directions=[-1,1]
#####################first & second joint acc both depends on second and third joint#####################################
for q2 in np.arange(robot.lower_limit[1]+displacement+0.01,robot.upper_limit[1]-displacement-0.01,resolution):
for q3 in np.arange(robot.lower_limit[2]+displacement+0.01,robot.upper_limit[2]-displacement-0.01,resolution):
###check for collision
if tesseract_environment.check_collision_single(robot.robot_name,np.array([0,q2,q3,0,0,0])):
continue
###initialize keys, and desired pose
dict_table[(q2,q3)]=[0]*6 ###[+j1,-j1,+j2,-j2,+j3,-j3]
q_d=[q0_default,q2,q3,0,0,0]
#measure first joint first
qddot_max,_=exec_motion[robot.robot_name](q_d,0,displacement,robot,robot_client,zone)
###update dict
dict_table[(q2,q3)][0]=qddot_max
dict_table[(q2,q3)][1]=qddot_max
for joint in range(1,3):
###move first q2 and q3
qddot_max_p,qddot_max_n=exec_motion[robot.robot_name](q_d,joint,displacement,robot,robot_client,zone)
###update dict
dict_table[(q2,q3)][2*joint]=qddot_max_p
dict_table[(q2,q3)][2*joint+1]=qddot_max_n
return dict_table
#####ROBOT SPECIFIC MAPPING
name_map={'RB1':(0,6),'RB2':(6,12)}
robot_choice={'MA2010_A0':'RB1','MA1440_A0':'RB2'}
execute={'MA2010_A0':execute_motoman,'MA1440_A0':execute_motoman,'ABB_6640_180_255':execute_abb,'ABB_1200_5_90':execute_abb}
movej={'MA2010_A0':movej_motoman,'MA1440_A0':movej_motoman,'ABB_6640_180_255':movej_abb,'ABB_1200_5_90':movej_abb}
exec_motion={'MA2010_A0':exec_motion_motoman,'MA1440_A0':exec_motion_motoman,'ABB_6640_180_255':exec_motion_abb,'ABB_1200_5_90':exec_motion_abb}
joint_names={'ABB_6640_180_255':["ABB_6640_180_255_joint_1","ABB_6640_180_255_joint_2","ABB_6640_180_255_joint_3","ABB_6640_180_255_joint_4","ABB_6640_180_255_joint_5","ABB_6640_180_255_joint_6"],\
'ABB_1200_5_90':["ABB_1200_5_90_joint_1","ABB_1200_5_90_joint_2","ABB_1200_5_90_joint_3","ABB_1200_5_90_joint_4","ABB_1200_5_90_joint_5","ABB_1200_5_90_joint_6"],\
'MA2010_A0':["MA2010_joint_1_s","MA2010_joint_2_l","MA2010_joint_3_u","MA2010_joint_4_r","MA2010_joint_5_b","MA2010_joint_6_t"],\
'MA1440_A0':["MA1440_joint_1_s","MA1440_joint_2_l","MA1440_joint_3_u","MA1440_joint_4_r","MA1440_joint_5_b","MA1440_joint_6_t"]}
link_names={'ABB_6640_180_255':["ABB_6640_180_255_link_1","ABB_6640_180_255_link_2","ABB_6640_180_255_link_3","ABB_6640_180_255_link_4","ABB_6640_180_255_link_5","ABB_6640_180_255_link_6"],\
'ABB_1200_5_90':["ABB_1200_5_90_link_1","ABB_1200_5_90_link_2","ABB_1200_5_90_link_3","ABB_1200_5_90_link_4","ABB_1200_5_90_link_5","ABB_1200_5_90_link_6"],\
'MA2010_A0':["MA2010_base_link","MA2010_link_1_s","MA2010_link_2_l","MA2010_link_3_u","MA2010_link_4_r","MA2010_link_5_b","MA2010_link_6_t","weldgun","MA2010_filler"],\
'MA1440_A0':["MA1440_base_link","MA1440_link_1_s","MA1440_link_2_l","MA1440_link_3_u","MA1440_link_4_r","MA1440_link_5_b","MA1440_link_6_t","scanner"]}
def main():
#Accept the names of the webcams and the nodename from command line
parser = argparse.ArgumentParser(description="Robot Acceleration Capture")
parser.add_argument("--robot-name",type=str,required=True)
parser.add_argument("--robot-info-file",type=str,required=True)
parser.add_argument("--pulse2deg-file",type=str,default='config/MA2010_A0_pulse2deg.csv')
parser.add_argument("--displacement", type=float, default=0.03, help="oscillation amplitude (rad)")
parser.add_argument("--resolution", type=float, default=0.3, help="Sampling Joint Resolution (rad)")
parser.add_argument("--zone", type=float, default=None, help="blending zone")
parser.add_argument("--q0-default", type=float, default=0., help="default joint 1 position")
parser.add_argument("--robot-ip",type=str,required=True)
parser.add_argument("--urdf-path",type=str,default=None)
parser.add_argument("--output-dir",type=str,default='results/')
args, _ = parser.parse_known_args()
robot=robot_obj(args.robot_name,def_path=args.robot_info_file,pulse2deg_file_path=args.pulse2deg_file)
if args.urdf_path is not None:
t=Tess_Env(args.urdf_path,{args.robot_name:link_names[args.robot_name]},{args.robot_name:joint_names[args.robot_name]})
###hard coded robot first joint position to avoid collision
t.t_env.setState(joint_names['MA2010_A0'], np.array([0,0,1.57,0,0,0]))
capture_acc_456(robot,robot_client_map(robot,args.robot_ip),args.zone,args.displacement,args.resolution)
dict_table=capture_acc_collision(robot,robot_client_map(robot,args.robot_ip),\
args.zone,args.displacement,args.resolution,t,q0_default=args.q0_default)
else:
capture_acc_456(robot,robot_client_map(robot,args.robot_ip),args.zone,args.displacement,args.resolution)
dict_table=capture_acc(robot,robot_client_map(robot,args.robot_ip),\
args.zone,args.displacement,args.resolution,q0_default=args.q0_default)
with open(r'test.txt','w+') as f:
f.write(str(dict_table))
pickle.dump(dict_table, open(args.output_dir+'test.pickle','wb'))
if __name__ == '__main__':
# osc_test()
# main_motoman()
main()