forked from Grid2op/grid2op
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_agent.py
511 lines (423 loc) · 22.1 KB
/
ml_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
"""
This piece of code is provided as an example of what can be achieved when training deep learning agents when using
grid2op. This code is not optimize for performances (use of computational resources) nor for achieve state of the
art results, but rather to serve as example.
Documentation is rather poor and we encourage the read to check the indicated website on each model to have
more informations.
"""
from collections import deque
import random
import numpy as np
import pdb
import os
#tf2.0 friendly
import warnings
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
import tensorflow.keras
import tensorflow.keras.backend as K
from tensorflow.keras.models import load_model, Sequential, Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense, subtract, add
from tensorflow.keras.layers import Input, Lambda, Concatenate
import grid2op
from grid2op.Agent import AgentWithConverter
from grid2op.Converter import IdToAct
class TrainingParam(object):
"""
A class to store the training parameters of the models. It was hard coded in the notebook 3.
"""
def __init__(self,
DECAY_RATE=0.9,
BUFFER_SIZE=40000,
MINIBATCH_SIZE=64,
TOT_FRAME=3000000,
EPSILON_DECAY=10000,
MIN_OBSERVATION=50, #5000
FINAL_EPSILON=1/300, # have on average 1 random action per scenario of approx 287 time steps
INITIAL_EPSILON=0.1,
TAU=0.01,
ALPHA=1,
NUM_FRAMES=1,
):
self.DECAY_RATE = DECAY_RATE
self.BUFFER_SIZE = BUFFER_SIZE
self.MINIBATCH_SIZE = MINIBATCH_SIZE
self.TOT_FRAME = TOT_FRAME
self.EPSILON_DECAY = EPSILON_DECAY
self.MIN_OBSERVATION = MIN_OBSERVATION # 5000
self.FINAL_EPSILON = FINAL_EPSILON # have on average 1 random action per scenario of approx 287 time steps
self.INITIAL_EPSILON = INITIAL_EPSILON
self.TAU = TAU
self.NUM_FRAMES = NUM_FRAMES
self.ALPHA = ALPHA
# Credit Abhinav Sagar:
# https://github.com/abhinavsagar/Reinforcement-Learning-Tutorial
# Code under MIT license, available at:
# https://github.com/abhinavsagar/Reinforcement-Learning-Tutorial/blob/master/LICENSE
class ReplayBuffer:
"""Constructs a buffer object that stores the past moves
and samples a set of subsamples"""
def __init__(self, buffer_size):
self.buffer_size = buffer_size
self.count = 0
self.buffer = deque()
def add(self, s, a, r, d, s2):
"""Add an experience to the buffer"""
# S represents current state, a is action,
# r is reward, d is whether it is the end,
# and s2 is next state
if np.any(~np.isfinite(s)) or np.any(~np.isfinite(s2)):
# TODO proper handling of infinite values somewhere !!!!
return
experience = (s, a, r, d, s2)
if self.count < self.buffer_size:
self.buffer.append(experience)
self.count += 1
else:
self.buffer.popleft()
self.buffer.append(experience)
def size(self):
return self.count
def sample(self, batch_size):
"""Samples a total of elements equal to batch_size from buffer
if buffer contains enough elements. Otherwise return all elements"""
batch = []
if self.count < batch_size:
batch = random.sample(self.buffer, self.count)
else:
batch = random.sample(self.buffer, batch_size)
# Maps each experience in batch in batches of states, actions, rewards
# and new states
s_batch, a_batch, r_batch, d_batch, s2_batch = list(map(np.array, list(zip(*batch))))
return s_batch, a_batch, r_batch, d_batch, s2_batch
def clear(self):
self.buffer.clear()
self.count = 0
# refactorization of the code in a base class to avoid copy paste.
class RLQvalue(object):
"""
This class aims at representing the Q value (or more in case of SAC) parametrization by
a neural network.
It is composed of 2 different networks:
- model: which is the main model
- target_model: which has the same architecture and same initial weights as "model" but is updated less frequently
to stabilize training
It has basic methods to make predictions, to train the model, and train the target model.
