-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_baseline.py
72 lines (63 loc) · 1.77 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
import os
from argparse import ArgumentParser
from src.model_classifier import BaselineModel
from src.dataset import get_datamodule
# Load arguments
parser = ArgumentParser()
parser = BaselineModel.add_model_specific_args(parser)
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
pl.seed_everything(args.seed)
# Define callbacks
tb_logger = TensorBoardLogger(
save_dir=args.output_path,
name=args.experiment_name
)
if args.save_every_epoch:
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(tb_logger.root_dir, '{epoch}-{val_acc:.4f}'),
save_top_k=-1
)
else:
checkpoint_callback = ModelCheckpoint(
filepath=os.path.join(tb_logger.root_dir, 'best-{epoch}-{val_acc:.4f}'),
save_top_k=1,
monitor='val_acc',
mode='max',
save_last=True,
)
# Load datamodule
dm = get_datamodule(args)
args.num_classes = dm.num_classes
args.dims = dm.dims
pl.seed_everything(args.seed)
# Load model
model = BaselineModel(
arch=args.arch,
num_classes=args.num_classes,
additional_layers=args.additional_layers,
resnet_variant=args.resnet_variant,
noisy=args.noisy,
gamma=args.gamma,
optimizer=args.optimizer,
lr=args.lr,
beta1=args.beta1,
beta2=args.beta2,
weight_decay=args.weight_decay,
momentum=args.momentum,
schedule=args.schedule,
steps=args.steps,
step_factor=args.step_factor
)
# Run trainer
trainer = pl.Trainer.from_argparse_args(
args,
checkpoint_callback=checkpoint_callback,
logger=[tb_logger],
)
trainer.logger._default_hp_metric = None
trainer.tune(model, dm)
trainer.fit(model, dm)