forked from MBB-team/VBA-toolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVBA_BMA.m
155 lines (139 loc) · 4.31 KB
/
VBA_BMA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
function [p_BMA] = VBA_BMA (p0, F0)
% // VBA toolbox //////////////////////////////////////////////////////////
%
% [p_BMA] = VBA_BMA (p0, F0)
% performs Bayesian Model Averaging (BMA)
%
% IN:
% - p0: a Kx1 array of VBA posterior structures, which are
% conditional onto specific generative models
% - F0: a Kx1 vector of the respective log-model evidences
% OUT:
% - p_BMA: the resulting posterior structure that describe the marginal
% (over models) probability density functions
%
% /////////////////////////////////////////////////////////////////////////
% for retrocompatibility, accept cell array of posterior
if iscell (p0)
p0 = cell2mat (p0);
end
% shortcuts
% =========================================================================
% number of models
K = length (p0);
% posterior model probabilities
% =========================================================================
ps = VBA_softmax (F0);
% perform averaging
% =========================================================================
% observation parameters
% -------------------------------------------------------------------------
try
[p_BMA.muPhi, p_BMA.SigmaPhi] = averageMoments ({p0.muPhi}, {p0.SigmaPhi}, ps);
end
% evolution parameters
% -------------------------------------------------------------------------
try
[p_BMA.muTheta, p_BMA.SigmaTheta] = averageMoments ({p0.muTheta}, {p0.SigmaTheta}, ps);
end
% initial conditions
% -------------------------------------------------------------------------
try
[p_BMA.muX0, p_BMA.SigmaX0] = averageMoments ({p0.muX0}, {p0.SigmaX0}, ps);
end
% hidden states
% -------------------------------------------------------------------------
try
% number of timepoints
T = size (p0(1).muX, 2);
% initialisation
mus = cell (K, 1);
Qs = cell (K, 1);
% loop over timepoints
for t = 1 : T
% collect moments
for k=1:K
mus{k} = p0(k).muX(:, t);
Qs{k} = p0(k).SigmaX.current{t};
end
% compute average
[p_BMA.muX(:, t), p_BMA.SigmaX.current{t}] = averageMoments (mus, Qs, ps);
end
end
% observation precision
% -------------------------------------------------------------------------
try
% number of gaussian sources
nS = numel (p0(1).a_sigma);
% initialisation
mus = cell (K, 1);
Qs = cell (K, 1);
% loop over sources
for iS = 1 : nS
% collect moments
for k = 1 : K
mus{k} = p0(k).a_sigma(iS) / p0(k).b_sigma(iS);
Qs{k} = p0(k).a_sigma(iS) / p0(k).b_sigma(iS) ^ 2;
end
% compute average
[m, v] = averageMoments (mus, Qs, ps);
% map to gamma distribution parameters
p_BMA.b_sigma(iS) = m / v;
p_BMA.a_sigma(iS) = m * p_BMA.b_sigma(iS);
end
end
% hidden state precision
% -------------------------------------------------------------------------
% initialisation
mus = cell (K, 1);
Qs = cell (K, 1);
isStochastic = nan (K, 1);
% collect moments, if any
for k = 1 : K
try
mus{k} = p0(k).a_alpha / p0(k).b_alpha;
Qs{k} = p0(k).a_alpha / p0(k).b_alpha ^ 2;
isStochastic(k) = ~ isempty(mus{k}) && ~ isinf(mus{k});
catch
isStochastic(k) = false;
end
end
% compute average, if meaninful
% + all deterministic systems
if ~ any (isStochastic)
p_BMA.b_alpha = Inf;
p_BMA.a_alpha = 0;
% + all stochastic systems
elseif all (isStochastic)
% average moments
[m, v] = averageMoments(mus, Qs, ps);
% map to gamma distribution parameters
p_BMA.b_alpha = m / v;
p_BMA.a_alpha = m * p_BMA.b_alpha;
else
% + mixture of stochastic and deterministic systems
disp('VBA_MBA: Warning! mixture of deterministic and stochastic models!')
p_BMA.b_alpha = NaN;
p_BMA.a_alpha = NaN;
end
end
% #########################################################################
% Subfunctions
% #########################################################################
% Compute averages of 1st order (mus) and 2nd order (Qs) moments of
% distributions, weigthed by ps.
function [m, V] = averageMoments (mus, Qs, ps)
% initialisation
V = zeros(size(Qs{1}));
m = zeros(size(mus{1}));
K = length(ps);
% average 1st order moments
for k = 1 : K
m = m + ps(k) .* mus{k};
end
% average 2nd order moments
for k = 1 : K
tmp = mus{k} - m;
V = V + ps(k) .* (tmp * tmp' + Qs{k});
end
end