-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatic_keypoint_face.py
71 lines (54 loc) · 2.03 KB
/
static_keypoint_face.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import cv2
from STESDK import BodyDetector, BodyAligner
# 创建人体检测器和关键点检测器
body_detector = BodyDetector()
body_aligner = BodyAligner()
# 读取图片
frame = cv2.imread(r"C:\Users\86195\Desktop\contest-phone\gty_body.jpg")
print("frame size is: ", frame.shape)
# 人体位置检测
rect = body_detector.detect(frame)
# 关键点检测
points = body_aligner.align(frame, rect[0])
# 获取两个新的关键点
y = (points[0][1] + points[1][1]) / 2
x2 = (points[1][0] + points[3][0]) / 2
x1 = (points[1][0] + points[2][0]) / 2
new_points = [(int(x1), int(y)),(int(x2), int(y))]
# 把关键点标记在图片上
points_frame = body_aligner.render(frame, points)
# 添加新的关键点
for point in new_points:
x, y = point
cv2.circle(points_frame, (x, y), 5, (0, 255, 0), -1)
# 获取图片大小
height, width, _ = points_frame.shape
# 调整图片大小以适应显示器分辨率
resized_frame = cv2.resize(points_frame, (width // 5, height // 5))
# 显示图片并绘制关键点数字
for i, point in enumerate(points):
x, y = point
x, y = int(x // 5), int(y // 5) # 缩放关键点坐标
cv2.putText(resized_frame, str(i), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
for i, point in enumerate(new_points):
x, y = int(point[0] // 5), int(point[1] // 5) # 缩放新关键点坐标
cv2.putText(resized_frame, f"New {i}", (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
cv2.imshow("body keypoints", resized_frame)
# 获取每个关键点的坐标
for i, point in enumerate(points):
x, y = point
print(f"Keypoint {i}: ({x}, {y})")
# 输出新关键点的坐标
for i, point in enumerate(new_points):
x, y = point
print(f"New point {i}: ({x}, {y})")
# 获得人体检测人框
rect_frame = body_detector.render(frame, rect)
# 调整图片大小以适应显示器分辨率
rect_frame = cv2.resize(rect_frame, (width // 5, height // 5))
# 显示图片
cv2.imshow("body rect", rect_frame)
# 等待用户关闭窗口
k = cv2.waitKey(0)
if k == ord("q"):
cv2.destroyAllWindows()