"""
def __init__(self, action_size, observation_size,
lr=1e-5,
training_param=TrainingParam()):
# TODO add more flexibilities when building the deep Q networks, with a "NNParam" for example.
self.action_size = action_size
self.observation_size = observation_size
self.lr_ = lr
self.qvalue_evolution = np.zeros((0,))
self.training_param = training_param
self.model = None
self.target_model = None
def construct_q_network(self):
raise NotImplementedError("Not implemented")
def predict_movement(self, data, epsilon):
"""Predict movement of game controler where is epsilon
probability randomly move."""
rand_val = np.random.random(data.shape[0])
q_actions = self.model.predict(data)
opt_policy = np.argmax(np.abs(q_actions), axis=-1)
opt_policy[rand_val < epsilon] = np.random.randint(0, self.action_size, size=(np.sum(rand_val < epsilon)))
self.qvalue_evolution = np.concatenate((self.qvalue_evolution, q_actions[0, opt_policy]))
return opt_policy, q_actions[0, opt_policy]
def train(self, s_batch, a_batch, r_batch, d_batch, s2_batch, observation_num):
"""Trains network to fit given parameters"""
targets = self.model.predict(s_batch)
fut_action = self.target_model.predict(s2_batch)
targets[:, a_batch] = r_batch
targets[d_batch, a_batch[d_batch]] += self.training_param.DECAY_RATE * np.max(fut_action[d_batch], axis=-1)
loss = self.model.train_on_batch(s_batch, targets)
# Print the loss every 100 iterations.
if observation_num % 100 == 0:
print("We had a loss equal to ", loss)
return np.all(np.isfinite(loss))
@staticmethod
def _get_path_model(path, name=None):
if name is None:
path_model = path
else:
path_model = os.path.join(path, name)
path_target_model = "{}_target".format(path_model)
return path_model, path_target_model
def save_network(self, path, name=None, ext="h5"):
# Saves model at specified path as h5 file
# nothing has changed
path_model, path_target_model = self._get_path_model(path, name)
self.model.save('{}.{}'.format(path_model, ext))
self.target_model.save('{}.{}'.format(path_target_model, ext))
print("Successfully saved network.")
def load_network(self, path, name=None, ext="h5"):
# nothing has changed
path_model, path_target_model = self._get_path_model(path, name)
self.model = load_model('{}.{}'.format(path_model, ext))
self.target_model = load_model('{}.{}'.format(path_target_model, ext))
print("Succesfully loaded network.")
def target_train(self):
# nothing has changed from the original implementation
model_weights = self.model.get_weights()
target_model_weights = self.target_model.get_weights()
for i in range(len(model_weights)):
target_model_weights[i] = self.training_param.TAU * model_weights[i] + (1 - self.training_param.TAU) * \
target_model_weights[i]
self.target_model.set_weights(target_model_weights)
# Credit Abhinav Sagar:
# https://github.com/abhinavsagar/Reinforcement-Learning-Tutorial
# Code under MIT license, available at:
# https://github.com/abhinavsagar/Reinforcement-Learning-Tutorial/blob/master/LICENSE
class DeepQ(RLQvalue):
"""Constructs the desired deep q learning network"""
def __init__(self,
action_size,
observation_size,
lr=1e-5,
training_param=TrainingParam()):
RLQvalue.__init__(self, action_size, observation_size, lr, training_param)
self.construct_q_network()
def construct_q_network(self):
# replacement of the Convolution layers by Dense layers, and change the size of the input space and output space
# Uses the network architecture found in DeepMind paper
self.model = Sequential()
input_layer = Input(shape=(self.observation_size * self.training_param.NUM_FRAMES,))
layer1 = Dense(self.observation_size * self.training_param.NUM_FRAMES)(input_layer)
layer1 = Activation('relu')(layer1)
layer2 = Dense(self.observation_size)(layer1)
layer2 = Activation('relu')(layer2)
layer3 = Dense(self.observation_size)(layer2)
layer3 = Activation('relu')(layer3)
layer4 = Dense(2 * self.action_size)(layer3)
layer4 = Activation('relu')(layer4)
output = Dense(self.action_size)(layer4)
self.model = Model(inputs=[input_layer], outputs=[output])
self.model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
self.target_model = Model(inputs=[input_layer], outputs=[output])
self.target_model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
self.target_model.set_weights(self.model.get_weights())
class DuelQ(RLQvalue):
"""Constructs the desired duelling deep q learning network"""
def __init__(self, action_size, observation_size,
lr=0.00001,
training_param=TrainingParam()):
RLQvalue.__init__(self, action_size, observation_size, lr, training_param)
self.construct_q_network()
def construct_q_network(self):
