-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_builder.py
63 lines (52 loc) · 2.32 KB
/
model_builder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from neural_network.classes.Model import Model
from neural_network.classes.Layers import HiddenLayer, OutputLayer, InputLayer
from neural_network.classes.Initializer import Uniform
from neural_network.classes.ActivationFunctions import Linear
def model_builder(config : dict):
"""
Given a cofiguration, i.e. a dict that maps the hyperparameter name with the current value, this function built the model
:param verbose: verbose, it is also passed to the model
:input shape: the size of the input vector (input layer)
:output shape: the size of the output vector (output layer)
"""
verbose = False
input_shape = 9
output_shape = 2
num_layer = config["num_hidden_layers"]
# check if the layers before num_hidden_layers are correct
for i in range(1, num_layer+1):
if config["neurons_in_layer_"+str(i)] == 0:
if verbose:
print(f"model build failed because the model has {num_layer} layers but the layer {i} has 0 neurons")
return None
# check if all the layers after num_hidden_layers have zero units
i = 1
while "neurons_in_layer_"+str(num_layer + i) in config.keys():
if config["neurons_in_layer_"+str(num_layer + i)] != 0:
if verbose:
print(f"model build failed because the model has {num_layer} layers but layer {num_layer + i} has not 0 neurons")
return None
i +=1
# built the layers
layers = []
layers.append(InputLayer((None, input_shape), config["neurons_in_layer_1"], config["activation_function"](), initializer=Uniform(-1, 1)))
for i in range(2, num_layer+1):
layers.append(HiddenLayer( config["neurons_in_layer_"+str(i)], config["activation_function"](), initializer=Uniform(-1, 1)))
layers.append(OutputLayer(output_shape, Linear(), initializer=Uniform(-1, 1)))
model = Model(
layers = layers,
loss = config["loss_function"](),
optimizer = config["optimizer"](
config["learning_rate"],
config["momentum"],
config["regularization"]
),
metrics=["mse", "mean_euclidean_distance"],
batch_size=config["batch_size"],
n_epochs=config["num_epochs"],
callbacks=config["callbacks"],
verbose=verbose
)
if verbose:
print(f"model builded")
return model