-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_inference_attack.py
117 lines (104 loc) · 3.52 KB
/
train_inference_attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import os
from argparse import ArgumentParser
from src.model_inference_attack import InferenceAttack1Model, InferenceAttack2Model, InferenceAttack3Model
from src.dataset import get_datamodule
# Load arguments
parser = ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
# Which attack model
parser.add_argument('--attack', type=str, required=True,
help='Name of attack (inference1 | inference2 | inference3).')
temp_args, _ = parser.parse_known_args()
# Parse args for selected attack
parser.add_argument('--test', action='store_true', help='Perform model evaluation .')
if temp_args.attack == 'inference1':
parser = InferenceAttack1Model.add_model_specific_args(parser)
elif temp_args.attack == 'inference2':
parser = InferenceAttack2Model.add_model_specific_args(parser)
elif temp_args.attack == 'inference3':
parser = InferenceAttack3Model.add_model_specific_args(parser)
else:
raise NotImplementedError(f'{temp_args.attack} is not an available attack.')
args = parser.parse_args()
pl.seed_everything(args.seed)
# Define callbacks
tb_logger = TensorBoardLogger(
save_dir=args.output_path,
name=args.experiment_name
)
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(tb_logger.root_dir, 'best-{epoch}-{val_acc:.4f}'),
save_top_k=1,
monitor='val_acc',
mode='max',
save_last=True,
)
# Load datamodule
dm = get_datamodule(args)
args.num_classes = dm.num_classes
args.dims = dm.dims
# Load model
if args.attack == 'inference1':
model = InferenceAttack1Model(
classifier_weights=args.classifier_weights,
encoder_weights=args.encoder_weights,
inversion_net_weights=args.inversion_net_weights,
angle_dis_weights=args.angle_dis_weights,
dims=args.dims,
complex=args.complex
)
elif args.attack == 'inference2':
model = InferenceAttack2Model(
encoder_weights=args.encoder_weights,
angle_dis_weights=args.angle_dis_weights,
dims=args.dims,
num_classes=args.num_classes,
arch=args.arch,
resnet_variant=args.resnet_variant,
optimizer=args.optimizer,
lr=args.lr,
beta1=args.beta1,
beta2=args.beta2,
weight_decay=args.weight_decay,
momentum=args.momentum,
schedule=args.schedule,
steps=args.steps,
step_factor=args.step_factor,
complex=args.complex
)
elif args.attack == 'inference3':
model = InferenceAttack3Model(
encoder_weights=args.encoder_weights,
angle_dis_weights=args.angle_dis_weights,
inversion_net_weights=args.inversion_net_weights,
dims=args.dims,
num_classes=args.num_classes,
arch=args.arch,
resnet_variant=args.resnet_variant,
additional_layers=args.additional_layers,
optimizer=args.optimizer,
lr=args.lr,
beta1=args.beta1,
beta2=args.beta2,
weight_decay=args.weight_decay,
momentum=args.momentum,
schedule=args.schedule,
steps=args.steps,
step_factor=args.step_factor,
complex=args.complex
)
# Run trainer
trainer = pl.Trainer.from_argparse_args(
args,
checkpoint_callback=checkpoint_callback,
logger=tb_logger,
)
trainer.logger._default_hp_metric = None
if not args.test and not args.attack == "inference1":
trainer.tune(model, dm)
trainer.fit(model, dm)
else:
trainer.test(model, datamodule=dm)