# Uses the network architecture found in DeepMind paper
# The inputs and outputs size have changed, as well as replacing the convolution by dense layers.
self.model = Sequential()
input_layer = Input(shape=(self.observation_size*self.training_param.NUM_FRAMES,))
lay1 = Dense(self.observation_size*self.training_param.NUM_FRAMES)(input_layer)
lay1 = Activation('relu')(lay1)
lay2 = Dense(self.observation_size)(lay1)
lay2 = Activation('relu')(lay2)
lay3 = Dense(2*self.action_size)(lay2)
lay3 = Activation('relu')(lay3)
fc1 = Dense(self.action_size)(lay3)
advantage = Dense(self.action_size)(fc1)
fc2 = Dense(self.action_size)(lay3)
value = Dense(1)(fc2)
meaner = Lambda(lambda x: K.mean(x, axis=1) )
mn_ = meaner(advantage)
tmp = subtract([advantage, mn_])
policy = add([tmp, value])
self.model = Model(inputs=[input_layer], outputs=[policy])
self.model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
self.target_model = Model(inputs=[input_layer], outputs=[policy])
self.target_model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
print("Successfully constructed networks.")
# This class implements the "Sof Actor Critic" model.
# It is a custom implementation, courtesy to Clement Goubet
# The original paper is: https://arxiv.org/abs/1801.01290
class SAC(RLQvalue):
"""Constructs the desired soft actor critic network"""
def __init__(self, action_size, observation_size, lr=1e-5,
training_param=TrainingParam()):
RLQvalue.__init__(self, action_size, observation_size, lr, training_param)
# TODO add as meta param the number of "Q" you want to use (here 2)
# TODO add as meta param size and types of the networks
self.average_reward = 0
self.life_spent = 1
self.qvalue_evolution = np.zeros((0,))
self.Is_nan = False
self.model_value_target = None
self.model_value = None
self.model_Q = None
self.model_Q2 = None
self.model_policy = None
self.construct_q_network()
def _build_q_NN(self):
input_states = Input(shape=(self.observation_size,))
input_action = Input(shape=(self.action_size,))
input_layer = Concatenate()([input_states, input_action])
lay1 = Dense(self.observation_size)(input_layer)
lay1 = Activation('relu')(lay1)
lay2 = Dense(self.observation_size)(lay1)
lay2 = Activation('relu')(lay2)
lay3 = Dense(2*self.action_size)(lay2)
lay3 = Activation('relu')(lay3)
advantage = Dense(1, activation = 'linear')(lay3)
model = Model(inputs=[input_states, input_action], outputs=[advantage])
model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
return model
def _build_model_value(self):
input_states = Input(shape=(self.observation_size,))
lay1 = Dense(self.observation_size)(input_states)
lay1 = Activation('relu')(lay1)
lay3 = Dense(2 * self.action_size)(lay1)
lay3 = Activation('relu')(lay3)
advantage = Dense(self.action_size, activation='relu')(lay3)
state_value = Dense(1, activation='linear')(advantage)
model = Model(inputs=[input_states], outputs=[state_value])
model.compile(loss='mse', optimizer=Adam(lr=self.lr_))
return model
def construct_q_network(self):
# construct double Q networks
self.model_Q = self._build_q_NN()
self.model_Q2 = self._build_q_NN()
# state value function approximation
self.model_value = self._build_model_value()
self.model_value_target = self._build_model_value()
self.model_value_target.set_weights(self.model_value.get_weights())
# policy function approximation
self.model_policy = Sequential()
# proba of choosing action a depending on policy pi
input_states = Input(shape = (self.observation_size,))
lay1 = Dense(self.observation_size)(input_states)
lay1 = Activation('relu')(lay1)
lay2 = Dense(self.observation_size)(lay1)
lay2 = Activation('relu')(lay2)
lay3 = Dense(2*self.action_size)(lay2)
lay3 = Activation('relu')(lay3)
soft_proba = Dense(self.action_size, activation="softmax", kernel_initializer='uniform')(lay3)
self.model_policy = Model(inputs=[input_states], outputs=[soft_proba])
self.model_policy.compile(loss='categorical_crossentropy', optimizer=Adam(lr=self.lr_))
print("Successfully constructed networks.")
def predict_movement(self, data, epsilon):
rand_val = np.random.random(data.shape[0])
# q_actions = self.model.predict(data)
p_actions = self.model_policy.predict(data)
opt_policy_orig = np.argmax(np.abs(p_actions), axis=-1)
opt_policy = 1.0 * opt_policy_orig
opt_policy[rand_val < epsilon] = np.random.randint(0, self.action_size, size=(np.sum(rand_val < epsilon)))
# store the qvalue_evolution (lots of computation time maybe here)
tmp = np.zeros((data.shape[0], self.action_size))
tmp[np.arange(data.shape[0]), opt_policy_orig] = 1.0
q_actions0 = self.model_Q.predict([data, tmp])
q_actions2 = self.model_Q2.predict([data, tmp])
q_actions = np.fmin(q_actions0, q_actions2).reshape(-1)
self.qvalue_evolution = np.concatenate((self.qvalue_evolution, q_actions))
# above is not mandatory for predicting a movement so, might need to be moved somewhere else...
opt_policy = opt_policy.astype(np.int)
return opt_policy, p_actions[:, opt_policy]
def train(self, s_batch, a_batch, r_batch, d_batch, s2_batch, observation_num):
"""Trains networks to fit given parameters"""
batch_size = s_batch.shape[0]
target = np.zeros((batch_size, 1))
# training of the action state value networks
last_action = np.zeros((batch_size, self.action_size))
fut_action = self.model_value_target.predict(s2_batch).reshape(-1)
target[:, 0] = r_batch + (1 - d_batch) * self.training_param.DECAY_RATE * fut_action
loss = self.model_Q.train_on_batch([s_batch, last_action], target)
loss_2 = self.model_Q2.train_on_batch([s_batch, last_action], target)
self.life_spent += 1
temp = 1 / np.log(self.life_spent) / 2
tiled_batch = np.tile(s_batch, (self.action_size, 1))
# tiled_batch: output something like: batch, batch, batch
# TODO save that somewhere not to compute it each time, you can even save this in the
# TODO tensorflow graph!
tmp = np.repeat(np.eye(self.action_size), batch_size*np.ones(self.action_size, dtype=np.int), axis=0)
# tmp is something like [1,0,0] (batch size times), [0,1,0,...] batch size time etc.
action_v1_orig = self.model_Q.predict([tiled_batch, tmp]).reshape(batch_size, -1)
action_v2_orig = self.model_Q2.predict([tiled_batch, tmp]).reshape(batch_size, -1)
action_v1 = action_v1_orig - np.amax(action_v1_orig, axis=-1).reshape(batch_size, 1)
new_proba = np.exp(action_v1 / temp) / np.sum(np.exp(action_v1 / temp), axis=-1).reshape(batch_size, 1)
loss_policy = self.model_policy.train_on_batch(s_batch, new_proba)
# training of the value_function
target_pi = self.model_policy.predict(s_batch)
value_target = np.fmin(action_v1_orig[0, a_batch], action_v2_orig[0, a_batch]) - np.sum(target_pi * np.log(target_pi + 1e-6))
loss_value = self.model_value.train_on_batch(s_batch, value_target.reshape(-1,1))
self.Is_nan = np.isnan(loss) + np.isnan(loss_2) + np.isnan(loss_policy) + np.isnan(loss_value)
# Print the loss every 100 iterations.
if observation_num % 100 == 0:
print("We had a loss equal to ", loss, loss_2, loss_policy, loss_value)
return np.all(np.isfinite(loss)) & np.all(np.isfinite(loss_2)) & np.all(np.isfinite(loss_policy)) & \
np.all(np.isfinite(loss_value))
@staticmethod
def _get_path_model(path, name=None):
if name is None:
path_model = path
else:
path_model = os.path.join(path, name)
path_target_model = "{}_target".format(path_model)
path_modelQ = "{}_Q".format(path_model)
path_modelQ2 = "{}_Q2".format(path_model)
path_policy = "{}_policy".format(path_model)
return path_model, path_target_model, path_modelQ, path_modelQ2, path_policy
def save_network(self, path, name=None, ext="h5"):
# Saves model at specified path as h5 file
path_model, path_target_model, path_modelQ, path_modelQ2, path_policy = self._get_path_model(path, name)
self.model_value.save('{}.{}'.format(path_model, ext))
self.model_value_target.save('{}.{}'.format(path_target_model, ext))
self.model_Q.save('{}.{}'.format(path_modelQ, ext))
self.model_Q2.save('{}.{}'.format(path_modelQ2, ext))
self.model_policy.save('{}.{}'.format(path_policy, ext))
print("Successfully saved network.")
def load_network(self, path, name=None, ext="h5"):
# nothing has changed
path_model, path_target_model, path_modelQ, path_modelQ2, path_policy = self._get_path_model(path, name)
self.model_value = load_model('{}.{}'.format(path_model, ext))
self.model_value_target = load_model('{}.{}'.format(path_target_model, ext))
self.model_Q = load_model('{}.{}'.format(path_modelQ, ext))
self.model_Q2 = load_model('{}.{}'.format(path_modelQ2, ext))
self.model_policy = load_model('{}.{}'.format(path_policy, ext))
print("Succesfully loaded network.")
def target_train(self):
# nothing has changed from the original implementation
model_weights = self.model_value.get_weights()
target_model_weights = self.model_value_target.get_weights()
for i in range(len(model_weights)):
target_model_weights[i] = self.training_param.TAU * model_weights[i] + (1 - self.training_param.TAU) * target_model_weights[i]
self.model_value_target.set_weights(model_weights)
class DeepQAgent(AgentWithConverter):
def convert_obs(self, observation):
return np.concatenate((observation.rho, observation.line_status, observation.topo_vect))
def my_act(self, transformed_observation, reward, done=False):
if self.deep_q is None:
self.init_deep_q(transformed_observation)
predict_movement_int, *_ = self.deep_q.predict_movement(transformed_observation.reshape(1, -1), epsilon=0.0)
return int(predict_movement_int)
def init_deep_q(self, transformed_observation):
if self.deep_q is None:
# the first time an observation is observed, I set up the neural network with the proper dimensions.
if self.mode == "DQN":
cls = DeepQ
elif self.mode == "DDQN":
cls = DuelQ
elif self.mode == "SAC":
cls = SAC
else:
raise RuntimeError("Unknown neural network named \"{}\". Supported types are \"DQN\", \"DDQN\" and "
"\"SAC\"".format(self.mode))
self.deep_q = cls(self.action_space.size(), observation_size=transformed_observation.shape[-1], lr=self.lr)
def __init__(self, action_space, mode="DDQN", lr=1e-5, training_param=TrainingParam()):
# this function has been adapted.
# to built a AgentWithConverter, we need an action_space.
# No problem, we add it in the constructor.
AgentWithConverter.__init__(self, action_space, action_space_converter=IdToAct)
# and now back to the origin implementation
self.replay_buffer = ReplayBuffer(training_param.BUFFER_SIZE)
# compare to original implementation, i don't know the observation space size.
# Because it depends on the component of the observation we want to look at. So these neural network will
# be initialized the first time an observation is observe.
self.deep_q = None
self.mode = mode
self.lr = lr
self.training_param = training_param
def load_network(self, path):
# not modified compare to original implementation
self.deep_q.load_network(path)